
1 Time Synchronization
and Calibration
in Wireless Sensor Networks

Kay Römer, Philipp Blum, Lennart Meier

ETH Zurich, Switzerland

In this chapter, we review time synchronization and calibration for wireless sensor
networks. We will first consider time synchronization in Sections 1.1–1.6, before
turning to calibration in Section 1.7. We will show that time synchronization can be
considered as a calibration problem and many observations about time synchroniza-
tion can be transferred to calibration.

In Section 1.1, we discuss applications of synchronized time in sensor networks,
present challenges of sensor networks, and discuss why traditional synchronization
approaches fail to meet these challenges. Section 1.2 presents models of sensor
nodes, of hardware clocks, and of communication. Section 1.3 gives an overview
of the various classes of synchronization. In Section 1.4, we present common syn-
chronization techniques. Section 1.5 examines current synchronization algorithms.
Section 1.6 presents common techniques for evaluating synchronization algorithms
and selected evaluation results.

1.1 INTRODUCTION

Sensor networks are used to monitor real-world phenomena. For such monitoring
applications, physical time often plays a crucial role. We will discuss these applica-
tions of time in Section 1.1.1. Providing synchronized physical time is a complex
task due to various challenging characteristics of sensor networks. In Section 1.1.2,
we present these challenges and discuss why synchronization algorithms for tradi-
tional distributed systems often do not meet these challenges.

i



ii

(a)

(b)

(c)

Fig. 1.1 Applications of physical time: (a) interaction of an external observer with the sensor
network, (b) interaction among sensor nodes, and (c) interaction of the sensor network with
the real world.

1.1.1 The need for synchronized time

Physical time plays a crucial role for many sensor-network applications. While many
traditional applications of time also apply to sensor networks, we will focus here on
areas specific to sensor networks. Figure 1.1 illustrates a rough classification of ap-
plications of physical time: (a) at the interface between the sensor network and an
external observer, (b) among the nodes of the sensor network, and (c) at the inter-
face between the sensor network and the observed physical world. The following
paragraphs will discuss applications of time in these three domains. Note that some
applications are hard to assign to a single domain. In such cases, we picked the most
appropriate domain.

Sensor network – observerIn many applications, a sensor network interfaces to
an external observer for tasking, reporting results, and management. This observer
may be a human operator or an autonomous computing system. Tasking a sensor
network often involves the specification of time windows of interest such as “only
during the night”. As a sensor network reports observation results to an external
observer, temporal properties of observed physical phenomena may be of interest.
For example, the times of occurrence of physical events are often crucial for the
observer to associate event reports with the originating physical events. Physical time
is also crucial for determining properties such as speed or acceleration.

Sensor network – real world In sensor networks, many sensor nodes may observe a
single physical phenomenon. One of the key functions of a sensor network is hence
the assembly of those distributed observations into a coherent estimate of the original
phenomenon — this process is known as data fusion. Time is a key ingredient for
data fusion. For example, if sensors can only detect the proximity of an object, then
higher-level information (such as speed, size, or shape) can be obtained by correlat-
ing data from multiple sensor nodes. The velocity of a mobile object, for example,
can be estimated by the quotient of the spatial and temporal distances between two
consecutive sightings of the object by different sensor nodes.

Since many instances of a physical phenomenon can occur within a short time,
one of the tasks of a sensor network is the separation of sensor samples, that is



INTRODUCTION iii

the partitioning of sensor samples into groups that each represent a single physical
phenomenon. Temporal relationships (e.g., distance) among sensor samples are a key
element for separation.

Temporal coordination among sensor nodes may also be necessary to ensure cor-
rectness and consistency of distributed measurements [11]. For example, if the sam-
pling rate of sensors is low compared to the frequency of an observed phenomenon,
it may be necessary to ensure that sensor readout occurs concurrently at all sensor
nodes in order to avoid false observation results (e.g., for calibration, see Section
1.7.5.2).

It is anticipated that large-scale, complex actuation functions will be implemented
by coordinated use of many simple actuator nodes. This requires temporal coordina-
tion.

Within sensor network Time is also a valuable tool for intra-network coordination
among different sensor nodes. Many applications of time known from traditional dis-
tributed systems also apply to wireless sensor networks. [17] points out a number of
applications of time in distributed systems such as concurrency control (e.g., atom-
icity, mutual exclusion), security (e.g., authentication), data consistency (e.g., cache
consistency, consistency of replicated data), and communication protocols (e.g., at-
most-once message delivery).

One particularly important example for concurrency control is the use of time-
division multiplexing in wireless communication, where multiple access to the shared
communication medium is typically achieved by assigning time slots to the commu-
nicating nodes. This requires the participating sensor nodes to share a common view
of physical time.

A number of approaches intend to improve energy efficiency by frequently switch-
ing sensor nodes or components thereof into power-saving sleep modes (e.g., [35]).
In order to nonetheless ensure seamless operation of the sensor network, temporal
coordination of the sleep periods among sensor nodes may be required.

Another important service for sensor-network applications is temporal message
ordering (e.g., [28]). Many data-fusion algorithms have to process sensor readings
ordered by the time of occurrence (e.g., the approach for velocity estimation sketched
above). However, the highly variable message delays in sensor networks imply that
messages from distributed sensor nodes may often not arrive at a receiver in the
order in which they were sent. Reordering messages according to the time of sensor
readout requires temporal coordination among sensor nodes.

Methods for localization of sensor nodes based on the measurement of time of
flight or difference of arrival time of certain signals do also require synchronized
time (e.g., [13]).

1.1.2 Revisiting time synchronization for sensor networks

Time synchronization is a research area with a very long history. Over time, numer-
ous algorithms have been proposed and have been in large-scale use. The Network
Time Protocol (NTP) [21] is perhaps one of the most advanced and time-tested sys-



iv

tems. However, several unique characteristics of sensor networks often preclude the
use of existing synchronization techniques in this domain.

In the following, we discuss sensor-network challenges that impact the design of
time-synchronization approaches. Using NTP as an example, we will outline why
traditional approaches often do not meet the requirements of sensor networks (see
also [9]). Note that some of the illustrated shortcomings of NTP are relatively easy
to fix, while others are not. To provide the necessary background, we will first give
an overview of NTP.

NTP was designed for large-scale networks with a rather static topology (such as
the Internet). Nodes are externally synchronized to a global reference time that is
injected into the network at many places via a set of master nodes (so-called “stra-
tum 1” servers). These master nodes are synchronized out of band, for example via
GPS (which provides global time with a precision significantly below 1µs). Nodes
participating in NTP form a hierarchy: leaf nodes are called clients, inner nodes are
called stratumL servers, whereL is the level of the node in the hierarchy. The parents
of each node must be specified in configuration files at each node. Nodes frequently
exchange synchronization messages with their parents and use the obtained informa-
tion to adjust their clocks by regularly incrementing them.

Energy and other resourcesSensor-network applications often require sensor nodes
to be small and cheap. This has a number of important implications. First of all, the
amount of energy that can be stored in or scavenged by small devices is typically
very limited due to the low energy density of available and foreseeable technology.
To ensure longevity despite this limited energy budget, energy-efficient design both
in hardware and software becomes a dominating goal. Additionally, computing, stor-
age, and communication capabilities of individual sensor nodes are rather limited due
to size and energy constraints.

These constraints may preclude the use of GPS or other technologies for out-of-
band synchronization of NTP master nodes. NTP is also not optimized for energy
efficiency, simply because this is not an issue in infrastructure-based distributed sys-
tems. Energy overhead in NTP results from several sources. Firstly, the service pro-
vided by NTP typically cannot be dynamically adapted to the varying needs of an
application. Hence, with NTP all nodes would be continuously synchronized with
maximum precision, even though only subsets of nodes might occasionally need
synchronized time with less-than-maximum precision.

Secondly, NTP uses the processor and the network in ways that would lead to
significant overhead in energy expenditure in sensor networks. For example, NTP
maintains a synchronized system clock by regularly adding small increments to the
system-clock counter. This behavior precludes the processor from being switched to
a power-saving idle mode. In addition, NTP servers must be prepared to receive syn-
chronization requests at any point in time. However, constantly listening is an energy-
wise costly operation in sensor networks; many sensor-network protocols therefore
switch off the radio whenever possible.



INTRODUCTION v

Network dynamics Due to their deployment in the physical environment, sensor
networks are subject to a high degree of network dynamics. Sensor nodes can be
mobile, die due to depleted batteries or due to environmental influences, and new
sensor nodes may be added at any point in time. This results in relatively frequent
and unpredictable changes in the network topology and possibly even in (temporary)
network partitions. Mobile nodes can transport messages across partition boundaries
by storing a received message and forwarding it as soon as a new partition is entered.
The end-to-end delay of such message paths is very unstable and hard to predict.

The operation of NTP is independent of the underlying physical network topol-
ogy. In the NTP overlay hierarchy, a master and a client can be separated by many
hops in the physical network, even though they are neighbors in the overlay hierar-
chy. Due to the above mentioned effects, multi-hop paths may be very unstable and
unpredictable in a sensor network. NTP, however, depends on the ability to accu-
rately estimate the delay characteristics of network links.

NTP implicitly assumes that network nodes that shall be synchronized are a priori
connected by the network. However, this assumption may not hold in dynamic sen-
sor networks with mobile nodes. Consider for example an application where mobile
sensor nodes with sporadic network connectivity time-stamp sensor readings and de-
liver these records to an observer as they pass by a base station (e.g., [15]). The base
station may then want to compare time stamps generated by different sensor nodes
in order to evaluate the collected data. However, in the above scenario, there might
not be a network connection between the various originators of the time-stamped
messages at any point in time. Hence, NTP cannot be applied in such settings.

Infrastructure In many applications, sensor networks have to be deployed in re-
mote, unexploited, or hostile regions. Sensor networks therefore often cannot rely
on sophisticated hardware infrastructure. For example, under dense foliage or inside
buildings, GPS cannot be used since there is no free line of sight to the GPS satellites.

In order to improve the precision and availability of synchronization in large net-
works, NTP injects the reference time at many points into the network. Hence, any
node in the network is likely to find a source of reference time in a distance of only
a few hops. Note that shorter paths tend to be more reliable and more predictable,
since they include fewer sources of error and unpredictability.

However, such an approach requires an external infrastructure of reference-time
sources which have to be synchronized with some out-of-band mechanism. Where
this is not feasible, NTP would have to operate with a single master node, which
uses its local time as the reference time. In large sensor networks, the average path
length from a node to this single master is long, leading to reduced precision. This is
particularly problematic when collocated sensor nodes require very precise mutual
synchronization, for example to cooperate in observing a nearby physical event. With
a single master node, the collocated nodes might end up using different synchroniza-
tion paths, which results in different synchronization errors (i.e., time offsets) with
respect to the master node.



vi

Configuration After initial deployment, it is often infeasible to physically access
the sensor nodes for hardware or software maintenance. The large number of nodes
also precludes manual configuration of individual nodes. While traditional networks
such as the Internet do also consist of a large number of nodes, there is an accordingly
large number of human network administrators, such that each one takes care of a
manageable number of computers. With sensor networks, however, half a dozen of
human operators may be responsible for thousands of sensor nodes.

NTP requires the specification of one or more potential synchronization masters
for each node. This is an appropriate solution for networks with a rather static topol-
ogy, where configurations remain valid for extended periods of time. In sensor net-
works, however, network dynamics necessitate a frequent adaptation of configuration
parameters.

1.2 SYSTEM MODEL

In the sections ahead we will analyze various synchronization approaches. We will
now specify the system model for time synchronization that we use as the founda-
tion of our analysis. First, we describe how we model clocks. We then specify the
characteristics of communication between nodes in a sensor network.

All our modeling is done in terms of discrete time and events. An event can rep-
resent communication between nodes, a sensor measurement, the injection of time
information at a node, etc. We denote the real time at which eventa occurs asta, and
the local time of nodeNi at that time ashi

a. Note that our model does not explicitly
contain node mobility or network dynamics; these aspects are included implicitly by
the absence or existence of corresponding communication events.

1.2.1 Clock models

Digital clocks measure time intervals. They typically consist of a counterh (which
we will also refer to as “the (local) clock”) that counts time steps of an ideally fixed
length; we denote the reading of the counter at real timet ash(t). The counter is
incremented by an oscillator with a rate (or frequency)f . The rate f at time t is
given as the first derivative ofh(t): f (t) = dh(t)/dt. An ideal clock would have rate
1 at all times, but the rate of a real clock fluctuates over time due to changes in
supply voltage, temperature, etc. If the fluctuation were allowed to be arbitrary, the
clock’s reading would obviously give no information at all. Fortunately, it is limited
by known bounds. Different types of bounds on the rate fluctuation lead to different
clock models:

Constant-rate model The rate is assumed to be constant. This is reasonable if the
required precision is small compared to the rate fluctuation.



SYSTEM MODEL vii

Bounded-drift model The deviation of the rate from the standard rate 1 is assumed
to be bounded. We call this deviation the clock’sdrift ρ(t) = f (t)−1= dh(t)/dt−1,
and denote the corresponding bound withρmax:

−ρmax≤ ρ(t)≤ ρmax ∀t . (1.1)

A reasonable additional assumption isρi(t) >−1 for all timest. This means that a
clock can never stop (ρi(t) =−1) or run backward (ρi(t) <−1). Thus, if two events
a, b with ta < tb occur at a nodeNi whose clock’s driftρi is bounded according to
(1.1), then nodeNi can compute lower and upper bounds∆l

i [a,b], ∆u
i [a,b] on the

real-time difference∆[a,b] := tb− ta as:

∆l
i [a,b] :=

hi(tb)−hi(ta)
1+ρmax

∆u
i [a,b] :=

hi(tb)−hi(ta)
1−ρmax

. (1.2)

This model is typically reasonable, since bounds on the oscillator’s rate are given
by the hardware manufacturer. Sensor nodes usually contain non-expensive oscilla-
tors, and thus we haveρmax∈ [10 ppm,100 ppm]1. Note that in this model, the drift
can jump arbitrarily within the bounds specified in (1.1). The next model limits the
variation of the drift.

Bounded-drift-variation model The variationϑ(t) = dρ(t)/dt of the clock drift is
assumed to be bounded:

−ϑmax≤ ϑ(t)≤ ϑmax ∀t . (1.3)

This assumption is reasonable if the drift is influenced only by gradually chang-
ing conditions such as temperature or battery voltage. It makes drift compensation
possible: A node can estimate its current drift and compute bounds on its drift for
future times.

We can also assume both (1.1) and (1.3).

1.2.2 Software clocks

A synchronization algorithm can either directly modify the local clockh or otherwise
construct a software clockc. A software clock is a function taking a local clock value
h(t) as input and transforming it to the timec(h(t)). This time is the final result
of synchronization, and we therefore call it the synchronized time. For example,
c(h(t)) = t0 +h(t)−h(t0) is a software clock that starts with the correct real timet0
and then runs with the same speed as the local clockh. In general, we require that a
software clock is a piecewise continuous, strictly monotonically increasing function.

1Parts per million, that is 10−6. A clock with a drift of 100 ppm drifts 100 seconds in a million seconds,
or 100µs in one second.



viii

1.2.3 Communication models

Communication is needed to obtain and maintain synchronization. In the following,
we identify different communication parameters that affect time synchronization.

Unicast vs. multicast If a message is sent by one network node and is received by
at most one other network node, we call this unicast or point-to-point communica-
tion. Multicast communication occurs when a message is sent by one network node
and is received by an arbitrary number of other network nodes. The case where all
nodes within transmission range are recipients is called broadcast. Wireless sensor
networks typically use simple broadcast radios, such that a sensor node’s transmis-
sion is overheard by all nodes within its transmission range.

Symmetrical vs. asymmetrical linksIf we assume that nodeA can receive messages
sent by nodeB if and only if nodeB can receive messages sent by nodeA, we say
that the link between these two nodes is symmetrical. Otherwise, it is asymmetrical.
An example for an asymmetrical link is the link between a base station with high
transmit power and a mobile device with low transmit power: Beyond a certain dis-
tance between the two, only communication in direction from the base station to the
mobile device is possible. In wireless sensor networks, it is reasonable to assume that
there is a large number of small sensor nodes, and a small number of more powerful
(regarding energy, memory, processing power, and transmit power) nodes. The links
between these two types of nodes would clearly be asymmetrical.

Implicit vs. explicit synchronizationWhen comparing clock-synchronization ap-
proaches, it is important to distinguish whether synchronization information can be
sent only with the messages that the sensor-network application transmits (“piggy-
back”), or whether additional communication (i.e., messages sent only for the sake
of synchronization) is allowed. There is a trade-off between the amount of additional
communication and the achievable synchronization quality. Additional communica-
tion incurs additional energy consumption and can reduce the bandwidth available
for application data. Piggy-backed time information does typically not reduce band-
width significantly, since there are no additional message headers to be transmitted
or transmission slots to be occupied, and the time information is small in size.

Delay uncertainty As far as synchronization is concerned, the goal of communica-
tion is to convey time information. The delay of the messages sent between nodes
has to be taken into account when extracting this time information; we will explore
this in Section 1.4.1. The message delay consists of

• the send time, lasting from when the application issues the send command to
when the node actually starts trying to send; it is caused by kernel processing,
context switches, and system calls, and hence varies with the current system
load,



SYSTEM MODEL ix

• the (medium) access time, lasting from when the node is ready to send to
when it actually starts the transmission; this is the time that is spent waiting
for access to the wireless channel, and hence depends on the current network
load,

• the propagation time, which is the time it takes for the radio signal to travel
from the sender to the receiver; it is constant for any pair of nodes with constant
distance, and is negligible compared to the other delay components in wireless
sensor networks (since distances are small and radio signals travel very fast),
and

• the receive time, lasting from the reception of the signal to the arrival of the
data at the application.

The send and receive time (and especially the uncertainty about them) can be re-
duced by implementing the time-stamping of outgoing and incoming messages at
a very low level, for instance in the MAC layer. As a general rule, message-delay
uncertainties in typical wireless sensor networks are rather large compared to those
in wired networks. This is due to the lower link reliability and bandwidth (see Sec-
tion 1.1.2).

1.2.4 Sources of synchronization errors

Clock-synchronization algorithms face two problems: The information a node has
about the local time of another node degrades over time due to clock drift (the two
clocks “drift apart”), and its improvement through communication is hindered by
message-delay uncertainty.

The influence of drift and delay uncertainty on the quality of synchronization can
to a large extent be studied separately. The influence of the clock drift may dominate
over that of the message delays. This is the case in those sensor networks where
communication isinfrequent. The reason for this is that with decreasing frequency
of communication, the uncertainty due to clock drift increases, while the uncertainty
due to message delays remains constant.A numeric example:Suppose the message
delay contributes 1 millisecond to a node’s uncertainty, and the clock drift is bounded
by ρmax= 10 ppm. After 50 seconds, the drift’s contribution to the uncertainty equals
that of the delay. After one hour, it is 72 times larger. In this setting, neglecting the
delay uncertainty is acceptable.

The time information that is obtained through communication has to be processed
to achieve synchronization. As we will show in Sections 1.4.1 and 1.4.2, the com-
putation power and memory size required to do this in a timely fashion can increase
(even nonlinearly) with the amount of communication and thus become very large.
There is a trade-off between computational power and storage capacity spent and
achievable synchronization.



x

1.3 CLASSES OF SYNCHRONIZATION

Synchronization is commonly understood as “making clocks show the same time”,
but there are actually many different types of synchronization. In the following, we
will give an overview of the various choices available for synchronization. When
choosing the synchronization approach for a given sensor-network application, the
maxim is to fulfill the application’s requirements with the smallest possible effort in
terms of computation, memory, and especially energy.

1.3.1 Internal vs. external

The synchronization of all clocks in the network to a time supplied from outside the
network is referred to asexternalsynchronization. NTP performs external synchro-
nization, and so do sensor nodes synchronizing their clocks to a master node. Note
that it makes no difference whether the source of the common system time is also a
node in the network or not.

Internalsynchronization is the synchronization of all clocks in the network, with-
out a predetermined master time. The only goal here is consistency among the net-
work nodes. External synchronization requires consistency within the networkand
with respect to the externally provided system time.

In everyday life, we are mostly faced with external synchronization, namely with
keeping wristwatches and clocks in computers, cell phones, PDAs, cars, microwave
ovens, etc. synchronized to the legal time.

1.3.2 Lifetime: continuous vs. on-demand

Thelifetimeof synchronization is the period of time during which synchronization is
required to hold. If time synchronization iscontinuous, the network nodes strive to
maintain synchronization (of a given quality) at all times. For some sensor-network
applications,on-demandsynchronization can be as good as continuous synchroniza-
tion in terms of synchronization quality, but much more efficient. During the (pos-
sibly long) periods of time between events, no synchronization is needed, and com-
munication and hence energy consumption can be kept at a minimum. As the time
intervals between successive events become shorter, a break-even point is reached
where continuous and on-demand synchronization perform equally well. There are
two kinds of on-demand synchronization:

Event-triggeredon-demand synchronization is based on the idea that in order to
time-stamp a sensor event, a sensor node needs a synchronized clock only immedi-
ately after the event has occurred. It can then compute the time-stamp for the moment
in the recent past when the event occurred. Post-facto synchronization [8] is an ex-
ample for event-triggered synchronization.

We usetime-triggeredon-demand synchronization if we are interested in obtain-
ing sensor data from multiple sensor nodes for a specific time. This means that there
is no event that triggers the sensor nodes, but the nodes have to take a sample at
precisely the right time. This can be achieved viaimmediatesynchronization (where



CLASSES OF SYNCHRONIZATION xi

sensor nodes receive the order to immediately take a sample and time-stamp it) or
anticipatedsynchronization (where the order is to take the sample at some future
time, thetarget time). Anticipated synchronization is necessary if it cannot be guar-
anteed that the order can be transmitted rapidly and simultaneously to all involved
sensor nodes. This is especially the case if sensor nodes are more than one hop away
from the node giving the order.

Note that for successful anticipated synchronization, it is sufficient to maintain
a synchronization quality which guarantees that the target time is not missed. This
means that the required synchronization quality grows as the real time approaches
the target time. There is no need to synchronize with maximum quality right from
the beginning.

Analogously to the event-triggered post-facto synchronization, we might refer to
time-triggered synchronization as pre-facto synchronization.

N
3

N
5

N
4

N
2

N
1

a) b)

Space

Time

N
3

N
5

N
4

N
2

N
1

Scope

L
ife

tim
e

Scope

Fig. 1.2 Scope and lifetime define where and when synchronization is required. (a) shows
the topology of some network, (b) illustrates scope and lifetime of the synchronization: Only
nodesN2, N3 andN4 need synchronization.

1.3.3 Scope: all nodes vs. subsets

Thescopeof synchronization defines which nodes in the network are required to be
synchronized. Depending on the application, the scope comprises all or only a subset
of the nodes. Event-triggered synchronization can be limited to the collocated subset
of nodes which observe the event in question.

1.3.4 Rate synchronization vs. offset synchronization

Rate synchronization means that nodes measure identical time-interval lengths. In
a scenario where sensor nodes measure the time between the appearance and disap-
pearance of an object, rate synchronization is a sufficient and necessary condition for
comparing the duration of the object’s presence within the sensor range of different
nodes (but not for ordering the observations chronologically).



xii

Offset synchronization means that nodes measure identical points in time, that is
at some timet, the software clocks of all nodes in the scope showt. Offset synchro-
nization is needed for combining time stamps from different nodes.

The difference between rate and offset synchronization is illustrated in Figure 1.3.
NodeN2 can compute the bird’s speed all by itself by dividing the distance between
the bird’s positions at eventsa andb by the corresponding local-time difference. For
this, the node’s clock must be rate-synchronized to the real-time rate 1. Alternatively,
data from nodesN2 andN3 can be combined to compute the bird’s speed; here, we
would use eventsb andc. The nodes’ clocks have to be offset-synchronized for this.

c
N

3

N
2 N

1

a

b

Fig. 1.3 At eventsa, b, andc, nodesN2 andN3 measure the position of the bird and time-
stamp this data with their current local time. Rate or offset synchronization is needed depending
on how the data from the three events is to be combined.

1.3.5 Timescale transformation vs. clock synchronization

Time synchronization can be achieved in two fundamentally different ways. We can
synchronize clocks, that is make all clocks display the same time at any given mo-
ment. To achieve this, we have to perform rate and offset synchronization (or contin-
uous offset synchronization, which however is costly in terms of energy and band-
width and requires reliable communication links). The other approach is to transform
timescales, that is to transform local times of one node into local times of another
node.

Both approaches are equal in the sense that if we have either perfect clock syn-
chronization or perfect timescale transformation, the distributed sensor data can be
combined as if it had been collected by a single node. The approaches differ in
that clock synchronization requires either communication across the whole network
(for internal synchronization) or some degree of global coordination (for external
synchronization). This calls for communication over multiple hops (which however
tends to degrade synchronization quality), or well-distributed infrastructure which
for instance guarantees that every sensor node is only a few hops away from a node
equipped with a GPS receiver. Timescale transformation does not have these draw-
backs, but may instead incur additional computation and memory overhead.

We illustrate the difference between clock synchronization and timescale trans-
formation using the example shown in Figure 1.3. If the clocks of all three nodes are
synchronized, nodeN1 can directly combine the sensor data from nodesN2 andN3,



SYNCHRONIZATION TECHNIQUES xiii

since the time stamps refer to the same timescale. If the clocks are not synchronized,
a timescale transformation on the received time stamps is necessary. The final result
is identical to that of using synchronized clocks.

1.3.6 Time instants vs. time intervals

Time information can be given by specifying time instants (e.g., “t = 5”) or time in-
tervals (“t ∈ [4.5,5.5]”). In both cases, the time information can be refined by adding
a statement about its quality. For instance, the time information may be guaranteed
to be correct with a certain probability, or even probability distributions for the time
can be given. A measure for the quality of the time information can then be defined;
we will speak of its inverse, thetime uncertainty.

For sensor networks, the use of guaranteed time intervals can be very attractive.
Interestingly, this approach has not received much attention, although it has a number
of advantages over using time instants: (i) Guaranteed bounds on the local times at
which sensor events occurred allow to obtain guaranteed bounds from sensor-data fu-
sion. (ii) The concerted action (sensing, actuating, communicating) of several nodes
at a predetermined time always succeeds: each node can minimize its uptime while
guaranteeing its activity at the predetermined time. (iii) The combination of several
bounds for a single local time is unambiguous and optimal, while the reasonable
combination of time estimates requires additional information about the quality of
the estimates.

1.4 SYNCHRONIZATION TECHNIQUES

In this section, building blocks and fundamental mechanisms of time synchroniza-
tion algorithms are presented. The section is organized by increasing complexity:
In Section 1.4.1, various approaches for obtaining a single reading of the clock of a
remote node are presented. In Section 1.4.2, techniques for maintaining synchroniza-
tion are discussed. In Sects. 1.4.3 and 1.4.4, it is shown how multiple samples can
improve synchronization between two nodes. Finally, various approaches to organize
the synchronization process in larger networks are discussed in Section 1.4.5.

1.4.1 Taking one sample

Assume the simple model shown in Figure 1.4 (a), with two nodesNi andNj that
can exchange messages. Synchronization between these nodes means that the nodes
establish some relationship between their local clockshi andh j .

Unidirectional Synchronization The conceptionally simplest solution is illustrated
in Figure 1.4 (b). NodeNi sends a message containing a local time stamphi

a to node
Nj , where it is received at local timeh j

b. The nodeNj cannot determine the delayd of
the message. It only knows that the local clock of nodeNi showedhi

a before its own
local clock showsh j

b. Thus its local time when the message was sent ish j
a < h j

b, and



xiv

a)

Nj

Ni

c)

h
i

h
j

D

Ni Nj

d

d'

b)

h
i

h
j

Ni Nj

ha

i

d

d)

h
i

h
j

D
j

Ni Nj

D
i

d '1

d2

d1

d '2

hb

i

ha

j

hb

i

hc

ihb

j

ha

j

hc

j

Fig. 1.4 Uni- and bidirectional synchronization.a) A nodeNj determines the offset of
its local clock relative to that of another nodeNi , b) using unidirectional communication or c)
and d) using bidirectional communication. In contrast to c), scheme d) allows both nodes to
measure a round-trip time.

nodeNi ’s local time when the message is received ishi
b > hi

a. Time synchronization

consists of estimating eitherhi
b or h j

a.
If a-priori bounds on the message delay are known, that isdmin ≤ d≤ dmax, then

the estimationh j
a ≈ h j

b− 1/2(dmin + dmax) (or alternativelyhi
b ≈ hi

a + 1/2(dmin +
dmax)) minimizes the synchronization error in the worst case. Alternatively,h j

b−dmax

andh j
b− dmin are lower and upper bounds onh j

a (andhi
a + dmin andhi

a + dmax are
bounds onhi

b).

Round-Trip SynchronizationA slightly more complex solution is illustrated in Fig-
ure 1.4 (c). NodeNj sends a query message to nodeNi , asking for the time stamp
hi

b. NodeNj measures the round-trip timeD = h j
c−h j

a, that is the length of the time
interval between sending the request and receiving the reply. Without having a-priori
knowledge, nodeNj now knows that the delayd is bounded by 0 andD. If a-priori
bounds on the message delay are known, that isdmin ≤ d≤ dmax, the nodeNj knows
thatd is bounded by max(D−dmax,dmin) and min(dmax,D−dmin).

The estimationh j
b ≈ h j

c−D/2 minimizes the worst-case synchronization error;

h j
c− (D−dmin) andh j

c−dmin are lower and upper bounds onh j
b. Similarly, an esti-

mation and bounds forhi
c can be determined.

In comparison with the unidirectional approach, round-trip synchronization has
the advantage of providing an upper bound on the synchronization error. The mech-
anism known asprobabilistic time synchronization first presented in [5] uses this to
decrease the synchronization error as follows: After receiving the reply message,Nj

checks whether the worst-case synchronization errorD/2−dmin is below a specified
threshold. If not, it sends a new request message toNi . This procedure is repeated
until a pair of request and reply messages occurs that achieves the required syn-
chronization error. The smaller the chosen threshold, the more messages have to be
exchanged on average.



SYNCHRONIZATION TECHNIQUES xv

The main disadvantage of round-trip synchronization is that the amount of mes-
sages increases linearly with the number of nodes that communicate withNi , while in
the unidirectional case, a single broadcast message sent byNi can serve an arbitrary
number of nodes. A combination of the advantages of both approaches is known
aseavesdroppingor anonymous synchronizationand was first described in [7]. The
basic idea is the following: NodeNj sends a broadcast message toNi and some addi-
tional nodeNk, Ni replies with a broadcast message toNj andNk. NodeNk assumes
that the second message was produced after it had received the first message, thus
nodeNk can do round-trip synchronization with the two local receive time stamps
and the send time stamp fromNi without ever producing any messages itself.

In Figure 1.4 (d), two modifications of round-trip synchronization are illustrated.
Firstly, it is not necessary thatNi replies immediately to query messages. NodeNi can
instead measure the durationDi between receiving the query message and sending
the reply, and the nodeNj can then account for this duration in its calculations.
Secondly, the message exchange shown in Figure 1.4 (c) is asymmetrical, that is
onlyNj can do round-trip synchronization. Therefore, at least one additional message
from Nj to Ni is required, such that alsoNi can estimate or bound remote time stamps.

Reference BroadcastingA third approach is shown in Figure 1.5. In addition to
nodesNi andNj , a so-calledbeaconnodeNk is involved. The beacon sends a broad-
cast message to the other nodes. The delaysd (to Ni) andd′ (to Nj ) are almost equal.
Ni then sends the time stamphi

a to Nj . NodeNj measures the length of the time in-
tervalD = h j

b−h j
a′ between the arrivals of the two messages and can then estimate

hi
b ≈ hi

a +D.

Nk

D

a) c)

d d'

Nj

Ni

Ni NkNj

h
i

h
k

D

b)

d d'

Ni NkNj

ha

i

h
i

h
j h

j

hb

i

ha'

j

hb

j

ha

i

ha'

k
ha'

j

Fig. 1.5 Reference-broadcast synchronization.A nodeNi determines the offset of its
local clock relative to that of another nodeNj with the help of a third nodeNk. In (c), a variant
of reference-broadcast synchronization is shown that can be used ifNi andNj cannot directly
communicate with each other (dashed link in (a)).

This approach was first proposed in [14] under the namea-posteriori agree-
ment. It became more widely known in the sensor-network community asreference-
broadcastsynchronization (RBS) [8]. Its main advantage is that a broadcast message
is received almost concurrently (even though its delay is largely variable), and thus



xvi

the synchronization error typically is smaller than with unidirectional or round-trip
synchronization.

The reference-broadcast technique can be used in many variations. For example,
Figure 1.5 (c) shows a solution presented in [6] for the case that nodesNi andNj ,
while being able to receive messages fromNk, cannot communicate with each other
directly.Nj replies toNk, which then can estimate its own local timehk

a′ and send this
information in another broadcast message toNi andNj . In [8], yet another version is
described: All nodes report their time stamps to a single node, which then broadcasts
all information.

The disadvantage of the reference broadcast approach is that physical broadcasts
and a beacon node are required.

1.4.2 Synchronization in rounds

Typically, two local clocks do not run at exactly the same speed. Therefore time syn-
chronization has to be refreshed periodically, the duration of the round depending
on the error budget and the amount of relative drift between the two clocks. Let the
length of a round beτround. Assume a round consists of a first period with length
τsample, where one or more samples are taken according to one of the methods de-
scribed in Section 1.4.1, and a second period where the nodes do nothing. Let us
assume, that an application allows for a total error ofEtotal, the maximum error after
taking the samples isEsample, and the maximal drift rate isρmax. Then the maximum
length of a roundτround has to satisfy

τround≤
Etotal−Esample

ρmax
.

The above relation implies that rounds can be longer ifEsampleandρmaxare small. For
example, algorithms that use the round-trip technique can boundEsampleaccording to
the measured round-trip time and thus can dynamically increaseτround if the round-
trip time was small. Other algorithms compensate the drift of the local clock and
therefore can compute a smaller effectiveρmax, which also allows to increaseτround.

In some applications,Etotal is smaller than what can be guaranteed by taking a
single sample. In such a case, multiple samples can be taken to achieveEsample<
Etotal. Taking multiple samples increasesτsample. At the limit, τsample≈ τround; in this
case, synchronization in rounds becomes a continuous process, rounds follow each
other seamlessly.

1.4.3 Combining multiple time estimates

We now discuss techniques for combining multiple estimates of the local time of a
remote node. Figure 1.6 (a) illustrates the situation: Every circle stands for a single
estimate of nodeN j ’s local timeh j

a at some eventa, which occurs atNi ’s local time
hi

a.



SYNCHRONIZATION TECHNIQUES xvii

h
i

h
j

h
i

h
j

a) b)

Fig. 1.6 Multiple samples improve on the synchronization error.(a) Every point rep-
resents a sample, that is a local timehi of nodeNi and an estimated local timeh j of nodeNj .
Using interpolation techniques improves on the synchronization error. The solid line results
from a linear regression on the samples, the dashed line is the result of a phase-locked loop
(PLL). (b) The same idea can be used for lower (5) and upper (4) bounds on the local time
of Nj . Also here, interpolation can considerably improve on the synchronization error (i.e., on
the uncertainty in this case). The solid lines are determined by the convex-hull approach, the
dashed lines according to [30].

Linear Regression The most widely used technique is linear regression. A linear
relation h j = α + β · hi is postulated and the coefficientsα and β are determined
by minimizing the square of the difference between the fittedh j ’s and the actual
samples. This technique has a single parameter, that is the number of samples that
are accounted for when computing the coefficients. A large number of samples can
improve the regression quality, but requires a large amount of memory.

The coefficientβ can be interpreted as an estimation ofh j ’s drift relative tohi .
Linear regression thus implicitly compensates for clock drift. If the drift is variable,
the postulated linear relationship betweenh j andhi does not describe reality very
well. In such a situation, the number of samples accounted for should be small.

The linear regression can be computed on-line, that is incrementally whenever a
new sample is taken. An efficient on-line implementation can be found in [26]. A
disadvantage of the linear-regression technique is that it weighs data points by the
square of their error against the fitted line. Outliers thus have a particularly strong
influence on the resulting coefficientsα andβ.

Phase-Locked LoopsAnother method for processing a continuous sequence of
samples is based on the principle of phase-locked loops (PLL) [12]. The PLL con-
trols the slope of the interpolation using a proportional-integral (PI) controller. The
output of a PI controller is the sum of a component that is proportional to the input
and a component that is proportional to the integral of the input. The input of the
controller is the difference between the actual sample and the interpolated value. If



xviii

the interpolation is smaller than the sample, its slope is increased, otherwise it is de-
creased. The main advantage of the PLL-based approach is that it requires far less
memory than the linear-regression technique (in essence only the current state of the
integrator sum). The main disadvantage is that PLLs require a long convergence time
to achieve a stable rate [25]. The NTP algorithm uses a PLL [22].

1.4.4 Combining multiple time intervals

The techniques of Section 1.4.1 can also be used to derive lower and upper bounds on
the local time of a remote node. Figure 1.6 (b) shows a sequence of lower and upper
bounds on the local timesh j of a remote nodeNj on the y-axis and the corresponding
local timeshi of a nodeNi on the x-axis. In the previous section, the samples formed
a single cloud and the interpolation was a line “through the middle of this cloud”.
Here we have two clouds, one formed by the lower-bound samples, the other by the
upper-bound samples.

The convex-hulltechnique [1, 36] interpolates the two clouds separately. One
curve is drawn above all lower bounds, a second below all upper bounds. While
linear-regression and PLL techniques tend towards the average of the individual sam-
ples, the convex-hull technique ignores average values and account for the samples
with minimal or maximal error. This can result in improved robustness: While the
current average message delay can be very unstable, the minimal message delay re-
mains stable, though it may occur more or less frequently.

In [30], it is proposed to interpolate lower- and upper-bound samples by a single
line as follows: First the steepest and flattest lines that do not violate any lower or
upper bound are determined. The slopes of these lines represent bounds on the drift
of clock h j relative tohi . The “average”-line of these two extremal solutions is used
as the final interpolation; for a more detailed description see Section 1.5.3.

1.4.5 Synchronization of multiple nodes

Sensor networks most often have a much more complicated topology than the simple
examples shown in Figures 1.4 and 1.5, and not all sensor nodes can communicate
with each other directly. Thus, multi-hop synchronization is required, which adds an
additional layer of complexity. Clearly, this could be avoided by using an overlay net-
work which provides virtual, single-hop communication from every sensor node to a
single master node. But as we have seen in Section 1.4.1, the synchronization error
directly depends on the message delay, which is very difficult to control on a logical
link that is composed of many physical hops. Therefore, performant synchronization
schemes have to deal with the multi-hop problem explicitly.

Figure 1.7 illustrates various approaches to multi-hop synchronization. We now
describe these four schemes and use them as examples to discuss the main problems
of multi-hop synchronization.

Out-of-band synchronizationThe conceptionally simplest solution is to avoid the
problem: A large number of master nodes is distributed in the network such that every



SYNCHRONIZATION TECHNIQUES xix

a) b) c) d)

Fig. 1.7 Organizing synchronization in multi-hop networks.a) Single-hop synchro-
nization with a set of master nodes which are synchronized out of band (e.g., using GPS). b)
Single-hop synchronization in overlapping clusters, gateway nodes translate time stamps. c)
Tree hierarchy with a single master node at the root. d) Unstructured.

node has a direct connection to at least one of these masters (e.g., [33]). The master
nodes are synchronized among each other using some out-of-band mechanism. The
global positioning system (GPS) is well suited to this purpose as it provides time
information with sub-microsecond accuracy. However, GPS receivers are still rela-
tively costly, consume a considerable amount of energy, and require a direct line of
sight to a number of satellites and thus cannot operate inside buildings.

Clustering The authors of the RBS algorithm propose to partition the network into
clusters [8]. All nodes within a cluster can broadcast messages to all other members
of the cluster and thus the reference-broadcast technique can be used to synchronize
the cluster internally. Some nodes are members of several clusters and participate
independently in all corresponding synchronization procedures. These nodes act as
time gateways to translate time stamps from one cluster to the other. There is a trade-
off in choosing the size of the clusters. On the one hand, a small number of large
clusters reduces the number of translations and thus improves the synchronization
error; on the other hand, energy consumption grows quickly with increasing trans-
mission range; this makes choosing many small clusters attractive. This trade-off has
been examined in [23].

Tree Construction The most common solution of the multi-hop synchronization
problem is to construct a synchronization tree with a single master at the root [10,
30, 32, 18]. Single-hop synchronization is applied along the edges of the tree. Vari-
ous well-known algorithms can be used to construct such a tree [32]. As the accuracy
degrades with the hop distance from the root, a tree with minimum depth is prefer-
able. On the other hand, a small depth implies that the root has to serve many clients,
and thus consumes far more energy than the other nodes.

Tree construction faces two main problems: Firstly, in sensor networks, the net-
work topology may be dynamic; nodes may be mobile and repeatedly join or leave
the network. The multi-hop synchronization algorithms have to explicitly deal with
such events. In particular, if the root node fails, a new root has to be elected [18].
Secondly, two neighboring (in terms of physical location) nodes may have a large



xx

hop distance in the synchronization tree. In consequence, the accuracy of synchro-
nization between these nodes is not as good as if they would synchronize directly
with each other.

Unstructured As illustrated in the tree-construction approach, the multi-hop syn-
chronization problem can be interpreted as the problem of determining the links
and directions over which time information is disseminated. In contrast to tree-
construction approaches,unstructuredapproaches do not first explicitly solve this
problem and then perform pairwise synchronization. Instead, time information is ex-
changed between any pair (or group) of nodes that communicate. Whereas in the
tree-construction approach every pairwise synchronization is asymmetrical (i.e., be-
tween a client and a local master), it is symmetrical in the unstructured approach (i.e.,
between two equal peers). In [2], such an approach has been presented for interval-
based synchronization. Two nodes combine their bounds on real time by selecting
the larger lower bound and the smaller upper bound. A similar approach for point-
estimates isasynchronous diffusionproposed in [16]. Here, nodes that communicate
adjust their synchronized clocks to the average of their synchronized times. Like
the interval-based solution from [2], this approach is completely local. As these ap-
proaches do not maintain any global configuration, node mobility does not cause
particular problems. In contrast, clustering and tree-construction schemes require
that the global configuration has to be updated whenever nodes move or fail or when
new nodes are added to the system.

As algorithms that follow the unstructured approach do not attempt to communi-
cate with a particular node (e.g., the parent node in a synchronization tree), some of
these algorithms piggyback time stamps on messages that are sent for some other,
not synchronization-related reason (e.g., [27, 2]). It could be argued that these al-
gorithms have virtually no communication overhead, as no messages are generated
exclusively for time synchronization.

1.5 CASE STUDIES

In the following subsections, we discuss a number of concrete synchronization algo-
rithms from the literature (ordered by publication date). The goal here is to give an
overview of the approaches (with reference to the techniques and classes discussed
earlier in this chapter), rather than to discuss all the details. In addition, for each algo-
rithm we will give some experimental results. Table 1.1 summarizes the underlying
assumptions of the various protocols and classifies the approaches according to the
criteria discussed in Section 1.3.

1.5.1 Time-stamp Synchronization (TSS)

TSS [27] provides internal synchronization on demand. Node clocks run unsynchro-
nized, that is time stamps are valid only in the node that generated them. However,
when a time stamp is sent to another node as part of a message, the time stamp is



CASE STUDIES xxi

RBS TPSN TS/MS LTS TSS IBS TSync FTSP TDP AD

Classes

Internal vs.External I E I E I E E I I I

Cont. vs.On-demand O C C O O C C C C C

All nodes vs.Subsets S A S A/S S A A A A A

Rate vs.Offset RO O RO O O O O RO O O

Transform vs.Clocksync T C – C T C C C C C

Instants vs. Intervals S S TS S T T S S S S

Assumptions

Broadcast X X X X X X

Bidirectional communication X X X X X X X

Constant rate X

Bounded drift X X X

Multichannel X

MAC access X X

Table 1.1 Synchronization classes and assumptions of time-synchronization protocols.

transformed to the timescale of the receiver. For messages sent over multiple hops,
the transformation is repeated for each hop.

Time-stamp transformation is achieved by determining the age of each time stamp
from its creation to its arrival at a sensor node. On a multi-hop path, the age is updated
at each hop. The time stamp can then be transformed to the receiver’s local timescale
by subtracting the age from the time of arrival. The age of a time stamp consists of
two components: (1) the total amount of time the time stamp resides in nodes on the
path, and (2) the total amount of time needed to transfer the time stamp from node
to node. The first component is measured using the local, unsynchronized clocks.
The second component can be bounded by the round-trip time of the message and its
acknowledgment.

For the round-trip measurement, the technique depicted in Figure 1.4 (d) on page
xiv is used, where the sender isNi and the receiver isNj . Messaged2 is a data mes-
sage containing the time stamp, messaged′2 is an acknowledgment. Using the previ-
ous message exchange (d1, d′1), the receiver can useD j−Di as an upper bound for the
delay of messaged2. If a minimum delay is known, it can be used as a lower bound
(otherwise, 0 is used). Using storage time and the above bounds on transmission de-
lay, lower and upper bounds of the time-stamp age can be determined. Additionally,
ρmax is used to transform time intervals between node clocks as in (1.2) on page vii.

With this approach, synchronization information is piggybacked to existing (ac-
knowledged) messages. There are no additional synchronization messages, except
when two nodes exchange a message for the first time. In this case, an additional
initialization message must be sent and acknowledged in order to enable round-trip



xxii

measurement. An acknowledgment is not needed if the sender can overhear the re-
ceiver forwarding the message to the next hop, which is typically the case in broad-
cast networks.

Measurements in a wired network withρmax = 1 ppm showed that the average
uncertainty of the time-stamp interval is about 200µs for adjacent nodes. It increases
by an additional 200µs for each additional hop, and by about 2.5µs per age second.

1.5.2 Reference-Broadcast Synchronization (RBS)

RBS [8] provides synchronization for a whole network. The basic synchronization
primitive is a reference broadcast to a set of client nodes in the one-hop neighbor-
hood of a beacon node as illustrated in Figure 1.5 (b) on page xv. The beacon node
broadcasts manage synchronization pulses. The clients then exchange their respec-
tive reception times and use linear regression to compute relative offsets and rate
differences to each other. Using offset and rate difference, each client can transform
a local clock reading to the local timescale of any other client.

To extend this scheme to multi-hop networks, the network is clustered such that a
single beacon can synchronize all nodes in its cluster. Gateway nodes that participate
in two or more clusters independently take part in the reference-broadcast procedure
of all their clusters. By knowing offsets and rate differences to nodes in all adjacent
clusters, gateway nodes can transform time stamps from one cluster to another.

Time synchronization across multiple hops is then provided as follows. Nodes
time-stamp sensor data using their local clocks. Whenever time stamps are exchanged
among nodes, the time stamps are transformed to the receiver’s local time using off-
set and rate difference.

In experiments it has been shown that adjacent Berkeley Motes can be synchro-
nized with an average error of 11µs by using 30 broadcasts. Over multiple hops, the
average error grows withO(

√
n), wheren is the number of hops.

1.5.3 Tiny-Sync and Mini-Sync (TS/MS)

Tiny-Sync and Mini-Sync [30] are methods for pairwise synchronization of sensor
nodes. Both Tiny-Sync and Mini-Sync use multiple round-trip measurements and
a line-fitting technique to obtain the offset and rate difference of the two nodes.
For this, a constant-rate model (see page vi) is assumed. To obtain data points for
line fitting, multiple round-trip synchronizations are performed as depicted in Figure
1.4 (c) on page xiv, where the client isNj and the reference isNi . Each round-trip
measurement results in a data point(hi

b, [h
j
a,h

j
c]). Then, the line-fitting technique

depicted in Figure 1.6 (b) on page xvii is used to calculate two lines with minimum
and maximum slope. Slope and axis intercept of these two lines then give bounds for
the relative offset and rate difference of the two nodes. The line with average slope
and intercept of the two lines is then used as the offset and rate difference between
the two nodes.

Note that each of the two lines is unambiguously defined by two (a priori un-
known) data points. The same results would be obtained if the remaining data points



CASE STUDIES xxiii

could be eliminated. Since the computational and memory overhead depends on the
number of data points, it is a good idea to remove as many data points as possi-
ble before the line fitting. Tiny-Sync and Mini-Sync only differ in this elimination
step. Essentially, Tiny-Sync uses a heuristic to keep only two data points for each of
the two lines. However, the selected points may not be the optimal ones. Mini-Sync
uses a more complex approach to eliminate exactly those points that do not change
the solution. Hence, Tiny-Sync achieves a slightly suboptimal solution with minimal
overhead, Mini-Sync gives an optimal solution with increased overhead.

Measurements on a 802.11b network with 5000 data points resulted in an offset
bound of 945µs (3230µs) and a rate bound of 0.27 ppm (1.1 ppm) for adjacent nodes
(nodes five hops away).

1.5.4 Lightweight Time Synchronization (LTS)

LTS [32] is a synchronization technique that provides a specified precision with little
overhead, rather than striving for maximum precision as many other techniques.

Two algorithms are proposed: one that operates on demand for nodes that ac-
tually need synchronization, and one that proactively synchronizes all nodes. Both
algorithms assume the existence of one or more master nodes that are synchronized
out-of-band to a reference time. The proactive algorithm proceeds by constructing
spanning trees with the masters at the root by flooding the network. In a second
phase, nodes synchronize to their parent in the tree by means of round-trip synchro-
nization. The synchronization frequency is calculated from the requested precision,
from the depth of the spanning tree, and from the drift boundρmax.

The on-demand version also assumes the existence of one or more master nodes.
When a node needs synchronization, it sends a request to one of the masters using
any routing algorithm (this is not further specified). Then, along the reverse path of
the request message, nodes synchronize using round-trip measurements. The syn-
chronization frequency is calculated as in the proactive version described above. In
order to reduce synchronization overhead, each node may ask its neighbors for pend-
ing synchronization requests. If there are any such requests, the node synchronizes
with the neighbor, rather than executing a multi-hop synchronization with a reference
node.

The overhead of the algorithms was examined in simulations with 500 nodes uni-
formly placed in a 120 m× 120 m area, a target precision of 0.5 s, and a duration
of 10 hours. The centralized algorithm performed an average of 36 pairwise syn-
chronizations per node. The distributed algorithm executed 4–5 synchronizations on
average per node if 65% of all nodes request synchronization.

1.5.5 Timing-Sync Protocol for Sensor Networks (TPSN)

TPSN [10] provides synchronization for a whole network. First, a node is elected
as a synchronization master (details for this are not specified), and a spanning tree
with the master at the root is constructed by flooding the network. In a second phase,
nodes synchronize to their parent in the tree by means of round-trip synchronization.



xxiv

Synchronization is performed in rounds and initiated by the root root broadcast-
ing a synchronization-request message to its children. Each child then performs a
round-trip measurement to synchronize with the root. Nodes further down in the tree
overhear the messages of their parents and start synchronization when their parents
have synchronized. To eliminate message-delay uncertainties, time-stamping for the
round-trip synchronization is done in the MAC layer. In case of node failures and
topology changes, master election and tree construction must be repeated.

Measurements showed that two adjacent Berkeley Motes can be synchronized
with an average error of 16.9µs, which is a worse figure than the 11µs given for
RBS in [8]. However, the authors of [10] claim that a re-implementation of RBS
on their hardware resulted in an average error of 29.1µs between adjacent nodes,
effectively claiming that TPSN is about twice as precise as RBS.

1.5.6 TSync

TSync [6] provides two protocols for external synchronization: the Hierarchy Ref-
erencing Time Synchronization Protocol (HRTS) for proactive synchronization of
the whole network, and the Individual-Based Time Request Protocol (ITR) for on-
demand synchronization of individual nodes. Both protocols use an independent ra-
dio channel for synchronization messages in order to avoid inaccuracies due to vari-
able delays introduced by packet collisions. In addition, the existence of one or more
master nodes with access to a reference time is assumed.

With HRTS, a spanning tree with the master at the root is constructed. Then,
the master uses the reference broadcasting technique illustrated in Figure 1.5 (c) on
page xv to synchronize its children. Each child node now repeats the procedure for
its subtree.

Measurements in a network of MANTIS sensor nodes showed a mean synchro-
nization error of 21.2µs (29.5µs) for two adjacent nodes (nodes three hops away).
For comparison, RBS was also implemented, giving an average error of 20.3µs (28.9
µs).

1.5.7 Interval-Based Synchronization (IBS)

Interval-based synchronization was first proposed in [19], where a bounded-drift
model (see page vi) is assumed. The network nodes perform external synchronization
by maintaining a lower and upper bound on the current time. During communication
between two nodes, the bounds are exchanged and combined by choosing the larger
lower and the smaller upper bound. This amounts to intersecting the time intervals
defined by each pair of bounds. Between communications, each node advances its
bounds according to the elapsed real time and the known drift bounds. In [29], the
model was refined by including bounded drift variation and fault-tolerance.

In [2], the simple approach from [19] was shown to be worst-case-optimal, where
the worst case is the one where all clocks run with maximal drift. A considerable im-
provement in the synchronization quality can be achieved by having each node store,
maintain, communicate, and use the bounds from its last communications with other



CASE STUDIES xxv

nodes. In [20], it was shown that optimal interval-based synchronization can only be
achieved by having nodes store and communicate their entire history. Obviously, this
becomes prohibitive with growing network size and lifetime. In realistic settings, the
value of a piece of history data decreases rapidly with its age. Therefore, efficient
average-case-optimal synchronization can be obtained by using only recent data.

1.5.8 Flooding Time-Synchronization Protocol (FTSP)

FTSP [18] can be used to synchronize a whole network. The node with the lowest
node ID is elected as a leader that serves as a source of reference time. If this node
fails, then the node with the lowest ID in the remaining network is elected as the new
leader. The leader periodically floods the network with a synchronization message
that contains the leader’s current time. Nodes which have not received this message
yet record the contained time stamp and the time of arrival, and broadcast the mes-
sage to their neighbors after updating the time stamp. Time-stamping is performed
in the MAC layer to minimize delay variability and hence uncertainty.

Each node collects eight (time stamp, time of arrival) pairs and uses linear regres-
sion on these eight data points to estimate offset and rate difference to the leader.

Measurements were performed in an eight-by-eight grid of Berkeley Motes, where
each Mote has a direct radio link to its eight closest neighbors. With this setup, the
network synchronized in 10 minutes to an average (maximum) synchronization error
of 11.7µs (38µs), giving an average error of 1.7µs per hop.

1.5.9 Asynchronous Diffusion (AD)

AD [16] supports the internal synchronization of a whole network. The algorithm
is very simple: each node periodically sends a broadcast message to its neighbors,
which reply with a message containing their current time. The receiver averages the
received time stamps and broadcasts the average to the neighbors, which adopt this
value as their new time. It is assumed that this sequence of operations is atomic, that
is the averaging operations of the nodes must be properly sequenced.

Simulations with a random network of 200 static nodes showed that the synchro-
nization error decreases exponentially with the number of rounds.

1.5.10 Time Diffusion Synchronization (TDP)

TDP [31] supports the synchronization of a whole network. Initially, a set of mas-
ter nodes is elected. For external synchronization, these nodes must have access to
a global time. This is not required for internal synchronization, where masters are
initially unsynchronized.

Master nodes then broadcast a request message containing their current time, and
all receivers send back a reply message. Using these round-trip measurements, a
master node calculates and broadcasts the average message delay and standard devi-
ation. Receiving nodes record these data for all leaders. Then, they turn themselves
into so-called “diffused leaders” and repeat the procedure. The average delays and



xxvi

standard deviations are summed up along the path from the masters. The diffusion
procedure stops at a given number of hops from the masters.

All nodes have now received from one or more mastersm the timehm at the initial
leader, the accumulated message delay∆m, and the accumulated standard deviation
βm. A clock estimate is computed as∑mωm(hm+∆m), where the weightsωm are
inversely proportional to the standard deviationβm. After all nodes have updated
their clocks, new masters are elected and the procedure is repeated until all node
clocks have converged to a common time.

In a simulation with 200 static nodes with 802.11 radios and a delay of 5 sec-
onds between consecutive synchronization rounds, the deviation of time across the
network dropped to 0.6 seconds after about 200 seconds.

1.6 EVALUATION STRATEGIES

Evaluating the precision of time synchronization in wireless sensor networks is not
a trivial task. For example, the authors of the RBS algorithm report 11µs precision
on the Berkeley Motes platform [8], while the authors of the TPSN algorithm report
29 µs for RBS on the same platform, concluding that TPSN is better, as it achieves
17µs [10]. Which numbers are correct? Probably all of them, but the evaluation was
done slightly differently.

In this section, we discuss different evaluation strategies that have been applied
to time-synchronization algorithms for wireless sensor networks. There are various
aspects of the performance achieved by an algorithm than can be evaluated, for ex-
ample the energy consumption or the message and memory overhead. The discussion
in this section concentrates on various alternatives for the evaluation of theprecision
of time-synchronization algorithms.

1.6.1 What is precision?

Figure 1.2 (b) on page xi illustrates the scope and lifetime of synchronization in a
sensor network. The scope defines which nodes have to be synchronized and the
lifetime defines when these nodes have to be synchronized. Thus it is natural to
evaluate the precision in the shaded area of Figure 1.2 (b). The precision is a metric
that is closely related to the synchronization error. While the precision is a single
scalar value for a whole network, the synchronization error is a function of time for
a single node. In the following, we discuss several alternatives to map such functions
to a single scalar precision valueP.

Combining the synchronization error of many nodesAt some timet within the
lifetime of a sensor network, every nodeNi within the scope has a synchronized time
ci(hi(t)). In the case of internal synchronization, theinstantaneous precision p(t) is



EVALUATION STRATEGIES xxvii

often defined as the maximal difference between any two synchronized times, that is

p(t) = max
i, j

{
ci(hi(t))−c j(h j(t))

}
for any nodesNi andNj within the scope. Some authors (e.g., [31]) use the standard
deviation among allci(hi(t)) as a measure for the instantaneous precision at timet.

In the case of external synchronization, the instantaneous precision is more often
defined as the maximal synchronization error, that is

p(t) = max
i

{
ci(hi(t))− t

}
for any nodeNi within the scope. This variant of precision is sometimes calledaccu-
racy. Alternatively, the precision can be defined as the average synchronization error
within the scope or the maximal synchronization error among the 90% (or 99%, etc.)
nodes in the scope with the smallest synchronization error.

Steady State and Convergence TimeThe instantaneous precisionp(t) obviously
varies during the synchronization lifetime. The final precision metricP can be de-
rived by taking the maximum ofp(t) for all t in the lifetime. Alternatively, the aver-
age ofp(t) can be used.

It is clear that the precisionP improves in proportion to the time the synchroniza-
tion process is active, and that at some point, the improvement stops. Usually, the
precisionP is evaluated after this point, that is the lifetime of synchronization starts
after the synchronization process, and the precisionP describes thesteady state.

Some authors evaluate theconvergence time, which is the length of the interval
from the start of the synchronization process to the point in time where the precision
P stops to improve or reaches a specific value. If the lifetime is defined, the conver-
gence time indicates when the synchronization process has to be started such that the
desired precisionP is achieved before the start of the lifetime and is maintained until
the end of the lifetime.

1.6.2 Goals of performance evaluation

There can be different reasons why the performance of an algorithm has to be evalu-
ated, and different goals lead to different solutions.

The actual performance of a given synchronization algorithm strongly depends
on properties of the target platform. It is difficult to identify and model all the in-
fluence factors explicitly. Arealistic estimationof the achievable precision is thus
best obtained by usingmeasurements on the actual target platform, rather than using
simulation of a simplified target platform.

Sometimes, realistic estimation of the performance is less important thanfairness
and repeatabilityof the evaluation. This is the case if several competing algorithms
have to be compared. Also in the optimization process of the parameters of a partic-
ular algorithm, it is important that differences in the performance are due to differ-
ences in the algorithm and not due to different conditions (e.g., message delays, clock



xxviii

drift). Here,simulation based on recorded or generated tracesis more appropriate
than direct measurements.

If the goal of analyzing a particular synchronization algorithm is to give worst-
case guarantees on its performance, neither measurements nor simulation based on
recorded traces can be used, since both strategies only evaluate a finite number of
instances. Instead, the worst-case has to be identified and the worst-case performance
has to be determined analytically.

1.6.3 Measurements

Measurement techniquesThree fundamentally different measurement strategies,
which are illustrated in Figure 1.8, have been used in recent publications.

Log
File

Log
File

Log
File

Log
FileLog

File
Analyzer

a) b) c)

generate eventsout-of-band synchronization

virtual nodes on a
single physical node

Fig. 1.8 Precision-measurement techniques.a) Every node is synchronized out of band
and measures its own precision. b) Every node generates events, the evaluation is centralized.
c) Some nodes are virtual nodes on the same hardware platform as the master node.

Consider Figure 1.8 (a). Every sensor node executes two synchronization proce-
dures, synchronizing two different clocks. The first procedure is the actual synchro-
nization algorithm under test, using only the means of the platform on which it is
executed. The second procedure is another algorithm, which achieves a far better
precision than the first. This is possible since this second synchronization uses re-
sources that are not offered by the target platform, but which are introduced for the
measurements. A GPS receiver for every sensor node can serve this purpose. Alter-
natively, cable connections can be used as an out-of-band mechanism with very low
delay variability to provide a reference time (e.g., [24], [8], [3]). In [18], a single-
hop RBS scheme is used to measure the precision achieved by the FTSP multi-hop
algorithm. This approach has the advantage that every node can evaluate and log its
own precision and these values can be collected at the end of the experiment (or even
on-line), providing complete information.

An alternative is shown in Figure 1.8 (b). All sensor nodes generate some directly
observable event, for example a rising edge on a particular I/O pin, when their syn-
chronized time reaches a particular valueX. An external analyzer device then records
the time interval between the instance when a node’s synchronized time isX and the
instance when it really isX. Such a procedure has been used for example in [10]. Its



EVALUATION STRATEGIES xxix

advantage is that the precision of the measurement is not limited by the resolution of
the nodes’ clocks or the performance of a second synchronization procedure.

As illustrated in Figure 1.8 (c), [27] proposes to measure the precision achieved by
oneclient node as follows: A client node synchronizes over several hops to a master
node. Master and client nodes are virtual nodes emulated on a single physical node,
the intermediate nodes are all separate physical nodes. As the master and the client
share a single hardware clock, the precision of the client can easily be evaluated.

Systems and TopologiesAll three approaches do not scale well. Therefore, only
small networks have been used so far for measurements. The largest experiment is
described in [18], where a 8-by-7 grid of Mica2 Motes is evaluated. In [10], a chain
of 6 Mica Motes is used, [6] evaluates 5 MANTIS Nymph nodes, [27] evaluates a
chain of 7 standard PCs with 100 Mbit/s wired Ethernet, and [8] evaluates IPAQ
nodes communicating over 802.11b WLAN and Mica Motes.

How the synchronization error of hundreds of nodes should be measured is an
open question. Current evaluations of such large networks are all based on simula-
tion.

Results We will now give some measurement results from recent publications. Our
intention is to give an idea about the order of magnitude of the achievable precision
and to illustrate that although all results are about precision, they are difficult to
compare. In [18], the convergence time of the FTSP algorithm in a 7-by-8 grid is
reported to be 10 minutes. A maximal error of 38µs and an average error (over all
nodes) of 12µs is reported. For the TPSN algorithm, [10] reports a maximal error of
45 µs for one hop and 74µs for five hops. Average errors (over time) are 17µs for
one hop and 38µs for five hops. The authors provide also the percentage of the time
when the synchronization error was below the average error (> 60%). The authors of
RBS present in [8] the distribution of the synchronization error (over time) for one
hop and the mean, median, 95% and 99% values over 300 trials for one to four hops.

Some authors evaluate the distribution of the synchronization quality in the sys-
tem. At some timet, either the synchronized timesci(hi(t)) of all nodesi [31], or
alternatively the corresponding synchronization errorsei(t) [10, 6], are shown in a
histogram.

1.6.4 Simulation

Performance evaluation through simulation has the advantage that the resulting pre-
cision or accuracy of all nodes does not have to be measured but is directly accessible.
Thus, much larger systems can be evaluated.

Systems and TopologiesIn [31], systems with 200 nodes are evaluated, in [16] and
[32] up to 500 nodes, always randomly placed in a square area. The transmission
range of the nodes is 10 m in a square of length 80 m [31] or 120 m [32]; in [16],
various transmission ranges from 0.4 m to 1 m are used in a square of length 10 m.



xxx

In [2], the transmission range is varied between 0.1 and 0.5 times the width of the
square area. In [30], a chain of 5 nodes is simulated.

Message Delays For simulation, a number of assumptions about the behavior of the
system have to be made (e.g., about message delays). In [30], measured delay traces
from an 802.11 wireless LAN are used, [31] and [32] generate delay traces according
to a normal distribution. In [31], an additional offset is added which increases when
the medium is saturated, that is when more than 75% of the channel capacity is
used. The authors of [2] assume zero message delay, arguing that the synchronization
errors induced by delay uncertainty and drift can be studied separately.

Clock Drift In [31] and [2], every node is assigned an arbitrary but constant drift
rate between−100 ppm and+100 ppm. In [32], all nodes have a drift rate of 50 ppm.

Results The main concern of [32] is to compare centralized and distributed versions
of the LTS algorithm in terms of required messages and achieved synchronization er-
ror. The average error (over all nodes) is evaluated as a function of the hop distance to
the master node. [30] evaluates the synchronization error and the drift-compensation
error achieved by the TS/MS algorithms as a function of time. A node one hop away
from the master has an error of 1 ms after 83 minutes. A node with five hops dis-
tance achieves 3 ms. In [2], the average synchronization error (over time and over all
nodes) is evaluated as a function of the number of messages exchanged between the
nodes. Also the impact of the transmission range and of the number of master nodes
is evaluated. The authors of [16] mainly evaluate how quickly (number of rounds)
a network synchronizes using the AD algorithm. This is evaluated as a function of
the transmission range and as a function of the number of nodes in the system. It
is also shown that the synchronization error decreases exponentially with the num-
ber of rounds. The speed of convergence is also evaluated in [31], here for the TDP
and TPSN algorithms; the standard deviation of the nodes’ synchronization error
is shown as a function of time. It is argued that node mobility makes convergence
slower. In addition, histograms and three-dimensional plots of the distribution of the
synchronization error after convergence are presented.

1.6.5 Challenges of a benchmark

So far, we have presented how synchronization algorithms are evaluated in current
literature. We have seen that results of different authors are quite incomparable due
to widely differing goals, assumptions and techniques. On the one hand, there is not
yet a common understanding about the requirements on synchronization in sensor
networks. On the other hand, there is also disagreement about available resources
and platforms.

A benchmark for comparing the various algorithms on common grounds has not
yet been presented. In the following, we discuss why it is difficult to devise a bench-
mark that can be used with a large number of algorithms. Ideally, the comparison of
algorithms is based on simulation using system traces. Such traces should contain



CALIBRATION xxxi

the system and communication model (How many nodes are there? How many of
them are master nodes? Which node communicates with which other node at which
time?), and they should characterize the “adversary” of synchronization, namely all
message delays and the drift rates of the nodes. But this would require to determine
all communications before executing the algorithms. This is not possible for most of
the algorithms, since they actively decide to generate messages, depending on previ-
ous events. Furthermore, some algorithms require broadcast communication, while
others do not.

1.7 CALIBRATION

In the previous sections, we have considered the problem of time synchronization,
where the output of a hardware clock had to be mapped to a timescale. Sensor cali-
bration is the problem of mapping the output of a sensor to a well-defined scale. In
this section, we want to take a step back from time synchronization and consider the
more general problem of calibration. As we will show, there is a close relationship
between calibration and time synchronization, since the latter can be considered a
special case of the former. It might be somewhat unfamiliar to consider a hardware
clock as a sensor, but we will as show in Section 1.7.1 that the difference is rather
subtle. The remainder of this section is structured in a similar way as the discussion
of time synchronization in the previous sections. Section 1.7.2 explains why new
approaches are required for calibration in sensor networks. Section 1.7.3 presents
our system model for sensors. Section 1.7.4 discusses various classes of calibration.
Section 1.7.5 presents concrete calibration algorithms from current literature.

1.7.1 Time synchronization as calibration

Sensors are hardware devices that have an input and an output. The input is a certain
physical quantity in the real world, such as temperature, light intensity, acceleration,
radio signal strength, etc. The output typically is a variable electrical signal such as
a voltage or current. An analog-to-digital converter converts it to a digital number.

A hardware clock typically consists of four components: a physical system that
has a periodic behavior (e.g., an oscillating quartz, decaying Cesium, a pendulum),
a sensor that converts the physical phenomenon to an electrical signal, an analog-to-
digital converter (e.g., threshold detector) that converts the output of the sensor to a
one-bit number, and a counter that counts the number of rising (or falling) edges seen
so far in the digital output stream. Hence, a hardware clock contains, among other
things, a sensorand the physical phenomenon to observe.

Despite this analogy, time as a physical quantity has some unique characteristics.
For example, in many practical settings, observed physical quantities have a rather
limited range of values (e.g., temperature∈ [−30◦C,+30◦C]). Given a bounded rel-
ative sensor error (i.e., bounded drift), the absolute measurement error is then also
bounded. However, physical time eventually grows beyond all bounds. Hence, the
absolute error of a software clock is unbounded unless synchronization messages are



xxxii

exchanged. This explains the need for precise drift compensation and for repeating
synchronization after a certain amount of time.

1.7.2 Revisiting calibration for sensor networks

Calibration is a very old problem, since it is needed for almost all measurement in-
struments. Despite this, calibration in sensor networks has so far not received much
attention by researchers — at least when compared to time synchronization. How-
ever, a number of challenges to calibration in sensor networks pose interesting ques-
tions.

A large number of sensor nodes often cannot be calibrated manually and individ-
ually. This is particularly true for pairwise calibration, where a sensor measures a
quantity emitted by another device (i.e., an actuator). One example for this is mea-
suring the radio signal strength to infer the distance between devices. In such a sce-
nario, every sensor would have to be calibrated against every transmitter, resulting in
a quadratic number of calibration steps.

Sensors may be exposed to significant changes of environmental parameters (e.g.,
temperature, humidity) during the lifetime of a sensor network. Since the commonly
used low-cost sensors are rather sensitive to such changes, a one-time factory cali-
bration may not be sufficient. In this case, periodical calibration during the lifetime
of the sensor network is necessary.

1.7.3 System model

The physical quantityq that is observed by a sensor is mainly a function of the
size of the sensor, of its orientation, of its location, and of timet. Since the size
of a sensor is non-zero, sensors can typically only observe the accumulation (e.g.,
weighted average) of a physical quantity over a certain area or volume. If we assume
that size, orientation, and location are constant properties of a sensori, we can denote
the time-dependent physical quantity observed by the sensor asqi(t). Often,q is a
real-valued scalar function (e.g., for temperature sensors), but may also be more
complex (e.g., for a location sensor,q might return triples(x,y,z)).

The output of a sensori under stimulusqi(t) is denoted ashi(t). Note thathi(t) for
a givenqi(t) typically depends on a number of parameters, for example fabrication
tolerance of the sensor, environmental parameters such as temperature and humidity,
and wear of the sensor.

In analogy to software clocks, we introduce asoftware sensoras a functionc
that maps a sensor outputh(t) to c(h(t)). Software sensors are typically introduced
to map a sensor output to a standard scale (e.g., the Celsius scale). Here, the goal
of calibration is to find a suitablec for a given scale. Often,q does refer to such
a standard scale, in which case the goal of calibration could be to find ac which
approximatesci(hi(t)) = qi(t) for all t.

As mentioned in the previous section, calibration may also be applied to actuators.
An actuator can be considered a reverse sensor that accepts a digital valueh(t) as
input and produces a physical quantityq(t) as output. For example, a heater may



CALIBRATION xxxiii

accept a temperature specification as input and heat until this temperature is reached.
A software actuator c−1 then maps a given valuev to c−1(v), which may be used
as an input to the actuator to produce a certain physical quantity (e.g., such that
q(t) = v).

1.7.4 Classes of calibration

In this section, we adapt the classes of time synchronization introduced in Section
1.3 to calibration.

Internal vs. external For internal calibration, all software sensorsi should output
the same valueci(hi(t)) if they are exposed to an identical stimulusq(t) (note that if
for instanceq(t) = 25◦C, thenc1(h1(t)) = c2(h2(t)) = 10◦C would mean that sensors
1 and 2 are internally calibrated). For external calibration, the output of all software
sensors must conform to a specified scale (e.g., ifq(t) = 25◦C, thenc1(h1(t)) =
c2(h2(t)) = 25◦C is required).

Lifetime: continuous vs. on-demandAs some of the parameters that influenceh
may change over time, calibration may have to be repeated to adapt to these param-
eters. Calibration may be performed continuously or on demand.

Scope: all nodes vs. subsetsAll nodes or only subsets of nodes might participate
in calibration. For example, only some nodes might be equipped with a certain type
of sensor, or the sensor might only be used by some nodes.

Rate vs. offset Sometimes it is sufficient if differencesci(hi(t1))− ci(hi(t2)) (e.g.,
temperature differences) obtained from different sensor instances can be compared.
In this case, rate calibration is sufficient. If, however, absolute valuesci(hi(t)) (e.g.,
absolute temperature values) originating from different sensor nodes are to be com-
pared, offset calibration is needed.

Scale transformation vs. global scaleRather than having all software sensors ad-
here to a global scale, it might be advantageous (e.g., in terms of overhead) to main-
tain local scales and transform sensor readings as they are sent to nodes with a dif-
ferent scale (e.g., if node 1 uses the Celsius scale and node 2 uses the Fahrenheit
scale, then the transformation function for transforming from node 1 to node 2 is
c12(h1(t)) = 1.8h1(t)+32).

Point estimates vs. boundsSoftware sensors may either output point estimates (in
analogy to time instants for time synchronization) or bounds (in analogy to intervals
for time synchronization).



xxxiv

1.7.5 Case studies

In this section, we present two calibration algorithms for sensor networks (ordered
by publication date). As in Section 1.5, we outline the algorithm and give an idea of
its performance.

1.7.5.1 Calibration as Parameter Estimation (CPE)Calibration as Parameter
Estimation [34] provides a framework for external calibration where sensors measure
a quantity emitted by an actuator. Both the behavior of the actuator and of the sensor
are unknown and must be taken into account for calibration. The general approach
here is the joint calibration of sensors and actuators such that the overall system
response is optimized.

The algorithm will be illustrated by pairwise distance measurements between sen-
sor nodes using the time of flight of an ultrasound signal. Each node is equipped with
a speaker (the actuator) and a microphone (the sensor). Assuming the nodes have
synchronized clocks, one node emits an acoustic signal containing a time stamp, the
other receives the acoustic signal, computes the time of flight, and it multiplies with
the speed of sound to obtain a distance estimate.

For our discussion, we will consider a virtual distance sensor that directly out-
puts a distance estimateh(t) given the true distance as the physical stimulusq(t).
Due to reasons discussed below, distance estimates include various systematic er-
rors. Hence, the goal of calibration is to find a functionc that maps the distance
estimateh(t) to the correct distanceq(t).

For CPE,c must now be parameterized, such that it is expressed as a function
of h and of parameters that describe the various error sources. These parameters are
related to both the sensor and to the actuator. For example, the distanceh(t) output
by the sensor can be expressed in terms of the true distanceq(t) as follows:

h(t) = BT +BR+GTq(t)+GRq(t)

whereBT andBR refer to constant distance offsets caused by startup times for di-
aphragm oscillation in the transmitter and in the receiver, respectively;GT andGR

represent the distance-dependent influence of the transmitter volume and of the re-
ceiver sensitivity, respectively. Solving forc(h(t)) := q(t) we obtain:

c(h(t)) = (h(t)−BT −BR)/(GT +GR)

Although there is one instance of the above joint-calibration function for every trans-
mitter–receiver pair, there is only one set of parameters(BT ,BR,GT ,GR) for each of
the N nodes. Hence, we can formulate a linear equation system with 4N variables
(i.e., the four above parameters for each node) and 4N equations, which requires
4N pairs(h(t),c(h(t)) = q(t)) to solve. Alternatively, more samples can be collected
and least-squares optimization can be used to obtain more accurate estimates for
the parameters. Once the parameters(BT ,BR,GT ,GR) for each node are known, the
calibration functions are also known.



CALIBRATION xxxv

The authors performed an experiment with an 8× 4 square grid of Berkeley Motes
with a node distance of 30cm, such that the true distances between pairs of nodes can
be easily calculated. Each node emitted an ultrasound beacon, which allows all other
nodes to estimate their distance to the transmitting node. The average error of the
uncalibrated distance estimates is 74.6%. With the above calibration procedure, the
average error could be reduced to 10.1%.

1.7.5.2 Collaborative In-Place Calibration (CIC) CIC [4] supports internal cal-
ibration under a number of assumptions: the sensor nodes should be densely de-
ployed, sensor orientation should have a negligible impact on the sensor output,
spatial frequency of the observed physical quantity should be low, temporal fre-
quency of the quantity should be high. Essentially, these assumptions ensure that
collocated sensor nodes will see very similar stimuliq(t) that change quickly over
time. Additionally, it is assumed thatq, h, c are real-valued, scalar functions. Cal-
ibration functionsc are assumed to be linear functions, although the method could
also be adapted to non-linear functions. The algorithm consists of two phases. In the
first phase, pairwise calibration among collocated nodes is performed. In the second
phase, calibration among remote nodes is performed.

In the first phase, collocated pairs of nodes are calibrated against each other. Let
us assume node 1 has to be calibrated against node 2. Then the goal is to derive a lin-
ear calibration functionc12 with c12(h1(t)) = h2(t). Firstly, both sensor nodes record
sensor readingshi(tx), such that both nodes read out the sensor concurrently attx,
which requires clock synchronization. The sensor nodes exchange these readings, so
that node 1 obtains a set of data points(tx,h1(tx),h2(tx)). Sincec12 is assumed to
be linear, it can be derived by linear regression from this set of data points. How-
ever, even though sensor readout is synchronized, it is possible that the two sensors
perceived different physical stimuliq1(tx) 6= q2(tx) due to their different locations.
Hence, such data points have to be eliminated before regression.

For this, confidence values are assigned to the data data points, and the data points
with low confidence values are eliminated. The confidence values are obtained by
shifting a time window with a given size over the set of data points. For each window
position, the linear correlation coefficientr ∈ [−1,1] for the contained data points is
calculated. The largerr is, the better the data points fall on a line (i.e., the closer
q1(tx) andq2(tx) are). If r is positive, then each data point in the window is further
examined. If the data point contributes a positive addend tor, then the confidence of
this data point is increased byr. The initial confidence of each data point is zero.

After this procedure, all data points with a confidence below a certain threshold
value are eliminated. With the remaining set, linear regression is performed to derive
a linear calibration functionc12. This function is also assigned a confidence that
equals the linear correlation coefficient of the used data points.

Calibration functions for remote nodes are obtained by concatenating multiple
calibration functions for collocated nodes. For example, for two remote nodes 1 and
3, the calibration functionsc12 andc23 may be concatenated to give a calibration
function c13(h1(t)) = c23(c12(h1(t))). However, there are typically many ways to
construct a remote calibration function from many local function. Due to inconsis-



xxxvi

tencies it must be expected that for an alternate calibration functionc′13, we have
c13(h1(t)) 6= c′13(h1(t)). Hence, the second phase of the algorithm computes more
consistent non-local calibration functions ˆc.

The algorithm generates a new set of data points and uses linear regression to
compute ˆci j . To obtain the data points, the algorithm enumerates all concatenated
paths up to a specified maximum length. Thek-th path{ci j

k } is assigned a confidence

r i j
k by multiplying the confidences of the path segments. Using a set of random data

valuesxl , the data points are calculated as(xl ,
1
N ∑k r i j

k ci j
k (xl )), whereN is the number

of concatenated pathsci j
k .

The accuracy of the derived calibration functions for collocated sensors was mea-
sured in an experiment, where 9 Berkeley Motes with temperature sensors were
placed in a 3× 3 square grid with a node distance of 5cm. A slowly moving hair
dryer was used as a heat source. About 70% of the pairwise calibration functions
deviated by less than 5◦C. More than 10% were off by more than 10◦C.

1.8 SUMMARY

In this chapter, we discussed various aspects of time synchronization and calibration
in sensor networks. We outlined the applications of physical time and discussed why
existing algorithms for time synchronization have to be revisited. We also presented
common classes of and techniques for synchronization, reviewed time-synchroniza-
tion algorithms from the literature, and discussed evaluation strategies. Time syn-
chronization was identified as a special case of calibration, and many of the observa-
tions about time synchronization could be transferred to calibration.

While time synchronization for sensor networks is an established field of research,
calibration has not received that much attention yet. However, we expect that calibra-
tion becomes a more active field as sensor networks move beyond the lab and small
field experiments. Unfortunately, calibration is a much more general and complex
problem than time synchronization. Hence, it is likely that research will first focus
on more specific calibration problems. An interesting question is, whether techniques
developed for time synchronization can be adapted to calibration problems.

The case studies of time-synchronization algorithms and the discussion of evalu-
ation techniques illustrated the very real problem of evaluating and comparing syn-
chronization algorithms. Note that these difficulties do also apply to calibration and
many other distributed algorithms. One of the challenges for future research is hence
the development of methods and tools for the evaluation of time synchronization and
calibration in large-scale sensor networks.

Current application-oriented projects (e.g., [15]) indicate that many simplifying
assumptions about sensor networks (e.g., immobile nodes, fixed network topology)
may not hold in practice. Hence, future work might have to revisit existing ap-
proaches for time synchronization and calibration under updated assumptions.



SUMMARY xxxvii

REFERENCES

1. Jean-Marc Berthaud. Time synchronization over networks using convex clo-
sures.IEEE/ACM Transactions on Networking, 8(2):265–277, 2000.

2. Philipp Blum, Lennart Meier, and Lothar Thiele. Improved interval-based clock
synchronization in sensor networks. InThird International Symposium on In-
formation Processing in Sensor Networks, pages 349–358, Berkeley, California,
USA, April 2004.

3. Philipp Blum and Lothar Thiele. Clock synchronization using packet streams. In
Dahlia Malkhi, editor,DISC 2002, Brief Announcements, pages 1–8, 2002.

4. Vladimir Bychkovskiy, Seapahn Megerian, Deborah Estrin, and Miodrag Potkon-
jak. A Collaborative Approach to In-Place Sensor Calibration. InIPSN, Palo
Alto, USA, April 2003.

5. Flaviu Cristian. Probabilistic clock synchronization.Journal of Distributed Com-
puting, 3:146–158, 1989.

6. Hui Dai and Richard Han. Tsync: A lightweight bidirectional time synchroniza-
tion service for wireless sensor networks.ACM SIGMOBILE Mobile Computing
and Communications Review, 8(1):125–139, January 2004.

7. Danny Dolev, R̈udiger Reischuk, Ray Strong, and Ed Wimmers. A decentralized
high performance time service architecture. Technical Report 95/26, Institute for
Computer Science, University of Lübeck, November 1995.

8. Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time syn-
chronization using reference broadcasts. InFifth Symposium on Operating Sys-
tems Design and Implementation (OSDI 2002), December 2002.

9. Jeremy Elson and Kay R̈omer. Wireless sensor networks: A new regime for
time synchronization. InFirst Workshop on Hot Topics In Networks (HotNets-I),
Princeton, New Jersey, October 2002.

10. Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync protocol
for sensor networks. InFirst ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2003.

11. Deepak Ganesan, Silvia Ratnasamy, Hanbiao Wang, and Deborah Estrin. Cop-
ing with Irregular Spatio-Temporal Sampling in Sensor Networks.SIGCOMM
Computer Communication Review, 34(1):125–130, 2004.

12. Floyd M. Gardner.Phaselock Techniques. Wiley, 1979.

13. Lewis Girod, Vladimir Bychkovskiy, Jeremy Elson, and Deborah Estrin. Locat-
ing tiny sensors in time and space: A case study. InInternational Conference on
Computer Design ICCD, September 2002.



xxxviii

14. Joseph Y. Halpern and Ichiro Suzuki. Clock synchronization and the power of
broadcasting.Distributed Computing, 5(2):73–82, 1991.

15. Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-Shiuan Peh,
and D. Rubenstein. Energy-Efficient Computing for Wildlife Tracking: Design
Tradeoffs and Early Experiences with ZebraNet. InASPLOS X, San Jose, USA,
October 2002.

16. Qun Li and Daniela Rus. Global clock synchronization in sensor networks. In
IEEE InfoCom, 2004.

17. Barbara Liskov. Practical uses of synchronized clocks in distributed systems. In
10th Annual ACM Symposium on Principles of Distributed Computing (PODC’91),
pages 1–10, August 1991.

18. M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time synchroniza-
tion protocol. InSenSys, Baltimore, USA, November 2004.

19. Keith Marzullo and Susan Owicki. Maintaining the time in a distributed system.
In Second annual ACM symposium on Principles of distributed computing, pages
295–305. ACM Press, 1983.

20. Lennart Meier, Philipp Blum, and Lothar Thiele. Internal synchronization of
drift-constraint clocks in ad-hoc sensor networks. InFifth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, pages 90–97, Tokyo,
Japan, May 2004.

21. David L. Mills. Internet time synchronization: The network time protocol.IEEE
Transactions on Communications, 39(10):1482–1493, October 1991.

22. David L. Mills. Improved algorithms for synchronizing computer network clocks.
IEEE/ACM Transactions on Networks, 3(3):245–254, June 1995.

23. Sayan Mitra and Jesse Rabek. Power efficient clustering for clock synchroniza-
tion in dynamic multi-hop networks. unpublished,
http://theory.lcs.mit.edu/˜mitras/courses/6829/project/finalreport.ps, 2003.

24. Michael Mock, Reiner Frings, Edgar Nett, and Spiro Trikaliotis. Clock synchro-
nization in wireless local area networks. In12th Euromicro Conference on Real
Time Systems, pages 183–189, June 2000.

25. Raffaele Noro.Synchronization over Packet-Switched Networks: Theory and Ap-
plications. PhD thesis, EPFL, Lausanne, Switzerland, 2000.

26. William H. Press, Saul A. Teukolsky, William T. Vetterli, and Brian P. Flannery.
Numerical Recipes in C, 2nd Edition. Cambridge University Press, 1992.

27. Kay Römer. Time synchronization in ad hoc networks. InACM Symposium on
Mobile Ad-Hoc Networking and Computing, October 2001.



xxxix

28. Kay Römer. Temporal message ordering in wireless sensor networks. InIFIP
Mediterranean Workshop on Ad-Hoc Networks, pages 131–142, June 2003.

29. Ulrich Schmid and Klaus Schossmaier. Interval-based clock synchronization.
Real-Time Systems, 12(2):173–228, 1997.

30. Mihail L. Sichitiu and Chanchai Veerarittiphan. Simple, accurate time synchro-
nization for wireless sensor networks. InIEEE Wireless Communications and
Networking Conference (WCNC’03), March 2003.

31. Weilian Su and Ian F. Akyildiz. Time-diffusion synchronization protocol for sen-
sor networks.IEEE/ACM Transactions on Networking, 2004. To appear.

32. Jana van Greunen and Jan Rabaey. Lightweight time synchronization for sensor
networks. In2nd ACM International Workshop on Wireless Sensor Networks and
Applications, pages 11–19, September 2003.

33. Paulo Verissimo, Luis Rodrigues, and Antonio Casimiro. Cesiumspray: a precise
and accurate global time service for large-scale systems.Real-Time Systems,
3(12):243–294, 1997.

34. Kamin Whitehouse and David Culler. Calibration as Parameter Estimation in
Sensor Networks. InWorkshop on Wireless Sensor Networks and Applications
(WSNA) 02, Atlanta, USA, September 2002.

35. Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient mac protocol
for wireless sensor networks. InIEEE Infocom, New York, NY, USA, June 2002.

36. Li Zhang, Zhen Liu, and Cathy Honghui Xia. Clock synchronization algorithms
for network measurements. InIEEE INFOCOM, 2002.


