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Abstract
Research results on smart heating systems based on
occupancy prediction are often difficult to reproduce and
to compare. Evaluating the performance of these
systems through simulation or real experiments requires
defining suitable scenarios and setting a large number of
parameters. As different authors rely on different scenarios
and parameter settings, comparing the reported
performance results is often infeasible. In this paper, we
argue that overcoming this problem is crucial to bring
research on smart heating systems a step forward. We
outline the main factors influencing the performance of
such systems and we show how these factors can be
integrated by proposing a simple yet thorough evaluation
methodology for smart heating systems. Using parameters
synthesised from real-world occupancy and weather data,
we describe how this methodology can be used to
establish performance bounds of smart heating systems.

Introduction
Interest in smart heating systems has recently received
much attention in both industry and academia
[3, 10, 11, 13, 14]. Traditional thermostats can be made
smart by adding the capability to automatically control
the temperature setpoint depending on the current and
predicted presence of household occupants. When the
occupants leave the building and the household becomes



unoccupied, the system lowers the temperature to save
energy. In order to instruct the thermostat to heat up the
building in time, occupancy prediction algorithms are used
to estimate the arrival times of the occupants. A large
number of such occupancy prediction algorithms have
been proposed in the literature. Some relate the arrival
time of the occupants to their departure time or exploit
weekday similarities [11, 13]. Others use past mobility
traces to predict when the home may be reached based on
the current location of the occupants [3, 10]. Existing
results presume smart heating control systems that rely on
occupancy prediction algorithms can achieve energy
savings of 8% or even 28% with respect to traditional,
timer-based heating control systems [11, 13]. However,
the use of different evaluation scenarios and parameters
makes it difficult to compare results obtained by different
authors. Also, a thorough description of the evaluation
setup of an approach is often too verbose to be included
in a research publication. The lack of such a description,
however, makes it infeasible for other authors to reproduce
previously achieved results.

In this paper, we argue that enabling the comparability
and reproducibility of research results on smart heating
control is crucial to build and improve upon
state-of-the-art approaches. In the following, we outline a
generic methodology to evaluate the performances of
smart heating control systems. We illustrate how this
methodology can be applied in practice by determining the
potential energy savings of a smart heating system for two
fictitious households in the Lausanne area in Switzerland.

Methodology
The amount of energy spent for heating a building is
determined by several factors, including the level of
insulation (transmission losses), the building’s orientation

and number of windows (solar gains), its exposure and
tightness (ventilation losses), heat gains due to occupants
and appliances (internal gains) and of course the outside
temperature. Whenever a household is occupied, the
heating system is required to maintain its indoor
temperature at a pre-specified comfort level (e.g. 20 ◦C)
and match the sum of the transmission and ventilation
losses minus the sum of solar and internal gains. A smart
heating system can save energy by letting the indoor
temperature of the household drop to a setback level
while the building is not occupied. The actual savings
achievable using this approach are mainly influenced by
four factors: (1) the actual occupancy of the building; (2)
the weather conditions; (3) the characteristics of the
building and (4) the control strategy used to set the
target temperature of the thermostat.

Occupancy
To assess the performance of smart heating systems based
on occupancy prediction in a realistic manner, the
availability of actual occupancy data is critical. As a
practical example, we refer in this paper to actual
occupancy data extracted from the Lausanne Data
Collection Campaign (LDCC) data set [6]. In a previous
study [7] we have shown how to derive occupancy
schedules from this data set. An occupancy schedule is a
binary vector containing ones and zeros denoting occupied
or unoccupied time intervals of a household.

Weather
Weather conditions significantly influence the behaviour of
any heating system. When the temperature outside the
building is lower than the indoor temperature, the building
loses heat to the environment. The higher the difference
between the indoor and outdoor temperature, the more
heat is lost and must be compensated for by the heating



system. A larger difference between indoor and outdoor
temperature also implies that the preheat time (i.e. the
time needed to heat the house to a desired comfort
temperature starting from a lower setback temperature)
increases. However, this temperature difference is not the
only factor influencing the amount of energy that is spent
by the heating system. The heat transferred to the
building through solar radiation, the so-called solar gains,
must also be taken into account. Such is the importance
of solar gains that the field of passive solar building design
focuses on utilising solar gains in winter and avoiding
those gains in summer to optimise heating and
air-conditioning [12]. Considering adequate weather
scenarios that allow to model the effect of actual outside
temperatures and solar radiation is thus essential to
evaluate the performance of smart heating systems.

Why using weather scenarios?
A possible solution to include realistic weather scenarios in
a simulation consists of using traces of actual weather
data. Ideally, this data should be retrieved for the same
location and period for which actual occupancy data of a
target building is available. However, this approach is
often infeasible for two reasons. First, this would prevent
us from using any occupancy data collected in summer
which severely reduces the available occupancy data.1

Second, two identical occupancy schedules on different
days can result in fundamentally different heating costs if
their associated weather conditions differ. Thus, as
savings are somewhat “left to chance”, we cannot draw
conclusions about possible savings in general. We must
therefore decouple the weather data from the occupancy
data. However, simulating the days in the occupancy

1Note, that working with characteristic weather scenarios we im-
plicitly assume that no correlation between the occupancy schedule
of a household and the current weather conditions exists.

dataset with all possible combination of days in the
weather data is too expensive computationally. Thus,
rather than picking a few weeks in the winter months to
fit the occupancy schedules, we use historical weather
data to derive characteristic weather scenarios. This
allows us to combine multiple days with the same weather
characteristics to generate a smaller number of discrete,
characteristic weather scenarios. In the remainder of this
section we show an exemplary calculation of the
characteristic weather scenarios for Pully, Switzerland2.

Temperature thresholding
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Figure 1: Distribution of daily average temperature Θe,d for
Θe,d ≤ 20 ◦C in Pully, Switzerland (Jan 1994 to Jan 2014).
Right subfigure shows median and quartiles.

Figure 1 illustrates the distribution of the daily average
temperatures in Pully over the last 20 years3. It shows the
relative frequency (i.e. the empirical probability) of
observing a particular average temperature on any given
day. To generate the weather scenarios, we only consider
days with an average outside temperature Θe,d less than
20 ◦C, as no heating is necessary if the outside
temperature reaches the comfort temperature.

2We chose the weather station at Pully near Lausanne in Switzer-
land to match the occupancy data from the LDCC dataset.

3The weather data has been obtained from MeteoSwiss.



The right part of Figure 1 shows that the median
temperature in the observed sample is 10 ◦C (i.e. 50% of
the days requiring heating have temperatures below
10 ◦C), while the lower quartile is 5 ◦C (i.e. 25% of the
days requiring heating have temperatures below 5 ◦C).
The minimum value observed is −10 ◦C.

Table 1: The four temperature scenarios.

Scenario Range
Very low temperature −6 ◦C ≤ Θe,d ≤ −4 ◦C
Freezing temperature −1 ◦C ≤ Θe,d ≤ 1 ◦C
Low temperature 4 ◦C ≤ Θe,d ≤ 6 ◦C
Moderate temperature 9 ◦C ≤ Θe,d ≤ 11 ◦C

An important parameter for the design of heating systems
is the norm outside temperature. The norm outside
temperature is the lowest two-day average temperature
which was measured at least 10 times over a period of 20
years. It is used to determine the worst-case temperature
scenario for the dimensioning of the heating system [2].
For Pully, we determined the norm outside temperature as
−6 ◦C. Using a range of ±1 ◦C around the norm outside
temperature (−6 ◦C), the freezing point (0 ◦C), the lower
quartile (5 ◦C) and the median (10 ◦C) temperatures, we
defined four characteristic temperature scenarios for Pully
shown in Table 1. For further details on the definition of
the weather scenarios, the interested reader is referred
to [9].

Table 2: All 8 weather scenarios. For each of the 8 scenarios,
the table shows the daily average temperature Θe,d and the
daily average of the global radiation Iavg for reference.

Θe,d (◦C) Iavg (W/m2)
Scenario clear cloudy clear cloudy
Very low temperature -5.4 -4.7 142.9 35.5
Freezing temperature 0.1 0.0 137.5 30.2
Low temperature 5.1 5.1 148.5 26.1
Moderate temperature 10.1 10.0 180.7 29.7

Note, that by choosing the bounds for the very low
temperature scenario to be above rather than around the
norm outside temperature, we seek to avoid a rare
scenario where our modelled heating system cannot fully
heat up the building during parts of the day.

Solar gain thresholding
The amount of solar gains is dependent on a number of
factors including the cloud cover, the location of the
building, the number, type and size of windows as well as
their orientation and shading such as curtains. The
incident solar radiation causing the internal gains may be
divided into two categories: Direct and diffuse radiation.
Direct radiation is caused by line-of-sight rays from the
sun, while diffuse radiation is light reflected from the
surroundings. Here we focus on the direct radiation.
Many weather stations provide only the global (direct +
diffuse) radiation on a horizontal surface. To calculate the
direct solar gain through the windows at a given instant of
time, we first obtain the position of the sun relative to our
location. We then partition the global radiation into direct
and diffuse radiation using the Reindl∗ method [4]. Finally,
we transform the direct radiation from the horizontal to a
vertical plane and thence to the different orientations of
the windows. We define days with an average global
radiation above 100 W/m2 as clear. Days with an average
global radiation below 50 W/m2 are considered cloudy.

Weather scenarios
Table 2 shows statistics of the 8 weather scenarios. Due
to limited availability of the global radiation data, the
scenarios are built using data from January 1, 2005 to
January 1, 2014. Figure 2 provides an example of the
resulting data for the freezing temperature, clear sky
scenario. Idir,East, Idir,South and Idir,West denote the
direct radiation on the east, south and west walls in



W/m2, respectively. Θe is the outside temperature in ◦C.
The figure shows that while the south wall experiences the
highest influx of radiation around noon, the highest
cumulative gains occur just before 3 p.m. when the sun is
in a south-west position. The outside temperature is
reaching its maximum value shortly after 4 p.m..
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Figure 2: A weather scenario: Freezing temperature, clear sky.

Building characteristics
At the beginning of this paper we have highlighted that
the energy spent to heat a building is determined by the
building’s transmission losses, solar gains, ventilation
losses and internal gains. These heat losses and gains link
the ability of the building to store and retain energy to the
weather conditions discussed in the previous section. In
the following we will discuss the factors needed to
sufficiently describe the building characteristics using two
fictitious but typical and rather different properties.

Building geometry
The two building configurations used in this study are a
studio flat and a house4. For both we assumed building
parts with low U-values (good insulation), following recent
legislatorial guidelines [1]. The transmission losses can

4Further details regarding the building configurations can be ob-
tained from [9].

then be derived from the wall and ceiling area together
with the appropriate U-values. The studio flat has an area
of 52 m2. The house has an area of 176 m2. All windows
are sized 2 m2. The height of the rooms is 2.5 m in both
cases. The doors are 2.8 m2. The flat has one window
facing east, and 3 windows facing south. The house has
two east-facing windows, four windows on the south side,
two to the west and two windows facing north.

Ventilation losses
Buildings need to be ventilated frequently for hygienic
purposes. In addition, they lose heat through drought
(caused by cracks and small openings in the building
envelope). These losses must be matched by the heating
system. We have calculated the ventilation losses
according to the simplified method of the DIN EN 12831
standard which uses the maximum value of the hygienic
and natural ventilation to denote the ventilation losses [2].

Internal gains
When humans are present in the building, additional heat
is generated through the operation of appliances (e.g.
television set, dryer and stove) and the metabolic heat
from the occupants themselves. An average person
produces 125 W of heat. We model the flat to be
occupied by 2 people and the house by 3 people. Since
most occupancy prediction algorithms algorithms consider
binary occupancy, we assume all occupants are present
whenever the building is occupied (i.e. 250 W and 375 W
whenever the flat or house are occupied, respectively).

Dimensioning the heating system
In order to appropriately dimension the heating
infrastructure (e.g. radiators and boilers) in a building,
the DIN EN 12831 standard allows for the calculation of
the design heating load [2]. The design heating load is the
amount of heat that needs to be supplied to a building to



keep Θcomfort even when the outside temperature is very
low. We thus make sure to neither over- nor
underestimate the performance of the heating system.

Simulation model
We use the 5 resistance 1 capacitance (5R1C) model from
the ISO 13790 standard to simulate the energy
consumption of the heating system. In the 5R1C model,
the transient thermal conduction between the building
and its surroundings is modelled analogously to an RC
circuit. The ISO 13790 standard [5] was mandated by the
EU Directive 2002/91/EC on the energy performance of
buildings (EPBD) which required a “a common
methodology for calculating the integrated energy
performance of buildings”. Today, this model has been
widely adopted for building simulations in Europe. We
have adapted the 5R1C model to calculate the indoor air
temperature and heat input at intervals of 15 minutes.

Table 3: Controller Parameters

Symbol Units Description
Θcomfort

◦C Comfort / set-point temperature (20 ◦C)
Θsetback

◦C Setback temperature (10 ◦C)
t / Current 15-minute time interval
S [{1, 0}] Actual occupancy schedule
Pt [[{1, 0}]] Predicted occupancy schedule at interval t

Predictive controller
In order to act upon the predictions made by occupancy
prediction algorithms, we must translate their predicted
binary occupancy schedules (i.e. predictions about the
future occupancy of the building) into an actual heating
schedule containing setpoint temperatures for each time
of the day. Our suggested approach does so by simulating
the response of the indoor temperature if we forego
heating at the current (unoccupied) interval. If the system

is still able to heat up in the remaining intervals until the
(predicted) arrival of the occupants, we decide to forgo
heating at this interval. Table 3 shows the parameters
used in the controller.

Algorithm 1 Control algorithm

1: procedure Controller
2: t← Current time interval
3: S ← Actual occupancy schedule
4: Pt ← Predicted occupancy schedule at interval t
5: Reactive policy :
6: if St = 1 then /* Occupied */
7: Θset ← Θcomfort

8: else
9: Predictive policy :

10: nhorizon ← nextOccupied(Pt)
11: Θair,noheat ← iso137905R1C(Θsetback,Θm,t−1, . . . )
12: npreheat ← Preheat time from Θair,noheat to Θcomfort

13: if nhorizon ≥ npreheat then
14: Θset ← Θsetback

15: else
16: Θset ← Θcomfort

17: Θm,t,Φt,Θair,t ← iso137905R1C(Θset,Θm,t−1, . . . ).
18: t← t + 1
19: goto Reactive policy.

Algorithm 1 shows the predictive controller used to
alternate between the setpoint Θcomfort and setback
Θsetback temperatures. For each 15-minute time interval
t, the controller looks at the current occupancy St of the
household as given by the occupancy schedule S at time
t. If the household is currently occupied, we must keep
the setpoint temperature and therefore set
Θset = Θcomfort. If the household is not occupied at time
t, we use the predictive policy. The predictive policy first
finds the number of unoccupied intervals until the next
occupied interval nhorizon. This is the maximum time
available to heat the building to Θcomfort. The next step
is to apply the ISO 13790 model of the building and to



compute the indoor air temperature at the next time
interval if we only applied enough heat to keep Θsetback

(i.e. we forgo heating) at the current interval. Based on
this temperature Θair,noheat, we compute the number of
intervals needed to heat to the comfort temperature –
npreheat. If npreheat ≤ nhorizon, the remaining time is not
sufficient to heat up the building on time and we must
heat at the current time t. Using this controller, a simple
reactive policy (REA) is obtained if ∀t1, t2 : Pt1,t2 = 0.
Similarly, an always-on policy (AO) is obtained if
∀t : St = 1. We call an optimal predictive controller with
perfect knowledge of the future occupancy OPT.

Energy savings: Simulation results
In the remainder of this paper we will show simulation
results for our two fictitious example dwellings in
Lausanne, Switzerland. We report the results of a reactive
policy (REA) and optimal policy (OPT) as defined in the
previous section. REA and OPT define the boundary
cases for any occupancy prediction algorithm. REA
achieves the highest savings as it waits with increasing the
setpoint temperature until the building is occupied.
However, due to the time lag between changing the
setpoint and the building reaching the new temperature,
REA also incurs a large loss of comfort for the occupants.
The optimal controller OPT, on the other hand, starts
heating at exactly the right moment for the building to
reach Θcomfort upon the arrival of the occupants. We
compare the two algorithms using a third scheme:
always-on (AO). AO simply keeps Θcomfort throughout
the day, without resorting to a setback value. While in
reality, a statically scheduled setback regimen is in place
in many households (especially during the night), using
AO as the baseline has several advantages. First, it rather
under- than overestimates possible savings (reducing the
total daily consumption by using a low setback

temperature during the night increases the percentage
savings for the whole day). Secondly, and more
importantly, any static setback regimen is bound to be
arbitrary in terms of length and setback value. Results
with different static regimens are thus hardly comparable.

In order to evaluate the performance of predictive heating
controllers, we use the concept of efficiency gain.
Efficiency gain is the percentage savings of a predictive
controller using a specific prediction algorithm over the
AO controller. More specifically, it is expressed as
QAO−Qpred

QAO
, where QAO denotes the energy spent by the

AO controller and Qpred the energy spent by the
predictive controller, respectively. We have computed the
annualised efficiency gain by weighting our weather
scenarios (cf. Table 2) according to the temperature
distribution derived previously (cf. Figure 1).

Table 4: Annual efficiency gains.

Efficiency gain (%)
Control strategy OPT REA
Building scenario clear cloudy clear cloudy

Flat 10 10 11 12
House 8 8 9 11

Table 4 presents the annualised savings obtainable from
using the OPT and REA controllers. The results show
that for our two model buildings an efficiency gain without
comfort loss between 8% and 10% may be obtained with
optimal occupancy prediction (averaged over all
occupancy schedules derived in [7]). A higher efficiency
gain necessitates a loss of comfort as shown by the REA
controller. Its efficiency gain is between 9% and 12%.

Conclusions and outlook
In this paper we have shown a methodology to calculate
the annual savings for a smart heating system. The results



for our exemplary scenario in Lausanne, Switzerland show
that, with occupancy prediction, the energy spent may be
reduced by an average of 9%. This result is based on a
thorough simulation using the ISO 13790 standard and
real weather data. Our predictive controller can be easily
extended to support further occupancy prediction
algorithms. In a forthcoming paper [8], we will report on
achievable energy savings with different occupancy
prediction algorithms and analyse the savings potential for
other building types and climate zones.

Acknowledgements This work has been partially supported by the

Collaborative Research Center 1053 funded by the German Research

Foundation and by the LOEWE Priority Program Cocoon funded by the

LOEWE research initiative of the state of Hesse, Germany.

References
[1] Verordnung über energiesparenden Wärmeschutz und
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