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ABSTRACT

The preservation of geo-privacy is a critical consideration
for location-based service (LBS) providers. Unfortunately,
a trade-off typically exists between the quality of location-
based services and revealing of private information (e.g. geo-
coordinates) to obtain such services. In this work, we de-
velop semantic obfuscation methods, which allow a trusted
third-party to convert revealing geo-coordinates into highly
anonymous semantic features. Following, LBS providers can
operate directly via location semantics to deliver the neces-
sary services. Using a large-scale travel survey dataset, we
evaluate our obfuscation approach while considering a com-
mon user-intention prediction problem. Our results demon-
strate that our approach is capable of significantly obfus-
cating user location while maintaining LBS quality. On av-
erage, we show that the k-anonymity measure increases by
15.22 times while the quality of prediction drops only 3.24%.
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1. INTRODUCTION

The ubiquitous presence of GPS-enabled mobile phones
have facilitated a vast number of location-based services

(LBS). Such services typically require the specific geo-coordindates

of user location, which can then be used to provide just-in-
time and context-relevant services. Such services could be,
for example, providing the nearest restaurant information to
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users [16], showing the nearby gas stations to drivers [9], no-
tifying customers of special promotion in stores [16], etc. As
LBS depend on privacy-sensitive real-time geo-coordinates,
the risk of malicious parties intruding on people’s privacy
is a critical concern to users of LBS. On the other hand,
the precision of geo-coordinates is critical for understanding
user context and providing high-quality LBS [20]. As such,
there is often a trade-off between geo-privacy preservation
and LBS quality.

In our work, we aim to perturb geo-information via lo-
cation obfuscation approaches to protect user privacy while
maintaining the quality of service of LBS. To this end, we
introduce a trusted third-party that converts absolute geo-
data (e.g. GPS coordinates) into relative geo-features (se-
mantics of nearby venues, e.g. office, hospital, elementary
school, etc.), which is typically conducted by LBS providers
anyway as a feature extraction process. Given relative geo-
features, we propose semantic obfuscation methods to se-
mantically obfuscate and modify the feature vector. To pre-
serve the quality-of-service, we obfuscate with consideration
of the final provided service. As a case study, we evalu-
ate our obfuscation methods on a travel purpose prediction
by [20]. There, the LBS (prediction of travel purposes) is
provided using relative geo-features, however, without any
obfuscation. Using their approach as a benchmark, we show
that malicious parties can easily reverse-engineer for abso-
lute user locations from relative geo-features. Using our pro-
posed obfuscation method, preservation of geo-privacy sig-
nificantly increases while LBS quality experience marginal
decrease.

Concretely, our contributions beyond the state-of-the-art
work are:

e An effective semantic-level obfuscation method to pre-
serve geo-privacy while maintaining LBS quality.

e Simple and intuitive obfuscation metrics to quantify the
privacy preservation level.

e Evaluation of the methods on large-scale human mobil-
ity data to substantiate the usefulness of our methods.

In the rest of this paper, we first review existing work
in Section 2. Details of our methodologies are presented in
Section 3. We evaluate our methods and present experimen-
tal results in Section 4 and further discussion is provided in
Section 5. Finally we conclude the paper and outline future
work in Section 6.



2. RELATED WORK

Many researchers have investigated methods to preserve
geo-privacy. These methods can be categorized into two
levels—coodinate and semantic. These respectively corre-
spond to the explicit obfuscation of GPS coordinates and ob-
fuscating at the semantic level, such as manipulating nearby
location venues as introduced in Section 1. K-anonymity [19]
is a typical method of coordinate obfuscation, where a user
mixes his GPS coordinate with other k — 1 nearby users’ co-
ordinates. These k coordinates are then all uploaded as one
query. Alternatively, instead of providing an exact location,
a user can cloak his coordinates and upload a geographi-
cal area instead [7]. Additionally, users can randomly per-
turb their coordinates by a limited distance and provide the
moved position [7]. On the other hand, semantic obfuscation
is implemented on a feature vector that has been extracted
from absolute geo-coordinates as a step in the LBS process-
ing pipeline. Semantic obfuscation by generalization is intro-
duced in [4]. There, a specific venue (e.g. burger joint) may
be replaced by a more generic venue category (e.g. restau-
rant) to mitigate the risk of an attacker reverse-engineering
a user’s absolute location. In our work, we contribute to the
genre of semantic obfuscation approaches. This allows us to
also consider LBS quality while preserving geo-privacy.

To quantify obfuscation performances, appropriate met-
rics are needed to correspond to the attacking scenario and
LBS application context. Some basic metrics are proposed
in [14]. Hoh and Gruseser [13] define location privacy as
the expected error in distance between a user’s true location
and an attacker’s estimate of that location. Duckham and
Kulik [11] define level of privacy as the number of differ-
ent geographic coordinates provided by the user in a sin-
gle query. Beresford and Stajano [3] use entropy as the
privacy indicator. Shokri et. al. put forward a location-
privacy meter [17, 18] in consideration of the distance be-
tween attacker-estimated locations and real location, proba-
bility of attacker-estimated locations and the user’s profile.
In these metrics, k-anonymity obfuscation is appropriately
quantified by level of privacy. In our work, we construct k-
anonymity and hit-rate to appropriately quantify the level
of geo-privacy preservation in our application context.

3. METHODOLOGY

Figure 1 demonstrates the assumed LBS working scenario
when our obfuscation approach is utilized in the form of a
trusted third-party, which has been successfully realized in
practice [2, 8, 15]. In the figure, we demonstrate the posi-
tioning of the relevant parties: users, attacker, trusted third-
party providing obfuscation, and LBS provider. The flow of
information is as follows: A geographical region is first par-
titioned into unit cells via a spatial segmentation method.
Once users request LBS, a trusted third-party receives the
original geo-coordinates and converts them into semantic
geo-features. Typically, these are the semantic categories of
nearby venues extracted from the corresponding unit cells.
Then, the semantic obfuscation approaches are applied and
the obfuscated geo-feature vector is sent to the appropriate
LBS provider. Our assumption is that the attacker has full
access to the LBS provider and is able to intercept all the
information transmitted from the trusted third-party to the
LBS provider. We also assume that the geographic data is
not linked with other third-party data, such as the credit
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Figure 1: Location-based service (LBS) working sce-
nario. The scenario includes a segmented region
map, a trusted third party to extract original fea-
tures and implement location obfuscation, an LBS
provider for travel purpose prediction, and an at-
tacker who attempts to locate the absolute geo-
coordinates of the user.

card usage history of the corresponding user. Therefore, the
geo-privacy will be truly protected given an effective geo-
graphic obfuscation approach. In addition, the third-party
service is assumed to be running on the user’s device for
the sake of good communication quality. The following sub-
sections detail each of the components in Figure 1 further.

3.1 Region Segmentation

To define an area from which the original geo-feature is
extracted, we segment the region into unit cells. A typical
method is to implement a grid-based segmentation as shown
in [1]. In this work, Abdulazim et. al. developed an algo-
rithm to adjust the grid size according to the venue density.
However, restricted by the geometric shape, grid-based seg-
mentation cannot capture natural spatial compositions as
defined by population density, geographical terrain, or ur-
ban planning elements (e.g. roads, railways, etc.).

To tackle these problems, we employ a census-based seg-
mentation method to realize a more natural space partition-
ing. Developed by the U.S. Census Bureau, census-based
segmentation cells are the smallest units to collect, tabu-
late and present census and other geographic data®. Bound-
aries are defined by both physical features such as streets,
streams, and railroad tracks as well as invisible boundaries
such as town limits, property lines and imaginary extensions
of streets and roads. An illustrative figure showing the seg-
mentation of the Puget Sound area in the United States is
shown in Figure 2.

3.2 Geo-feature Extraction

Based on the segmented region map, original geo-coordinates

are assigned into unit cells that enclose them. Venues lying
within the corresponding unit cells are extracted as seman-
tic geo-features. We arrange the semantic geo-feature as a
K-dimension vector V' = [v1,...,vk], where K is the total
number of venue categories and each dimension is a count
of the k-th venue within the cell. As each trip has a starting
and an end coordinate, original starting and end feature vec-
tors are simultaneously constructed to characterize a trip. In
our experiments, these non-obfuscated features also serve as
the benchmark for comparison.

3http://www.psrc.org/data/gis/shapefiles



Figure 2: A part of segmented Puget Sound area.
Cells are adjusted in size and shape based on geo-
graphic and demographic characteristics of the re-
gion.

3.3 Geo-feature Obfuscation

Obfuscation approaches are applied after the construc-
tion of benchmark feature vectors. Here, we propose three
semantic-level obfuscation approaches.

3.3.1 Binarization Obfuscation

Benchmark feature vectors imply which and how many
venues are included. Then, a simple obfuscation technique
is to binarize the feature vector to eliminate the discrim-
inability caused by venue counts. Consequently, we are left
only with which venues exist. We choose the binarization
threshold as 0, such that the dimension v, will be 1 as long
as at least one count of the corresponding venue exists in
the cell. Figure 3 demonstrates an example of binarization
obfuscation.

benchmark |2 o [3].. [ 1 [ 2] 1]
vy v, Uz e Uk_o Vk_1 Vg
binarization ! 0 L ! = e
v Uy Vg e Vk_2 Vk—1 Vg

Figure 3: Blue vector is the benchmark and green
vector is the result of binarization obfuscation. v; is
not contained in the cell so its value is 0 while the
other dimension values are 1.

3.3.2  Revealing-Venue-Switching Obfuscation (RVS)

Some venue categories are more revealing of an absolute
geographical location than others. For instance, if there ex-
ists only 1 Cambodian Restaurant and it is in the user’s
feature vector, an attacker can easily locate the census cell
where the user stays by geo-coding via an urban gazetteer.
On the contrary, Home is relatively ubiquitous, therefore,
barely reveals the user’s location. To lower the risk of be-
ing exposed by revealing venues, we propose the revealing-
venue-switching obfuscation (RVS).

Given a region, we first calculate the degree of spread for
each venue category according to the equation

K
Z dist(ki, k;) for i #j (1)

||
qu

where dist(k;, k;) is the geographic distance between two
venues of category K in the region. The revealing rank is
assigned inversely with the geographical spread: a venue
category with the lowest degree of spread is ranked highest
in revealing rank and vice versa.

During obfuscation, a revealing rank threshold is selected
as a method parameter. A venue which ranks higher than
this threshold will be replaced randomly by a less revealing
venue with the same count. For example, 2 Hockey Fields
may be switched to 2 Parks. Therefore, after RVS, total
venue quantity is maintained and we call this conservation
of vector magnitude. Due to random replacement, RVS does
not produce unique output. Figure 4 illustrates an example
explaining this method.
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Figure 4: We assume that vs and vx_» are revealing
and all the others are unrevealing. We show 2 possi-
ble outputs RVS1 and RVS2. In RVS1, the revealing
venues are switched to v; and vk_1; while in RVS2,
the revealing venues are switched to vy and vk_;.
The number of revealing venues are added to the
corresponding unrevealing venues, which maintains
the conservation of vector magnitude.

3.3.3 Binarized Revealing-Venue-Switching Obfusca-
tion (bi_RVS)

Binarization eliminates the discriminability of venue count
while RVS gets rid of revealing venues. As these two meth-
ods provide orthogonal obfuscation benefits, we combine
them to incorporate the obfuscation effects of both. An
example is illustrated in Figure 5.

3.4 Quality of Service from LBS

Understanding user intention is the essential ingredient in
providing context-specific LBS. As a proxy assessment for
LBS quality, we adopt the travel purpose prediction mod-
ule in [20] to examine how our obfuscation methods degrade
prediction accuracy. There, a multi-class classification prob-
lem is posed where supervised machine learning algorithms
attempt to map spatial features to user intention for un-
seen trajectory instances. We utilize the same construction,
aside from using a Random Forest classifier [6] in place of
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Figure 5: This example is based on Figure 4. We
show 2 possible outputs and the binarization further
obfuscates the feature vector by mapping it to 0-1
sequence.

the original Linear SVM classifier [12] due to its superior
performance in this case.

3.5 Attacker Settings and Exclusion Rules

Typically, a LBS is requested upon arrival at the destina-
tion. Therefore, we assume the attacker’s aim is to locate
the trip end-point. In our purposes, a user is denoted as at-
tacked as long as the attacker finds the cell the user is in. As
the attack happens in real time during the data transmission
(Figure 1), the attacker can obtain the obfuscated spatial
feature and upload timestamp. We also assume that the
attacker knows the segmented region map, obfuscation
method and corresponding parameters.

Given the region map, the attacker will check each unit
cell and target the user by reverse-engineering the imple-
mented obfuscation approach. For each obfuscation approach,
we define corresponding ezxclusion rules to filter out cells
which have no possibility of containing the user. The fol-
lowing notations are used:

V°bfs_QObfuscated venue feature vector intercepted by at-
tacker

V™ _Vector of venues from map unit cell

V" _Vector of venues from map unit cell after binarization
ynrmaeP_Vector of non-revealing venues from map unit cell

ynrobfs_Vector of non-revealing venues from obfuscated venue

features

SnTMeP_Set, of non-revealing venues from map unit cell
Sn-obf5_Get of non-revealing venues from obfuscated venue
features

S"MP_Set, of revealing venues from map unit cell

Saiff = gnr-obfs _ gnrmapr_Relative complement of S"7-™4P
with respect to S""-°0fs

3.5.1 Binarization Exclusion Rule
e Exclusion Criteria:

Jolin : pbin ;évfbfs for1<i<K

Exclusion rule for binarization is straightforward. After
binarization, a unit cell can only remain if each of its di-
mension is the same as corresponding dimension in the in-

tercepted vector. Otherwise it will be excluded.

3.5.2 RVS Exclusion Rule

e Exclusion Criteria 1:
K map K obfs
D et Vi # D e Vi

This criteria reflects the conservation of vector magnitude
as mentioned in section 3.3.2. If a cell feature vector meets
this criteria, it will be excluded.

e Exclusion Criteria 2:

av@r.map . Uﬁr.map > v'.rLr.obfs fO’f‘ 1<i<K
2 2 [ =t =
Given conservation of vector magnitude, the attacker can
further compare venue feature values. If there erists non-
revealing venues of the map cell larger than the correspond-

ing venues in the obfuscated vector, it will be excluded.

3.5.3 bi RVS Exclusion Rule

e Exclusion Criteria 1:

gnr.map g Snr.obfs

If before obfuscation, the map unit cell has already con-
tained other non-revealing venues, which are not shown in
obfuscated venue features, it cannot be obfuscated into the
intercepted feature vector and should be excluded. If a cell is
not filtered out by criteria 1, the attacker will further check
it according to exclusion criteria 2.

e Exclusion Criteria 2:
card(Sairs) > card(S™W?)

card(Set) is the count of distinct elements in a set. If a
unit cell contains n different revealing venues, then its ob-
fuscation will contain at most n more non-revealing venues.
Therefore, if a cell meets criteria 2, it will be excluded.

After filtering according to exclusion rules, remaining cells
form a candidate pool and they are regarded as potential
user cells. To illustrate the exclusion rules more visually, a
concrete example is provided in the Discussion section.

3.6 Location Attacking—Obfuscation Metrics

Based on the attacker candidate pool, we propose two
obfuscation metrics k-anonymity and hit-rate to evaluate the
effect of our obfuscation methods.

3.6.1 K-Anonymity

Originally, k-anonymity means the number of coordinates
provided by the user to hide his/her location [19]. In our
scenario, we utilize this term to represent the number of re-
maining cells in the attacker’s candidate pool after applying
exclusion criteria. The attacker will find it more difficult to
locate the user if there are more potential user cells. There-
fore, we pursue a large k-anonymity value.

3.6.2 Hit-rate

Previous works [13, 17, 18] adopt the theory that the user
feels more threatened if the attacker-estimated locations are
closer. Therefore, we introduce the metrics hit-rate @ A to



Table 1: 14 Travel Purposes of PSRC Survey and
Their Occurrence Frequencies

calculate the proportion of attacker cells within A meters of

the user’s actual location. It is formulated as:
Nn(A)

= (2)
Nr(A)

where Ny is the count of cells within A meters of the user

and Nr is the total count of cells remaining in the attacker’s
candidate pool. Therefore, we pursue a low hit-rate value.

HR(A)

4. EXPERIMENTAL RESULTS

According to the scenario detailed in the last section,
we evaluate the performance of our obfuscation approaches
regarding the geo-privacy preservation with consideration
of quality-of-service of LBS. The LBS prediction accuracy
is the weighted test-fold classification over 10-fold cross-
validation. As in [20], the folds are generated carefully so
that they are not shared by a single user, in case of repeated
trips, which may artificially boost the accuracy. As we im-
plement random switching in RVS, the results pertaining
to RVS are the average over 20 iterations. We begin this
section by first introducing the experimental dataset.

4.1 Dataset

We use the Puget Sound Regional Travel Study conducted
by the Puget Sound Regional Council (PSRC) of Washing-
ton State, USA in the year of 2014. This survey contains
47881 trips in a 24-hour weekday period from 6094 repre-
sentative households including around 10K people [10]. The

Purpose Label Frequency Examples Revealing Ranks Typical Venue Categories
go back home or i Monastery, Palace, Tibetan Restaurant,
Go Home B4.64% residential building 1100 Voleano, Hindu Temple, etc.
} o go to meeting, Whiskey Bar, Shrine, German Restaurant,
Work/Work-related 16.27% delivery, etc. 101-300 Prison, TV Station, etc.
. o go to grocery store, Zoo, Supermarket, Burger Joint, Credit
Shopping 12.07% mall, pet store, etc. 301-500 Union, Baseball Field, etc.
. . go to elementary Bus Stop, Church, Elementary School,
Education 3.40% school, college, etc. 501-570 Office, Home(private), etc.
Professional Services 2.17% g0 dt;)ntt}ilset d;):(t;or,
> to bank ,ost éffice Table 2: High-rank venues are considerably sparse
Personal Business 6.39% 8 e’ts ’ in the region. For example, there is only one Tibetan
- - - restaurant in Puget Sound area. Low-rank venues
Drop off/Pick up o pick up children after . A
Someone 6.08% school. ete. are relatively ubiquitous such as office and home.
Exercise 5.560% go to gym,bike-ride,
) ete.
20 to restaurant, get respondents come from different occupations with age rang-
Eat Out 5.89% take-out. etc. ing from under 5 years old to 85 or older.
visit with friends. co- This survey investigate the travel purpose for each trip as
1 171 0, ’ .. . . .. . .
Socializing 3.17% workers, etc. explicitly indicated by participants. Originally, 16 purposes
] ) go to movies, sporting are included and we slightly reduce the count to 14 by com-
Recreation 2.05% centers, etc. bining go to workplace and go to other work-related place as
go to work/work-related place, and by combining go grocery
Community Activity 1.18% ! gt? to Chll,rcf}tl’ " shopping and go to other shopping as go shopping. Detailed
volunteer activity, etc. examples and occurrence frequencies of travel purposes are
Transfer to Another h f P ¢ summarized in Table 1.
Mode of 0.19% ¢ angz romt erry to For spatial feature extraction, we collect the crowd-generated
Transportation us, ete. venue data from the social media platform Foursquare. With
Other 0.93% activities not in items the help of Venues API service from the platform?, we pop-
e above ulate the Puget Sound region with 111725 venues which are

categorized into 592 semantic categories such as College Aca-
demic Building, American Restaurant, Church, etc.®> Since
22 venue categories appear only once, we only have 570 re-
vealing rank levels. Table 2 shows typical venue categories
in different rank intervals.

In terms of the geographical region covered by the PSRC
dataset, 28059 segmented census cells contain Foursquare
venues. From these, 8523 cells contain end coordinates of
35725 trips. Another 12156 trips are located in cells with-
out venues, therefore, we do not consider them in our exper-
iments as feature extraction for these are not possible.

4.2 Benchmark Performance

As mentioned in Section 3.3, actual semantic geo-features
are used in benchmark experiments. Using these features,
the average test-fold prediction accuracy is 60.35%. Con-
sidering that we only use semantic geo-feature to classify
14 purposes which are distributed unevenly, this accuracy
is satisfying compared with [1], where 6 classes are classi-
fied with a 67% accuracy. However, the privacy preserva-
tion of non-obfuscated geo-features is quite poor as shown
in Figure 6. In hit-rate calculation, we set the hit distance
threshold (A) as 50m, 200m, 500m, 1000m and 2000m. As
the resultant average hit-rates increase within 2%, we only
report the result at A = 500m in this paper. At this thresh-
old, the average k-anonymity is 12.52 while the average hit-
rate is 88.45%. To obtain a more representative view of
performance for all trip instances, we plot the cumulative
distribution function (CDF) of k-anonymities and hit-rates
of 35725 trips in Figure 6.

https://developer.foursquare.com/overview /venues.html
3http://developer.foursquare.com/categorytree
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Figure 6: Culmulative distribution functions (CDF)
of benchmark k-anonymity and hit-rate. About 90%
of trips have a k-anonymity of 1 and hit-rate of
100%, which means that the user location is totally
exposed.

Travel Purpose Prediction Accuracy

Benchmark | 60.35%

Binarization 59.91%
RVS(100) 60.33%
RVS(200) 60.07%
RVS(300) 59.48%
RVS(400) 57.86%
RVS(500) 49.90%

bi_RVS(100) 60.18%

bi_RVS(200) 60.00%

bi_RVS(300) 59.50%

bi_RVS(400) 57.11%

bi_RVS(500) 48.51%

Figure 7: Purpose prediction accuracy of bench-
mark, binarization, RVS and bi_ RVS. Numbers in
brackets are revealing rank thresholds. Compared
with benchmark, except for RVS and bi RVS at
revealing rank threshold 500, the biggest accuracy
drop is only 3.24%.
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(b) Hit-rates CDF Comparison

Figure 8: Compared with benchmark, binarization
barely improves geo-privacy preservation; RVS and
bi_RVS improve geo-privacy preservation gradually
as revealing rank threshold increases. On the whole,
bi_RVS at high rank thresholds works significantly
as x-axis of k-anonymity is in log scale and the hit-
rate curve rises by approximately 40%.

In Figure 6, we demonstrate that around 90% of trips have
k-anonymity of 1 and near 100% hit-rate. The poor geo-
privacy preservation performance substantiates the necessity
to implement obfuscation on the semantic geo-features.

4.3 Obfuscation Performance

We first compare the prediction accuracies of the obfusca-
tion methods in comparison with the benchmark in Figure 7.
Here, we demonstrate relatively small drops in accuracy af-
ter obfuscation methods are applied. Except for RVS and
bi_RVS at revealing rank threshold 500, the largest accuracy
drop is only 3.24% when implementing bi_RVS(400).

We then compare the geo-privacy preservation performances
as shown in Figure 8. The best privacy preservation is
achieved when applying bi_RVS, especially at threshold 400
in consideration of the travel purpose prediction accuracy.
Compared with benchmark where around 90% of 35725 trips
have a hit-rate higher than 95%, only 50% of the trips have
such a high hit-rate when applying bi_RVS(400). On av-
erage, at this rank threshold and compared to benchmark,
k-anonymity is 190.51 which increases by 15.22 times, and
hit-rate is 70.90% which decreases by 17.55%.

However, the geo-privacy preservation improvement is re-



benchmark 4l 1]l0l0]2 a. Home (not revealing)

- b. Private School (revealing)
binarization 1 1 0 0 1

RVS nnn . Library (not revealing)
bi_RVS nn e. Office (not revealing)

City cells checked by the attacker:

c. Bus Station(not revealing)

a 4 1,0 0 2 b. 4 00 2 2
c 30 1 2 1 d. 4 0/ 0 0 3
e 4 00 1 2

Figure 9: Venue b is assumed to be a revealing venue
according to the rank threshold. 3 obfuscated fea-
ture vectors are listed behind the benchmark. 5
feature vectors from different unit cells are checked
by the attacker to find the real user cell.

stricted by the feature vector specificity in the placement
of venues. 32277 out of 35725 trips end in cells which have
a unique feature vector and manipulation of these vectors
hardly leads to improvements. The obfuscation can be more
effective if the unit cells are generated in a specificity reduc-
tion manner.

S. DISCUSSION

In the last section, we show that RVS and bi_ RVS make
significant gains in geo-privacy preservation while maintain-
ing a high accuracy in travel purpose prediction. We provide
some intuitive discussions as to how our methods are capable
of achieving the demonstrated results.

5.1 Geo-privacy Preservation

Section 3.5 details the exclusion rules for each obfuscation
approach. In this part, we illustrate a concrete example in
Figure 9. In this example, we assume that 5 venues exist in
the region for simplicity.

e Benchmark

As the attacker knows that the benchmark is uploaded,
he will match only map cells with the same feature vector.
In Figure 9, only cell a meets the requirement. The feature
specificity mentioned in the last section explains the poor
geo-privacy preservation of benchmark.

e Binarization

Similar to benchmark, binarization hardly improves the
geo-privacy preservation level due to the feature specificity.
All cells except for cell a will be filtered out from the attacker
candidate pool.

e RVS

First, cell b will be excluded because it meets exclusion
criteria 1. Then, according to criteria 2, the attacker can
filter out cell ¢ and cell d. Cell a and cell e will remain
as potential locations to the attacker. RVS improves the
geo-privacy preservation level gradually with the increase
of revealing rank thresholds. However, specificity of venue
counts restricts this approach.

e Binarized RVS

According to exclusion criteria 1, cell ¢ will be filtered out.
Then, cell d will be excluded due to criteria 2. Finally, cell a,
b and e remain in the candidate pool. It can be seen that bi-
narization eliminates the influence from venue count, which
leads to better geo-privacy preservation compared with pure
RVS. However, exclusion criteria 2 is relatively strict and
still aids the attacker in filtering out potential user cells.

5.2 High LBS Quality after RVS Obfuscation:
Revealing Is Not Informative

RVS and bi_RVS maintain a relatively high prediction ac-
curacy even after switching a fair number of venue cate-
gories. Even at rank threshold 400, where around 70% of
the revealing venue categories are replaced, the prediction
accuracy is still high at 57.86% (without binarization) and
57.11% (with binarization). In Figure 10, we plot the re-
vealing rank on the x-axis while the normalized feature im-
portance (via Gini entropy importance [5]) on the y-axis.
From the figure, we see a salient pattern: venues most in-
formative of the purpose are also some of the least revealing
ones. Therefore, although RVS and bi_RVS switch out the
revealing venues, LBS quality is not significantly influenced
as those are likely ignored by the classifier as uninformative
venues.

6. CONCLUSION AND FUTURE WORK

In this work, we demonstrate the usefulness of pure se-
mantic geo-feature in travel purpose prediction. Our work
explores location obfuscation methods and presents a Bina-
rized Revealing- Venue-Switching Obfuscation (bi_RVS) that
achieves good geo-privacy preservation while maintains LBS
quality. Compared with the benchmark, the travel purpose
prediction accuracy is impaired slightly by 3.24% but the
obfuscation level improves by 17.55% in hit-rate and 15.22
times in k-anonymity.

Future work includes adding in temporal and demographic
information, which would help increase the travel purpose
prediction accuracy, thus, improve the LBS quality. Corre-
spondingly, we could extend our methods to provide more
robust and comprehensive obfuscation approach by consider-
ing these newly-added elements. Also, due to feature speci-
ficity of some urban regions, designing obfuscation that pri-
oritizes popular destination cells would be helpful. For ex-
ample, segmenting geo-regions in a feature-specificity-free
style would help decrease specificity of semantic features.
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