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Abstract — The worldwide adoption of smart meters that 
measure and communicate residential electricity consumption 
gives rise to the development of new energy efficiency services. 
Several particularly promising applications involve the 
disaggregation of individual appliances within a particular 
household in terms of their energy demand. In this paper we 
present an infrastructure and a set of algorithms that make use 
of smart meters together with smartphones to realize new 
energy efficiency services (such as itemized electricity bills or 
targeted energy saving advice). The smartphones, together 
with a novel filtering approach, much simplify the training 
process for appliances signature recognition. We also report on 
the performance of our system that was tested with 8 
simultaneous devices, achieving recognition rates of 87%. 

Keywords—smart metering; non-intrusive load monitoring; 
energy monitoring; energy break down; electricity consumption 

I. APLLIANCE-SPECIFIC CONSUMPTION FEEDBACK 
The requirement to conserve energy, the modernization 

of the electrical grid infrastructure, and the growing share of 
electricity from intermittent sources (e.g., wind and photo-
voltaics) initiated a paradigm shift in the energy domain [1]. 
As a consequence, smart electricity meters are currently 
rolled out in many countries. Besides simplifying the meter 
reading processes for energy utilities, smart meters are seen 
as enablers for new services, flexible tariffs, and demand 
response programs in the context of the smart grid.  

Smart electricity meters record much more detailed con-
sumption information than classical electricity meters. In 
current deployments, energy consumption is logged and typ-
ically made available to energy utilities and consumers by 
feedback tools such as web sites or in-home displays. How-
ever, the information provided is often limited to the mere 
visualization of the consumption data, or, at best, augmented 
with efficiency scales or comparisons with average house-
holds. While this may already contribute to energy savings, it 
fails to unlock the full benefit for consumers, as it does not 
direct the attention to those appliances or actions that bear 
high saving potentials. 

In this work we propose a scheme that leverages meter-
ing data by automatically analyzing the recorded consump-
tion information to provide better-tailored energy feedback at 
no extra cost. It provides users with an appliance-specific 
consumption break down. Such device-level information is 
essential to establish the link between consumption and de-
vice utilization, to enable sophisticated energy efficiency 
services (e.g., targeted automated recommendations), and to 
reduce residential electricity consumption by enabling users 
to derive conservation measures. 

Most approaches so far have focused on providing this 
device-level consumption information by deploying sensors 
at appliances or power outlets. However, this is costly and 

the installation of a large number of sensors imposes a high 
usage barrier. Other solutions are based on a single sensor 
only, but require technical expertise for their setup, a-priori 
knowledge of appliance power signatures, and a complex 
calibration by the user [1].  

Our approach tries to overcome these challenges. To fa-
cilitate the appliance-specific breakdown, we extended the 
capabilities of an earlier prototype that connects a smart me-
ter with a mobile phone [2]. We disaggregate the recorded 
total load to device-level consumption information by apply-
ing data analytics to the electricity consumption data that is 
gathered by the smart meter and by making use of a meas-
urement feature implemented as part of a mobile phone ap-
plication. This not only enables more meaningful consump-
tion feedback and increases users’ energy literacy, but also 
leverages the added value of smart metering.  

II. RELATED WORK 
Based on the number of sensors used to gather device-

level electricity consumption information, existing solutions 
for appliance load monitoring can be classified into two do-
mains: multi-sensor systems and single-point sensor systems. 

Multi-sensor approaches typically require a current sen-
sor to be installed in-line with every device. To monitor the 
whole house, this device-level information is then aggregated 
at a central point. Commercially available solutions typically 
come in the form of smart power outlets. They measure the 
power consumption at the point where the load is caused and 
either visualize the data on a small display directly attached 
to the unit or propagate the consumption values wirelessly to 
a central display. A drawback of these systems is that they 
typically give a rather technical feedback and fail to integrate 
the consumption in a bigger picture that makes it more tangi-
ble for users. As mentioned above, such approaches typically 
require high monetary investment and high user effort to 
setup the feedback system. 

Single sensor approaches are typically subsumed under 
the concept of Nonintrusive Appliance Load Monitoring 
(NALM). The initial work dates back to the 1980s, where 
Hart [3] tried first to match a-priori known appliance signa-
tures in the overall power signal by using real and reactive 
power measurements at a rate of 1Hz. The concept proved to 
be effective in several field tests – at that time especially for 
larger loads – and paved ground for various other work based 
on this principle. Norford and Leeb, for example, introduced 
transient event detection at high sampling rates to disaggre-
gate devices with similar power consumption [4], and fol-
low-up work by Laughman et al. [5] explained how to use 
current harmonics to further disaggregate continuous varia-
ble loads. A variant of Hart’s scheme deals with the separa-
tion of simultaneous on/off events of appliances [6].  



Other work utilizes methods from artificial intelligence 
to disaggregate overall residential energy consumption data. 
Early approaches were typically bound to low-resolution 
data. Powers’ [7] rule-based algorithm tries to analyze the 
energy consumption at a low sampling interval of 15 
minutes. However, his approach is based on a large a-priori 
known reference database that requires monitoring of each 
appliance in the home for several days. Prudenzi disaggre-
gated consumption data for large loads at the same sampling 
rate by using a neural network approach [8]. Ruzzelli et al. 
used a special purpose sensor that has to be installed at the 
circuit breaker. The consumption information is post-
processed in an artificial neuronal network that requires a 
lengthy training process to disaggregate device level con-
sumption [9]. Other rule-based work focuses on the possibil-
ity of differentiating between appliances with similar power 
consumption by taking into account their frequency of 
use [10] and using pattern recognition methods to disaggre-
gate the overall electricity consumption into major energy 
end-uses [11].  

More recent approaches deal with the analysis of data 
sampled at higher frequency. Statistical signature analysis 
has been used to infer the devices operating from the current 
and voltage waveforms [12]. Srinivasan combined harmonic 
signature analysis with neural networks and developed and 
tested several different classification models for signature 
extraction and device identification [13]. In contrast to these 
high frequency approaches that usually rely on special pur-
pose sensors, Kolter et al. [14] recently investigated the pos-
sibility of load disaggregation using discriminative sparse 
coding based on hourly data. 

Yet another idea has been explored in [15] and [16]. The 
authors combined two complementary approaches in a sys-
tem that relies on a single sensor that can be plugged-in an-
ywhere to the electric circuit. It then listens to detect unique 
noise changes and electromagnetic interference that occur 
through the switching of devices and through switch mode 
power supplies. The system can be used to infer about device 
operation which in combination with the data of an electrici-
ty meter can reveal the consumption of particular devices. 

Summarizing the related work, existing systems can be 
characterized as follows: Multi-sensor approaches can rather 
easily achieve a consumption breakdown, but deploying a 
large number of sensors in the residential environment quick-
ly leads not only to high cost but also to a discouraging high 
usage barrier [9]. In contrast, single sensor systems are easier 
to deploy but often rely on expensive custom hardware (e.g., 
for high sampling rates) and require either a priori 
knowledge about the household devices and their electrical 
characteristics, or they require a complex training phase in-
volving the user where the system learns about the specific 
device characteristics. However, a-priori knowledge is diffi-
cult to obtain in a world of fast changing small appliances, 
and training procedures at the initial deployment are discour-
aging users and hinder adoption [10]. In addition, these ap-
proaches cannot take into account new devices that are intro-
duced into the residential environment. Overall, we conclude 
that existing approaches fail to meet usability requirements 
that are essential for fast adoption. 

III. SYSTEM OVERVIEW 
Our system represents an integrated solution to identify 

the electricity consumption of household appliances from the 
data gathered by smart meters, which will be installed in 
large numbers in many countries over the next years. The 
approach builds on an earlier principle advocated by 
Hart [3]. It uses a single sensor and addresses remaining 
technical challenges (e.g., the recognition of smaller loads 
and overlapping on/off events of appliances) as well as some 
of the above-mentioned shortcomings with respect to usabil-
ity. For this, we designed and developed a system that does 
not rely on custom hardware or complex training. In particu-
lar, we make use of a smartphone application, which much 
simplifies the appliance signature acquisition process be-
cause this is done as a side effect, invisible to users. 

In the following, we first give an overview on the system 
architecture and its components. We then explain how resi-
dential appliances can be classified according to their charac-
teristic electricity consumption. 

A. Data Acquisition Architecture 
One of the three main components of our system is an 

electricity meter that can measure the total electrical load of 
all attached devices in a household (Figure 1). The meter (we 
used model E750 by Landis + Gyr) logs the total consump-
tion at a frequency of 1 sample per second. It has an integrat-
ed communication interface that is connected to a gateway, 
which is responsible for continuous data acquisition and 
storage from the electricity meter, and also for the handling 
of the incoming requests of the user interface. For that, the 
gateway consists of a web server (lighttpd, php), an SML 
parser, and a database (SQLite3). It is implemented on an 
embedded device based on a 600MHz CPU, 256MB storage 
of RAM and flash memory, and an Ethernet and WiFi-
module for communication purposes. The third component 
of the system is the user interface that is implemented as a 
smartphone application. It provides users with real-time 
feedback on their electricity consumption. A detailed de-
scription of the design and the capabilities of the system can 
be found in [1, 2]. The communication between the three 
decoupled components is realized over http following the 
“Web of Things” paradigm [17]. This integrates physical 
resources, such as the meter and its measurements, seamless-
ly into the web. They can then be identified by URLs and 
accessed by the four basic HTTP commands through the 
RESTful-API provided by the gateway [2]. 

B. Classification of Residential Appliances  
In the following, we explain how domestic appliances 

Figure 1. Loosely coupled data acquisition architecture. 
 



can be classified according to their characteristic load 
signatures based on the physical quantities (i.e., apparent 
power, reactive power, real power, and distortion power) 
measured by the smart meter. Depending on its characteristic 
electrical and electronic components, an appliance can be of 
resistive, inductive, or capacitive nature. For example, a 
standard light bulb is purely resistive whereas a vacuum 
cleaner is predominantly inductive. In general, incandescent 
appliances (e.g., kettle, light bulb) are mostly resistive 
(ohmic), motors (e.g., fans, heaters) predominantly inductive, 
and devices containing a power supply or electronic 
frequency converters (e.g., laptops) mainly capacitive.  

Figure 2 illustrates exemplary power signatures at a 
sampling frequency of 1Hz for different appliance categories 
over different operation lengths. If the load is purely 
resistive, then the voltage and current are in phase (e.g., the 
iron (Figure 2 (left)). The reactive component Q of the 
apparent power is null, meaning all power is transferred to 
the load. A consumer with reactive components is either of 
type ohmic-inductive with a typical phase shift of 0 < φ < π 
between current and voltage or ohmic-capacitive 
characterized by a negative phase shift 0 > φ > -π (Figure 2 
(middle and right)). In addition, in electrical networks there 
may exist non-sinusoidal currents and voltages (e.g., caused 
by inverters in switching events) that result in harmonics. 
These harmonics cause an additional reactive component, the 
so-called distortion power (Figure 3). In mathematical terms 
this can be expressed as: 

𝑆𝑆 =    𝑃𝑃   +   𝑄𝑄 +   𝐷𝐷 , 
where S is the apparent power, P is the real power, Q the 

translative component, and D the distortive component of the 
total reactive power.  

Based on its internal composition and its possible modes 
of operation (e.g., static, multi-level, or variable) an 
appliance imposes a characteristic load profile on the electric 
circuit. This signature depends on the relation of the different 
power components and can be used to discriminate between 
appliances when disaggregating the total consumption. Our 
prototype system measures these parameters either directly 
or indirectly. In addition to these physical quantities, the 
signature length, peak voltage, and current are also important 
in terms of the appliance signature. 

IV. THE APPLISENSE ALGORITHM 
The AppliSense algorithm uses consumption data gath-

ered by the smart electricity meter to automatically break 
down the total consumption to device-level. In the following, 
we first outline the basic idea and concept of our system that 
pays particular respect to usability. We then explain how the 

signature database on which the algorithm crucially depends 
is acquired and discuss some algorithm details. 

A. Basic Concept 
The electricity consumption of a household fluctuates 

over time based on the operation of individual devices used 
by the residents (see Figure 4). For example, switching on a 
light induces the depicted change in the load curve. Having a 
more detailed look on the consumption data, the figure 
shows that there exist intervals where the load remains more 
or less constant on a stable level. A black bar marks two of 
these levels. The difference in real power (dP) between these 
levels indicates the change in electricity consumption due to 
the operation of the light. Our system not only measures the 
total load of the household, but the load characteristics (i.e., 
apparent power, real power, etc.) of each of the three phases 
separately. This phase-level data allows us to split up the 
overall electricity to get an even more detailed view.  

These considerations lead to the following key concept of 
AppliSense, which can recognize device-switching events in 
the load curve based on an appliance signature database. 

First, identify time points where significant changes be-
tween two levels of power consumption in the load curve 
occur. Second, once such an edge is detected, compute the 
differences of the different physical quantities between these 
consecutive levels and classify the change as a potential ap-
pliance-switching event. And third, compare each of these 
differences with a known set of differences from an appli-
ance signature database and map the edge to an individual 
device according to its load characteristics. 

Figure 5 illustrates these steps. It shows the electricity 
consumption (red) at a certain time interval in which five 
load levels (black bars) were identified. For simplicity, only 
the real power is visualized in this example. From this we 

Figure 3. Relation between the different power quantities that can be 
derived with our prototype. 

Figure 2. Power signatures of three different residential devices from different appliance categories and for different operation periods.  
 
 

 



can compute four deltas: dP1, dP2, dP3, and dP4. Each of 
these deltas corresponds to a potential on/off event of a de-
vice. The algorithm tries to match these with a known device 
signature from the database. For that, each entry dPi in a col-
umn of the matrix on the left symbolizes a delta which was 
extracted from the load curve at time i. The operator repre-
sents a detector logic that compares the rows of the matrix to 
the signature vector with the known deltas. The resulting 
vector holds the best matching entry, in case a matching ap-
pliance could be identified. In the example, this means that at 
time instant two and three matching signatures of a known 
device (a turning on and a turning off event) are detected. 
However, no signature is matching the events at time instants 
one and four. 

B. User-friendly Singature Recording  
In contrast to other load disaggregation systems, which 

often discourage users by requiring a long training period or 
complex calibration, we wanted to develop a system that is 
easy to use. This is particularly important for the generation 
of the signature database that is used to identify an appliance 
power signature. With our approach it is not necessary to 
take signatures of every appliance in advance, but the signa-
ture database is established with simple means over time. For 
that, we equipped the user interface of the smartphone with a 
measurement functionality that allows users to identify the 
consumption of an individual appliance in a simple, explora-
tive way while at the same time logging the signature in the 

background, invisible to the user. This also allows easily in-
tegrating new appliances that are introduced at home. 
Whereas other systems need to completely recalibrate, our 
approach is able to incrementally acquire signatures and thus 
integrate new devices, which is crucial in a fast changing 
home environment.

The measurement process is illustrated in Figure 6. To 
measure the consumption of a device, users initialize the 
measurement by pressing the start button on the user inter-
face. They are then asked to turn the device being measured 
either on or off. Within a few seconds, the system then com-
putes the result based on the measurement algorithm [18]. If 
desired, users can further personalize the measurement (e.g., 
picture, name, category, etc.) and store the device character-
istics in the inventory of the mobile phone application.  

During the measurement, the signature acquisition pro-
cess runs in the background (see Figure 7; only real power 
depicted for clarity reasons). It logs the whole appliance sig-
nature (e.g., change in apparent, reactive, and distortion 
power, etc.). In addition, the algorithm automatically classi-
fies whether an on (dP>0) or off (dP<0) switching event has 
occurred. AppliSense uses this information later as input 
knowledge. The idea of this approach is to systematically 
increase the number of signatures in the database while the 
system is being used. This leads to higher precision in recog-
nizable operation events over time.  

C. Algorithm Design 
The AppliSense load disaggregation algorithm consists of six 

steps that are subsequently discussed in this section (Fig-
ure 8). It follows the early principles discovered by Hart, but 
much simplifies the signature acquisition process for users. 

(1) Normalization and (2) Edge Detection: In power cir-
cuits, load-dependent voltage drops can occur (e.g., in reac-
tion to a switching event of an appliance). From I = U/R and 
S = U×I for apparent power S and effective values of voltage 
U and current I, a quadratic relation arises: S = U2/R. 

Hence, voltage drops can lead to large differences in 
power consumption, which we have to account for by nor-
malizing the power values to a constant voltage (of 230 V):  

Figure 4. Key idea of the AppliSense algorithm. 
 

 

Figure 7. User-friendly signature acquisition process with the help 
of the measurement feature of the user interface. 

 
 

Figure 6. User process to measure the power consumption of 
an individual appliance (e.g., an office flood light). 

Figure 5. Simplified overview of the required steps to recog-
nize an appliance in the overall electrical load. 

 
 



𝑆𝑆 =   
230
𝑈𝑈

×𝑆𝑆. 
In order to identify edges in the recorded electricity con-

sumption data that correspond to switching events of appli-
ances, we use the normalized apparent power 𝑆𝑆  as input 
vector. The algorithm computes the absolute values of the 
differences between two consecutive values of normalized 
apparent power 𝑆𝑆  in the data series. If the absolute value of 
such a difference is larger than a predefined threshold f_th, 
then the value potentially belongs to an edge. However, there 
can be much more potential edges than appliance-switching 
events. The threshold f_th has to be robust to small changes 
due to noise on the electric line. 

The leftmost plot in Figure 9 depicts the apparent power 
of a Nintendo Wii usage cycle over a time span of 180 se-
conds. The two distinctive edges are related to switching the 
game console on (at time step 22) and off (at time step 106). 
The figure also shows the relatively strong fluctuations in 
apparent power during the start phase of the device com-
pared to the ones in standby (from 0s to 22s). The middle 
histogram of the figure depicts the difference of two subse-
quent apparent power values over the same time frame. We 
find larger changes in apparent power when turning the ap-
plication on/off compared to times of operation or standby. 
We experimented with different thresholds and generally 
achieved best results applying a filter with a threshold f_th of 
2VA. It removes a large number of intervals that do not cor-
respond to a switching event (Figure 9 right). However, due 
to the transient behavior of the particular appliance, there 
persist some peaks (e.g., between 24 to 45 seconds) in the 
graph although no switching event occurred. In general, such 
oscillations during operation can be even stronger and more 
frequent which would result in a high number of spurious 
events. Applying a smoothing filter can help remove these 
false detections. However, it also bears the risk of cancelling 
out edges (typically small ones) that correspond to real 
switching events. Consequently, these switching events 
would not be identified and the operation would be missed.  

In order to decrease the number of spurious events, we 
investigated different smoothing filters. We tested a median 
filter, a mean filter, a kernel-weighted average filter (Na-
daraya-Watson filter with Gaussian kernel), and different 
combinations of these on the apparent power signal. An ad-
vantage of a median filter is the ability to remove outliers. 
However, periodic curves (e.g., sine, triangle, saw tooth, 
square, etc.) could be resistive. On the other hand, a mean 
filter, which computes equally weighted averages of a sliding 

window of values, has the ability to smoothen periodic oscil-
lations, but may not always remove large outliers. Even 
worse, it might erase edges which correspond to an actual 
on/off switching of a device. A kernel-weighted average fil-
ter adds more complexity. We experimented with several 
kernel functions and observed best results when applying a 
Gaussian kernel [19]. It allows preserving edges while atten-
uating oscillations of the original signal. The extent to which 
the filter smoothens the signal is determined by the kernel 
bandwidth, which relates to the window size.  

In order to evaluate the influence of the filters on the 
edge detection and to find the most appropriate combination 
of filtering, we simulated a typical household usage scenario 
over 30 minutes in a controlled lab environment. During that 
period appliances of different characteristics were used and 
12 appliance switching events occurred. Table I shows the 
results when applying the different filters to the signal. The 
number in brackets corresponds to the window size/kernel 
bandwidth of the respective smoothing filter. The table dis-
plays the number of changes of apparent power values larger 
than 2VA, the achieved reduction gain compared to the orig-
inal signal, and the number of missed true appliance on/off 
events. Overall, the original signal contained 709 changes in 
apparent power with a delta larger than 2VA.  

Using a median filter or a mean filter alone reduces the 
number of potential edges by 74% and 70% respectively 
without missing a true device-switching event. A combina-
tion of mean and median filter achieves slightly better results 
(76%) at no extra cost in terms of computation complexity. 
The reason for this relatively small improvement is due to 
the fact that the possibility to remove outliers is constrained 
by the small window size. This filter parameter determines 
the extent to which the original signal is smoothened. How-
ever, increasing the value decreases the lower limit of loads 
that can be detected by AppliSense. The parameter of 5 was 
chosen as a trade off that enables filtering without precluding 
the recognition of smaller loads.  

The performance of kernel smoothening strongly de-
pends on the bandwidth of the kernel. The potential reduc-
tion varies between 35% and 94% depending on the kernel 
bandwidth. Adding a kernel filter to the smoothening medi-
an/mean strategy leads to higher reduction in potential edges 
(3% – 17%). From a bandwidth parameter of 60 on, we ob-
serve that the smoothening starts canceling out true switch-
ing events. Independent of the bandwidth, however, this ap-
proach increases the computational complexity significantly. 

Overall, we achieved best results using a kernel filter. 
However, this comes at high computational cost due to the 
quadratic complexity of the filter. Hence, we decided to go 
for a more efficient solution that performs close to optimum. 
It combines a median filter that removes outliers with a mean 
filter that further smoothens the signal (see line 5 of Table I). 
The result of this smoothening strategy is illustrated in Fig-
ure 10. In our evaluation scenario, we used a notebook, sev-
eral different lights, and a kettle to obtain the original power 
signal (red). The blue markers correspond to the 709 points 
in time where the absolute difference of two subsequent ap-
parent power values is greater than 2VA. Applying a median 
filter of five followed by a mean filter of the same size re-
sults in the green markers. The reduction gain (75.5%) of the Figure 8. Overview of the six steps of the AppliSense algorithm. 

 



filter can be seen by comparing the blue with the green 
markers. The edge detection interprets the remaining 174 
green markers as a binary vector which indicates at position i 
that the smoothed estimate of the apparent power at time step 
i differs by more than 2VA from the value at position i-1. 
Hence, the measurement at time i belongs to a potential de-
vice-switching event. 

TABLE I. COMPARISON OF DIFFERENT SMOOTHENING FILTERS 

Filtering Method ∆S > 2VA Reduction Missed 
Median(5) 185 73.9% 0 
Mean(5) 218 69.2% 0
Kernel(3) 459 35.3% 0 
Kernel(100) 46 93.5% 0 
Median(5), Mean(5) 174 75.5% 0 
Median(5), Mean(5), Kernel(3) 151 78,7% 0 
Median(5), Mean(5), Kernel(60) 78 89% 1 
Median(5), Mean(5), Kernel(70) 52 92.7% 4 

 
(3) Power Level and (4) Delta Level Computation: Hav-

ing identified the relevant edges, the next step extracts power 
levels that connect two edges in the smoothened signal. From 
two consecutive power levels separated by an edge, the algo-
rithm then extracts the delta vectors that are used for match-
ing the edge to a particular device.  

Each power level consists of a start and an end time, a 
vector with component-wise means of real, reactive, and dis-
tortion power for the first five measurements at the start and 
the last five measurements at the end of the interval (start 
mean (sm) vector and end mean (em) vector), and a three-by-
five matrix which holds the original real, reactive, and distor-
tion power values. The component-wise standard deviation 
of all power values is also calculated.

From two consecutive power levels, the algorithm com-
putes the difference vector for real, reactive, and distortion 
power. To take oscillations during start up and shut down of 
an appliance (e.g., due to heating up at the start of a kettle) 
into account, we not only calculate one difference vector for 
level i to i+1 (e.g., end of level i (emi) – start of level i+1 
(smi+1)), but four difference vectors di,j that include the start 
and the end values of both levels: 

𝑑𝑑 _ , _   =    𝑠𝑠𝑠𝑠   −   𝑠𝑠𝑠𝑠 , 
𝑑𝑑 _   , _   =    𝑠𝑠𝑠𝑠   − 𝑒𝑒𝑒𝑒 , 
𝑑𝑑 _ , _   =   𝑒𝑒𝑒𝑒   − 𝑠𝑠𝑠𝑠 , and 
𝑑𝑑 _   , _   =   𝑒𝑒𝑒𝑒   − 𝑒𝑒𝑒𝑒 . 
For each edge, we add these four vectors to a result ma-

trix used as input for matching the device signatures in the 
next step.  

(5) Recognition and (6) Labeling: The recognition part of 
the algorithm tries to match known appliance signatures 𝑘𝑘    
from the signature database with extracted delta vectors 
𝑑𝑑   obtained as a result in the previous step. In order to identi-
fy an appliance on/off event, we perform a nearest neighbor 
search in the two-dimensional dQ/dP space (see Figure 11).  

First, the algorithm computes for every 𝑑𝑑   its Euclidean 
distance to every 𝑘𝑘  in the two-dimensional vector space. If 
this is smaller than a predefined value (r) of the length of 𝑘𝑘  
plus an oscillation value (osc), a potential matching is identi-
fied:

𝑑𝑑 − 𝑘𝑘 < 𝑟𝑟   ∙ 𝑘𝑘 + 𝑜𝑜𝑜𝑜𝑜𝑜  
𝑖𝑖𝑖𝑖  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑘𝑘   𝑖𝑖𝑖𝑖  𝑎𝑎  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  𝑓𝑓𝑓𝑓𝑓𝑓  𝑑𝑑   
𝑖𝑖𝑖𝑖  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑘𝑘   𝑖𝑖𝑖𝑖  𝑛𝑛𝑛𝑛𝑛𝑛  𝑎𝑎  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ  𝑓𝑓𝑓𝑓𝑓𝑓  𝑑𝑑

 

The oscillation term (osc) is the length of a vector which 
consists of the maximum of the standard deviation in the real 
power at level i or i+1 as first component, and of the maxi-
mum of the standard deviation in reactive power at level i or 
i + 1 as second component: 

𝑜𝑜𝑜𝑜𝑜𝑜 =   
max  (𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃  𝑎𝑎𝑎𝑎  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑖𝑖 , 𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃 𝑎𝑎𝑎𝑎  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑖𝑖 + 1 )
max  (𝑠𝑠𝑠𝑠𝑠𝑠 𝑄𝑄  𝑎𝑎𝑎𝑎  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑖𝑖 , 𝑠𝑠𝑠𝑠𝑠𝑠(𝑄𝑄 𝑎𝑎𝑎𝑎  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑖𝑖 + 1 )  

After this, every 𝑑𝑑   contains a set of associated possible 
recognition candidates 𝑘𝑘  from the signature database. Note 
that this set of possible associated recognitions could also be 
empty. In such a case, the corresponding 𝑑𝑑   could not be re-
lated to a known signature. This could be caused for example 
by a detected edge which does not correspond to an appli-
ance switching event, or by the non-existence of a corre-

Figure 9. Apparent power for a duty cycle of a Nintendo Wii (left). Resulting absolute differences in apparent power (middle) and with a filter of 2VA (right).  
 

 
 

Figure 10. Application of mean/median filter to the original power signal. 
 



sponding signature in the database that matches 𝑑𝑑 . Second, 
for each 𝑘𝑘 , a nearest neighbor match is performed over all 
potentially matching candidates 𝑑𝑑   that have been associated 
with 𝑘𝑘 . Finally, the algorithm labels the load profile with the 
corresponding device names.  

V. ALGORITHM EVALUATION AND LIMITATIONS 
In order to analyze the performance of the AppliSense 

algorithm, we installed the whole system in a laboratory en-
vironment. For the evaluation, we used a controlled set of 
appliances which typically occur in a student’s household. 
Table II provides an overview of the appliances, their real 
power consumption stated on the manufacturer label, their 
verified real power range in operation (measured by a sepa-
rate power monitor), the appliance category (O for ohmic, I 
for ohmic-inductive, and C for ohmic-capacitive), and the 
real power that is obtained as part of the power signature 
using our smartphone application. All devices were connect-
ed to the same phase over the whole evaluation. Some of the 
appliances have power consumptions within the same range. 
However, if belonging to different categories, we should still 
be able to differentiate the corresponding events.  

TABLE II. APPLIANCES USED FOR ALGORITHM EVALUATION 

Appliance Labeled 
Power Power Range Category Consump-

tion 
Light bulb 75W 70W O 70W 
Kettle 2200W 1855 – 1933W O 1900W 
Heater 2000W 1619 – 1667W O 1635W 
CD player 13W 9 – 13W I 3W 
Fan 50W 45W I 45W 
Notebook 72W 30 – 35W C 35W
Fluorescent 
lamp 35W 21 – 28W C 25W 

Wii 52W 10 – 45W C 15W 
 
During times when only a single appliance was active, 

the algorithm identified the on/off events of all devices ex-
cept the CD player correctly. Every device was turned on 
and off at least three times. The edges caused by the CD 
player were not recognized neither when being turned on nor 
when being turned off. This can be explained through the 
limitations introduced by the filtering. Using a window size 
of 5 samples in our test scenario leads to a lower boundary of 
10VA for edges that can be recognized. The CD player has a 
relatively high standby consumption of 6W compared to its 
3 – 7W in operation. While the median filter does not influ-
ence the signal, the constant 3W during operation result in a 

step-wise increase of 0.6VA after the application of the mean 
filter. This increase is too small (<<2VA) to be detected as 
an event using the chosen median/mean filter. 

Next, we combined the use of multiple devices in a ran-
dom order. Although the CD player cannot be recognized, 
we operated it and other devices with unknown signatures 
from time to time to vary the base line consumption and to 
have more appliances concurrently running. Over a time 
span of several hours, we documented 80 switching events of 
which 77 were identified correctly.  

Figure 12 shows a sample labeling output of the algo-
rithm (for a simulated office environment). After the note-
book has been turned on, different devices were concurrently 
used and a kettle was operated. However, the red circle high-
lights a moment at which the office lamp is turned on but the 
event is not detected. This is due to the oscillations caused by 
a device that was operating at the same time. A second prob-
lem (not depicted) occurred when operating the notebook. 
Due to the different battery levels, the power consumption 
had varied compared to the one registered in the appliance 
signature database. This led to the correct identification of 
the edge, but no appliance signature could be matched to the 
detected event.  

These two examples outline limitations of the current im-
plementation. Oscillations caused by operating devices can 
mask the consumption, especially of low power drawing ap-
pliances. This could in particular be a problem in larger 
households (e.g., family houses) with lots of appliances and 
activity. In addition, the algorithm cannot detect devices that 
do not have well-defined operation states but have a continu-
ously changing consumption. This is due to the initial as-
sumptions regarding the algorithm design and the tradeoff 
for relying on a single sensor system with a 1Hz sampling 
frequency. In the conducted laboratory study we observed 
that the appliance signatures recorded with the smartphone 
application were very reliable. That is, the delta vectors ob-
tained with the measurement function when turning an appli-
ance on/off are stable and reproducible over time. However, 
this may be different in a more dynamic home environment – 
there the algorithm may need several (slightly different) sig-
natures per device to reliably recognize appliances. 

Overall, the evaluation shows promising results. We gen-
erated 144 device-switching events in our test scenario. 16 of 
these came from devices with a consumption so small that 

Figure 12. Labeled load curve as output of the AppliSense algorithm. 
 

 Figure 11. Device recognition: Comparing a detected power edge to 
a known signature in the Euclidian dQ/dP space. 

 



the filter canceled out the corresponding edges. When sub-
tracting these events, the algorithm identified 125 out of the 
remaining 128 events correctly, which results in an overall 
recognition rate of about 90%. In practice this enables inter-
esting applications, such as automated recommendations for 
a more economic use of electricity in households. 

VI. CONCLUSIONS AND FUTURE WORK 
We gave a detailed description and evaluation of a system 

that facilitates automatic recognition of switching events of 
electric appliances. In contrast to other existing approaches, 
our objective was to develop a system that achieves this by 
being unobtrusively integrated in users’ life and without re-
quiring a complex system setup or training. We achieved this 
by interconnecting components that are becoming ubiquitous 
in home environments: a smart meter and a smartphone. The 
signature database is established over time and also allows 
introducing new devices, which is important in a fast chang-
ing home environment. In particular, we achieve this as a 
side effect of a smartphone application, which much simpli-
fies the appliance signature acquisition for users.  

Applying data analytics to the gathered metering data al-
lows the system to raise energy awareness by providing bet-
ter-tailored energy feedback without the need for special 
purposed hardware. In combination with actuation capabili-
ties, we can foresee this information to be used to automati-
cally optimize energy consumption and hence increase resi-
dential energy efficiency. Not least, appliance-level con-
sumption information can give rise to new business models 
(e.g., providing cross-selling offers for non-energy-efficient 
devices). With a recognition rate of about 90% the results of 
our evaluation study confirm the suitability of the general 
scheme and encourage us to intensify further research. 

Future work consists of deploying the system in various 
households to gather real-world data that allows for more in-
depth evaluation of AppliSense. Based on these experiences, 
we plan to analyze the algorithm’s dependency on the num-
ber of manually recorded signatures and to implement rele-
vant refinements. This also includes accuracy improvements 
through the extension from one to three phases (which helps 
in case two appliances are turned on/off at the same time) 
and a module for auto-identification of hard-wired heating 
and cooling devices. In order to deal with edges detected in 
the load curve that do not yet correspond to an existing sig-
nature in the database, we focus on the application of cluster-
ing concepts that automatically classify these events (and 
once a certain probability is reached, verify the match by 
pushing a notification to the user interface). We also envision 
the possibility to upload appliance signatures to a community 
platform [18]. In the long term, we would like to investigate 
the possibility of building a larger appliance signature base. 
In addition, we are considering methods to derive occupancy 
state from electricity and appliance use data, in order to use 
this information in a smart heating control strategy [20]. 
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