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Abstract

Wireless sensor networks are comprised of large numbers of resource-constrain-
ed and wirelessly communicating computing devices. Advances in computing
and communication technology have made it possible to integrate sensing capa-
bilities, wireless communication interfaces, and microprocessors into tiny de-
vices that allow to embed compuational power in arbitrary environments. The
applications of wireless sensor networks range from surveillance and environ-
mental monitoring to healthcare and the provisioning of context information
for computing applications. Many of these applications have a direct impact
on the welfare of human beings or are of high economic significance. Secu-
rity breaches might lead to grave consequences, so it is important to protect
wireless sensor networks against such threats.

The specific characteristics of wireless sensor networks make them vulner-
able to attacks on their communication channels and their hardware. Crypto-
graphic mechanisms can be employed to protect against some of the possible
attacks: eavesdropping on messages is countered by encryption, and the injec-
tion of messages by the attacker is prevented by authentication. Unfortunately,
direct physical access to the sensor nodes allows an attacker to manipulate them
almost arbitrarily. In particular, nodes could be compromised and then made to
execute malicious code injected by the attacker. Tamper resistance mechanisms
applied to the nodes’ hardware, concealment, surveillance and other techniques
may be used to mitigate such attacks. However, they cannot be completely pre-
vented and therefore, any communication security scheme being used must be
sufficiently resilient to tolerate a certain amount of compromised nodes. Con-
sequently an important objective is to limit the impact of a set of compromised
nodes on the legitimate operation of the network to a minimum.

This objective can optimally achieved by cryptographic mechanisms that es-
tablish a direct security relationship between communicating end-points. This
limits the influence that a single compromised node has to its own resources.
Thereby, it cannot tamper with messages that originate at other nodes. How-
ever, such mechanisms are overly resource demanding for many sensor nodes
in terms of computational or communication complexity, especially due to the
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often ad hoc and transient nature of communication relationships. Thus, novel
mechanisms are required that provide a sufficient level of security while re-
specting the constraints in wireless sensor networks.

Our thesis is that key pre-distribution is an appropriate technique for secret
key agreement in wireless sensor networks, and that based on locally shared
keys, multi-hop communication can be adequately protected using an inter-
leaved message authentication scheme.

We argue that combined key pre-distribution schemes provide a feasible
mechanism for key agreement in wireless sensor networks. They require only
simple operations on sensor nodes and their memory requirements can be adapt-
ed to the required security level and the available resources. Based on keys
shared between nodes within a k-hop neighbourhood (with small k), a mes-
sage authentication scheme is devised that allows for the secure transmission
of messages over long distances. In particular, our contributions are:

• A key establishment scheme for pairwise key agreement that can be ef-
ficiently implemented on resource-constrained wireless sensor nodes and
provides resilience against node capture attacks.

• A message authentication scheme that relies on locally shared keys and
symmetric cryptographic operations only, and provides a level of security
approximating that of end-to-end security mechanisms. The foundation
of the scheme’s security is the creation of multiple disjoint authentication
paths.

• An evaluation of this authentication scheme showing that it provides at
least the same security level as a general communication scheme that relies
on multiple disjoint physical paths.

The proposed security mechanisms protect the integrity of messages that are
exchanged within a wireless sensor network. The achievable level of security is,
given an attacker with moderate strength that is only able to capture a fraction
of all nodes, comparable to that provided by end-to-end security mechanisms
at a significantly lower cost in terms of computational resources.



Zusammenfassung

Drahtlose Sensornetze bestehen aus einer grossen Anzahl von kleinen, kom-
munizierenden und ihre Umgebung durch Sensoren abtastenden Geräten, die
in ihrer Ausstattung bezüglich der Rechenleistung, Kommunikationsreichweite
und Energieversorgung stark beschränkt sind. Ihre Entwicklung wurde durch
die Miniaturisierung der Mikroprozessoren und Fortschritten bei der Kommu-
nikationstechnik möglich. Durch ihre geringe Grösse können sie unauffällig
und wenig störend in einer Vielzahl von Umgebungen eingesetzt werden. Nütz-
liche Anwendungen finden sich in der Überwachung im militärischen Bereich,
für den Umweltschutz, aber auch für die Aufzeichung von Gesundheitsdaten.
Allgemein liefern sie Kontextinformationen für übergeordnete Anwendungen.
Viele dieser Anwendungen haben direkte Auswirkungen auf das Wohlergehen
von Personen oder sind von wirtschaftlicher Bedeutung. Sicherheitsübertre-
tungen können daher ernsthafte Konsequenzen nach sich ziehen, so dass es
wichtig ist, drahtlose Sensornetze gegen Bedrohungen durch Angreifer zu schüt-
zen.

Die besonderen Eigenschaften drahtloser Sensornetze machen sie verwund-
bar gegen Angriffe, die sich auf die verwendeten Kommunikationskanäle oder
ihre Hardware richten. Kryptographische Verfahren können eingesetzt werden,
um sie gegen einige Angriffsarten zu schützen, zum Beispiel kann das Ab-
hören von Nachrichten durch Verschlüsselung verhindert werden, oder das Ein-
schleusen nicht-autorisierter Nachrichten durch Authentisierung der Sensor-
knoten. Der direkte Zugriff auf die Hardware der Sensorknoten erlaubt einem
Angreifer, diesen praktisch beliebig zu manipulieren. Insbesondere könnte ein
Angreifer Knoten zur Ausführung schadhaften Programmcodes nutzen. Me-
chanismen zum Schutz der Hardware, das Tarnen der Knoten oder ihre Über-
wachung durch externe Massnahmen können solche Angriffe teilweise verhin-
dern, sind jedoch teuer und oft nicht anwendbar. Daher muss mit dieser Art
von Angriffen immer gerechnet werden und alle Protokolle, die in einem Sen-
sornetz verwendet werden, müssen in der Lage sein, einen gewissen Anteil von
Knoten, die unter der Kontrolle des Angreifers stehen, zu tolerieren. Ziel muss
sein, die Möglichkeiten zur Einflussnahme dieser Knoten zu minimieren.
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Dieses Ziel kann durch kryptographische Verfahren erreicht werden, die
auf Ende-zu-Ende-Sicherheit beruhen, d.h. eines Schlüssels, der nur den bei-
den Partien einer Kommunikationsbeziehung bekannt ist. Solche Verfahren
beschränken den Einfluss eines vom Angreifer kontrollierten Knotens auf seine
eigenen direkten Kommunikationswege. Ein solcher Knoten kann keinen Ein-
fluss auf die Kommunikation anderer Knoten nehmen. Allerdings sind Ende-
zu-Ende-Verfahren oftmals zu teuer, um für drahtlose Sensornetze eingesetzt zu
werden, da sie zu viel Rechenkapazität oder Kommunikationsaufwand benöti-
gen. Dies gilt insbesondere dann, wenn eine Vielzahl der Kommunikations-
wege nur bei Bedarf und nur selten benutzt wird. Daher werden neuartige
Verfahren benötigt, die einen vergleichbaren und ausreichenden Schutz bieten,
jedoch auch in Sensornetzen eingesetzt werden können, in denen nur geringe
Ressourcen zur Verfügung stehen.

Die These der vorliegenden Arbeit ist, dass die Vorverteilung von Schlüsseln
ein geeignetes Verfahren für die Schlüsselerzeugung in drahtlosen Sensornet-
zen ist. Darüber hinaus bieten Schlüssel, die lediglich zwischen Nachbarknoten
ausgetauscht werden, mit Hilfe eines Verfahrens zur verschränkten Nachrich-
tenauthentisierung einen geeigneten Schutz der Kommunikation in Multi-Hop-
Umgebungen.

Wir legen dar, wie zusammengesetzte Vefahren zur Schlüssel-Vorverteilung
für den Schlüsselaustausch zwischen benachbarten Knoten genutzt werden
können. Diese Verfahren benötigen lediglich einfache und wenige Rechen-
operationen und ihr Speicherbedarf kann den verfügbaren Ressourcen sowie
dem Sicherheitsbedürfnis angepasst werden. Auf der Grundlage gemeinsamer
Schlüssel innerhalb einer k-Hop-Nachbarschaft (wobei k klein ist) wird ein Ver-
fahren zur Nachrichtenauthentisierung entworfen, das die sichere Übertragung
von Nachrichten auch über grosse Entfernungen erlaubt.

Der wissenschaftliche Beitrag dieser Arbeit besteht aus folgenden Punkten:

• Einem Verfahren zum paarweisen Schlüsselaustausch, das effizient auf
ressourcenbeschränkten drahtlosen Sensorknoten implementiert werden
kann und die Wirkung von Angriffen gegen Knoten beschränkt.

• Einem Verfahren zur Nachrichtenauthentisierung, das lediglich lokale ge-
meinsame Schlüssel und Operationen der symmetrischen Kryptographie
erfordert. Das Verfahren bietet ein Sicherheitsniveau in Annäherung der
von Ende-zu-Ende-Sicherheit. Es basiert auf der Erzeugung mehrerer dis-
junkter Authentisierungspfade.

• Der Bewertung des Verfahrens zur Nachrichtenauthentisierung, welche
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zeigt, das es einem Verfahren, das mehrere disjunkte physische Kommu-
nikationwege benutzt, mindestens ebenbürtig ist.

Die vorgeschlagenen Sicherheitsverfahren schützen die Integrität von Nach-
richten innerhalbe eines drahtlosen Sensornetzes. Das erreichbare Sicherheits-
niveau ist dem eines Ende-zu-Ende-Verfahrens vergleichbar, sofern ein An-
greifer moderater Stärke angenommen wird, d.h. der Angreifer ist in der Lage,
lediglich einen Teil der Knoten im Sensornetz zu kontrollieren. Die Kosten der
vorgeschlagenen Verfahren sind jedoch erheblich geringer, so dass ihr Einsatz
insgesamt vorteilhaft sein kann.



vi



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Wireless Sensor Networks and Their Security 7
2.1 Applications of Wireless Sensor Networks . . . . . . . . . . . 9

2.1.1 Surveillance . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Context Awareness . . . . . . . . . . . . . . . . . . . 10
2.1.3 Other Applications . . . . . . . . . . . . . . . . . . . 11
2.1.4 Security Concerns . . . . . . . . . . . . . . . . . . . 11

2.2 Sensor Node Characteristics . . . . . . . . . . . . . . . . . . 13
2.2.1 Computational Resources . . . . . . . . . . . . . . . 14
2.2.2 Composition . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Infrastructure . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Topology . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.5 Connectivity . . . . . . . . . . . . . . . . . . . . . . 19
2.2.6 Network Size . . . . . . . . . . . . . . . . . . . . . . 19
2.2.7 Tamper Resistance . . . . . . . . . . . . . . . . . . . 20
2.2.8 Further Assumptions . . . . . . . . . . . . . . . . . . 21

2.3 Related Network Types . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Ad Hoc Networks . . . . . . . . . . . . . . . . . . . 22
2.3.2 Personal Area Networks . . . . . . . . . . . . . . . . 24
2.3.3 Peer-to-Peer Networks . . . . . . . . . . . . . . . . . 25

2.4 Related Device Types . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Smartcards . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 RFID . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Embedded Computers . . . . . . . . . . . . . . . . . 29

2.5 Sensor Network Models . . . . . . . . . . . . . . . . . . . . 31
2.5.1 The Geometric Model of Sensor Networks . . . . . . 31



viii Contents

2.5.2 Small-World Networks . . . . . . . . . . . . . . . . . 32
2.5.3 Fundamental Properties of Sensor Network Graphs . . 33

2.6 Simulation of Sensor Networks . . . . . . . . . . . . . . . . . 35
2.6.1 Applications of Simulation . . . . . . . . . . . . . . . 35
2.6.2 Node-based Simulation . . . . . . . . . . . . . . . . . 38
2.6.3 Network-based Simulation . . . . . . . . . . . . . . . 40

2.7 Security Requirements . . . . . . . . . . . . . . . . . . . . . 41
2.7.1 Message Transmission . . . . . . . . . . . . . . . . . 42
2.7.2 Routing . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.3 Access Control . . . . . . . . . . . . . . . . . . . . . 44
2.7.4 Data Aggregation . . . . . . . . . . . . . . . . . . . . 45
2.7.5 Location Verification . . . . . . . . . . . . . . . . . . 46
2.7.6 Intrusion Detection . . . . . . . . . . . . . . . . . . . 47
2.7.7 Intrusion Tolerance . . . . . . . . . . . . . . . . . . . 48
2.7.8 Availability . . . . . . . . . . . . . . . . . . . . . . . 49

2.8 Cryptography for Sensor Networks . . . . . . . . . . . . . . . 50
2.8.1 Hash Functions . . . . . . . . . . . . . . . . . . . . . 51
2.8.2 Message Authentication Codes . . . . . . . . . . . . . 52
2.8.3 Symmetric Ciphers . . . . . . . . . . . . . . . . . . . 53
2.8.4 Implementation . . . . . . . . . . . . . . . . . . . . . 53
2.8.5 Bandwidth Overhead . . . . . . . . . . . . . . . . . . 54
2.8.6 Key Management . . . . . . . . . . . . . . . . . . . . 55

2.9 Existing Approaches to Wireless Sensor Network Security . . 57
2.9.1 Key Distribution and Agreement . . . . . . . . . . . . 58
2.9.2 Secure Communication . . . . . . . . . . . . . . . . . 59
2.9.3 Secure Routing . . . . . . . . . . . . . . . . . . . . . 61
2.9.4 Available Implementations . . . . . . . . . . . . . . . 63

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 A Security Model for Wireless Sensor Networks 65
3.1 Attack Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Physical Attacks . . . . . . . . . . . . . . . . . . . . 67
3.1.2 Interface Attacks . . . . . . . . . . . . . . . . . . . . 69
3.1.3 Software-Level Attacks . . . . . . . . . . . . . . . . . 70

3.2 Attack Objectives . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.1 Properties of Resources . . . . . . . . . . . . . . . . . 72
3.2.2 Resource Types . . . . . . . . . . . . . . . . . . . . . 73
3.2.3 Detection Evasion . . . . . . . . . . . . . . . . . . . 77

3.3 Adversary Characteristics . . . . . . . . . . . . . . . . . . . . 78



Contents ix

3.3.1 Basic Assumptions . . . . . . . . . . . . . . . . . . . 78
3.3.2 Attack Costs . . . . . . . . . . . . . . . . . . . . . . 78
3.3.3 Avoiding Intrusion Detection . . . . . . . . . . . . . . 79
3.3.4 Insider vs. Outsider . . . . . . . . . . . . . . . . . . . 79
3.3.5 Technical Capabilities . . . . . . . . . . . . . . . . . 80
3.3.6 Location-Constrained Attacks . . . . . . . . . . . . . 80

3.4 The Cost of End-to-End Security . . . . . . . . . . . . . . . . 84
3.4.1 Connection Establishment . . . . . . . . . . . . . . . 85
3.4.2 Public-Key Cryptography . . . . . . . . . . . . . . . 86
3.4.3 Pairwise Key Distribution . . . . . . . . . . . . . . . 87

3.5 Approximating End-to-End Security . . . . . . . . . . . . . . 88
3.5.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . 89
3.5.2 Multipath Communication . . . . . . . . . . . . . . . 89
3.5.3 Assessing the Security Level . . . . . . . . . . . . . . 91

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Key Establishment 97
4.1 Requirements for Key Agreement . . . . . . . . . . . . . . . 98
4.2 Random Key Pre-Distribution . . . . . . . . . . . . . . . . . 98

4.2.1 A Model for Key Pre-Distribution . . . . . . . . . . . 99
4.2.2 Pre-Distribution Phase . . . . . . . . . . . . . . . . . 100
4.2.3 Identity-based Key Rings . . . . . . . . . . . . . . . . 101
4.2.4 Establishing the Common Key Set . . . . . . . . . . . 101
4.2.5 Key Derivation . . . . . . . . . . . . . . . . . . . . . 103
4.2.6 Connectivity . . . . . . . . . . . . . . . . . . . . . . 104
4.2.7 Resilience Against Link Key Compromise . . . . . . . 107

4.3 Key Agreement Based on Hash Chains . . . . . . . . . . . . . 110
4.3.1 Hash Chains . . . . . . . . . . . . . . . . . . . . . . 110
4.3.2 Single-Chain Key Agreement . . . . . . . . . . . . . 110
4.3.3 Chain Key Resilience . . . . . . . . . . . . . . . . . . 111
4.3.4 Choosing the Length of a Hash Chain . . . . . . . . . 113
4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Multiple Hash Chains for Key Agreement . . . . . . . . . . . 116
4.4.1 Key Distribution . . . . . . . . . . . . . . . . . . . . 116
4.4.2 Key Agreement . . . . . . . . . . . . . . . . . . . . . 117
4.4.3 Resilience . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.4 Comparison with Random Key Pre-Distribution . . . . 119

4.5 Strengthening Random Key Pre-Distribution . . . . . . . . . . 120



x Contents

4.5.1 A Combined Approach . . . . . . . . . . . . . . . . . 121
4.5.2 Resilience . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5 Multipath Communication 129
5.1 Principles of Multipath Communication . . . . . . . . . . . . 129

5.1.1 Single vs. Multiple Paths . . . . . . . . . . . . . . . . 129
5.1.2 Advantages of Multiple Paths . . . . . . . . . . . . . 130
5.1.3 Path Setup . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Routing on Spanning Trees . . . . . . . . . . . . . . . . . . . 132
5.2.1 The Basic Scheme . . . . . . . . . . . . . . . . . . . 132
5.2.2 Spanning Tree Construction . . . . . . . . . . . . . . 134
5.2.3 Addressing on Spanning Trees . . . . . . . . . . . . . 135
5.2.4 Message Forwarding . . . . . . . . . . . . . . . . . . 140
5.2.5 Choice of Tree Paths . . . . . . . . . . . . . . . . . . 141

5.3 Properties of Tree Paths . . . . . . . . . . . . . . . . . . . . . 141
5.3.1 Spatial Separation . . . . . . . . . . . . . . . . . . . 141
5.3.2 Path Disjointness . . . . . . . . . . . . . . . . . . . . 142
5.3.3 Traffic Overhead . . . . . . . . . . . . . . . . . . . . 146
5.3.4 Delivery Rate . . . . . . . . . . . . . . . . . . . . . . 148

5.4 Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . 150
5.4.1 Basic Security Model . . . . . . . . . . . . . . . . . . 150
5.4.2 Resilience Against Attacks . . . . . . . . . . . . . . . 151

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.5.1 Multiple Paths for Performance . . . . . . . . . . . . 152
5.5.2 Spatial Separation . . . . . . . . . . . . . . . . . . . 154
5.5.3 Threshold Security . . . . . . . . . . . . . . . . . . . 155

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 Integrity-Preserving Communications 157
6.1 Authentication and Integrity Protection . . . . . . . . . . . . . 157

6.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 157
6.1.2 Identity, Integrity, and Authentication in WSNs . . . . 160

6.2 Basic Interleaved Authentication . . . . . . . . . . . . . . . . 161
6.2.1 Protocol Description . . . . . . . . . . . . . . . . . . 162
6.2.2 Formal Specification . . . . . . . . . . . . . . . . . . 164
6.2.3 Interaction with Routing Protocols . . . . . . . . . . . 168
6.2.4 Application to Data Aggregation . . . . . . . . . . . . 174



Contents xi

6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 175
6.3.1 Single Message Overhead . . . . . . . . . . . . . . . 176
6.3.2 Multiple Messages Overhead . . . . . . . . . . . . . . 177

6.4 Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . 179
6.4.1 Analytical Assessment of Resilience . . . . . . . . . . 179
6.4.2 Numerical Approximation . . . . . . . . . . . . . . . 183
6.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . 185
6.4.4 Addressing Message Injection . . . . . . . . . . . . . 190
6.4.5 MAC Security . . . . . . . . . . . . . . . . . . . . . 192
6.4.6 Example: A Dynamic Application Scenario . . . . . . 193

6.5 Extended Interleaved Authentication . . . . . . . . . . . . . . 195
6.5.1 Protocol Description . . . . . . . . . . . . . . . . . . 195
6.5.2 Establishing Shortcuts . . . . . . . . . . . . . . . . . 199
6.5.3 Long-Range Interleavings . . . . . . . . . . . . . . . 200
6.5.4 Performance Evaluation . . . . . . . . . . . . . . . . 205
6.5.5 Security Evaluation . . . . . . . . . . . . . . . . . . . 205

6.6 Comparing Interleaved and Multipath Authentication . . . . . 207
6.6.1 Multiple Physical vs. Virtual Paths . . . . . . . . . . . 207
6.6.2 Combining Authentication Techniques . . . . . . . . . 208

6.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.7.1 Coupling Heterogeneous Networks . . . . . . . . . . 210
6.7.2 Physical-World Examples . . . . . . . . . . . . . . . 211
6.7.3 Internet Applications . . . . . . . . . . . . . . . . . . 211
6.7.4 E-Mail Origin Authentication . . . . . . . . . . . . . 212

6.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7 Conclusion 217
7.1 Secure Communication in Wireless Sensor Networks . . . . . 218

7.1.1 Key Establishment . . . . . . . . . . . . . . . . . . . 218
7.1.2 Multiple Path Communication . . . . . . . . . . . . . 218
7.1.3 Interleaved Authentication . . . . . . . . . . . . . . . 219
7.1.4 Shortcut Authentication . . . . . . . . . . . . . . . . 221

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Bibliography 223



xii Contents



Chapter 1

Introduction

1.1 Background

Wireless sensor networks are comprised of small, low-cost, resource-restricted
devices that have the capability to communicate and interact with their environ-
ment, either only passively by sensing certain parameters, or also actively by
triggering actuators. The major limiting factor in their design and operation is
their restricted energy supply. Their computational capabilities are comparable
to those found in embedded systems, as they are based on similar hardware de-
signs. Sensor nodes employ wireless communication in order to exchange data
with their peers. This is based mostly on radio communication, but there are
some designs that employ alternatives, such as optical communication.

Initially, sensor networks were conceived for military applications, for ex-
ample to track moving objects in inaccessible terrain. Due to their small size
and low cost, they would allow for concealed deployment in large quantities.
Recently they also have aroused interest in civilian applications, for example
as monitoring tools in health applications, to collect environmental data, or to
improve agriculture.

In many application scenarios, security is a critical property of sensor net-
works, for example in the healthcare domain where sensitive data is handled.
Without adequate security, the acceptance of sensor networks as a tool will
likely be limited. It is therefore important to understand what the risks are
when operating a sensor network in a sensitive environment, and how these
risks can be countered.

Sensor networks are vulnerable against attacks from the outside as they are
using an openly accessible medium for communication. This allows an attacker
to intercept messages, or interfere with transmissions, for example by jamming
the radio channel or replaying intercepted messages. Insider attacks are pos-
sible if the attacker manages to inject his own sensor nodes into the network
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or take control of existing nodes. Insider attacks are very powerful as they
are hard to detect and allow the adversary to gain access to cryptographic key
information stored on nodes, which would not be possible through an outside
attack. Having control over a part of the network also allows the adversary to
forge messages and sensor data, and thus directly influence the operation of the
network.

In order to make a sensor network secure, mechanisms are required that
make it hard for the adversary to exploit these vulnerabilities. There is a trade-
off between the overhead of such mechanisms and the expected loss due to cer-
tain threats, and the operator of a sensor network is expected to choose those
mechanisms that minimize both the risks and the costs. It is the task of re-
searchers and engineers to provide such cost-effective mechanisms.

1.2 Problem Statement

A basic mechanism in a sensor network is the transmission of messages be-
tween sensor nodes. Due to the large size of a sensor network and the limited
transmission range of a single node, messages that are being exchanged be-
tween distant nodes typically have to be transmitted over multiple hops. Secure
message transmission requires either a security association between the com-
munication endpoints, or the collaboration of the involved nodes.

Secure end-to-end relationships do not scale well in large sensor networks.
For each relationship, a secret key must be stored. However, a single node typi-
cally only communicates with a small fraction of all nodes during the network’s
lifetime. This is highly inefficient since a lot of memory is blocked for storing
keys that will never be used. A viable alternative is to dynamically establish
end-to-end relationships only when they are needed. However, performing a
key agreement over multiple hops is an expensive operation.

In light of these drawbacks, collaborative approaches seem to be more ap-
propriate. In such approaches, nodes may rely on a small number of “friends”
with whom they share a secret key. They may also enter new security rela-
tionships with nearby nodes that are dynamically joining the network, so key
agreements are restricted to k-hop communications (with a small k). In order
to transmit messages over multiple hops, “friendly” nodes will help each other
to forward the messages and to ensure that they will not be tampered with.

Compared to end-to-end security schemes, the security guarantees of collab-
orative approaches are lower. Using proven cryptographic algorithms and tools,
end-to-end schemes can be made computationally secure, i.e. no existing com-
puting resources are sufficient to break the scheme. Collaborative approaches
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on the other hand provide either threshold (i.e. the scheme is secure against
attackers that are bounded by some constant) or probabilistic (i.e. given an
attacker, a communication relationship is secure with a certain probability) se-
curity. It is therefore important to be able to quantify the security properties of
a sensor network.

1.3 Contributions

The main contribution of this thesis is a novel protocol for protecting the in-
tegrity of messages that are transmitted over multiple hops. This protocol
emerged from the observation that end-to-end message authentication is nei-
ther scalable in sensor networks nor strictly required. By restricting the secu-
rity mechanisms to the preservation of the integrity of messages, good scal-
ability is achieved while the most important properties of authentication are
preserved. In fact, we provide designers with the possibility to choose the most
appropriate compromise between scalability and an approximation to end-to-
end security properties, with regard to the application scenario at hand and the
implied threat model. The provided security guarantees are of probabilistic na-
ture and are quantified with regard to fundamental network properties, namely
the probability of message compromise and the fraction of nodes being able to
participate in a consensus protocol.

The proposed protocol has similarities with multipath message transmission,
an approach known to provide threshold security. We provide a characterisation
of both approaches in order to clearly separate them from each other. We also
propose a new technique for setting up multiple, node-disjoint paths in a sensor
network that avoids the deficiencies of existing approaches. It is independent of
the topology of the network and provides a good physical separation of paths,
which is important with regard to the assumed adversary model.

A prerequisite of many security mechanisms is the ability of nodes to agree
on a common secret key. Multiple schemes have been proposed that are based
on probabilistically distributed shares of a common key pool. Two nodes agree
on a common key by determining their common subset of their shares. It also
allows nodes to prove to each other that they are legitimate members of the
network and thereby effectively defeating outsider attacks. We describe a gen-
eralization of these schemes that allows to increase their resilience significantly
against insider attacks without requiring any additional storage and with only
minimal computational overhead.
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1.4 Thesis Outline

Chapter 2 introduces the architecture of wireless sensor networks and their fun-
damental properties that are important with regard to security. The main vehicle
is a graph-based model of sensor networks that will be the basis for the evalua-
tion of the proposed security protocols.

In chapter 3, we describe attacks on sensor networks and define and motivate
an adversary model that serves as the context for the proposed security mech-
anisms. The main element of this adversary model is node capture, i.e. the
adversary takes complete control of a number of sensor nodes. As end-to-end
security constitutes the most powerful security model for communication, we
describe the possibilities to achieve this in sensor networks, and the associated
costs. We then describe an approximative model and methods for its evaluation.

Chapter 4 describes key agreement in sensor networks, a prerequisite for the
following security schemes. The focus is on probabilistic key pre-distribution,
for which we introduce a generalization that increases the resilience of these
schemes with regard to the previously defined adversary model. The proposed
technique is based on hash functions and is thus efficiently implementable on
sensor nodes.

In the following chapter 5, secure multipath communication is introduced
and a novel technique for the efficient construction of multiple, node-disjoint
paths between arbitrary nodes is presented. This technique addresses the re-
quirements and constraints of sensor networks and is adapted to the assumed
adversary model.

In chapter 6, a novel interleaved message authentication scheme is intro-
duced, which is based on shared secret keys between neighbouring sensor
nodes. It provides integrity preservation for messages on multihop paths. Start-
ing with a basic scheme, several extensions are described that compensate for
the deficiencies of the basic scheme.

Chapter 7 evaluates the achieved results, discusses potential application ar-
eas for the proposed techniques, and proposes directions for future research.

In connection with the course of the work on the presented thesis, the fol-
lowing student theses have been conducted:

• Patrick Moor, Mario Strasser. Schlüsselvereinbarung in Sensornetzen
(Semester thesis)

• Claudio Munari. Simulation und Visualisierung eines sicheren Kommu-
nikationsprotokolls (Semester thesis)
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• Mario Strasser. Intrusion Detection and Failure Recovery in Sensor Net-
works (Master thesis)

• Claudio Munari. Multipfad-Protokolle zur sicheren Kommunikation in
Ad-hoc und Sensornetzen (Master thesis)

The following publications emerged from this work:

• Harald Vogt. Integrity Preservation for Communication in Sensor Net-
works, Technical Report 434, ETH Zürich, Institute for Pervasive Com-
puting, 2004

• Harald Vogt. Exploring Message Authentication in Sensor Networks. In
Proceedings of the 1st European Workshop on Security in Ad-hoc and
Sensor Networks (ESAS 2004), LNCS 3313, Springer-Verlag, 2005

• Harald Vogt. Increasing Attack Resiliency of Wireless Ad Hoc and Sensor
Networks. In 25th IEEE International Conference on Distributed Com-
puting Systems, Workshops, IEEE, 2005

• Harald Vogt. Small Worlds and the Security of Ubiquitous Computing.
In First International Workshop on Trust, Security and Privacy for Ubiq-
uitous Computing (TSPUC): Proceedings of 6th IEEE International Sym-
posium on a World of Wireless Mobile and Multimedia Networks (WoW-
MoM), IEEE, 2005

• Harald Vogt, Matthias Ringwald, Mario Strasser. Intrusion Detection
and Failure Recovery in Sensor Nodes. In Tagungsband INFORMATIK
2005, Workshop Proceedings, volume P-68 of Lecture Notes in Informat-
ics, Gesellschaft für Informatik, 2005
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Chapter 2

Wireless Sensor Networks and Their
Security

Recent advancements in the miniaturization and commoditization of electron-
ics, computing and communication technology have created a trend towards
ubiquitous computing. It is anticipated both in academic research and industry
that computational devices with communication and sensing capabilities will
soon be intertwined with many products and integrated into many industrial
and business processes. This would allow the creation of new business mod-
els as well as new and improved services and products. This development has
already started to become reality with the increasing deployment of radio fre-
quency identification (RFID) technology in many areas.

Driven by the same technological forces, wireless sensor networks (WSN)
have emerged as a new type of network architecture. Such networks are com-
prised of small and inexpensive devices with the capability to interact with their
environment, mostly through passive means allowing them to sense certain en-
vironmental parameters, but sometimes also actively by triggering actuators.
The resources of these devices are quite limited due to the requirements of small
size and low cost. The major restricting factor is their energy supply. In most
cases, their batteries cannot be recharged since the devices are inaccessible af-
ter deployment. External power sources, such as solar panels, can compensate
for this deficiency only partially. It is therefore paramount for designers to build
sensor networks in a way that minimizes their energy consumption.

As a consequence of this principle, the computational and communication
capabilities of sensor devices are rather limited. Current prototypes are based
on microcontrollers typically used in embedded systems. These processors
draw much less power than those used in desktop and server systems, but they
also lack many of their desirable features, such as sophisticated memory man-
agement, parallel instruction execution, and high clock frequency. For com-
munication purposes, low-power radio communication is typically used with a
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transmission range between some centimeters up to one hundred meters.
Since single sensor devices are so much restricted, the usefulness of a sensor

network only materializes through the cooperation of a large number of these
devices. A large number allows covering a large geographical area, making up
for the limited sensing range of a single device. It also allows to compensate
for device failures (which are likely to occur during the lifetime of the overall
network) by another device stepping into the position of a failed one. Through
cooperation, they can forward each other’s messages to remote destinations,
and combine the sensor data they have captured in order to provide higher-
order information.

Sensor networks are distributed systems, comprised of either homogeneous
devices in the simple case, or various kinds of devices with different capabil-
ities in more complex scenarios. As distributed, networked systems, they are
prone to many kinds of failures just as other distributed systems, such as link
and host failures that hamper the reliability of these systems, and malicious
intruders that try to inflict harm or take illegitimate advantage of them. In con-
ventional distributed systems, the ultimate protection against intrusions is the
physical separation of a system from its environment, providing only a nar-
row, well-defined interface for users to interact with the system. Access to this
interface is under tight control and only made available to authorized parties.
This approach is unrealistic for sensor networks, since they use wireless com-
munication, which exposes their communication interface, and they are often
operated in publicly accessible spaces, thereby enabling physical access to the
sensor nodes.

The applicability of conventional system security mechanisms to sensor net-
works is limited. Public key cryptography, intrusion detection, or sophisticated
access control often exceed the available resources. As sensor devices are
placed into environments that are open to physical access by potential adver-
saries, a sensor network cannot be isolated completely. Full tamper resistance
of sensor nodes is not affordable in most cases, which in principle leaves them
open to direct physical manipulations. (However, their large number would
make it costly for an attacker to corrupt all of them.)

Effective security mechanisms thus have to take into account the large num-
ber of nodes in sensor networks, their probabilistic nature due to failed or com-
promised components, and their inherent limitations regarding physical protec-
tion and tight resource restrictions. Establishing and maintaining the security
of a wireless sensor network is challenging due to several reasons:

• The use of a wireless communication medium makes covert access to the
transmitted data possible. Data injection or manipulation is also possible
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without tampering with any physical infrastructure.

• Sensor networks are often operated in open, publicly accessible space.
This enables physical access to sensor nodes.

• The implementation of security mechanisms, such as cryptography or in-
trusion detection, must respect the limited computational and energy re-
sources, and the limited communication bandwidth.

2.1 Applications of Wireless Sensor Networks

Sensor networks are tools to bridge the gap between the physical and the virtual
world. They allow to automatically collect information about physical phenom-
ena, immediately process this information and transfer the results into back-
ground information systems. This processing delivers high-level information
according to the application’s requirements. Sensor nodes organize themselves
autonomously, work in a collaborative manner, and are designed for energy-
efficiency. This allows it to monitor large geographical areas or inaccessible
spaces over long periods of time without the need of human intervention. A
comprehensive survey of sensor network architectures and applications can be
found in [2].

2.1.1 Surveillance

An important application class for sensor networks is their use for the protec-
tion of assets or people. By definition, sensor networks are highly suitable for
data collection. This capability can be exploited for surveillance purposes, most
importantly for the detection of intruders [62] or physical security breaches, or
more generally for “perimeter protection” [8], where an area around a threat-
ened entity (which is possibly moving) is under surveillance. Today, there al-
ready exists an industry for surveillance tools such as video cameras, motion
detectors, burglar alarms, etc. Sensor networks add two new qualities to such
systems, first the large number of tiny devices that can be deployed in an ad hoc
manner, and second the self-organization of these devices for communication
and configuration. Thus, with the wide-spread availability of wireless sensor
network technology, it will become possible to put areas under surveillance that
would not be economically feasible today. Besides the potential gains to (both
public and private) security, this will have severe impact on people’s privacy
and may also have severe consequences for politics and society [26].
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2.1.2 Context Awareness

Pervasive and ubiquitous computing concepts assume a tight relationship be-
tween computing devices and human users. Since the behaviour of humans is
closely related to the context in which current activities take place, the notion of
this concept has gained much attention in this research area. It is assumed that
by understanding context, applications can adapt their behaviour to the specific
needs of the human user and his environment. A prominent example is the mo-
bile phone that autonomously recognizes situations where an audible ringtone
is inappropriate, for example a work team meeting or sitting in a cinema.

Sensor networks can be used as a tool for deriving contextual information.
For example, office rooms could be equipped with sensor networks that auto-
matically determine whether a meeting is in progress. Another example would
be body-area sensor networks that determine in which activity the person is
currently involved. Other devices in the vicinity could then make use of this
information and adapt their behaviour accordingly.

It is the subject of ongoing research how to derive higher-level, contextual
information from basic data such as lightning conditions, biological parame-
ters, temperature, time, or acceleration, for which sensors exist. There is no
universally valid definition of what exactly should be included in the notion
of context (there are at least nine diverse definitions for context cited in [52],
many of them based on examples). Usually, context subsumes – at least – these
(quite broad) parameters: time, location, activity and identity. In its most gen-
eral form, it is not compuationally tractable, which can be concluded from the
discussion of context given in [59], where it is argued that context is primarily
of phenomenological nature. However, for many applications, useful state-
ments about the current context in which a process is executed can be derived.
We will now give some examples where context is used to enhance the human
experience of applications.

The research area of context derivation and context adaptation is quite broad.
We will give a brief overview here. In [160], a context-aware PDA is described
that changes the orientation of its user interface between landscape and portrait
according to how the PDA is held by the user. A general framework for design-
ing context-aware applications and processing contextual data is presented in
[52]. Some application examples are given, including a “conference assistant”
that supports the user by presenting information that is especially important at
the user’s current location and guiding him to interesting presentations based
on his own interests.

Another example for context derivation is given in [113]. Devices are en-
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abled to tell if they are close to other devices, especially if they are carried by
the same person. Simple accelerometers are used to accomplish this. Also with
accelerometers, different user activities can be recognized as described in [92].
The authors attached sensors to major joints of the user’s body, including knees,
elbows and shoulders. The results collected from experiments indicate that ac-
tivities like walking or writing on a whiteboard can be recognized with high
accuracy with such rather simple sensoric equipment.

2.1.3 Other Applications

Several sensor networks have been prototypically deployed for scientific
(e.g. [199]), military and other purposes. A survey of projects can be found,
e.g., in [47] and [157]. Examples include

• environmental monitoring, e.g. in wineyards, forests, and glaciers;

• self-repairing minefields1;

• improved care for the elderly through activity monitoring;

• equipment monitoring in industrial installations;

• sniper detection.

To our knowledge, security – in the sense of protecting the sensor network
against intrusion or data manipulation – has not been an active focus of practical
deployments, which is likely due to their prototypical nature and the emphasis
on technical and algorithmic problems that have to be solved for putting such
a network into operation. However, as the significance of sensor networks in-
creases in critical military, social, and industrial applications, security issues
will become more important. The example of the Internet shows that its po-
tential in business applications today is often constrained by security-relevant
threats. Thus, it is crucial to anticipate possible threats to sensor networks and
be prepared to provide suitable countermeasures in order to support a smooth
integration of sensor networks into applications.

2.1.4 Security Concerns

Although prototypical deployments of sensor networks have not been equipped
with security measures until now, it is foreseeable that adequate security is a

1Such military applications raise important ethical questions that have hardly been addressed in the literature.
They go beyond the scope of this work, but readers are encouraged to develop awareness of these issues.
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prerequisite for the success of sensor networks in practice. The main reason is
that sensor networks will play a critical role in monitoring and protecting valu-
able assets and people. Their open architecture makes sensor networks highly
vulnerable. If they could be easily deactivated or manipulated by competitors
or criminals, the consequence could be serious financial damage or even threats
to human lives. The following scenarios are intended to illustrate these dangers.

Structural integrity of buildings Wireless sensor networks could replace currently
used wired infrastructures for monitoring the structural integrity of buildings
and bridges. Initial studies in this domain have been made [159, 136]. The
collected data is used for maintenance planning, but is also important for the
safety of the users of such a structure. Wireless sensor networks have a potential
cost advantage over wired sensing equipment.

Sabotage is a realistic and significant threat to such a surveillance infras-
tructure. The easy accessibility of the communication medium makes WSNs
vulnerable to message injection and manipulation attacks. Systematic reduc-
tion of data quality could lead to devastating effects in the long run on a large
number of buildings and bridges.

Traffic assistance Cars and other vehicles become increasingly equipped with
electronic assistance systems that are intended to increase the comfort and the
safety of their passengers. Inter-vehicular communication and communication
between vehicles and roadside infrastructure may even further improve on to-
day’s technologies. Wireless sensor networks play an important role for mon-
itoring traffic and weather conditions and communicating their findings to ve-
hicles.

It is conceivable that malicious users could exploit vulnerabilities of these
communication systems for their own advantage, for example by signalling
traffic lights or keeping parking lots free. There is even a danger of congestions
or accidents caused by manipulating such an environment.

Healthcare Body-area sensor networks are a tool for monitoring vital signs of
athletes and patients (e.g., see [177, 105, 75]). A multitude of body sensors can
be combined, either as wearable nodes or implanted. The findings are commu-
nicated either to a personal device carried by the person herself, or they can
be directly fed to a remote telemedicine center. Over time, valuable data can
be collected for in-depth analyses. In case of a medical emergency, an alarm
would be immediately raised, thereby leading to a sharply reduced reaction
time.



2.2. Sensor Node Characteristics 13

Personal health data is of very sensitive nature, which most people would
refuse to give away freely. It could be used to assess the lifestyle of a person or
get hints on former and present diseases. Such data must therefore be protected
against unauthorized access.

Military surveillance Military applications of wireless sensor networks include
battlefield surveillance, where large numbers of nodes are deployed over ter-
ritory through which enemy forces may move, treaty monitoring, and oth-
ers [144]. The sensor network could autonomously differentiate between friend-
ly and enemy vehicles, and report the number of vehicles detected as well as
their speed and direction.

Security in the military domain is of paramount importance, since accurate
information is key to effective actions and for avoiding own losses. If it were
possible to manipulate the reports of a sensor network, forces may be misguided
and could give the enemy an advantage.

Logistics Wireless sensor networks can be used in logistics, for example for
monitoring the transport and storage conditions of goods. A prominent example
is the cold chain for food [153, 43]. Being able to acquire more accurate and
more timely data may not only increase consumer safety, but also reduce costs
for product recalls.

The highly fragmented, highly competitive markets in the food industry
seem to encourage sloppy handling of products, and sometimes even criminal
actions take place. WSNs have the potential to deter such actions, if it can be
ensured that the reported data is not falsified, which requires adequate security
measures in all involved information systems, including sensor networks.

2.2 Sensor Node Characteristics

In this thesis, we aim at providing security mechanisms for sensor networks that
are applicable as widely as possible. We therefore make as few assumptions
as possible about the supported types of networks. The security mechanisms
should be effective even in the most basic configuration.

Adopting the classification scheme of [157], our model can be characterized
with the parameters shown in table 2.1. The unlisted categories (deployment,
mobility, energy, modality, coverage, lifetime) have no direct impact on the se-
curity mechanisms that are proposed later, although they could be relevant with
regard to other security mechanisms. The listed parameters are understood as
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minimal requirements. The security mechanisms still work if they are exceeded
by the actual characteristics of a network. However, in such a case other mech-
anisms could be more appropriate, i.e. more cost-effective or providing better
security guarantees. For example, if a base station is available, it could act as
a trusted third party and be used for node authentication and key establishment
between nodes. This would allow end-to-end secure communication, which
would be infeasible otherwise.

Computational Resources matchbox to dust
Composition homogeneous
Infrastructure ad hoc
Topology multi-hop
Connectivity connected
Size unlimited
Tamper resistance non-neglibile

Table 2.1: General constraints on considered wireless sensor networks

We have extended the classification scheme by adding a category tamper re-
sistance, which is highly relevant for the security of a sensor network. If nodes
would be completely open to arbitrary manipulations, speaking of a secure sen-
sor network would have little meaning. We therefore require a minimum level
of tamper resistance that imposes at least a small, constant cost on an attacker
before he is able to take control of a node. This could mean as little as that
sensor nodes are hidden between rocks on an open field, or as much as them
having a shielding that is hard to penetrate.

In the remainder of this section, we discuss the properties of this model in
detail. For each category, we discuss the impact of possible configurations on
the security of the network. In some cases, using a seemingly more powerful
configuration introduces security risks that are avoided with a simple one. Of
course, one doesn’t always have the choice as the architecture of a sensor net-
work is governed by its application context. However, one should be aware of
the risks that a certain architecture implies. In many cases, it may be advanta-
geous to prefer a simple design.

2.2.1 Computational Resources

Sensor networks are demanding with regard to protocol and algorithm design
due to size and energy restrictions. Only a small amount of memory is available
for program code and data, the energy source is limited, and the communication
range is rather small. These factors indicate that algorithms for sensor networks
should be as localized as possible in order to avoid long-distance interaction as
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much as possible [65]. This principle of localization should also be applied to
security mechanisms. In consequence, this means that end-to-end security may
be too expensive in many cases.

For providing security services, we require that sensor nodes are able to
execute basic cryptographic functions and store a moderate amount of key ma-
terial. These requirements will be made more exact in the following chap-
ters. Most current sensor node prototypes fulfill these requirements. Some
very small designs with similar computational power as RFID controllers, like
Smart Dust [189], may not be able to comply with these requirements.

Generally, increasing the avaialable resources on a sensor nodes helps the
security of the node itself and the network as a whole. Some possible improve-
ments are the following:

• By increasing the memory size, sensor nodes can store more key material.
This saves bandwidth for key agreement or key transfer. More keys also
result in a greater supported network size. Cost is increased if key memory
is located within the tamper resistant module of the node, where space is
expensive.

• A higher processor speed decreases latency for cryptographic operations,
which in turn allows larger keys and makes asymmetric cryptography
more attractive.

• A cryptographic coprocessor can be added. With hardware support, a
speed-up of approximately 2 orders of magnitude can be achieved com-
puting cryptographic functions (cf. Table 2.2 and Table 3.1). The copro-
cessor requires additional space within the tamper resistant module.

• By increasing the available amount of energy, more of it can be spent on
security mechanisms, e.g. using larger key sizes leading to longer mes-
sages.

2.2.2 Composition

We assume a homogeneous network, i.e. all nodes possess equal capabilities.
In particular, we do not assume that some nodes are better equipped than others
(e.g. higher communication range), or that base stations exist. This allows large
networks to be easily deployed, for example by dropping nodes out of a plane.
It requires that the nodes organize themselves autonomously. As all nodes have
equal capabilities, failed nodes can be substituted for by others.
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One could add “super-nodes” for better security. These special nodes could
have a high level of tamper resistance, additional computational or energy re-
sources etc. without increasing the overall cost too greatly. They could then
act as trusted parties for key exchange, for example. Thus, as long as super-
nodes are not compromised, end-to-end security guarantees between nodes can
be implemented.

However, such super-nodes come with a disadvantage. They pull traffic to-
wards them, which not only depletes their neighbouring nodes more than oth-
ers. It also makes the super-nodes themselves as well as their neighbours more
valuable for an attacker. For illustration, consider the following example. As-
sume that an attacker manages to compromise one super-node (which requires
a significant effort). Then, he disables the ordinary sensor nodes surround the
other super-nodes (which is cheap). This forces all nodes to use the only reach-
able super-node, the compromised one, for security relevant activities. Thus,
despite the high effort for compromising one super-node, the attacker gains
control over the entire network at relatively low cost.

2.2.3 Infrastructure

There are two fundamentally different types of communication networks. The
first one relies on a supporting physical infrastructure that provides the neces-
sary services for clients to communicate, such as name resolution, routing, or
persistence. This class comprises networks such as the traditional telephone
system, mobile phone networks, the Internet, the (paper-based) mail system,
and the television system (which is one-way broadcast only). Here, the op-
eration of the network is taken care of by dedicated entities that are clearly
separated from the network’s clients who use terminal devices to use the net-
work’s services. A sensor network based on this paradigm employs base sta-
tions which offer an infrastructure for the sensor nodes to use. A base station
is a device equipped with more resources and a greater radio range than an
ordinary sensor node. Each node usually has a direct link with a base station
and exclusively communicates with that base station. Direct communication
between peer nodes does not take place. A possible exception is message re-
laying on behalf of nodes which happen to be out of range of the base station.
Careful planning is required in order to minimize the number of base stations
while achieving full coverage.

The second network type does work completely without a supporting in-
frastructure. There are no dedicated devices or installations that support the
network’s clients. Instead, all services are provided on a peer-to-peer basis by
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the clients themselves. Cooperation between the clients is required in order
to assure fair use of each other’s resources. Examples of such networks are
overlay peer-to-peer networks, wireless ad hoc networks, and amateur radio
networks (ham radio). Sensor networks based on this paradigm are simpler to
set up than those of the previous type. Often, it is possible to simply deploy the
nodes randomly within an area. However, the algorithms and protocols used in
such networks are usually more complicated since the nodes have to collabo-
rate in providing network services and there is no global view of the network’s
state.

In practice, most networks will probably be a mixture of these two extreme
incarnations. Both designs may exist in parallel in the same network: inac-
cessible areas may be covered by randomly deployed, self-organizing nodes,
while populated areas may be covered with the use of base stations. Or, a net-
work may be basically self-organizing with few base stations spread randomly
throughout the network area, providing access points for external clients, for
example, but without full coverage. A network may also exist temporarily in
environments where no base station is available, for example a group of mobile
sensors during transportation.

Base stations can provide certain security services, such as authenticated
broadcast (cf. the µTESLA protocol [142]), for example for distributing code
updates, or acting as trusted third parties for establishing secure links between
nodes as each node maintains a trust relationship to a base station. Generally,
they are not as restricted as sensor nodes and thus the extensive use of public
key cryptography is possible.

For the purpose of our considerations regarding security, we do not rely
on base stations or any supporting network infrastructure for communication
within the sensor network. The deployment of an infrastructure is costly and
not always possible, therefore we want to avoid relying on it for security pur-
poses. In fact, base stations do not only offer new opportunities for security
services, but also introduce risks similar to those in heterogeneous networks
(see the previous subsection).

The lack of an infrastructure means that all security-relevant decisions have
to be made autonomously by the network, for example whether a query is au-
thorized to access certain information. Such access control decisions should be
made by collaborations of sensor nodes [17].
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2.2.4 Topology

We do not restrict ourselves to a specific network topology of the connectiv-
ity graph. We generally assume a complex, multi-hop topology. Generally,
we assume a multi-hop topology which is necessary due to the large num-
ber of nodes, their limited radio range, and the lack of a base station cover-
ing the whole network. This means that messages usually have to travel over
multiple intermediary nodes before they reach their target. This is in contrast
to a star-like topology, for instance. In such a topology, all messages would
be exchanged between the nodes and a central component, and every node
would have a direct connection to this component. We do not assume a cer-
tain communication pattern. Instead, we allow arbitrary point-to-point mes-
sage exchanges, i.e. a node is allowed to send messages to any other node in
the network.

One of the problems in routing a message over multiple hops is addressing.
Usually, each host in a network is assigned a unique identifier which serves
as its network address, such as an IP-address on the Internet. Such addresses
may be hierarchichally organized in order to allow routers to save space in their
routing tables. Using network addresses and address-based routing algorithms
is problematic in sensor networks:

• Sensor nodes may fail prematurely due to several reasons, which has to
be considered a common case in a sensor network. As the network re-
organizes after such failures, services are migrated to new nodes. These
services should therefore not be addressed through the identifiers of the
nodes they are running on.

• In a sensor network, as few messages as possible should be exchanged
in order to save energy. This especially applies to message exchanges
between distant nodes, as the energy resources of all intermediary nodes
are affected as well. Therefore, route detection and maintenance are costly
operations that should be avoided.

Due to these reasons, we consider geographic routing [91] and area-constrained
broadcasts as being more suitable for providing routing stability and efficiency.
These mechanisms do not require the nodes to keep any state information in
order to route messages. Routes are established on demand, thus compensating
for node and link failures, and even node mobility.
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2.2.5 Connectivity

We assume the connectedness of the network, more exactly we assume that
most nodes are connected in a large network component. Single, disconnected
nodes should not affect the overall operation of the network. Nodes that are
sporadically connected to their neighbours, for example due to fluctuations
in link quality or mobility, are supported. If the network is partitioned into
two or more large components, the security mechanisms should still be effec-
tive within these components. After the network becomes connected again, no
change in the security infrastructure should be required.

2.2.6 Network Size

We want to support networks of virtually arbitrary size. This is necessary since
sensor networks are most useful when they cover an area as large as possible.
The small size of sensor nodes and their limited communication range require
that a very large number of them is deployed in order to achieve large coverage.
Assuming that sensor nodes will be manufactured at low cost with the size of a
grain or even smaller, it will become feasible to deploy them in extremely large
numbers, i.e. on the order of hundreds of thousands and even more.

We also would like to support the extension of an existing sensor network
by any number of nodes. Security mechanisms should not make it necessary
to fix a maximumum supported network size when a network is initially de-
ployed. This would limit a network operator’s flexibility to adapt the network
to the changing needs of its application context. Rather, the security mecha-
nisms should support a dynamic network structure, especially the introduction
of freshly deployed nodes into the existing network, the replacement of ex-
hausted nodes, and the withdrawal of nodes.

A larger network means that an adversary has a greater selection of nodes
he could attack. This should not lead to a greater vulnerability of the over-
all network. Ideally, nodes that are located in one area should not be affected
when nodes in a distant area are being compromised. Such a clear isolation of
intrusions may not always be possible. For example, it may be necessary that
messages originating from an uncompromised node are being routed through
a compromised one, which could then selectively suppress or alter these mes-
sages. The security mechanisms we propose are able to mitigate the impact of
compromised nodes in such cases.
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2.2.7 Tamper Resistance

Sensor networks are often deployed in publicly accessible or even hostile en-
vironments. An adversary can thus approach the nodes, establish a wireless
communicatin link, and even physically access them. Without any means to
prevent an attacker from accessing the node’s hardware, it is easy for him, for
example, to inject his own code or to extract key material.

A minimal level of tamper resistance is able to deter a large class of potential
adversaries. Encountering resistance, an occasional attacker with a low level of
sophistication and few resources is likely to look for easier targets. Even merely
hiding the sensor nodes may be sufficient in certain application scenarios. In
order to deter a determined and resourceful attacker, a higher level of tamper
resistance is necessary, for example by incorporating techniques that are com-
mon for building security modules [63], such as secure packaging, hardware
locks that control access to memory areas, and tamper response mechanisms
(e.g. zeroization of sensitive memory areas upon detection of unauthorized
movement). Ideally, there should be a mechanism for sensor nodes to recover
from corruption.

It is not necessary to make the whole of a sensor node tamper resistant. It is
sufficient to have a small module with these properties on a node. This module
contains the sensitive parts, such as the key storage and the processor itself.
Sensors, for example, need not be part of this module as it is likely just as easy
to manipulate their readings through outside means as it would be by directly
accessing the sensor hardware.

The level of tamper resistance that is required for an application scenario
can be determined through risk analysis. Important questions are, who is go-
ing to attack the sensor network, how large is the affected area, what is the
potential damage of an attack, how likely is an attack. If the cost for imple-
menting the required tamper resistance mechanisms is higher than the expected
damage, deployment would be uneconomical. As one of the advantages of sen-
sor networks is their low cost compared to alternative techniques, it is likely
that in most cases, tamper resistance capabilities will be at a moderate level.
However, some applications justify a high investment in tamper restance mech-
anisms, such as surveillance of military facilities to enforce an international
treaty, for example.

We assume throughout this work that an attacker needs to invest at least
some fixed effort to compromise a single node. This rules out software-only
attacks which require an initial effort to find a way to exploit a vulnerability,
but can be applied to arbitrarily many nodes with minimal, i.e. approaching
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zero, cost. This gives rise to an adversary model that determines the strength
of the adversary based on the number of compromised nodes.

2.2.8 Further Assumptions

Mobility

We make no assumptions about the mobility of sensor nodes. Geographic rout-
ing is largely invariant to mobility as long as the mobility rate does not affect
local message forwarding (which is the case as long as transmitting a message
is much faster than the movement of nodes, which we can safely assume for
radio communication). The schemes of chapter 4 provide the means for key
agreement between neighbouring nodes. A high mobility rate could impose a
significant overhead as the neighbourhood of a node frequently changes. How-
ever, this does not affect the security of key agreement or the proposed security
schemes. A high mobility rate can be compensated for by making all negotia-
tions between nodes reactive, i.e. they occur only when a higher-layer protocol
requires it. This avoids unnecessary message exchanges but is likely to increase
response times.

Evolving Hard- and Software

Currently, sensor nodes are being built mostly as prototypes in small quantities
that are used in education and prototypical deployments in research projects.
There are several lines along which the technology is being improved, such as
component integration for optimizing size, or provision of an enduring power
source. The software layer is being developed mostly using platforms such as
the BTnode [20]. The physical size of such platforms is largely dominated by
the batteries being used. For deployments in real-world environments, usually
a special casing is required to protect the sensor nodes against external forces.

A size shrink can be expected in the future due to two lines of progress: bat-
teries with increased lifetime at lower size, and decreased energy consumption
by electronic components, protocols, and software that makes more efficient
use of the available power source.

2.3 Related Network Types

Miniaturization in electronics components has made the commoditization of
digital wireless communication possible. This allowed not only the prolifera-
tion of mobile phone networks, which rely on a fixed infrastructure, but also
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the development of wireless communication for hand-held and portable com-
puters. These interfaces (e.g. IEEE 802.11, Bluetooth, ZigBee) also support
ad hoc networking, i.e. devices are able to connect to each other without a
supporting infrastructure. Although there are sensor network designs that rely
on base station support, in this work we concentrate on infrastructure-less ar-
chitectures. Here, we review the most important related network types. Peer-
to-peer overlay networks are included in the presentation since they follow the
same principle as wireless ad hoc networks and provide their own supporting
services, although they are implemented on top of the Internet infrastructure.

2.3.1 Ad Hoc Networks

An important class of networks that share many similarities with sensor net-
works are subsumed under the notion of ad hoc networks. As sensor net-
works, ad hoc networks usually operate without infrastructural support. This
means that routing, security, and other services must be provided collabora-
tively. However, there are significant differences between the network types
since their application cases are quite different. In contrast to sensor networks,
ad hoc networks are usually comprised of heterogeneous devices which are
specialized to different tasks and are under the control of different users. Also,
from a user’s point of view, they operate on a different level. Ad hoc net-
works often fulfill user-controlled tasks, while sensor networks operate more
autonomously. However, sensor networks incorporate features of ad hoc net-
works and vice versa, and the boundaries between both network types are
blurry. The main differences with regard to security are summarized as fol-
lows:

• Fairness Ad hoc networks are not operated nor owned by a single entity.
Usually, every participating device is associated with a different user on
whose behalf it operates. As a consequence, fairness is not easily main-
tained when part of the users act selfishly, trying to exploit other users’ re-
sources without offering their own. Also, it is not easy to decide whether
it is advantageous for the network to admit a new device. These prob-
lems are part of normal operation in ad hoc networks. In sensor networks,
similar problems occur only when a network is under attack.

• Group communication Often, some devices organized in an ad hoc net-
work need to form a closed group. This usually means they have to ne-
gotiate a common group key in order to exclude occasional (or malicious)
passers-by from their communication. This is not common in sensor net-
works, as a sensor network as a whole can be considered a closed group.
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• Physical characteristics Nodes in ad hoc networks are usually more re-
sourceful than sensor nodes. While sensor nodes are designed to be as
small as possible, devices in ad hoc networking are usually handled by a
human user. Therefore they cannot be arbitrarily small (which allows their
microprocessors to be more powerful), and they must be equipped with a
minimal user interface. Besides, their human users take care of recharg-
ing their batteries. In contrast, sensor nodes are often not accessible after
deployment. They have to operate autonomously and manage with their
limited energy supply.

• Failure modes A device in an ad hoc network that stops working is likely
to be replaced (or recharged) by its user, while a failed sensor node will
hardly be noticed. A user will keep her devices under guard most of the
time, and protect them against external threats to her best abilities. Sensor
nodes are susceptible to external influences and may often be disabled by
environmental conditions.

User devices such as PDAs or mobile phones are often vulnerable to
network-level attacks such as malicious code [102]. Although sensor
nodes are not immune per se against such threats, code injection attacks
require special equipment and are only possible in physical proximity to
the device. Code injection attacks are further impeded by the Harvard
computer architecture that is often used in embedded microcontrollers.
This architecture physically separates memory sections for code and data.
It is thus possible to prevent unintended code updates.

• User vs location As devices in ad hoc networks are associated with hu-
man users, an attack on a device usually means that its owner, or rather
personal information she possesses, is the actual target of the attack. In a
sensor network, nodes are associated with locations rather than users. An
attack on a sensor node may provide the adversary with some control over
information associated with the node’s location. This may allow the ad-
versary to observe an object (such as a human), but will not directly reveal
sensitive information about it.

• Network scale In a sensor network, the number of nodes is usually very
high, and so is the density, leading to some inherent redundancy. Taking
control over a single node will not even allow the adversary to completely
control the data flow in some area. Also, only the small fraction of the
total network traffic passing through that one node will be revealed to the
adversary. Ad hoc networks are usually smaller, and the significance of
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a single device is much higher. For example, if the adversary has taken
control over one device, it may allow him to compromise all the sensitive
communication that takes place within a closed group.

We conclude that the motivation for an attack on a device in both network
types is rather different: In an ad hoc network, the target of an attack is the sen-
sitive information accessible through a personal device. Additionally, a single
attacked device may reveal information about the whole network of which the
device is a member. In a sensor network, control over one node provides access
to information associated with a location, but only limited information about
the overall network. Thus, a substantial attack on a sensor network will usually
not be restricted to a single node.

2.3.2 Personal Area Networks

A personal area network (PAN) is comprised of devices that are associated with
the same (human) user. They are specialized for different tasks and often work
collaboratively to provide some service to their user. A simple example would
be a mobile phone and a headset that are linked through a wireless Bluetooth
connection. This simple network may become more complex if a PDA is added
that is equipped with both Bluetooth and WLAN. The headset could then be
used not only for GSM calls with the phone, but also for Voice over IP calls via
the PDA. Also, the user may update her addressbook in either the phone or the
PDA, as the devices are able to synchronize their databases.

Other device types are available or may become open to personal area net-
working in the future, such as medical sensors for monitoring health param-
eters, the numerous sensors and actuators in a car or home, and all sorts of
wearable devices that are equipped with computing and communication capa-
bilities, such as glasses and clothes [118].

From a security point of view, such PANs should be largely closed to the
outside world. There may exist well-defined interfaces to other networks, such
as the mobile phone or the Internet connectivity of a PDA. But, for example, a
heart rate sensor should not be globally accessible through its own IP address.
This kind of isolation is manifest in the Resurrecting Duckling security pol-
icy [171], where devices are coupled and configured through a powerful master
device (the “mother duck”). Access to a device is possible only if allowed by
the master device (and possibly after some user interaction).

Sensor networks and PANs have some commonalities, and a (small-scale)
sensor network may even be part of a PAN, for example as sensors built into
clothing. A sensor network may be considered a closed group similar to a
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PAN, both being controlled through a master device (base station). However,
they also show some differences in detail. For example, network organization
is static in a PAN, governed by the capabilities of the devices, which are hetero-
geneous in nature, while the homogeneity and failure rate in a sensor network
demands a flexible and dynamic organization. Generally, PANs are similar to
ad hoc networks (with a single user), thus the issues discussed in the previous
subsection apply to them as well.

2.3.3 Peer-to-Peer Networks

Peer-to-peer overlay networks have become a convenient infrastructure for con-
structing application-level networks based on the Internet infrastructure. They
are being used for file storage and retrieval, media distribution, and informa-
tion exchange [134]. Generally, all participants are regarded as being equal.
The major threats in these networks originate at the social level, similarly to
user-level ad hoc networks. An additional difficulty comes from the fact that
the participants in a peer-to-peer network are largely anonymous. This allows
misbehaviour on all technical and social levels without the danger of retribu-
tion. To overcome the implications of this, reputation systems have been intro-
duced [55, 121].

Although peer-to-peer networks are built on top of the Internet, which al-
lows arbitrary connections between nodes, they introduce a separate address
space for the management of meta-information. By binding information to
these addresses, for example using distributed hash tables, a node storing a
specific piece of information can be found more easily by navigating within
this address space (see [173]). Large amounts of data are, however, transferred
through Internet-level point-to-point connections.

Peer-to-peer networks are often considered as social networks, as the re-
sources for their operation are provided by users with similar interests. The
self-organization of these networks is considered their great strength, as cen-
sorship is virtually impossible and large numbers of faulty nodes can be toler-
ated. However, as there are no means for quality assurance and user authenti-
cation (unless some repudiation system is introduced, which puts newcomers
at a disadvantage), peer-to-peer networks may be overloaded with meaningless
information and exploited by “leechers”, i.e. users who draw large profit from
the network but do not contribute own resources.

Sensor networks are not prone to these socially motivated threats, as there
is a single operator controlling all network hosts. Access to the network’s re-
sources is subject to access control. New nodes are only deployed by the same
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operator (or with her permission). While peer-to-peer nodes draw most of their
utility from being open to anybody, sensor networks are under centralized con-
trol.

The application areas for both network types are quite different. Peer-to-peer
networks manage arbitrary data, while sensor networks are tightly bound to
their deployment area. The architecture of peer-to-peer networks allows them
to introduce distributed redundancy for storing data. For example, CAN [150]
assigns multiple nodes to a piece of information. In contrast, sensor nodes
are closely bound to their geographical location. Obtaining current informa-
tion about a specific area is only possible through nodes that are located in that
area. An adversary who wants to disable access to a specific piece of informa-
tion in a peer-to-peer network would have to either disable multiple, randomly
distributed Internet hosts (which can be considered hard) or pose as multiple
identities, thereby drawing all replicas of the data item to himself (which may
be easily possible). In a sensor network, he would have to take control of a
number of sensor nodes within the respective area.

Despite their differences, both network types share a number of properties,
such as self-organization, homogeneity, and distribution. As noted in [157],
there seems to be some potential for many techniques being applicable in both
architectures. As an example, we refer to the discussion of interleaved authen-
tication in chapter 6, which will be considered in both contexts.

2.4 Related Device Types

Small, embedded computers are commodity products today. According to [76],
95% of all microprocessors being sold are embedded microprocessors. The dif-
ference in performance between them is huge as they range from 4-bit to 32-bit
processors. There is a wide range of specialized designs already available, and
often microcontrollers are designed and manufactured for specific purposes.
Today’s prototypical sensor node designs are based on general-purpose con-
trollers and usually placed somewhere in the middle of the performance range.
In this section, we give a brief overview of commonly used embedded micro-
processors and compare them with those used in sensor networks.

2.4.1 Smartcards

Smartcards are security tokens commonly used for authentication, e.g. as Se-
cure Identity Modules (SIM) in mobile phone networks [184], and for creating
digital signatures [162]. They have no own power source but can only be used
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in conjunction with a reader device, which often also provides a user interface
(keypad). The most important feature of smartcards is their tamper-resilience.
This allows to store secret information, such as a cryptographic key, within the
smartcard’s memory with a minimal risk of disclosure even if an adversary ob-
tains the smartcard. A smartcard has a well-defined interface through which
its functionality, and therefore the stored secret, is accessible. This interface
requires proper authorization by the user, such as entering the correct password
(PIN).

Tamper resistance against all classes of attackers is impossible to achieve. If
one is willing to invest enough resources, extracting the secret from a smartcard
is possible as has been shown through successful attacks [6]. The goal there-
fore is risk minimization when deploying smartcards. For current applications,
the risks seem acceptable, as the widespread use of smartcards shows. Other
applications, however, seem to be hampered by security issues. The problem
here is not the smartcard itself but its connection to a backend system, which
boils down to the question, how can the user be sure to be connected to the right
system, and who else has access to this connection? This problem is usually
addressed by trying to establish a trusted path between the user and the backend
system. This is a hard problem as was recently shown practically by exploiting
the fact that smartcards often accept the PIN only in cleartext, which makes it
possible to intercept the PIN through a specially crafted smartcard reader [4].
This violates the trusted path between the user and the smartcard.

Sensor nodes are hard to protect against tampering, due to their deployment
in openly accessible locations and tight cost constraints. Thus, the security
of a sensor network should not depend on the integrity of single nodes. Even
if a network is under (not too heavy) attack, the risk of using it should be
acceptable. Of course, if too many nodes are compromised and the attacker
gains control over large parts of the network, relying on the results delivered by
the network would become dangerous.

In contrast to sensor nodes, smartcards are dedicated devices with special-
ized functionality. Their programmability is limited. A smartcard “applica-
tion” is usually defined by a set of files accessible from an application running
on a host to which the smartcard reader is connected to. The SIM Applica-
tion Toolkit is an exception in that it also allows the execution of code on the
smartcard itself [1].

It is obvious that the usage patterns of sensor nodes and smartcards are fun-
damentally different. While a smartcard is associated with a single user, per-
forming security-relevant actions on behalf of this user, sensor nodes operate
autonomously in large clusters, obtaining sensoric input from their environ-
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ment and performing arbitrary, distributed computations. Although their com-
putational power is on a similar level, both device types are used for different
tasks.

A combination of both concepts could have some potential. A tamper-
resistant component could be included in a sensor node design. This com-
ponent would be responsible, e.g., for storing secret keys and performing cryp-
tographic operations. It could also act as a “supervisor” for the programmable
part of the node, thus helping to detect intrusions and to recover from them [174].

2.4.2 RFID

Radio Frequency Identification (RFID) is a technology for object tracking. An
RFID tag is a small label made of a logic circuit and an antenna. The com-
plexity of such logic circuits ranges from very simple, such as a 1-bit storage,
to quite complex, for example implementing the functionality of a smartcard.
Reader devices communicate with these tags wirelessly. These readers also
transfer energy to the tags through an electrical field. This allows the tag to
perform complex calculations, such as executing a challenge/response protocol
for authentication, or verifying a password. The tags are completely passive
and can only operate when triggered by a reader device.

By placing reader devices at important checkpoints, tagged objects can be
tracked during transportation, or their presence can be verified, for example
in a warehouse. As RFID tags become cheaper, they become more available
to mass deployment. It is anticipated that they will eventually replace the bar
codes that are found on most items today.

The most important difference to sensor networks is the fact that RFID tags
can not communicate with each other but only through a dedicated infrastruc-
ture. Thus, RFID tags do not operate autonomously and in a self-organizing
manner. However, from an application’s point of view, sensor nodes and RFID
tags may be treated in a similar way. Both device types may be temporarily
disconnected, they both carry information about their environment (in the case
of RFID tags, this would be comprised of the object the tag is attached to), and
they both have limited computational capabilities.

RFID devices can be functionally similar to smartcards and are therefore
suitable for many security purposes, for instance as access keys. They offer
convenient use through their contactless interface. There also seems to be some
potential for them in anti-counterfeiting systems [126, 169].

RFID technology has been heavily criticized for endangering people’s pri-
vacy as an increasing number of consumer goods and other items such as pass-
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ports are being tagged. Since RFID tags can be accessed through a concealed,
wireless connection, people can be potentially tracked using the tags that are
embedded in their clothing and other personal items. By associating the identi-
fiers of RFID tags with the identity of a person, this person can be recognized
whenever one of the tags is detected. This leads to even better tracking capabil-
ities than with biometric recognition techniques, as not even physical contact
or a good view on a person is necessary for recognition.

Consequently, there are different views on RFID security. The first is from
the system operator’s point of view, where RFID tags are used as authentication
tokens. Here, security concerns exist regarding the clonability of tags, or other
manipulations that would yield illegitimate authorization. Also, the channel
between the reader device and the tag is a potential target for attacks. These
security issues are equivalent to those concerning the use of smart cards. As
the circuitry of an RFID tag is often much simpler than that of a smart card,
novel techniques are researched that offer certain security guarantees.

The second view on RFID security regards the tag itself as a risk as it allows
identification, and thus poses a potential threat to privacy. It is therefore crucial
to restrict access to the tag in such a way that the user has to agree on its
use before it can be accessed. For passports, this may be achieved by using a
metallic cover that shields the tag as long as the passport is closed. Another
approach is the use of a key that is required to access the data stored on the
RFID tag. This key can be determined from the optically readable data that is
printed in the passport (personal data of the passport holder, passport number).
Thus, a reader device with optical access to the passport can also read the data
from the RFID tag [67]. Whenever the passport is handed to somebody, for
example a customs officer, the right to access the RFID tag is implicitly granted.

2.4.3 Embedded Computers

As mentioned above, embedded microprocessors make up for the majority of
all microprocessor sales. It is estimated that on average a household in the U.S.
owns approximately 60 microcontrollers [76]. Most of these computers are not
networked in any way. They simply function as controllers for their containing
device, for instance a car engine or a washing machine. Making such devices
connected to their environment to other devices has just been started. One such
example is the registration of trucks on highways in Germany for road billing,
where so-called “on-board-units” that are installed in trucks communicate with
by-road stations for automated billing and can also be queried by mobile check-
ing teams [29].
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It is expected that with the emergence of ubiquitous computing, embedded
systems will become more widespread as the costs for hardware are decreasing
and integration becomes easier with novel materials. In order to make full use
of such a large number of embedded computers, they will be able to connect to
each other and their environment. It can be expected that through the increased
utility they provide, these systems will then also be used in security-relevant
applications. Thereby, these devices will carry sensitive information and thus
must be protected against abuse. At least, user interactions with them are likely
to be recorded and can be tracked, which may violate a user’s privacy.

The main difference between embedded computers and sensor networks is
that the integration of a sensor node to its environment is usually not very tight,
while an embedded computer implements a significant part of the functionality
of the object in which it is embedded. An embedded system does not have to
operate autonomously but may make use of the resources provided by the con-
taining object. For example, the above mentioned on-board-units act on behalf
of trucks in the context of road pricing, and are also powered by these trucks.
In contrast, a sensor node should function independently from its environment,
since its main task is to monitor the environment without being intrusive. How-
ever, the borders between these two concepts are becoming blurry in applica-
tions such as “smart tagging” (cf. [167]) where sensor nodes are being attached
to physical items. The task of a node here is to monitor the context of a spe-
cific item, thus both entities are becoming closely coupled. As the underlying
technologies are similar in both cases, sensor networks eventually have to be
considered as a special case of networked embedded systems.

Maintaining the security of an embedded system is a challenging task since
such systems incorporate features from two worlds, namely those of power-
ful computers being responsible for critical functionalities, and those of au-
tonomously operating devices with limited application scope. The first char-
acteristic requires the application of security mechanisms that are also being
applied in desktop or server-oriented computing, which are resource-intensive
in terms of computing power as well as development and maintenance effort.
On the other hand, the second characteristic requires freedom of administra-
tive overhead and cost minimization. Achieving these opposing goals is ob-
viously not trivial. Additional security requirements of embedded systems are
discussed in [97], which include their energy constraints and the context of de-
veloping embedded systems. Digital Rights Management is also an issue for
embedded systems handling protected content [135].

The application space of sensor networks is very constrained, so many se-
curity issues for general embedded systems are mostly irrelevant. However, in
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both cases devices are potentially exposed to attackers. Tamper resistance (or
tamper evidence, if sufficient) is therefore a major requirement for their secu-
rity [95, 151]. The research focus in sensor networks, including security mech-
anisms, is mainly governed by the assumption that resources are very tightly
contrained and replenishing the energy source is often not possible. In contrast,
embedded computers are usually adapted to and integrated with their applica-
tion environment, which is often of a technical nature where a power source
is available and where regular maintenance is performed. Therefore, existing
security mechanisms can often be adapted to the special requirements of em-
bedded systems, while novel mechanisms are needed for sensor networks.

2.5 Sensor Network Models

2.5.1 The Geometric Model of Sensor Networks

It is common in the literature to represent the topology of a sensor network as
a graph in the plane, where vertices represent sensor nodes, each at its distinct
location, and an edge exists between two vertices if the respective nodes can
communicate over a (wireless) link. For simplicity, it is often assumed that
these links are symmetric, and that the communication range is equal for all
nodes. Usually, the deployment model for sensor networks is assumed to be
random, i.e. nodes are randomly distributed on a plane within a constrained
area, e.g. a square or a circle. Most often, a uniform random distribution is
assumed. This distribution makes the least assumptions about the real-world
deployment and thus one can hope that this model provides useful information
about a large class of real-world networks. Although these assumptions are
stretching the practical properties of sensor networks, they provide a useful
abstraction for performing calculations and simulations on such networks.

For this random geometric graph model, there exists a large body of theo-
retical work, which is comprehensively presented by Penrose [140]. One of the
most important aspects is the connectivity of such graphs. In a wireless net-
work, it is desirable that all nodes are contained in one large connected compo-
nent of the network graph. This means that there exists a path between every
pair of these nodes. Isolated nodes, or small connected components, are unde-
sirable since these nodes are not able to collaborate with other nodes, and it may
not be possible for them to communicate with a base station. Bettstetter [18]
evaluates the conditions under which a wireless network is connected with high
probability. In particular, the required transmission range is derived for a given
density (number of nodes per area unit), and, vice versa, if a transmission range
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is given, the required density can be derived.
In this work, we assume a pragmatic view of wireless networks. Avoid-

ing isolated nodes is not a prerequisite. In sensor networks, we can assume a
very large number of nodes but also a significant failure rate. This means that
with high probability, sooner or later there will be node failures resulting in the
isolation of other nodes. To avoid this, or at least prolong the connectedness,
more nodes have to be deployed on the same area. However, the protocols we
are presenting still work within a connected component even if that component
comprises only a small fraction of all network nodes.

2.5.2 Small-World Networks

General random graphs [27], which are not restricted to a two-dimensional
plane, are often used for modelling relationships between real-world entities,
for example in “small-world” social networks [191]. The latter networks are
characterized by a strong connectivity within a neighbourhood of nodes and
a sparse overall connectivity, but nevertheless short paths between any pair of
nodes. The strong connectivity within a neighbourhood is represented by a
large clustering coefficient, which is defined as the probability that two nodes
having a common neighbour are connected themselves. Few long-range con-
nections between nodes not having a common neighbour are sufficient to guar-
antee short path lengths between any pair of nodes. In practice, these short
paths are often hard to exploit efficiently, as the long-range connections may
not be known.

Small-world networks cannot be directly applied for describing the commu-
nication relationships in common wireless networks. Neighbourhood in such
networks is prescribed by the spatial proximity of nodes. Long-range connec-
tions cannot be established due to the limited range of wireless communication.
However, there are two approaches of introducing small-world characteristics
into wireless networks. The first one is to establish long-range communication
links by introducing additional communication paths, for example by introduc-
ing a few pairs of nodes with a wired connection between them [41] or by
attaching wires to the sink [166]. This approach is often prevented in practice
by the deployment model, such as aerial deployment. It also introduces het-
erogeneity as wired nodes have to deal with more load than other nodes and
therefore require additional energy sources. From a security perspective, such
nodes offer a more valuable target for attacks than ordinary nodes.

The second approach to introduce small-world characteristics does not af-
fect the physical level but is only carried out in a virtual manner. Node pairs
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are associated logically, for example on the application level. This association
involves either simply introducing the nodes’ identities to each other or estab-
lishing a pairwise key, for example. Shortcuts of this kind can be helpful in
reducing the communication path lengths, and therefore cost, as shown in [79],
where service discovery is proposed as an application area. Gathering infor-
mation through shortcuts is more efficient as fewer nodes are involved in the
process. This “wiring” on the logical level has the advantage that no physical
changes to the network are necessary, and therefore much more shortcuts can
be introduced at minimal costs.

2.5.3 Fundamental Properties of Sensor Network Graphs

We give a brief overview over some fundamental concepts in wireless sensor
networks. These concepts will be used when security properties of networks
are analyzed, and they serve as a guidance for generating simulated network
models. They are useful, for example, to guarantee that a simulated (i.e., ran-
domly generated) network is connected with high probability.

We assume that the sensor nodes are uniformly distributed on a plane sur-
face. The communication radius is constant. It is assumed to be independent
of the location or the neighbours of a node, nor are environmental interferences
taken into consideration. Also, nodes do not adapt their transmission power.

We generally disregard so-called “border effects” as they do not significantly
affect our results. Every realistic deployment area is constrained. Nodes that
are located close to the border of the deployment area have, for example, fewer
neighbours than nodes that are further away from the border. Thus, there will be
a certain error if such a formula is applied within a realistic context. An analysis
of these effects can be found in [19]. In simulations, we are generally able to
neutralize border effects by considering nodes that are located far enough from
the border only. For a square deployment area with side length w, for example,
we might consider only nodes that are located within the square defined by
(R,R) (top-left corner) and (w−R,w−R) (bottom-right corner) where R is the
communication radius of the nodes.

Nodes may be regarded to have different “value” depending on whether they
are inner nodes or outer nodes. From an application’s perspective, nodes close
to the border are generally less valuable to an application than inner nodes.
This assessment is based on the observation that outer nodes are less densely
connected and are therefore involved in fewer conversations than inner nodes.
From a security point of view, outer nodes may be very important since they
may be the first ones to observe an attack. If the WSN deployment area is
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inaccessible, the outer nodes might also serve as communication entry points
into the network. Thus, it might be worthwhile to provide them with extra
protection.

Density

Let A be the size of the deployment area, and N be the number of nodes, i.e. the
size of the network. The density is defined as number of nodes per unit area:

ρ =
N
A

Neighbourhood

Let R be the uniform communication radius of nodes. The expected number of
directly reachable (or 1-hop) neighbours is

d = d1 =
πR2N

A
.

This is, exactly speaking, only true for nodes that are located far enough from
the border of the deployment area as mentioned above. The same is true for the
expected number of neighbours reachable within k hops, which is:

dk =
π(kR)2N

A
.

Path Lengh

On a unit square, the longest path can be expected to be approximately
√

2
R

if the nodes are sufficiently densely distributed as that many hops are required
to span the distance from one corner to the opposite corner. In a less dense
graph, we can expect that the longest path will not be as straight and therefore
be slightly longer.

A disk of size A has a diameter of 2
√

A/(2π). Therefore, the longest path
can be expected to contain

Lmax =
2
√

A/(2π)
R

hops.
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In real-world deployments, the covered area is unlikely to be a regular shape.
Deployment planning must take into consideration several parameters, such as
the connectivity of the network and coverage. There is no general upper limit
on the path length in practice, but for a given application, the maximum path
length is usually known or can be approximated.

Connectivity

According to [18], for a network with n >> 1 nodes and a homogeneous node
density ρ (nodes per unit area), all nodes are connected to the network with
probability p, if the radio range r0 of all nodes is

r0 ≥
√
− ln(1− p1/n)

ρπ
. (2.1)

If a minimum node degree dmin of at least n0 is desired, the following equation
is applicable:

P(dmin ≥ n0) =

(
1−

n0−1

∑
N=0

(ρπr2
0)

N

N!
e−ρπr2

0

)n

(2.2)

It gives the probability with which random variable dmin is above the threshold
n0.

Example Topologies

Figure 2.1 shows examples of sensor network topologies. These are simple
prototypes of real-world deployments. Most of them are regular shapes that
are unlikely to occur in practice, but are useful for quantitative evaluations.
Figure 2.1(b) is intended to resemble the streets around a house block, which
is a possible application area for sensor networks. The U-shape of figure 2.1(c)
might serve as a model for a floor in an office building.

It has to be noted that the fundamental qualitative results in this work are
not affected by the actual topology being used. However, for simulation-based,
qualitative evaluations, certain topologies have to be selected in order to pro-
vide a variety of results that provide a foundation for further assessments.

2.6 Simulation of Sensor Networks

2.6.1 Applications of Simulation

Testing an hypothesis about the properties of a system is ultimately only pos-
sible by examining the real system itself. However, relying on this method has
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Sample network topologies
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severe drawbacks:

• For an artificial system under consideration, this system has to be built
first before it can be studied, which is costly and time-consuming. Fur-
thermore, testing an hypothesis may require to destroy the system, so it
has to be built several times in order to fully analyze it.

• For natural systems, there exist similar problems, which are even more se-
vere. There may exist only one instance of the system under consideration
(e.g., the Amazonian rainforest, or the global climate), so testing certain
hypotheses, which may have harmful or catastrophic consequences, is im-
possible.

• The act of observation often influences the results of an experiment.

For these reasons, certain properties are best studied by examining an abstract
model of a system, not the real system itself. The two major model-based ap-
proaches are analytical methods, where results are formally derived from initial
assumptions, and simulation. A simulation is a trace of a system’s behaviour in
terms of an abstract model of this system.

Simulation as become an important tool when building a new type of sys-
tem, such as a new type of car, airplane, or computer system. Before an actual
instance is being built, several models are constructed first, which reflect cer-
tain properties of the final product. At the same time, other properties are not
reflected in the model, which are considered irrelevant for the specific hypothe-
sis at hand. Thus, a model is an abstraction of the real system. For example, in
order to study the user acceptance of a new software system, it is important to
provide the “look and feel” of the proposed system together with some means
for interaction, but it is not required to implement all underlying databases, net-
works, storage systems etc. The critical point is to make sure that observations
on the model can be carried over to the real system. Only then it is possible
to obtain knowledge about the real system by simulating (certain aspects of)
its behaviour using the model. This is a fundamental limitation when working
with an abstract model: only those properties can be examined that are mapped
in the model.

Simulation, and in general also testing, is an imperfect tool for obtaining
knowledge, since there is always the possibility that some aspect of reality is
not reflected in the model. This could lead to a case where all simulations and
tests are successful, but the real system fails. Of course, this is also true for
analytical approaches when some critical aspect is not reflected in the initial
assumptions. Therefore, all these model-based approaches can only increase
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the confidence in the design of a system, but the ultimate test for success can
only be provided by reality.

Building a test environment for sensor network protocols and algorithms is
a tedious task. Sensor networks are a new technology, there are no off-the-shelf
solutions for any application available today since almost all issues regarding
usability, management, robustness, security, life cycle, and profitability are yet
unsolved. Commercially available products do not seem to incorporate impor-
tant design requirements such as self-organization or small size. Thus, creat-
ing a sensor network installation basically requires designing the system from
scratch, especially when new algorithms and protocols are to be studied. Ad-
ditionally, observing the behaviour of all nodes is difficult in a distributed en-
vironment. Often, nodes have insufficient resources for logging all events over
a long period of time by themselves. An additional, complex infrastructure
would be required to obtain the full data set.

Thus, simulation is an important tool for designing systems based on sensor
networks. This comprises the full range from systems in which sensor networks
are used as external tools, for example for providing contextual information, to
software running inside sensor nodes themselves. Simulating a sensor network,
instead of really building it, makes it possible to study its behaviour indepen-
dently of events occurring in the real world. It saves the effort of building,
deploying, and managing sensor nodes. It makes it possible to closely observe
the behaviour of every single node during a run. Finally, simulation can reveal
the network’s behaviour under a large variety of circumstances, which would
be too numerous to consider in reality.

Depending on the aspect to be studied through simulation, a certain model
of the sensor network has to be constructed. There are two fundamental ap-
proaches to simulating sensor networks. The first is simulating single sensor
nodes as closely to reality as possible, which means that all hardware and soft-
ware components are reflected in the simulation model, often including a de-
tailed model of the communication channel. The second approach abstracts
from the individual behaviour of single nodes, rather considering the network’s
emergent behaviour. Both approaches are considered in more detail in the fol-
lowing paragraphs.

2.6.2 Node-based Simulation

In order to study the design of a new sensor node architecture, a model of
the design is constructed in software only. This allows it to run a large set
of simulated nodes, including their communications, on a single (workstation-
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class) host, which makes it easy to reconfigure the nodes and run a wide range
of tests in a completely automated manner with minimal effort.

An important component in a sensor network is the wireless communica-
tion medium being used. The performance and energy demands of a protocol
directly depend on the characteristics of the medium and the communication
interface. It is therefore important to be able to test new protocol designs and
evaluate their costs before they are deployed on actual hardware platforms.
Consequently, there exist sophisticated models of this low level layer that in-
clude characteristics such as radio propagation and interference. The goal is to
reflect the properties of the real communication medium as closely as possible.
For example, simulation environments like OMNeT++ [120], TOSSIM [115],
or ns2 [130] allow for the specification of a model of the wireless channel.
Some predefined specifications are already provided in most packages, which
can be further refined as required. However, all of these models provide only an
imperfect embodiment of reality, so in most works, the results obtained through
simulation are validated by tests on real hardware, usually on a smaller scale
than the simulation.

Node-level simulations encompassing the network stack are useful for eval-
uating the performance and energy characteristics of an implementation. They
can also be helpful for testing whether potential security-relevant flaws exist
in an implementation. Standard security evaluation techniques like penetration
testing [7] and fuzzing [131] are usually applied to real-world implementations.
However, they can also be helpful in uncovering vulnerabilities in the design
of network protocols or system designs when they are applied to formal sys-
tem models [168] or during simulations. In these cases, it is important that
all relevant properties of all components of a network node are reflected in the
underlying abstract model.

Security evaluations in this fashion study the security properties of single
nodes. They assume an external attacker, i.e. some entity that is able to send
messages through the communication channel. In reality, this could be some
existing node that is compromised by the attacker, or some additional device
through which the attacker is able to simulate a legitimate party. Depending
on its actual manifestation, the attacker may have certain abilities that exceed
those of the legitimate participants, such as excessive computational or trans-
mission power. Usually, the attacker model proposed by Dolev and Yao [57] is
assumed. This model represents an external attacker that has full access to the
communication channel being used by legitimate participants. This means that
the attacker can read all exchanged messages and inject own messages, as well
as intercept messages and drop them. The attacker’s computational abilities are
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assumed to be superior. This allows it to evaluate the security of an entity (or a
set of communicating entities) facing a powerful attacker. If no vulnerabilities
can be found during a test of an entity, or even a proof of their absence can be
found, this provides strong evidence of the entitiy’s security.

2.6.3 Network-based Simulation

A network-based simulation is completely independent from implementation
details. Nodes are modelled declaratively, i.e. their behaviour is described as
a relationship between incoming and outgoing messages. Messages are never
lost and are delivered instantly. The only characteristic of the communication
medium that is carried over to the model is the limited range of a wireless con-
nection, which determines the connectivity graph. Fluctuations in connectivity
are disregarded, though. These simplifications lead to a static graph model of
the sensor network, where the vertices represent the nodes, and the edges of the
graph mirror the communication links between neighbouring nodes.

A simulation based on this model is executed as a message exchange be-
tween nodes. Some nodes create messages “spontaneously”, meaning we silent-
ly assume that there is a good reason for some node to create a message. This
very reason is unimportant for our results. A message is transmitted over the
(wireless) communication medium. In most cases, we can assume a broadcast
medium, such as electro-magnetic waves. But a directed medium is possible,
such as light. A node that receives a message will either consume the message
or transform it and then relay it to other nodes. The exact operation depends on
the current state of the node. Possible states are, abstractly, correct, malicious,
failed. The fundamental attacker model includes the attacker’s capability to
take full control over all nodes where the attack succeeds (this is what is accom-
plished by a “root kit” for computers connected to the Internet). Alternatives
are possible, for example partial control over a node. Depending on its state,
a receiving node transforms the message and relays it further to one or more
of its own neighbours. This process continues until some node consumes the
message without relaying it. The state of a node influences the transformation
of messages that are going through a node. In our case, the state mainly reflects
whether a node is controlled by the adversary or not. The state remains fixed
during a simulation run.

The major advantage of network-based simulations over node-level simula-
tions is scalability. Network-based simulations allow the simulation of much
larger sets of nodes, since most node-internal details are disregarded. Thus,
the state information being kept for each node is minimal. Also, possible in-
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teractions between nodes, for example radio interference through concurrent
medium access, are not considered. This simplifies the simulation of node pro-
cesses, which can be executed strictly sequentially as interleavings between
concurrent processes do not have to be considered. This allows the simulation
of sensor networks on a much larger scale. A direct comparison between dif-
ferent simulation environments shows that network-based simulation is able to
handle at least two orders of magnitude more nodes than node-level simula-
tion [98].

In contrast to node-level simulation, simulation on the network level is more
appropriate for evaluating and testing algorithms and protocols on a higher,
more abstract level. This shifts the focus from implementation details to a
global view, which is more appropriate for studying aspects such as collabora-
tion, accuracy, correctness, failure tolerance, and security on a network-wide
level. For example, Michiardi and Molva [123] study, by network-level simu-
lation, the impact of malicious node behaviour on routing quality in mobile ad
hoc networks. Their metrics include the fraction of dropped packets as well as
delays.

In summary, we regard network-level simulation as an important tool in the
following areas:

• Testing algorithms and protocols in large-scale networks during the de-
sign phase. Algorithms can be specified on an abstract level without the
obligation of giving an implementation for a concrete platform. The en-
vironment is idealized, but the effects of natural disruptions, such as con-
nectivity fluctuations, can be modelled if necessary.

• Studying emergent properties of large-scale networks. Certain properties
emerge only from the interactions of a large number of nodes. They are not
necessarily anticipated during the design phase, but could be uncovered by
simulation done in an early phase.

• Validation of security assessments. The security of single nodes does not
necessarily imply the security of the overall network. It is therefore impor-
tant to provide means to establish security properties on a network-wide
level. This is the most relevant point throughout this work.

2.7 Security Requirements

A number of general security vulnerabilities of sensor networks can be identi-
fied, such as in the transmission of messages, on the routing layer, or regarding
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physical node capture. Depending on the anticipated attacks, these vulnerabil-
ities may become security threats. It is therefore important to formulate the
requirements that can help to avoid these (potential) threats. Here, we give an
overview of the building blocks of sensor network security.

2.7.1 Message Transmission

A message sent from one node to another one should not be susceptible to
manipulation or eavesdropping by an attacker. On the link layer, this can be
achieved by encrypting and authenticating messages in transit. The necessary
keys can be agreed upon when the wireless link is established. However, at
that stage this procedure is vulnerable against man-in-the-middle attacks in the
following way: As soon as the adversary detects a communication between two
nodes, he intercepts the initiating message being sent by one node while at the
same time jamming the other node’s radio interface. He then sends his own
initiating message to the second node. This results in both legitimate nodes
having a “secure” link with the adversary.

To avoid this attack, some kind of entity authentication is required. This
problem is prevalent in all wireless networks. Bluetooth, for example, requires
a pre-authentication stage, called “pairing”, where devices are introduced to
each other through a common password. Here, authentication is mutual, as
both devices are “convinced” that they are connecting to an authorized peer.
The IEEE 802.11i [141] standard for WLAN security prescribes client au-
thentication towards an authentication server before network access is allowed.
Here, neither the network access point nor the authentication server need not
authenticate themselves to the client, which leaves the opportunity for network
spoofing.

Sensor nodes need to be sure that other nodes they are communicating with
are legitimate participants in the network. This requires not necessarily the
verification of another node’s ID, but merely its membership in the group of le-
gitimate nodes. It should be ensured through a light-weight process, preferably
without the help of a base station acting as a trusted third party.

One solution is provided by the key predistribution schemes discussed in
chapter 4. Each node is provided with a set of keys selected from a key pool.
A node can verify the legitimacy of another node by challenging one of these
keys that both nodes have in common. If public-key cryptography is available,
signatures can be utilized for authenticated Diffie-Hellman key exchange.

Yet another solution may be possible in certain deployment scenarios. A
valid assumption could be that for a short period after deployment, the sensor
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network is not under attack. Thus, there exists a short time window during
which key material can be exchanged as plaintext. This essentially replaces
authentication by a (temporarily) secure environment.

Link-level security is, however, only effective against outsider attacks. A
message that is transmitted over multiple hops is easily compromised if its path
includes a malicious node. Therefore, a mechanism to set up end-to-end secure
connections is desirable. However, this requires a means to establish a shared
key between the endpoints of a connection, which turns out to be challenging
in sensor networks. This problem is further discussed in section 3.4.

Sometimes, messages need to be delivered network-wide, for example code
or configuration updates. Such messages originate preferably at a base station
that is trusted by all nodes, and must be authenticated. The µTESLA proto-
col [142] has been designed for authenticated broadcast and is suitable for this
use case.

2.7.2 Routing

Multi-hop routing is a fundamental service in large-scale sensor networks. There
are protocols that are specifically designed to address the needs of sensor net-
work applications. Usually, they do not rely on up-to-date routing tables, which
would be too complex to maintain. Rather, they forward a message based on
features of the message itself, or they set up paths on demand.

One important class of such protocols provide data-centric routing. They
are either demand-driven, where a node that is interested in a certain type of
events announces its interest and thereby pulls messages towards itself [86], or
event-driven, where a message source announces the availability of messages
of a certain type [31]. A path is then established between source and receiver.
Another important class are geometric routing protocols [91, 100, 149, 201].
They rely on nodes knowing their and their neighbours’ position in a real-world
or virtual coordinate space. Messages are routed according to a target location
without the need of setting up a path.

A routing protocol ensures that messages reach their target. Attacks on the
network layer, where routing functionality is located, aim at diverting or sup-
pressing messages. This can lead to unauthorized data disclosure, missing crit-
ical events, energy exhaustion, or event triggering at undesired locations. A
secure routing protocol must be resilient against such attacks.

Karlof and Wagner [90] have identified a number of ways to attack routing
protocols designed for sensor networks, and propose countermeasures. These
include link-layer encryption and authentication, multipath routing, identity



44 Chapter 2. Wireless Sensor Networks and Their Security

verification, and broadcast authentication, which are able to protect against
most attacks. Sinkhole and wormhole attacks are hard to defend against. A
sinkhole attracts messages and prevents them from reaching their target. A
wormhole is a shortcut through the network (an external low-latency link) that
can be used to mount sinkhole, selective forwarding, or eavesdropping attacks.
Data-centric routing protocols are vulnerable against these attacks since a path
is established between the source and the receiver of a message. By offering su-
perior routing properties (low latency, high energy resources), a node under the
adversary’s control can influence the establishment of these paths. Geographic
routing protocols are less vulnerable to these attacks. For example, a wormhole
could deliver a message to its intended target prematurely, which is hardly a
violation of security. Assuming that the target address is included in a mes-
sage and cannot be changed by the attacker, a node that receives that message
through a wormhole but is not located at the target address itself would simply
forward the message towards its actual target location. This changes the path
the message travels, which may or may not be a security violation depending
on the application context.

2.7.3 Access Control

Many sensor network applications deal with sensitive or commercially valuable
data; queries are disseminated through the network, triggering nodes to activate
their sensors and transmit data; actuators are triggered by control commands.
All these actions are significant with regards to the (commercial) operation of
the sensor network, and its interaction with its environment. Illegitimate use
may have harmful consequences. Therefore, access to a sensor network should
be restricted to authorized parties.

Access control plays an important role in ensuring the confidentiality and
integrity of sensor network data, as well as the safe operation of a sensor net-
work. Thus, an effective access control mechanism is required, preferably im-
plemented in a distributed manner in order to allow arbitrary entry points into
the network. This avoids the use of a centralized entitiy that acts as a single
entry point, thereby constituting a single point of failure, and a performance
bottleneck.

The access control mechanism should still be effective when the network is
being attacked and some nodes have been compromised. Such a robust frame-
work for access control in sensor networks is described in [17], where a certain
minimum number of nodes have to agree in order to authenticate a principal
requesting access. This avoids that a single, compromised node is able to grant
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access to an illegitimate user.
A simpler approach to access control would be the use of a globally shared

key for encrypting all traffic, which is regularly updated in order to provide
backward secrecy. Such an approach is described in [13]. It protects against
eavesdropping by outsiders, but would not help in case there is at least one
node being compromised by the adversary. The underlying adversary model
is fundamentally different from the one assumed in the previously described
framework, but it is much easier to implement. Of course, there is no universal
mechanism that can be applied efficiently in all cases. Eventually, the appli-
cation scenario determines the appropriate mechanisms required for providing
access control.

2.7.4 Data Aggregation

One of the main tasks of sensor networks is data aggregation, i.e. the combina-
tion of data gathered by various sensors into a single value that is meaningful
within the application context and represents the monitored state as accurately
as possible. This process must not only be robust against random errors, which
are likely to occur, but also against malicious nodes reporting intentionally fal-
sified sensor data.

Generally, it is not feasible to detect whether a sensor reports the data it has
obtained from its sensors correctly, as this would require a second sensor node
that performs the same sensor readings. Due to the high redundancy in a sensor
network, it would seem likely that in most cases, there would be sufficiently
many nodes close to any other node. However, there are two reasons that argue
against such a solution. The first ist cost. Keeping all nodes actively monitoring
their environment all the time depletes the energy sources of all these nodes. It
would be more desirable to exploit the redundancy for extending the lifetime of
the network, replacing depleted nodes with others that have saved their energy.
The second reason is that the adversary who has managed to compromise one
node is likely to be able to compromise, or at least disable, the nearby nodes
as well. These would then rather support the falsified readings of the first node
than dispute them.

If some correlation can be assumed between the sensor readings of nodes
within a certain area that goes beyond the immediate reach of the adversary,
nodes may still monitor each other’s readings and report gross aberrations. If
a node constantly reports data that is inconsistent with its neighbours’ read-
ings, it might be expelled from the network. However, such a mechanism must
be careful not to miss important events whose patterns may be misjudged as
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falsified data (false positives in the sense of an intrusion detection system).
Existing approaches for securing the process of data aggregation [146, 186]

aim at minimizing the error that may be introduced by a fraction of malicious
nodes. Additionally, the data reported by aggregating nodes may be rejected if
it is discovered that the underlying raw data is inconsistent with the aggregaded
value. This verification can be performed by sampling a small portion of the
raw data.

2.7.5 Location Verification

In most sensor network applications, it is of importance not only what phe-
nomenon, but also where it has been detected. When the location is reported
incorrectly, responsive actions may be misguided. This not only wastes re-
sources but also leaves the location where the phenomenon actually occurred
unattended. A malicious report with a falsified location can thus inflict heavy
damage.

A solution to this problem is the verification of the location of the reporting
node. If the reporting node has to convince other nodes that it is indeed located
at the reported location, it is much less likely that a falsely reported location is
being accepted.

A technique for location verification is proposed in [158]. It assumes that
the location verifier and location prover can communicate via a radio interface.
Additionally, the prover has to generate an ultrasound signal which the verifier
receives. First, the prover announces to the verifier through the radio interface
its distance from the verifier. The verifier then sends a nonce to the prover (also
through radio) which is immediately reflected by the prover on the ultrasound
channel. If the roundtrip time of the nonce is within appropriate limits, the
verifier can safely assume that the prover is within the the announced range.
Through triangulation using multiple cooperating verifiers, the exact position
of the prover can be determined.

A different approach for distance bounding, which is based on a single
communication channel that could be radio-frequency or optical, is described
in [77]. It demonstrates that distance bounding is achievable at quite low cost.
Its usage in wireless senos networks thus seems feasible. However, the ap-
proach as described relies on an asymmetric architecture as it is intended for
RFID tags or contactless smart cards. The verifying node (RFID reader) carries
a much larger burden than the node (RFID tag) proving its location. In addition,
several constraints, such as ultra-wideband, are imposed on the radio channel.
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2.7.6 Intrusion Detection

The impact of an attack can be greatly reduced if it is detected as early as pos-
sible. Intrusion detection systems (IDS) have therefore grown to major security
tools in Internet networking. Their purpose is to detect patterns in system be-
haviour that indicate malicious activities by both outsiders and insiders. There
are two basic types of intrusion detection systems. The first one is host-based,
i.e. activities on a host are monitored for anomalous patterns (work in this area
goes back to [50]), e.g. extensive resource allocation or suspicious system call
sequences. The second type is network-based, i.e. network traffic is monitored
for attempts to exploit weaknesses in the network stack (a popular system doing
that is Snort [156]).

In a sensor network, an intrusion can occur at two levels. Either one or more
sensor nodes have been taken control of by the adversary, or the adversary is
disrupting the sensor network’s operation through external means. The latter
type of attacks can be more easily detected and defended against. If the ad-
versary manages to take control of sensor nodes, however, he gains access to
sensitive information stored on these nodes, e.g. cryptographic keys, and is
able to participate in the network’s operation. If the compromised nodes do not
show obviously aberrant behaviour, they may go undetected. The adversary can
then use them for eavesdropping or subverting the network by injecting false
messages in such a way that these actions will not be appearant to legitimate
nodes.

Host-based intrusion detection is not directly applicable in sensor networks,
as it must be assumed that once the adversary has gained control of a sensor
node, he completely controls all processes running on that node. This would
allow him to disable any intrusion monitoring process. The reason is that an
embedded computing platform, such as a sensor node, does not provide the
required level of memory protection and process separation that is available
on a high-end platform with the appropriate operating system and hardware
support.

It seems that in a sensor network, one has to concentrate on the behaviour
of nodes that is observable by other nodes in order to detect malicious nodes.
Since the functionality of sensor nodes is typically very restricted due to their
computational constraints, it seems feasible to specify legitimate observable
behaviour of sensor nodes on a detailed level. This behaviour includes moni-
toring frequencies, sleep schedules, and communication patterns. An intruder
who wants to make use of the nodes he has compromised would be required to
deviate from these specifications in one way or another, which could then be
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detected by neighbouring nodes.
Legitimate nodes should cooperate in identifying and classifying abnormal

behaviour of their fellow nodes. However, the attacker may not change the
behaviour of the nodes significantly in the beginning, such that neighbouring
nodes cannot detect the intrusion by simply observing the compromised nodes.
This gives the adversary time for compromising even more nodes and then
start a large-scale attack involving many nodes distributed over a large area at
the same time.

In order to detect such intrusions, an active approach is needed such as de-
scribed in [174, 183]. Changing the behaviour of a sensor node requires chang-
ing its program code. As there is only limited memory on a sensor node it is
likely that in order to apply the changes, the old (legitimate) code has to be
erased. Neighbouring nodes can detect these changes by putting out random-
ized challenges that require the challenged node to prove that it possesses the
current legitimate program code. If a node fails to prove it, it could be expelled
from the network, or its program code can be updated by its neighbours. Such
an update mechanism requires that the bootloader part of the sensor node is
kept in a tamper-proof module.

There are similarities between sensor networks and ad hoc networks that are
relevant to intrusion detection techniques [202]. One such similarity is the lack
of a communication infrastructure. As there are no central routers, each node
has to rely on its own audit traces (the network traffic it has monitored over
time) in order to make decisions about possible intrusions. These traces are
limited to the vicinity of a node and therefore provide only partial information.
The limited storage capacity restricts the amount of potential evidence that can
be stored, and the computational power avaialable for evaluating this data is
limited. On the other hand, intrusion detection seems to be easier in sensor
networks as the behaviour of nodes is much more restricted and homogeneous
than in general ad hoc networks.

2.7.7 Intrusion Tolerance

One problem with intrusion detection is that the adversary may be able to adapt
the behaviour of compromised nodes in such a way that their aberrant behaviour
is not classified as such. Thus, these nodes operate seemingly normally and are
able to influence the overall operation of the network.

In order to introduce some level of intrusion tolerance, it is advisable not to
rely on the reports from a single node but instead require some agreement by a
number of nodes before a report is accepted and further processed. A number
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of techniques can be used to achieve this. For example, multiple sensor nodes
may transmit their readings independently to the query issuer, or a consensus
procotol is executed within a cluster of nodes before a report is generated.

Threshold schemes [122] have been proposed [203] in the context of ad
hoc networks, but they are similarly applicable in sensor networks. A (k,n)
threshold scheme (k ≤ n) lets any subset of k out of n principals compute a
function F . Such a scheme has the following general features:

• k elements are sufficient to compute F ;

• no subset of less than k elements can compute F .

This would allow a set of k nodes to collaboratively create a signature of a query
result that can be verified by the query issuer. The issuer would then be sure
that at least k nodes agreed on the result. If there are less than k compromised
nodes, the result has been approved by at least one legitimate node. On the
other hand, as long as there are k non-compromised nodes, the signature can be
generated, providing robustness against denial-of-service attacks.

One problem with threshold schemes is their applicability in sensor net-
works. For the combination of partial results, the individual shares have to be
revealed to a combining service. In a sensor network, this service would have to
be provided by a sensor node. If this node is compromised, the adversary will
learn k shares of legitimate nodes and will thus be able to compute signatures
on his own in the future.

To avoid this, new shares may be distributed after each signature generation,
which is very costly in terms of message complexity. Alternatively, the com-
bination of partial results may be done only by a (trusted) base station, which
requires an additional component in the network architecture.

A better approach may be to introduce epochs, i.e. time intervals during
which the shares are valid. After each epoch, new shares are distributed to all
nodes, and the combination service is migrated to a different node. This limits
not only the complexity for distributing new shares but also the ability of the
adversary to exploit the shares he may have learned through a compromised
node running the service.

2.7.8 Availability

Several factors can reduce the lifetime of a sensor network, for example natu-
rally occurring phenomena such as extreme temperature variations exhausting
the batteries. An attacker could force sensor nodes into frequent retransmission
of messages by selectively inducing errors. Over time, this leads to the failure
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of nodes and eventually in the inoperability of the overall network. Such dis-
turbances may not be easily identified as malicious interferences, and therefore
no effective countermeasures exist. An attentive observer may notice a higher
failure rate than expected, but still the cause may remain obscure.

While battery exhaustion attacks are effective, see [170], they require some
sophistication on behalf of the adversary and are time-consuming. For exam-
ple, the attacker has to match the activity cycle of the victim device. For an
immediate effect, more radical approaches are required, such as the physical
destruction of nodes or jamming the communication channels. However, most
of these attacks can be easily detected by those nodes being unaffected.

For example, if the attacker is jamming a region of the network, nodes within
this region cannot receive messages anymore. However, they will notice that
they are being jammed and may be able to issue messages reporting the attack.
Nodes at the border of the jammed region pick these messages up. They can
then further report the attack to the operator, and they can set up paths for
routing messages around the jammed region such that the operation of the rest
of the network is not affected. If jammed nodes are not able to send anything,
the nodes at the border will have to assume that some of their neighbours have
failed. A geographic routing mechanism will then automatically start to route
messages around that dead area [201, 198].

Jamming and physical destruction of nodes are simple forms of denial-of-
service attacks that can be compensated for if they appear only on a small scale,
i.e. if only a small area is affected. Sometimes, the effects of a denial-of-service
attack can be mitigated if nodes are able to extend their sleep cycle when they
notice that an attack is going on, such that they conserve as much power as
possible. This would make the sensor network inoperable during the attack,
but at least it can continue operation once the attack has ceased. Of course, if
an exhaustion attack is successfully executed on a large scale, affecting large
areas, there is no possiblity to recover other than by deploying new nodes after
destruction.

2.8 Cryptography for Sensor Networks

Cryptography plays an important role in securing networked computer systems.
It provides the basic functionality for protecting the confidentiality, integrity,
and authenticity of messages and data. Here, we present the cryptographic
building blocks that will be important in later chapters. Their main applica-
tions will be key agreement and message authentication. We include a separate
section where general issues in key management are discussed, which will not
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be intensified later.

2.8.1 Hash Functions

A hash function is a mapping from a set of documents of arbitrary length to a set
of hash values, which have a fixed, small size. A cryptographic hash function
h : A→ B has the following properties ([122], ch. 9):

1. For any x ∈ A, the hash value h(x) is easy to compute (in linear time).

2. For any hash value y ∈ B, it is computationally infeasible to find a x ∈ A
for which h(x) = y (one-way property/preimage resistance).

3. For a given x∈A, it is computationally infeasible to find a x′ for which x′ 6=
x and h(x′) = h(x) (weak collision resistance/second preimage resistance).

4. It is computationally infeasible to find any two distinct x,x′ ∈ A for which
h(x) = h(x′) (strong collision resistance/collision resistance).

A hash function produces a small representative (also called fingerprint or
message digest) of an input document of arbitrary size. As the cardinality of
the domain A is greater than that of the range B, the existence of collisions is
unavoidable. However, for practically useful hash functions, it is computation-
ally infeasible to find such collisions. This allows it, for practical purposes, to
identify the output of a hash function with its original input and use it as a sub-
stitute, for example in the process of creating a digital signature of the original
input.

To an observer who only sees the result y of a computation h(x), without
knowing x, the value y seems “random” in the sense that it is unknown how
the value has been created, and it could as well be drawn randomly from B.
This is a consequence of properties 2 and 3: it is practically infeasible to either
find the original value x or any other x′ with which y could be reconstructed.
Ideally, each value from B appears with equal probability and thus a uniform
distribution can be assumed.

Practical infeasibility refers to the computational power that would be re-
quired in order to find a preimage or a collision. The number of computational
steps required directly corresponds to the length n of the hash function’s out-
put. Without additional knowledge, finding a preimage or a weak collision
would require 2n steps, while finding a strong collision would require 2n/2

steps (cf. [122]). With a sufficiently large n, often 280 steps are considered
sufficiently hard as of today’s available technology, it is impossible to break
the security of a hash function within reasonable time.
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Hash functions are useful in many contexts such as pseudo random number
generation (see the previous argument), key generation, or as a building block
in cryptographic protocols. Some use cases are collected and described in [14].
We will use them primarily for key agreement and message integrity protection.

2.8.2 Message Authentication Codes

A well-known construction for authentication codes is HMAC (hashed message
authentication code, see e.g. [21, 133]). This construction is based on a keyed
hash function, allowing it to authenticate the hash value of a message using
a cryptographic key. Assuming that the key being used is only known to the
sender and the receiver, and that both the sender and the receiver are trusted,
the receiver of a message is able to derive its authenticity. Since knowledge
of the key is necessary for constructing the MAC, the receiver can be sure that
nobody else than the purported sender could have constructed the message.
This type of authentication does not provide the ability to prove to a third party
the authenticity of the message, since the receiver could have constructed the
MAC itself.

The formal definiton of an HMAC is given in [16]. Simplified, it is given as

HMAC-h(k,m) = h(k′||h(k′′||m))

where k′ and k′′ are padded versions of k, h is an arbitrary hash function, and
m is the input message. In order to verify the authenticity of a message using
an HMAC, the receiver has to compute the HMAC value in the same way as
the sender. In particular, this means that the message has to be available in
plaintext to the verifier.

This is in contrast to digital signature schemes which provide message re-
covery, where the successful verification of a signature yields the original mes-
sage. For example, RSA can be used as such a signature scheme for small mes-
sages, i.e. messages of length up to half the length of the modulus (see Chapter
11 of [122]). For larger messages, however, the message is being hashed before
encryption and thus message recovery is not possible.

The HMAC construction has the disadvantage that if multiple MACs have to
be created for the same message but using different keys, the complete message
has to be rehashed for each MAC. As the key k is prepended to the message,
this effectively modifies the message each time. In this case, using the secret
suffix method for creating a MAC is more efficient. Here a MAC is created as

MAC-h(k,m) = h(m||k) .
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Using this construction, the message has to be hashed only once. Arbitrarily
many MACs can be produced simply by hashing the result together with the
respective keys.

This construction has the disadvantage that an attacker can perform an off-
line attack trying to find a message m′ that has the same MAC as m. Since the
key is involved only in the last step of the application of h, any message m′ that
yields the same hash output as m will lead to the same MAC value. Thus the
task of the attacker is to find m′ for which h(m′) = h(m). No knowledge of k
is required for this. The security of this construction therefore depends on the
collision resistance of the underlying hash function.

2.8.3 Symmetric Ciphers

Encryption is an important tool in security as it guarantees the confidentiality
of data. It makes it possible to store or transmit sensitive data such that it is
not susceptible to disclosure to unauthorized parties even if such parties gain
physical access to the encrypted data. A cipher is a method for turning a mes-
sage into a secret code. For digital data processing, there exist two distinct
approaches, one called stream cipher and block cipher

In sensor networks, we are mostly interested in protecting discrete messages
that are about to be transmitted over a wireless channel, so we are mainly inter-
ested in block ciphers. These operate on a block of data for a single encryption
or decryption operation. If a message is larger than the block size of the used
cipher, it is split into multiple pieces that are then operated on independently.

The most recent standard algorithm for symmetric encryption is AES [132],
which can also be efficiently implemented on current WSN platforms.

2.8.4 Implementation

There exist a large number of practically usable hash functions, of which the
best-known are the SHA function family, MD5, and RIPEMD. These can be
implemented on BTnode sensor nodes, usually without modifications to avail-
able ANSI-C code as they require mainly integer and bitwise operations only.
Table 2.2 shows the runtime of some of these algorithms (together with the
AES block cipher) on the BTnode platform. Note that the implementations
have not been optimized for that platform but have been used as provided in
their respective sources.

Although a hash function can take input of arbitrary length, it internally
processes data blocks of a specific length. In order to process input of arbi-
trary length, it splits the input in blocks of fixed size and iterates over them,
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Algorithm Block size Digest size Block operation Bits/s Code source
AES-128 128 bit n/a 2.13 ms 60,093 [70]
AES-256 256 bit n/a 2.95 ms 86,779 [70]

MD5 512 bit 128 bit 2.83 ms 180,918 [155]
SHA-1 512 bit 160 bit 6.99 ms 73,247 [51]

SHA-256 512 bit 256 bit 11.7 ms 43,760 [127]

Table 2.2: Execution time of cryptographic primitives on the BTnode platform (own measure-
ments)

combining the result of the previous interation with the current block using a
compression function.

2.8.5 Bandwidth Overhead

Messages in sensor networks are potentially very small. For example, if only
current sensor readings are transmitted, a message may contain only a few (less
than ten) bytes of payload. Sensor network protocols on the medium access
layer therefore often provide the means for transmitting short messages without
inducing unacceptably high overhead for synchronization and error control.

Adding a message authentication code (MAC) to such a small sensor mes-
sage adds a significant overhead. For example, the SHA-256 hash function
produces digests of 256 bit (32 byte) length, which may exceed the size of a
sensor message by far. This would mean that a significant amount of the trans-
mission energy and time had to be spent on authentication information, which
is hardly acceptable in a resource-constrained environment.

One solution would be to increase the size of messages in order to reduce
the relative portion of authentication data. This would be possible for messages
containing aggregated data or combining the readings from various sensors.
However, this would introduce a latency for the delivery of sensor data. In
application-driven scenarios, where the timely availability of data is crucial,
this is not a feasible option.

An alternative is to transmit the message authentication code only partially.
Instead of attaching all 256 bits to a message, for instance only the first m
(e.g. m = 32) bits are used. The receiver is still able to verify the message’s
authenticity by computing the (full) authentication code of the message and
comparing its first m bits with the received data.

Partial MACs offer less security than full ones, but their level of security is
adequate for practical purposes. The output of a hash function can be regarded
as random data. Constructing a valid HMAC without knowledge of the key is
possible only by a brute-force approach and requires 2n steps, where n is the
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output length of the hash function. If this output is truncated to, for example,
its m-bit prefix, where m is large enough (depending on the anticipated attacker
strength), this would still provide a sufficiently high security level.

It is important to distinguish between offline and online attacks on a MAC.
If only online attacks are possible, for example if HMAC is being used for cre-
ating MACs, a relatively small MAC size would be adequate. As an example,
assume a sensor node requires a time of t = 10 ms for receiving a message and
verifying its authentication code. With a bitlength m = 32 of the authentica-
tion code, around 232 attempts are necessary before the sensor node accepts the
message as being valid. Thus, the node would accept the message only after
approximately 5965 hours (248 days). Obviously, running under constant load,
a battery-powered sensor node would run out of energy long before that time
has passed.

The same MAC length would be insufficient to prevent offline attacks, how-
ever. In offline attack, the computations are performed without interaction with
the attack target and can be massively parallelized. To prevent such attacks,
at least 80 bits are required, which would still lead to a 10 byte overhead per
MAC.

2.8.6 Key Management

Cryptographic keys are necessary to establish secure channels between com-
municating nodes. The main tasks of key management are the distribution,
refreshment, and revocation of keys. In centralized architectures, one can use
key distribution centers (KDC) to which nodes securely connect (by means of a
predefined secret between the KDC and each node) in order to receive updates
on their keys or to retrieve new keys for pairwise communication among nodes.

Generally, sensor networks are highly distributed, multi-hop systems in
which communication to a central entity is expensive. Transient disconnect-
edness of parts of the network would even make it impossible to reach a KDC
and thus prevent nodes from exchanging messages. Therefore, a distributed
solution to key management in sensor networks is preferable.

One viable approach is to pre-load a set of keys onto each sensor node before
deployment. This can be done in a secure environment that has no tight energy
restrictions. These keys can serve various purposes after deployment:

• Secure interaction with the base station – Each node is assigned a secret
key that is only known to the node itself and the base station.

• Key agreement between nodes – A key agreement scheme based on (ran-
dom) subsets of a large key pool such as proposed in [64] can be used to
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establish pairwise secret keys between arbitrary pairs of nodes.

• Entity authentication – By means of a challenge/response protocol, a key
can prove its knowledge of a certain secret key and thus demonstrate its
identity and liveness.

Once a key has been established between two communicating entities (either
two sensor nodes or a node and the base station), this key can serve as a master
key for deriving actual communication keys that are only used for a certain
time span. This makes cryptographic attacks on the communication harder,
since only a limited amount of data is available for cryptanalysis. Also, if
a communication key happens to be exposed to the attacker, only a limited
amount of data is compromised. In sensor networks, long-term relationships
between pairs of nodes exist mainly between neighbouring nodes. Generating
a fresh communication key for their communication is desirable. Long-range
communication between nodes is usually sparse and not bound to distinct nodes
but happens rather between node clusters or groups. Frequent updates to these
communication keys may not be necessary in many cases.

Key revocation in sensor networks has the goal of excluding specific nodes
from future communication after it has been detected that the key material of
these nodes has been exposed to the attacker, for example after a node capture.
Such nodes must not be allowed to further participate in the operation of the
network. Additionally, the key material shared between compromised nodes
and others should not be used anymore and keys that have been established
based on this material may have to be renewed. This is especially important
in cases where it has to be assumed that the attacker has recorded all previous
traffic.

Revoking keys is an expensive operation in a sensor network as it cannot
be expected that nodes regularly check a central repository of revoked keys.
Thus, revocations have to be actively distributed throughout the network to be
effective. These messages may become large if a large amount of key material
is affected such as in pool-based schemes. The follow-up key re-negotiations
put further load on the nodes.

Another problem is the detection of compromised nodes, which is necessary
to initiate a key recovation procedure. In general, this is only possible through
aberrant behaviour of nodes or through external means such as surveillance.
A sophisticated attacker might avoid detection by not substantially altering the
behaviour of captured nodes, and surveillance may not be possible or too ex-
pensive.

Yet another problem of revocation is possible abuse by an attacker. It may
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be possible that by capturing a small number of nodes, the attacker is able to
make secure communication completely impossible by initiating extensive key
revocation. Thus, it is important to address the correctness and robustness of
key revocation mechanisms. Formal definitions for these concepts are provided
in [36].

2.9 Existing Approaches to Wireless Sensor Network Secu-
rity

The emergence of wireless sensor networks as an object of academic research
as well as practical engineering has initiated the development of such networks
towards a tool that can be applied in many environmental, industrial, and so-
cial environments. This development has triggered an intereset in the security
of such networks, as they are vulnerable due to characteristics such as deploy-
ment in open environments, wireless communication, and the absence of close
administrative surveillance. Frequent node failures, changing topologies, and
resource restrictions make the design of algorithms and protocols challeng-
ing, also including security mechanisms. Usually, techniques used in “tradi-
tional” computer networks are not directly applicable. This section discusses
approaches to security that have been especially developed for wireless sensor
networks.

Security for wireless sensor networks is of paramount importance because
they are closely interlinked with the physical world, in which goods and people
are moving and interacting. Data collected by a sensor network may therefore
reveal sensitive data about personal behaviour, lifestyle, or business secrets.
Although such data may be obtained through other means as well, sensor net-
works could potentially provide it to remotely located parties in an automated
manner, which makes the protection of such information essential for guaran-
teeing the security and privacy of people [37].

Denial of service attacks are a serious threat in computer networks, as they
disrupt work flows, cause annoyance, and may even be harmful to human lives,
e.g. if emergency services become unreachable. Sensor networks are suscep-
tible to denial of service attacks as well; their vulnerabilities on all protocol
layers are discussed in [198]. Due to their nature, certain attacks on wireless
sensor networks on the physical layer cannot be prevented, such as the jamming
of the wireless communication medium. Higher layers are more approachable
to countermeasures, as will be further discussed in this section.
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2.9.1 Key Distribution and Agreement

Before the invention of public-key cryptography by Diffie and Hellman [54],
secret keys used for enciphering and authenticating messages had to be dis-
tributed over secure channels, such as by courier. Then, it became possible to
send messages that could only be read by the intended recipient without having
to exchange a secret key beforehand. It became also possible to sign messages
such that their authenticity could be verified by anybody. This is possible by
the use of a key pair instead of a single key. One key is kept secret by the owner
of the key pair, while the other key is published. Because of the convenience
they provide, public-key cryptosystems, such as RSA [154], are widely applied
today, for example in smart cards [78] and for the TLS protocol [53] used in
the world wide web.

Public-key cryptography is widely considered too expensive for resource-
constrained sensor nodes, since the involved operations are time- and energy-
consuming [142, 64]. On a typical, contemporary sensor node hardware plat-
form, RSA private-key operations consume 10 seconds and more (depending
on key size), and cryptographic operations based on elliptic curves in the order
of seconds [74, 22, 190]. Energy-wise, a single key exchange based on RSA
is reported to consume as much energy as the encryption (and decryption by
the recipient) with AES of approximately 77 kbyte data [187]. Whether these
resource requirements make the use of public-key cryptography generally in-
feasible in sensor networks is debatable and will in practice depend on the used
hardware platform, the frequency of public-key operations, and the available
energy resources. The availability of public-key operations may even be dan-
gerous to the sensor network. It has been noted that the possibility for a node
to create signatures could be exploited by an attacker for draining the batteries
of sensor nodes [5].

In order to be prepared for the case where insufficient resources are avail-
able for public-key cryptography, it is reasonable to come up with alternatives.
The most important use of public-key cryptography is for handshake, i.e. the
exchange of a secret key. This key, which is shared only by the two parties
involved in the handshake, can be used for encrypting and authenticating mes-
sages. Therefore, techniques for establishing secret keys without using public-
key cryptography are desirable.

A simple solution to the problem is pairwise key predistribution. Here, every
node receives in advance one secret key for every other node in the network.
This approach is not only limited by the memory capacity of sensor nodes, but
is also inflexible regarding the extension of the network during runtime.
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A more flexible technique has been proposed first by Eschenauer and
Gligor [64]. It is based on random key predistribution and provides stochas-
tic security against node capture attacks, i.e. if only a small number of nodes
are captured, there is a high probability that a key exchanged between two
nodes remains secret. There have been several extensions and improvements
proposed to that basic technique [39, 143, 204, 38].

The earlier proposals for group key management by Blom [24] and Blundo
et al. [25] were the foundation for other key agreement schemes [117, 60, 161].
These exhibit a threshold property: unless a certain number of nodes have been
captured, all pairwise keys remain secure with high probability; if the threshold
is exceeded, all pairwise keys are almost immediately compromised.

Other variations are based on combinatorial designs [110] (where the assign-
ment of keys is deterministic, but the resilience against capture is nevertheless
stochastic), or assume a slightly different attacker model [5]. In the latter case,
it is assumed that the attacker can monitor only a small fraction of message
exchanges during an initial time frame after deployment. It is shown that al-
though keys are transmitted in clear text during that phase, only a small fraction
of keys is actually compromised.

2.9.2 Secure Communication

Key agreement as described in the previous subsection is a prerequisite for
general secure node-to-node communication, either on the link level between
neighbouring nodes, or between remote nodes that are separated by multiple
hops. For more constrained communication patterns, more economical tech-
niques are conceivable.

One of the most light-weight protocols is µTESLA [142]. It is intended to
be used in base station-centric networks, where the most prevalent communi-
cation patterns are point-to-point between a base station and a node (e.g. for
queries and reporting sensor readings), and broadcasts from the base station
to all nodes (e.g. for queries or reprogramming the entire network). It only
assumes that every node shares a unique key with the base station (for point-
to-point messages between the base station and the node). Using this key, the
broadcast authentication mechanism can be bootstrapped.

This broadcast authentication mechanism is based on hash chains and loose
time synchronization. For bootstrapping the mechanism, the base station sends
an authenticated (using the pairwise key) element of the hash chain to a node,
together with timing information. The hash chain element is a symmetric key
that is valid only during a certain period in time. During this period, it is used
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to authenticate messages from the base station, but it remains unknown to the
receiving nodes. This means that nodes must buffer these messages first. Only
after a certain delay after the end of its validity period, it is disclosed by openly
broadcasting it. At that moment, nodes can (1) verify the authenticity of the
key (by computing the according step in the hash chain) and (2) authenticate
the messages that have been sent by the base station.

The deferred disclosure is necessary in order to avoid abuse of the key by
malicious nodes or an external attacker. If the key would be disclosed before
the validity period ends, it could be used by an attacker to inject authenticated
messages.

The key is disclosed only after the end of its validity period, plus the disclo-
sure delay. This is required in order to compensate for slight misalignments in
the nodes’ clocks. Thus, tight time synchronization between all nodes and the
base station is not required.

µTESLA is extremely efficient to implement, as it requires each node to
store only two keys, and the only cryptographic operation is the computation
of hash functions (message authentication is based on the same hash function).
The overhead per message is caused by the message authentication code, which
is 8 byte using RC5 as the hash function, which was used in [142]. The key
disclosure messages incur little overhead since they can be piggy-backed on
other messages from the base station. Only if no other traffic is generated,
extra messages for key disclosure have to be sent.

The reverse communication pattern to broadcast is aggregation. Here, data
collected by sensor nodes is transmitted towards the base station (or another
data sink). The individual data packets are not simply concatenated and passed
on by intermediary nodes, but rather the data is combined and compacted. This
minimizes the size of transmitted data but preserves its usefulness for the ap-
plication. For example, the average, minimum, and maximum temperature in a
room could be determined in this way without having to preserve every single
data item.

The threat to data aggregation is that malicious nodes could falsify the ag-
gregation result by either injecting false sensor data of their own, or by passing
on falsified aggregation information. This cannot be completely prevented, as
false sensor data may be indistinguishable to a faulty sensor. Also, as sensor
data from different sources is integrated, authentication information of individ-
ual data packets is lost.

The work described in [146] and [186] approaches this problem from a sta-
tistical perspective. The objective is to reduce the possible error introduced by
malicious nodes below a certain threshold. Data aggregation is also discussed
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in 2.7.4.

2.9.3 Secure Routing

Cryptographic keys, being established through techniques discussed in the pre-
vious subsection, help to ensure secure communication with regard to the con-
fidentiality and the authenticity of messages. It has to made sure, however,
that messages indeed arrive at their destinations without being misrouted or
dropped.

Ariadne [82] is a route discovery protocol that is able to find routes from a
source to a destination in a multi-hop network and pass them back to the sender.
It is secure in the sense that (1) the hosts authenticate themselves and (2) each
host certifies the previous piece of the path from the source to itself. (3) All
host identities are linked through a hash chain. (4) A basic assumption is an
end-to-end secure link between the source and the destination. (This could be
provided by a pre-arranged secret key between both hosts.)

It is assured that malicious hosts cannot cut nodes off the path or insert
new ones. h0 is the initial value, the authentication code of the initial request
message. This is equivalent to a digitally signed request. Each following host
identity X is appended to the hash chain as hi+1 = H[X ,hi] where H is a one-
way function. Destination D can easily verify whether the hash chain matches
the path, since it can reconstruct h0. Requests with mismatching items will be
dropped. Intermediate hosts cannot do this verification step and will forward
also bogus messages.

Ariadne does not prevent a malicious host from getting on the selected path
if it follows the protocol. For example, it could then later drop messages being
sent along the path. On the network layer, this will be noticed as a path failure.
A new path discovery request would be issued by the source. Unless the mali-
cious node creates a bottleneck between source and destination, a path will be
eventually found that passes by the malicious host.

This protocol is not well-suited for wireless sensor networks for several rea-
sons. (1) The route request is flooded through the network. This is efficient
only in highly dynamic networks. (2) Source routing, for which the protocol
provides the basis, requires node identifiers in the path to be sent along the
node each time the route is used. This is undesirable overhead. The alterna-
tive, caching routes, would require additional memory in hosts. (3) A secure
channel between source and destination hosts is a prerequisite. This implies
that the identity of the destination is known to the source in advance. In sen-
sor networks, such close links between hosts (sensor nodes) are not a common
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communication pattern.
The most important attacks against sensor networks on the routing layer are

identified in [90]. They comprise:

• Bogus routing information

• Selective forwarding

• Sinkholes

• Wormholes

• HELLO floods

• Sybil attack

• Acknowledgement spoofing

All these attacks have the goal of misdirecting or suppressing message traffic,
or tamper with the topology of the network (HELLO floods and Sybil attacks,
where node identities are announced in a multitude of locations, respectively
new identities are created). If the attack is successful, the routing layer of the
sensor network will not be able to deliver messages to their destinations.

Countermeasures against these attacks are also discussed in [90]. Geo-
graphic routing, for example, is a means to prevent wormhole and sinkhole
attacks. These attacks rely on the fact that a node selects the next hop based on
some metrics that can be faked by the attacker. Geographic routing relies on
location information only, so a sinkhole cannot be easily created since its at-
traction does not extend to remote locations. Wormhole links, which span large
distances, raise suspicion because alleged “neighbours” are located far beyond
radio range.

Selective forwarding may be thwarted by multipath routing. If on one path, a
message is dropped by the attacker, it may still get to the target through another
one. However, using multiple disjoint paths implies a significant overhead and
they may be hard to construct. A novel method for constructing them will be
presented in chapter 5.

Mutual authentication between nodes, possibly involving a base station, can
help against HELLO floods and Sybil attacks, since these attacks are based on
creating non-existant node identities all over the network. If every node has
to authenticate itself and is showing up in different places or has an unrealistic
high number of neighbours, an alarm may be raised.

Ariadne is immune to some of the described attacks, but not to all of them.
For example, Sybil attacks are prevented by node authentication, but a sinkhole
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attack could be executed by an hybrid attacker who has obtained key material
from a compromised node and has a strong transmitter at his disposal. This is
based on the fact that in Ariadne, the hop from which a message is received
first will determine the resulting path.

There is a large body of work that approaches routing security for ad hoc
networks, part of which is applicable to sensor networks. It includes defenses
against wormhole attacks [83], multiple paths for tolerating malicious nodes [49,
68], and cooperation and incentives in ad hoc networks [32, 34].

2.9.4 Available Implementations

Sensor network systems are still evolving, both in terms of hardware platforms,
operating systems, and support libraries. This diversity is reminiscent of that
existing in general embedded systems [66] and is in sharp contrast to desktop-
or server-oriented computing, where the market is dominated by a small num-
ber of operating systems. There are important differences between the require-
ments on applications for embedded systems and for desktop/server systems.
One is the fact that the hardware platforms for embedded systems vary widely
(e.g., from 8 bit to 32 bit CPUs, or regarding their I/O interfaces), while the
desktop and server markets rely on products that are highly standardized. An-
other difference are the markets for both kinds of systems. The market for
embedded systems applications is highly fragmented. There is a multitude
of devices in which embedded systems are integrated, all with different tar-
get groups and greatly varying lifecycles (e.g. short-lived consumer products
vs. industrial machinery). Only time will tell whether sensor networks will be
based on standardized platforms in the future, or the diversity in this domain
will prevail.

One of the currently most widely used operating system for sensor networks
is TinyOS [176], which supports a variety of hardware platforms. This sys-
tem is also a popular research platform for security techniques in sensor net-
works. A library for link-level security based on symmetric cryptography, Tiny-
Sec [89], has been incorporated into TinyOS. Another library providing Elliptic
Curve Cryptography operations is also available [116]. To our knowledge, no
other operating system for sensor networks provides cryptographic function-
ality by default, although standard algorithms like AES or SHA can be easily
ported to sensor platforms (portability has been among the design criteria for
most of these algorithms). Also, there are no standard implementations for
end-to-end key agreement, secure routing, and other high-level security mech-
anisms.
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2.10 Summary

This chapter highlighted several aspects of wireless sensor networks, thus es-
tablishing the technical context of this work. By considering the capabilities
and limitations of WSNs, we are able to formulate high-level security require-
ments. The cryptographic foundations for meeting these requirements have
been laid out.

We have also reviewed the existing relevant approaches to WSN security.
Building on this knowledge, we proceed to describe a security model for WSNs,
which will be the basis for the following security protocols we propose.



Chapter 3

A Security Model for Wireless Sensor
Networks

Wireless sensor networks inherit security vulnerabilities from three classes of
computer systems: (1) As classical computers, they are vulnerable to mali-
cious code such as viruses. (2) Since they use wireless communications, their
communication links are susceptible to eavesdropping, jamming, or message
injection attacks; they share this characteristic with mobile computers. (3) Sen-
sor networks often operate in unsupervised, open environments, where they can
be physically accessed by potential adversaries; in this regard, they resemble
embedded systems.

In order to counter the threats stemming from these vulnerabilities, well-
known mechanisms can be employed, including code authentication, message
encryption and authentication, and tamper proofing (cf. [3]). However, the
specific constraints of sensor networks may be prohibitive to lifting them to a
security level as high as traditional computer systems. Instead, we must explore
solutions that exploit inherent characteristics of sensor networks, such as the
large number of nodes, redundant deployment, and sensoric input, to provide
adequate security guarantees.

In this chapter, we lay the foundations for such approaches by analyzing the
vulnerabilities of WSNs. We concentrate on a type of attack on wireless sensor
networks, which is both specific to and relevant in this domain. The security
mechanisms presented in following chapters will be especially effective with
regard to this threat model. This model assumes an adversary who is able, at a
certain cost, to capture and take control of individual sensor nodes. This enables
the adversary to exploit the capabilities of the captured nodes and participate
in the operation of the sensor network. Depending on the objectives of the
adversary, this may lead to data corruption, denial of service, or data disclosure,
if no countermeasures are utilized.

The strength of an attack is not only determined by the number of cap-
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tured nodes, but also by the attacker’s ability to interfere with the operations of
uncompromised nodes. Such interference may comprise the manipulation of
sensor readings, which in most cases requires physical access to the nodes or
the ability to change their environment, which may involve the use of powerful
equipment. Usually it is easier to tamper with the operations of uncompromised
nodes from within the network. Since sensor nodes act as message forwarders
on behalf of other nodes, it is easy for them to drop messages or manipulate
their contents. Thus, the selection of compromised nodes will be important for
determining the strength of an attack as some nodes are more valuable to an
attacker than others.

The best known protection against attacks on communications are end-to-
end security associations such as shared keys or those provided by a public
key infrastructure. However, such associations can be prohibitively costly in
wireless sensor networks. Therefore, we explore alternative approaches that
provide approximations to end-to-end security while still achieving an adequate
level of protection.

3.1 Attack Paths

Today’s research prototypes of sensor nodes employ virtually no protection
mechanisms at all. Re-programming is easily possible with little technical re-
quirements [15]. This is, of course, due to the early technical stage of devel-
opment, and the research focus on functional and operational aspects of sensor
networking. Also, the real-world deployment of sensor networks is in its in-
fancy, so the demand for secure sensor devices has not yet emerged. Should the
demand arise, it is probably possible to develop devices with a certain level of
hardware protection, profiting from experience in other areas. With appropri-
ate financial investment, it seems perfectly feasible to build sensor devices that
are physically isolated from their environment except for dedicated communi-
cation interfaces. These interfaces remain to be secured through cryptographic
means and secure protocol engineering.

There are three levels on which vulnerabilities may exist despite of careful
design and engineering. The first is the physical level, i.e. vulnerabilities of the
hardware. These are hard to protect against, since sensor networks are often de-
ployed in open environments, and reliable physical protection is expensive. The
second level is comprised of the interfaces that are offered by a sensor node.
Some interfaces are indispensable, since communication with other nodes is re-
quired, and connections to sensors have to exist. The third level is the software
running on sensor nodes. Secure software engineering is a quickly developing
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field (cf. [179]), but eliminating vulnerabilities on this level requires stringent
development practices, which often conflict with tight schedules and resource
limitations. Therefore, is is likely that potential vulnerabilities remain in every
wireless sensor network system. In the following, we discuss their relevance.

3.1.1 Physical Attacks

In a physical attack, the attacker gains direct access to the computing device
hardware. This makes a denial-of-service attack easily possible: the attacker
can simply destroy the sensor nodes. Physical access also allows him to access
a node’s components without any software layer involved. This is in contrast
to a remote attack, where the attacked computer is accessed through some pro-
tocol or application layer, which gives it the possibility (at least, in principle)
to detect the attack and react accordingly. In a physical attack, this sort of
“self-surveillance” is not available to the device under attack and would only
be possible by additional measures, such as external surveillance.

This makes physical attacks extremely powerful. They have a number of
potential advantages over remote attacks:

• The attacker has (almost) certain knowledge about which device he is ac-
tually attacking. Network traffic, which is the medium for remote attacks,
can be misdirected easily, and verifying the identity of a remote entity is
hard (cf. honey-pots, which are dedicated computing environments that
are designed to attract attacks for the purpose of identifying them and cre-
ating countermeasures [145]). Physical attacks happen with direct access
to the computer equipment, which usually gives enough information for
reliably identifying the equipment itself and its owner. Once the attacker
has gotten so close, it might be impossible to divert his efforts to a less
sensitive target.

• Network traffic is often secured by cryptographic means, for example by
employing SSL. This makes eavesdropping or message injection practi-
cally impossible. On computers, data can be stored in encrypted form as
well, but this is often refrained from due to usability and availability issues
(e.g. the danger of lost keys). Therefore, physical access to a computer
system usually yields full access to the stored data herein, including the
ability for manipulations.

• The closer one gets to a computer system, the higher becomes the avail-
able bandwidth. Remote attacks are constrained by network interfaces. A
long-distance connection typically yields between 64 kbit/s and 2Mbit/s



68 Chapter 3. A Security Model for Wireless Sensor Networks

(ISDN, ADSL). Wireless connections usually yield between 128 kbit/s
(ZigBee) and 54 Mbit/s (IEEE 802.11g). An attack occurring within a
LAN yields up to 1 Gbit/s. Direct wired interfaces allow similar data rates,
for example Firewire (the IEEE 1394b standard yields up to 800Mbit/s) or
serial ATA (300 Mbyte/s = 2.4 Gbit/s).

• Sensitive information, which would not be accessible otherwise, can be
acquired through special equipment that is secretly attached to a computer,
e.g. a key logger for recording passwords.

• Physical evidence can be collected during an attack, which is not possible
with remote attacks. Physical evidence could support non-repudiable at-
tribution of data to a person or organization, thereby facilitating extortion.
Examples of such evidence include hard disks, possibly with fingerprints
on them, or printouts (that can be attributed to a certain printer).

On the other hand, physical attacks are usually riskier than remote attacks,
since the attacker himself enters the domain of his opponent. Some risks are:

• Leaving traces that could lead to the identification of the attacker.

• Physical effort is required to break into the area where the computers are
kept (e.g. a server room), which is susceptible to detection my surveillance
mechanisms.

Physically attacking a sensor network avoids most of the risks usually asso-
ciated with physical attacks. Sensor nodes are usually placed outside the close
domain of their owners, for example in public spaces. Surveillance systems
may be hard to operate in such areas. Once the attacker has physical access
to the sensor nodes, it is easy for him to extract information from them if no
further precautions are taken.

One possible measure is tamper-proofing. Here, sensor nodes are shielded
by a barrier that is hard to penetrate and thereby prevents direct access to mem-
ory or the CPU. Similarly to smart cards or trusted platform modules (TPM),
the core computational unit concerned with the handling of secret keys could be
made tamper-resistant. This may deter an occasional attacker, but a determined
and resourceful attacker is likely to break any existing shielding or scrambling
mechanism as research in smart cards and other hardware platforms (such as
the X-Box gaming console) has shown [6, 96, 84].

Active countermeasures can further raise the bar for the attacker, for exam-
ple by incorporating means for detecting a physical breach, temperature ex-
tremes, voltage variation, and radiation, which is common in high-end security
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modules [63]. As soon as a potentially threatening event is detected, the mem-
ory holding secret keys is zeroed. Such measures are costly, and an acceptable
trade-off must be found that takes the actual risk of such attacks into account.
Sensor devices, which have to be available in large quantities at low cost, are
unlikely to incorporate such means. However, a certain level of self-protection
may be possible. The sensors that are already attached to a sensor device may
be useful for detecting certain events, for example sudden movements, which
may be sufficient for many practical applications.

If tamper resistance is considered too costly, at least some level of tamper
evidence may be provided. Upon inspection, this would make the fact that an
attack has occurred obvious. Natural characteristics of the deployment area
may also support the protection of a sensor network. For example, the terrain
where the nodes are placed may be inaccessible, or sensor nodes may be con-
cealed between other objects, making them harder to detect. All these measures
lead to a certain level of tamper resilience, which increases the cost for a suc-
cessful attack, for example by delaying the attacker or requiring him to acquire
specially crafted equipment.

The risk of a physical attack depends on the environment and the context
in which the sensor network is deployed. Questions to consider in order to
assess the risks are: Who would be interested in disabling the network? Where
and when is the network deployed, and how high is the exposure to potential
attackers? What is the potential impact of a disabled or manipulated sensor
network? In many cases, one might be satisfied with the risk being reduced by
inherent properties of sensor networks, i.e. the small size and high redundancy
of sensor devices.

3.1.2 Interface Attacks

Interface attacks exploit vulnerabilities of the interfaces a device provides in
order to allow access to its own services or to access external services. For
wireless communication interfaces, there are obvious attacks such as eaves-
dropping, jamming, traffic analysis, and message injection among others. They
are facilitated by the broadcast nature of wireless communication, and the fact
that access is easily possible without the risk of detection. An overview can be
found, e.g., in [129]. Interface attacks can also be executed on the level of a ser-
vice API, for example those of security processors [28]. Here, valid commands
are executed in unusual sequence, thereby provoking unintended behaviour in
favour of the attacker. To our knowledge, the service (message) interfaces of
sensor networks have not been investigated with regard to security vulnerabili-
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ties. Instead, most work has been done to secure the wireless interface.
Attacks on the wireless interface of sensor nodes are easy to execute as they

require only a wireless transceiver. Either an external device could be used, or
captured nodes of the sensor network itself, after a successful physical attack
on some of the nodes. Here, the difference is in the coverage of the deployment
area: a high-powered external device may enable the attacker to reach all nodes
at the same time, while single sensor nodes have a much more limited radio
range.

Some attacks on the transport layer can be thwarted easily. Link-level en-
cryption is already sufficient to prevent eavesdropping, for example. Mes-
sage injection through an external device (without knowledge of keys) is also
thereby prevented. A possible (costly) countermeasure against traffic analysis
is high message redundancy. Other attacks are almost impossible to prevent,
such as jamming. Some mitigation techniques are applicable, though. If only
a limited region is affected, it may be possible to route around it. In hybrid
networks [166], which employ additional wired connections, a jammed node
could raise an alert outside the jammed region. A possibility for preventing
jamming would be the use of directed optical instead of radio links, but those
are much harder to deploy.

The risk of an attack occurring on the wireless communication of a sensor
network is quite high, since it is relatively easy to mount. The impact of such
an attack can be mitigated by measures such as message encryption and authen-
tication, and by reporting jamming attacks. Experience teaches that careful de-
sign and implementation of cryptographic mechanisms is necessary to ensure
that the security goals are achieved. The vulnerabilities of link layer encryption
in the IEEE 802.11 standard is a popular example [30]. Much of the research
work on the security in sensor networks, as described in the previous chapter,
is concerned with the design of such mechanisms that are suitable for sensor
networks.

3.1.3 Software-Level Attacks

A powerful attack is the injection of code into an execution environment, since
this yields potentially full control over this environment. Such attacks are com-
mon in the Internet world, where poorly administrated hosts are susceptible
to adversarial remote control. One of the reasons for this is code mobility,
i.e. code is often downloaded from remote sites and locally executed. Even if
mechanisms for code certification exist, these are often circumvented by social
engineering or user inattentiveness. Sensor networks are comparatively more
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closed environments, but code updating is a common feature and introduces
similar vulnerabilities.

Software for wireless sensor networks is often developed using low-level
programming languages like C. This facilitates the introduction of vulnerabili-
ties such as buffer overflows [109]. Fortunately, microcontrollers (which are the
basis for sensor nodes) are often based on the Harvard computer architecture,
which physically separates program and data memory. In such an architec-
ture, buffer overflows usually don’t lead to unwanted program execution, since
most programs don’t write into program memory directly. However, moving
to processors that are based on the von Neumann architecture, or using virtual
machines (such as Maté [114]), exposes sensor networks to the risks of such
vulnerabilities.

The attractiveness (to an attacker) of software-level attacks lies in the fact
that such attacks are “class-type” attacks, which means that once it is known
how an attack can be successfully mounted, this attack can be applied over and
over again with minimal additional cost since all systems of the same class are
vulnerable to it. This means on one hand that if a software vulnerability can
be exploited on one sensor node, all other nodes in the same network are most
likely also subject to this attack. On the other hand, this can mean that if such
an attack can be successfully applied in one sensor network, other networks
that are built from the same underlying platform and system software may also
be affected.

Custom software development can reduce the risk of software-level attacks,
since the exploitation of vulnerabilities in such systems is more costly to an
attacker than in standardized systems. Also, the absence of software lifecy-
cle management mechanisms allows it to build such restricted interfaces that
further reduce the risk of vulnerabilities. However, both approaches put harsh
restrictions on the flexibility and the cost-effectiveness of such systems. It can
therefore be safely assumed that a more open approach will be usually used in
sensor networks in the future.

A mechanism for code updates is multi-hop over the air programming [172],
where new software versions are distributed to all nodes in a network in a co-
operative manner. A risk in this approach is that code updates are injected by
an attacker who might thereby be able to exploit the inherent update mecha-
nism of the network for gaining control over all nodes in the network. It must
be noted that even if the update mechanism is protected cryptographically, it
may be possible for an attacker to learn the required keys through out-of-band
mechanisms such as “social engineering” (e.g. blackmail or bribery).

Virtual machines [114] execute programs that are encoded as ordinary data,
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from the point of view of the microcontroller. This circumvents the inherent
separation of code and data found in such platforms based on the Harvard ar-
chitecture. In principle, this makes it possible to inject code through the manip-
ulation of user data. Code being executed by a virtual machine can be restricted
to certain data in a “sandbox”, which limits the reach of malicious code. Nev-
ertheless, the behaviour of a sensor node could be altered in a way that affects
the overall result of the sensor network’s operation.

A mechanism to prevent unauthorized code from being executed is remote
software attestation [164]. This enables the verification of code running on
remote devices, without having physical access to their memory. Sensor nodes
are a good candidate for this technique, since they are operated within a single
administrative domain, and their software configuration is known at any time.
Of course, the verification of every single node in a large network does not scale
economically, and even the verification of a single node could be expensive if
done over multiple hops. However, this technique might be sufficient to deter
some of the most harmful class-type attacks.

3.2 Attack Objectives

In general, one can differentiate between primary and secondary objectives
that an attacker pursues. The primary objectives concern the informational
resources the attacker wants to gain control of. His goal may be to acquire
some secret information, or disrupt a service, or falsify some data in order to
hide the the presence of facts, just to mention some examples. The secondary
objectives are concerned with the circumstances of an attack. For example,
the attack might have to be carried out within a certain time frame, or it might
be crucial that the attack is not detected. In this section, we discuss possible
objectives when attacking a sensor network.

3.2.1 Properties of Resources

In a sensor network, the valuable informational resources that require protec-
tion are the sensoric input, the aggregated data stored in the nodes, and the
exchanged messages. Several aspects to these resources are important and may
be subject to an attack:

• Confidentiality

• Integrity

• Availability
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• Timeliness

• Origin

The first three of these points refer to the “classical” security properties that
have to be protected in virtually any security sensitive application. We consider
timeliness as an additional essential security goal in sensor networks. It may
be possible to subsume this goal under availability, but in many applications,
timing is crucial and seemingly insignificant delays could have severe impact.

When referring to the origin of some piece of data (or a message), we as-
sume that a party obtaining the data (for example, by reading from a sensor or
receiving a message) also obtains some statement about the association of the
data with its origin, i.e. the source from which it has been obtained. This state-
ment could be backed up by a digital signature, or it might be implicit as when
reading from a sensor. If the evidence supporting the statement is sufficiently
strong, the party may decide to attests its finding, thus further supporting the
statement. It is therefore crucial that a statement about the origin of a piece of
data cannot be forged or tampered with by an attacker.

Usually, the origin of a message refers to the entity that has generated the
message. Origin authentication is based on some feature of the source, such as
a public/private key pair, a common secret key, location, or a biometric attribute
(in real life, voice is often used).

Integrity and origin authentication are often achieved through the same mech-
anisms. An important mechanism is the concept of message authentication
code (MAC). Such a MAC provides a means for the receiver of a message to
verify the message’s origin and its integrity at the same time. Both concepts are
closely connected, as when the integrity of a message is violated, it is essen-
tially transformed into a different message, which has a different origin as well.
Vice versa, if the origin of a message cannot be verified, it does not necessarily
follow that the integrity of the message has been violated. Stated differently,
even if we don’t know where a message comes from, it could still be a valid
message. Thus, it is valid to say that origin authentication implies integrity, but
not the other way around.

3.2.2 Resource Types

It very much depends on the level of abstraction what components of a net-
worked computer system are regarded as valuable resources that require pro-
tection. In a transaction-oriented system, the database would be the most valu-
able resource. On a home desktop PC, personal information such as credit card
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details, passwords (saved in files) or e-mail accounts, are subject to attacks
from the Internet, and therefore need protection. In process automation con-
trol systems, the physical actors could do severe damage, and must therefore
be isolated from external manipulation. For a web service (such as Amazon,
which has been a victim of denial-of-service attacks), the available bandwidth
is crucial for business.

The most valuable resources, as regarded from a general, application-neutral
point of view, are described in the following.

Sensor input The origin and timing of sensoric input are immediately avail-
able to a sensor node as the sensors are directly attached to the node and the
sampling is controlled by the node itself. The attacker might replace the sensor
attached to a node with some device that pretends to be an ordinary sensor but
acquires its input from some distant place, or simply delays its output. It is not
possible for a node to distinguish such a device from a real sensor. From the
node’s point of view, this attack is equivalent to a simulated environment.

The availability and integrity of sensor data can be affected without directly
manipulating the hardware of the node. The environment, from which the sen-
sor acquires its input, could be deliberately changed. For example, if the pur-
pose of the sensor node is to measure the level of brightness, an artificial light
source may provide the node with false data. Thus, access to the real data is
denied. Some sensors may be dependent on certain environmental conditions
in order to function correctly. For example, the accuracy of a sensor may dete-
riorate if the temperature exceeds certain bounds. An attacker might be able to
exploit this by placing a heat source near the sensor node.

Confidentiality of sensor data is usually not a great concern if the monitored
area is publicly accessible. Even in restricted areas, the data acquired by single
nodes may not be meaningful as they reflect only punctual measurements. On
the other hand, if acquiring the data is associated with significant costs, for
example if an expensive sensor is required, the collected data is an asset in
itself and it might be necessary to protect it against unauthorized read access.

Aggregated data The value of pure sensor data depends on contextual informa-
tion (i.e. the circumstances under which the data has been acquired) and often
gains significance only in combination with the findings of other sensor nodes,
or when it is aggregated over longer periods of time. Such aggregated data
contains sufficient information to be interpreted by the operator in a meaning-
ful way.



3.2. Attack Objectives 75

Critical decisions are often based on aggregated data, it is therefore essential
that the data is “correct” in the sense that even if some input on which the
aggregation is based is corrupt, the deviation from the “true” result (the result
that is obtained when no maliciously or otherwise induced errors are involved)
is minimal. A viable attack goal is therefore the manipulation of data such
that a false report is being accepted by the issuer of a query. Without any
precautions, even an attacker restricted to manipulating very few input values
could significantly influence the outcome of an aggregation. Consequently,
techniques for detecting or at least mitigating the effects of faulty input are
required.

Perfect resilience against manipulated input data is impossible to achieve
if the manipulated parts cannot be identified (which is usually the case). The
secure aggregations schemes by Wagner [186] and Przydatek et al. [146] there-
fore aim at approximate integrity, where the result y∗ of an aggregation with
partially corrupt input deviates from the result y that would have been obtained
in absence of an attacker only by a small value ε, i.e. |y∗−y|< ε. We note that
some slight deviation from the “true” value must be dealt with even when no
attacker is active, since sensor data is inherently subject to noise.

Since some cost is involved in aggregation, aggregated data should be con-
sidered more valuable than raw sensor data. Therefore, it is often appropriate
to restrict read access to it and allow only authorized parties to obtain such data
even if access to raw sensor data is unrestricted.

The availability of aggregated data is endangered when the aggregating node
is compromised by the attacker. This would allow the attacker to delay or sup-
press a report, at least temporarily. As “aggregator” is likely to be implemented
as a role in a sensor network, there is nothing to prevent another node from as-
suming this role. If the answer to a query is not delivered in time, a role switch
could be triggered, the new aggregating node would repeat the aggregation pro-
cess and finally deliver the report. The suppression of data has the disadvantage
that other nodes can detect the malfunctioning, which could be used by an in-
trusion detection system to mark the respective node as being “suspect” and
eventually isolate them.

The “origin” of aggregated, higher-level data is determined by the origin of
the raw data that serves as input to the aggregation process. Thus, the contextual
information that is attributed to the raw data, such as location and time, may
be maintained in the aggregated data. However, the origin of aggregated (i.e.,
processed) data becomes blurry and often such information will be discarded
for efficiency reasons.
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Messages Wireless radio communication is based on a shared medium, which
makes it easy for a passive attacker to overhear the traffic in a network. Some-
times, directed radio links or optical communication make eavesdropping harder,
but a determined attacker is likely to be able to record all traffic. Ultimately,
the confidentiality of messages can only be preserved through encryption. Set-
ting up keys for securing point-to-point links is a well-understood problem. In
sensor networks, key agreement schemes as described in chapter 4 can be used.
This renders pure passive attacks more or less useless. Still, it might be possible
to extract useful information from the traffic patterns that occur in the network.

Of course, link-level encryption is not able to effectively hide the content
of messages from an active attacker. All messages received by compromised
nodes can be read by the attacker. In a strong sense, the only way to preserve
confidentiality is end-to-end encryption. The same applies to message authen-
tication (and thus integrity): only if there is a common cryptographic context
between the sender and the receiver, the origin of a message can be verified in a
strong sense. However, due to the resource restrictions that apply to sensor net-
works, end-to-end security may not be a practical approach. Other approaches
that approximate the properties of end-to-end security are the main topic of this
thesis.

In a large sensor network, messages often have to be transmitted over sev-
eral links until they arrive at their destination. Generally, we can not assume
a common cryptographic context between the sender and the destination. It is
therefore possible that a compromised node changes the contents of a message
it is relaying. Such changes could be detected by nodes that overhear the in-
coming and outgoing messages. However, these potential guards may be asleep
at that time. Link-level encryption makes overhearing ineffective as well. We
propose interleaved authentication (see chapter 6) to this end.

The injection of fabricated messages is another way of manipulating the
operation of a sensor network. If a node emits messages in its own name, it
may not be possible for other nodes to decide whether these messages are the
product of correct operation, or if they are forged. Certain intrusion detection
techniques may be able to isolate such nodes if their behaviour deviates signif-
icantly from ordinary operation. Alternatively, nodes may forge messages and
attach a different ID as their origin to them. This attack is commonly called
spoofing. If the used ID does not exist, this behaviour is subject to detection if
the ID is challenged. If the ID exists and another, non-compromised node with
the same ID exists in the network, it may raise an alarm if it detects a message
that was sent by the malicious node.
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Actors A complementary extension to sensor networks is the ability to act
upon their environment. For this, some device is required, such as a capsule
that can release a substance, or an electric motor that can open and close a
door. These devices are called actors and they are controlled by well-defined –
usually electric – signals.

One line of attack against an actor, which is attached to a sensor node, is
to take control of the sensor, which controls the actor. This would give the
attacker at least the level of control that the sensor had. Additionally, it may
give the attacker the opportunity to transmit his own signals to the actor, leading
to unpleasant consequences.

The complex interactions between the software and hardware of the sensor
node and the actor device, and the communication protocols, could lead to
vulnerabilities. By sending commands in a certain, perfectly legal, order, it
may be possible to trigger a certain sequence of actions that were not foreseen
by the system’s designers. Such vulnerabilities are common software errors in
complex systems.

3.2.3 Detection Evasion

The effectiveness of many attacks on a computer system depends on the fact
that the presence of an attacker is not detected. For example, if an attacker
wants to read sensitive data his victim’s machine, he has to make sure that
the victim does not learn about the presence of the attacker. Otherwise, if the
victim learns that an attacker has access to sensitive data on a specific machine,
he would stop using that machine, which renders the attack ineffective. Of
course, for some types of attacks, it is unavoidable that they will be detected
sooner or later. This includes, for example, denial of service attacks or the
destruction of nodes.

Analogously, as soon as the operator of a sensor network learns that certain
nodes have been compromised, he stops accepting data from these nodes. Other
nodes will not forward messages from those nodes any more, and avoid them
for routing own messages. Their keys are invalidated, and they lose their access
rights to information within the network. Thus, they become useless to the
attacker.

Considering the fact that compromising nodes requires a significant invest-
ment, it is in the interest of the attacker to avoid that his activities are detected.
Usually, he wants to be able to use the nodes under his control for as long as
possible in order to amortize the costs that were necessary for taking control
over the nodes. The attacker will therefore adapt the behaviour of the compro-
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mised nodes according to the intrusion detection mechanisms that are utilized
by the network.

3.3 Adversary Characteristics

In section 3.1, we have already discussed several types of attacks on sensor
networks and how they can be defended against. We have seen that there are
efficient and effective mechanisms against outsider attacks, which allows us to
largely exclude such attacks from further consideration. The major threat to
sensor networks thus comes from the inside, i.e. legitimate nodes that have
been compromised by the adversary and are now operating under his control.
This section discusses the potential and the limitations of such attacks.

3.3.1 Basic Assumptions

We assume that compromised nodes can exchange messages among themselves
without being noticed by the legitimate rest of the network. In practice, this
may not be easily possible, but it is prudent to assume that a sophisticated at-
tacker will find ways for compromised nodes to collaborate in secret. There are
several ways in which this may be possible. For example, the adversary could
install his own base station through which the compromised nodes communi-
cate, or such traffic may be encrypted and encapsulated in ordinary messages.

A second assumption we make is that of a “practical” attacker, i.e. one that
has only limited resources. Additionally, the attacker does only have insider
knowledge about the WSN that is obtained during the course of an attack.

3.3.2 Attack Costs

The cost for a successful attack on a sensor network is the sum of the time and
the expenditure that must be spent to take control of a sufficiently large number
of nodes. This cost may almost be zero, for example due to a software glitch
that can be easily exploited. In order to make a WSN secure, the cost should at
least be linear in the number of nodes or even higher, for example by installing
surveillance means that make detecting an attack more likely if the attack is
taking more time.

It is likely that a WSN offers the capability of reprogramming sensor nodes
after deployment. This functionality should only be available to the legitimate
operator of the network and must be secured appropriately, for example through
access keys. However, due to a software glitch, or by exposing the required
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access keys, this capability could be available to the adversary as well. In
such a case, the attacker may be able to impersonate the operator and most
other security measures would be rendered ineffective. The adversary’s cost
for executing such an attack would be close to zero. We will further disregard
this type of attacks as they are beyond the scope of this work.

We assume that breaking into nodes and taking control over them is a non-
trivial task. Although with current prototypes, the barriers are rather low [15],
it is valid to assume that, should the need arise, more resilient sensor nodes can
and will be built. An adversary will therefore have to make some investment
for each sensor node he attacks. This investment is composed of the cost for
the required equipment, the effort of finding and accessing a node, and the time
required for this process. Thus, an attack on a well-designed WSN requires
effort that is at least linear in the number of nodes, assuming that the cost for
attacking a single sensor node has a lower bound. Due to this assumption and
the assumption of limited resources, an attacker will be able to take over only a
limited number of nodes. A network that exceeds this size will have legitimate,
working nodes left even after a successful attack.

3.3.3 Avoiding Intrusion Detection

We assume that a mechanism exists that can detect dropped messages. Many
communications between nodes may include only a single message. We as-
sume that the transport layer either delivers a message or notifies the sender
when delivery is not possible. However, we do not assume a secure transport
layer that ensures the delivery of messages. Instead, we assume a mechanism
that will detect, possibly at a later time, if a message has not been delivered and
no notification has been received by the sender.

3.3.4 Insider vs. Outsider

An important distinction of attacker classes is based on their knowledge of
cryptographic keys.

An insider has access to keys, either on the API level or in cleartext (in
strong security designs, the access level is usually restricted to the “needed”
operations). To be conservative, we must assume that such an attacker can
perform any cryptographic operation he likes using the keys. How he obtains
access to these keys is not important. Bribery, extortion, break-in, any form
of deception or “social engineering” may be successful. Ultimately, with suffi-
cient resources, keys can be extracted from the physical devices that make up
the network nodes.



80 Chapter 3. A Security Model for Wireless Sensor Networks

In contrast, outsiders have to rely on externally observable information only.
Eavesdropping may be as little as information on the message traffic, if mes-
sages are encrypted. Sometimes, cryptographic knowledge can be acquired
through observant means only (cf. the attack on early WLAN encryption [175]).

3.3.5 Technical Capabilities

Another characterising feature are the capabilities of the devices that are used
by the attacker. A “mote-class” (terminology from [90]) attacker has the capa-
bility to participate in the network on the same level as the sensor nodes. He
achieves this by either placing his own nodes, or by seizing sensor nodes and
taking control of them. In the latter case, we usually have to assume that he has
access to secret keys at least on API-level, i.e. he can sign messages, generate
authentication codes, etc.

A “laptop-class” adversary operates externally to the sensor network. By
using powerful equipment, he is able to cover a large area and is able to com-
municate with several nodes at the same time. He can overhear communication,
intercept messages (i.e., read them and at the same time prevent their delivery
within the sensor network), inject messages, use shortcut routes (corresponding
to a wormhole attack, e.g., by using a wired connection), or jam the network.

In our model, the attacker relies only on the capabilities of the compromised
sensor nodes. This corresponds to a “mote-class” attacker. As described above,
we assume an attacker that tries to avoid detection. The use of powerful equip-
ment is therefore highly constrained.

3.3.6 Location-Constrained Attacks

We assume that it is not possible for an adversary to inject own nodes into the
network, due to the cryptographic measures utilized. In order to participate in
the operation of the network, it is necessary that the adversary takes control of
some existing nodes. This allows him to read all message passing through these
nodes and to inject messages. It also allows the attacker to make use of the keys
of the nodes he controls, possibly even retrieving the key material. Clearly, the
more nodes the adversary takes control of, the greater is the impact he has on
the operation of the overall network.

The distribution of compromised nodes greatly affects the effectiveness of
an attack. When the attacker controls nodes that are randomly spread across
the entire network area, he cannot prevent data reports from any area, but he
can influence the reports from all areas. The error in all reports is thus poten-
tially increased. On the other hand, if the attacker controls only nodes that are
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concentrated in a certain area, he fully controls all reports from that area, but
he has no influence on the reports from other areas.

In general, the effectiveness of an attack highly varies with the geographi-
cal distribution of the compromised nodes. We describe this in the following
through the principle of locality. We then go on discussing the effects of several
distributions of compromised nodes.

Principle of Locality

The influence on reports, which a compromised node can exercise, highly de-
pends on the location of the node. The most powerful position is at the source
of the report. If the compromised node itself creates a report, or a significant
part of it, it can make up the report with arbitrarily generated data. The power
of other nodes to verify such a report are limited and depend on application
semantics (e.g., to check the plausibility of reported data) and sensor range.
Similarly, if the receiver of a report is compromised, it may deliver arbitrary
data to the querying entity.

The second most powerful location where a node can exercise influence on
reports is either close to the receiver or close to the sender of a report. Here,
the probability that messages travel through a compromised node is high and
thus the node might have the opportunity to change the contents of a report by
manipulating these messages.

The threat of compromised nodes being located close to the receiver or be-
ing the receiver itself can be overcome by obtaining a report in a redundant
manner, thus multiple receivers are established, which makes manipulations
more difficult. In most cases, redundancy cannot be applied to the source of a
report as easily.

Locations that are far away from either the sender or the receiver have a
much lower probability of influencing a report through message manipulation
as the likeliness that messages travel through specific nodes is low in densely
populated networks. Only if few alternate routes exist, nodes become bottle-
necks and draw traffic to them. This may be exploited by an attacker through
simulating congestion in certain areas, which may trigger the rerouting of mes-
sages. The use of multiple paths that are spatially separated (discussed later in
Chapter 5) is a possible means to mitigate such threats.

It can be expected that the distribution of compromised nodes determines
how an attacker can influence the operations of a wireless sensor network. In
the following, we discuss some fundamental distribution patterns.
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Random Spread Distribution

This model assumes that the adversary picks arbitrary nodes randomly from
the network and takes control over them. This is probably a very unrealistic
model if applied to an already deployed network. It requires that the adversary
breaks into a single sensor node and then randomly moves to another node.
If there are measures to track such movements, this attack bears a high risk
of detection. Considering the large number of nodes in a sensor network, a
single node is only of very limited value to the attacker. This value is probably
exceeded by the cost of moving from one node to the next, which makes the
attack uneconomical.

However, the following scenario may be more realistic. Assume that the
adversary gains access to a set of nodes before deployment and manages to
replace the program code on these nodes with his own. The nodes will then
be randomly deployed on the network area, and the adversary ends up with a
number of randomly distributed nodes he has control over.

The advantage of this attack is that the adversary has access to nodes dis-
tributed throughout the whole network area, which allows him to monitor a
large portion of the message traffic with relatively few nodes. In this regard,
the attack is efficient for eavesdropping and monitoring purposes. However,
active attacks are not very effective, as the amount of data that can be injected
by a few randomly distributed nodes is small compared to the total amount of
data in the network. Also, a single compromised node surrounded by legiti-
mate nodes is more likely to be expelled when showing abnormal behaviour or
reporting data with a high divergence from its neighbours.

Concentrated Distribution

When an already deployed sensor network is being attacked, the attacker might
start at a certain position and try to subvert as many nodes around that position
as possible. This would allow him to control all message traffic that is going
into or out of that area. The cost for moving around (and the involved risk of
detection) is amortized over a larger number of compromised nodes, thus this
attack mode is more efficient than randomly moving around and picking out
single nodes.

As a simple formal model of this type of attacks, we assume a starting po-
sition and a function f that describes the probability with which a node in a
certain distance from the starting position is being compromised. At the start-
ing position itself, this probability is equal to a success probability p0 with
0 ≤ p0 ≤ 1, i.e. f (0) = p0. With increasing distance from the center, this
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probability is likely to decrease, while the exact progression of f depends on
the adversary’s capabilities. As a very simple approximation, we consider a
maximum radius r and a linearly decreasing success probability:

f (d) = p0

(
1− d

r

)

for 0 ≤ d ≤ r and f (d) = 0 for d > r. This means that up to a distance r, the
success probability of the attacker decreases linearly. Beyond that distance, the
attacker is inactive.

We may consider different f -functions applied at the starting point. These
could vary the radius r, or the success probability might depend on the direc-
tion from the starting position or other parameters such as the environmental
conditions of the deployment area.

Hitpoints Distribution

We can use multiple starting points to model an adversary that becomes active
in several locations. A number of these “hitpoints” throughout the network are
selected according to a certain (random) distribution. The nodes in the hitpoint
areas could be targeted sequentially or in parallel. When we refer to this attack
type, we use the same f -function for all hitpoints.

Partitioning Distribution

This attack mode has the goal of partitioning the network, leading to control
over the message flow between the parts of the network. This is achieved by
subverting nodes along a path that partitions the network. Depending on the
topology of the network and the objectives of the adversary, certain areas are
more vulnerable to this attack. A “bottleneck” in the topology of the network
would provide a good location for mounting such an attack, as the number
of nodes required for a partition is very small. In most cases, the attack path
is probably determined by the objectives of the adversary. For example, the
adversary may attempt to separate a certain area from the rest of the network in
order to be able to perform certain actions in this area undetected.

If the attacker blocks the message flow out of some part of the network com-
pletely, this may be detected due to the lack of reports from that area. However,
it may give the attacker enough time to perform his activities. When the block is
canceled afterwards, new reports from that area are again unsuspicious. How-
ever, if there are end-to-end security mechanisms between some nodes within
the blocked area and outside of it, this attack may still be detectable. We will
present such a mechanism in chapter 6.
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3.4 The Cost of End-to-End Security

By end-to-end security, it is usually understood that two principals commu-
nicate with each other in such a way that no outsider can interfere with this
conversation. Two problems have to be addressed in order to achieve this:

1. It has to be determined who the communicating parties should be. In
particular, if one party wants to establish a connection to a service, the
address of the service provider has to be determined in a way that ensures
that a correct and honest party is chosen.

2. It must not be possible for anyone except the legitimately participating
principals to read, overwrite, or delete messages that are being exchanged,
nor insert new messages.

To address the first problem, either an out-of-band mechanism is employed,
such as manually entering the address of a web service, or some service direc-
tory is consulted, for which its address must also be known in advance. There is
always the issue of bootstrapping this process, but usually a practical approach
can be found.

The second problem is especially prevalent in open networks such as the
Internet, where communication partners are often unknown, and wireless net-
works, where anybody can potentially interfere with the communication links.
Therefore, additional protocol layers are deployed that provide end-to-end se-
curity guarantees based on an insecure network. In the Internet, examples of
such layers are the Secure Shell (SSH) [200] and Secure Socket Layer/Transport
Layer Security (SSL/TLS) [53] protocols.

When using SSL connections, packets are authenticated, encrypted, and se-
rialized. This ensures that packets cannot be inserted or replaced, their cleartext
cannot be accessed, and replayed or deleted packets can be detected. Such con-
nections are used for transmitting sensitive data, such as passwords or bank
account information. Another popular area where end-to-end security is desir-
able is telephony over the Internet (Voice over IP). Concerns about the security
of that technology have led to the development of protocols that support the
encryption and authentication of voice traffic between the communication end-
points (e.g. the Secure Real Time Protocol, see [99]). Deleted packets are
usually noticed by the participants on the semantic level (here, by voice inter-
ruptions).

The mechanisms to address the above two problems require a certain effort,
and this section investigates, which amount of resources must be devoted to
their implementation in the context of wireless sensor networks.
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3.4.1 Connection Establishment

Before an end-to-end connection between two nodes can be set up, the ini-
tiator must sort out which node should be on the other end. In a traditional
network setting, this is often done through external means such as a service di-
rectory, from which the address of a service provider is obtained. Each change
of the current service provider requires an update of the service directory. If
such changes occur frequently, all service requests must be preceded by a new
look-up in the directory in order to retrieve the current provider address. The
Domain Name System in the Internet is an example of such a system. However,
since changes in this system occur infrequently, most of the information can be
cached in a hierarchy of directory servers.

In a WSN, it can be expected that the actual node providing a service changes
quite often due to the dynamic nature of phenomena being observed by the
network, and due to load balancing and failure recovery mechanisms. This
transient existence of service providers potentially facilitates a form of man-in-
the-middle attacks, i.e. malicious nodes posing as service providers and inter-
cepting messages targeted at a legitimate service provider. The use and main-
tenance of a central service directory would be helpful, but also very costly due
to frequent directory updates and look-ups. Additionally, a central component
is a security risk since it would be a worthwhile target for an attacker.

Assuming that some mechanism for obtaining the identity and the address of
a service provider exists, there is still the need to establish a secure connection
between the initiator (client) and the provider (server), i.e. to engage in a key
agreement protocol. The standard protocol for doing this on the Internet is SSL.
There are three messages being exchanged before application data is being sent:
one “hello” message for initiating the connection, and two messages whereby
client and server exchange certificates and key information. This protocol can
be simplified to a two-step version if certain parameters, which are usually
communicated in the first message exchange, are fixed in advance. Thus, es-
tablishing a SSL connection requires at least one message in each direction.

In the context of the Internet, these two messages induce a negligible over-
head. They use only a small fraction of the available bandwidth and the induced
delay is insignificant compared to the duration of the following session. The
key exchange protocol is based on public-key cryptography, which requires a
significant amount of computational power. However, the involved computa-
tional overhead is an easy task for modern processors used in PDAs, worksta-
tions, and servers.

In a sensor network, however, the overhead induced by connection setup
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Signature
Algorithm Verification Generation Source

(public key op.) (private key op.)
RSA 512 (16 MHz) 0.70 s 5.0 s [127]

RSA 1024 (16 MHz) 2.30 s 33.9 s [127]
RSA 2048 (16 MHz) 8.40 s 4 min 7.6 s [127]
RSA 1024 (8 MHz) 0.43 s 10.99 s [74]
RSA 2048 (8 MHz) 1.94 s 1 min 23.26 s [74]

ECC secp160r1 (8 MHz) 0.81 s n/a [74]
ECC secp192r1 (8 MHz) 1.24 s n/a [74]
ECC secp224r1 (8 MHz) 2.19 s n/a [74]

Table 3.1: Execution time of public key operations on the BTnode platform

Algorithm Source
Sig. verification Sig. generation

RSA 2048 < 35 ms [163]
ECC 192 40 ms 20 ms [163]

Block operation
AES-128 11 µs [163]
AES-256 13 µs [163]

Table 3.2: Performance of cryptographic operations on a smartcard processor

may be significant. Messages can be required to travel over multiple hops,
thus the burden for transmitting them is placed on multiple nodes. Also, there
is a delay of a full round-trip time interval before the first application data
message can be transmitted. This delay is further increased as cryptographic
computations require a significant amount of time on sensor nodes. With only
a small amount of application data to be transmitted, which is typical in sensor
networks, such a security mechanism is very inefficient, since the overhead for
setting up the connection significantly delays the transmission of data messages
and cannot be amortized over many messages.

3.4.2 Public-Key Cryptography

Protocols like SSL rely on public-key cryptography, which is computationally
very intensive. RSA operations for signature generation and verification take
several orders of magnitude more time than symmetric key operations or hash
functions. There exist alternative approaches, as those discussed in Chapter 4,
which are based mainly on hash functions and require no public-key cryptog-
raphy, so they perform much faster than RSA-based key exchange.

Table 3.1 illustrates the time consumption of RSA operations. These fig-
ures were empirically obtained with an implementation based on the PKCS
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standard [104] executed on a BTnode (source: [127]). As public exponent, the
value F4(hex) has been used. The numbers are averaged over 5 measurements
performed for each key size. Gura et al. [74] report on the performance of an
optimized implementation of RSA and an Elliptic Curve Cryptography (ECC)
algorithm on the ATmega128 platform. For RSA, their implementation yields
a 3- to 5-fold improved performance compared to the (more naive) implemen-
tation of [127]. However, the order of magnitude of these operations still pre-
vents excessive usage of RSA. The ECC algorithm yields an improvement of
one order of magnitude compared to RSA signature generation. This indicates
that ECC seems to have quite some potential for sensor networks; a library for
TinyOS is available [116].

For comparison, Table 2.2 shows figures for different cryptographic primi-
tives, namely AES encryption and hashing. These numbers show that there is
a vast difference between symmetric key cryptography and hashing, and pub-
lic key cryptography. They clearly indicate that symmetric mechanisms have
a significant advantage over public key cryptography from a performance per-
spective.

Another issue with RSA are the relatively large key lengths. At least the
public key and the accompanying certificate (a signature) have to be exchanged
for key agreement. For a key length of 1024 bit, this yields an additional over-
head of 256 bytes in either direction. Compared to the typically very small size
of data messages in a sensor network, this overhead is significant.

3.4.3 Pairwise Key Distribution

In a fully connected network of n nodes, each node maintains n− 1 connec-
tions. With each connection, a data structure is associated that uses up some
space, say m bytes. Therefore, each node has to store m(n− 1) bytes of state
information. Given M bytes devoted to storing such kind of state information,
the supported network size is determined by n = M

m +1.
As an example, let’s assume that with each node, a 32-bit (4 bytes) identifier

(which may include a unique ID, location information, and possible other data)
and a 128-bit (16 byte) key is associated. Thus, a node has to store m = 20
bytes for each other node in the network. If a sensor node provides M = 100
kbyte for security purposes, this allows a network size of n = 5000 nodes.

Currently, microcontrollers used in sensor node prototypes provide up to
512 Kbyte non-volatile data memory (Flash EEPROM), e.g. the MICA product
line of Crossbow Technology Inc. Much of this space is used by code for
the operating system, network stacks, and applications. We can assume that
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large parts of the memory are used for storing application data such as sensor
readings and aggregated data. In principle though, deploying more memory
would be possible.

Full pairwise key distribution therefore seems to be a viable option for sen-
sor networks. There are, however, limiting factors:

• A static distribution of keys is inflexible as it does not allow to add more
nodes to the network later.

• Although a certain network size can be supported, the approach is never-
theless not scalable to larger networks, say in the order of magnitude of
106 or larger

• Sensor nodes should be as small as possible, thus the amount of memory
that can be added is limited. Also, the operator of a sensor network prob-
ably prefers using the available memory for application purposes and is
not willing to reserve a large part of the available resources for security
purposes.

• Although keys are available for every pair of nodes, most of them will
never be used, since a sensor node will interact with only a tiny fraction
of the nodes in the network during its lifetime. Thus, most of the memory
used for storing the keys is never used productively.

We conclude that up to a certain network size, full pairwise key distribution
is feasible if one is willing to dedicate a significant amount of memory to stor-
ing keys. It is, however, not a generally applicable solution to the problem of
secure communication. The deployment of additional nodes during the lifetime
of the network is not well-supported. Most importantly, the approach does not
make efficient use of the available resources. For the most attractive use cases
of wireless sensor networks, where nodes are very small yet there is a large
number of them, this approach does not work.

3.5 Approximating End-to-End Security

As elaborated in the previous section, End-to-end security mechanisms achieve
two goals: (1) Secure matchmaking of communication partners and (2) secure
message exchange. Essentially, they guarantee that dishonest parties cannot
interefere with the communication of honest parties in any way.

One could relaxe these criteria to a certain degree and demand, for example,
that, say, 90% of all matchmakings occur between legitimate parties; or, that
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the adversary can only read messages but not interfere with them. By “approx-
imation” to end-to-end security we understand, in an informal way, that there is
an upper bound on the influence that malicious parties can exercise. This influ-
ence can be measured in several ways, for example as the fraction of messages
in the whole system that are subject to manipulations, or the probability with
which messages that are exchanged between a specific pair of nodes are subject
to manipulations.

In this section, we first outline the threat model under which we will study
the security mechanisms described in the following chapters. We sketch multi-
path communication as a generic model for these mechanisms, and conclude
by defining standard measures for assessing their effectiveness.

3.5.1 Threat Model

We assume an adversary with the general objective of manipulating the out-
come of the wireless sensor network under attack. As a secondary goal, the
adversary tries to avoid detection. We assume that the adversary is restricted in
his attack capabilities such that a node capture attack is the only feasible type
of attack, and that capturing a node is associated with at least a certain fixed
cost.

The strength of the adversary varies in two dimensions. First, the number of
captured nodes is variable, and second, the adversary’s mobility is geographi-
cally restricted.

The power of the adversary lies in his ability to make use of the captured
nodes for manipulations on the messages being exchanged. Under an end-to-
end security regime, his influence would be constrained to the captured nodes
themselves. By definition he would not be able to interfere with the message
exchange of other nodes. Under a more relaxed, but also more economical
security regime, the influence he can exercise mostly depends on the number of
captured nodes. Sometimes, the geographical location of a node makes it more
valuable to the adversary if many messages have to pass through this node, for
example.

3.5.2 Multipath Communication

In communication settings where no end-to-end secret keys are available but
where it is possible to construct a set of disjoint paths between the message
source and its destination, we can achieve a level of security that compensates
the lack of authentication to a certain degree and is sufficient for many applica-
tions.
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The simplest form of multipath communication is replication: the same mes-
sage is sent over multiple paths in parallel. If at least one copy arrives at the des-
tination, the message transmission has been successful, thus providing a good
countermeasure against message dropping (denial-of-service) attacks. Attacks
on the integrity of messages can, if not prevented, at least be detected if multiple
copies of a message, but with different contents, arrive. Of course, this method
does not provide any protection against eavesdropping. Nevertheless, it is suit-
able for a Diffie-Hellman key exchange [54] (without key authentication, but
possibly with integrity protection).

Shamir’s secret sharing scheme [165] allows the splitting of a message into
n pieces, k of which are sufficient to reconstruct the original message. The
scheme is secure against an adversary that manages to get hold of at most k−1
pieces of the message, which will not yield any information about the message
at all. Of course, if the adversary obtains k pieces, the confidentiality of the
message is broken. Apart from threshold confidentiality, Shamir’s scheme also
achieves robustness against the loss of pieces if n > k. However, it comes
at the cost of an n-fold increase in size, since each piece is as large as the
original message. Rabin [147] has devised a more efficient method that retains
reliability, but lacks the feature of not revealing any information.

Having n disjoint paths available and using secret sharing, we can transmit
each piece on an independent path. The adversary will not be able to reconstruct
the message unless he can eavesdrop on at least k paths. When faced with such a
constrained attacker, this method can preserve the confidentiality of a message.

One can distinguish between node disjointness and link disjointness. In
wireless sensor networks, we can generally say that nodes are more important
than links. Link-centricity should be replaced by node-centricity for the fol-
lowing reasons. (1) If one link suffers a failure because of external forces, it
is likely that all other links in a certain area are exposed to the same external
forces and thus suffer the same failure. Thus, disjointness of geographically
close links does not help in this case. (2) The bandwidth of links is limited
by the computational capacity of the nodes, and not by wireless technology
(as in the conventional case). (3) There are many links compared to nodes,
which alone makes nodes somewhat more significant; for each node, there is a
potentially large number of links – between 1 and N (network size).

From a security perspective, disjointness of paths is desirable: two paths
that share a common node are only as good as that common node allows. An
example are public-key infrastructures without a central certification author-
ity [152]. Here, trust in the authenticity of public keys is indirectly transferred
over multiple hops and each certification path is only as good as its weakest
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link, thus disjointness is required. For WSN, we should consider a different
security model, which allows us to relax the disjointness condition. Consider-
ing a geometrically constrained attacker, the probability that a node is captured
is high when one of its neighbours is captured. Therefore, if a node near one
of the endpoints is captured, it is likely that the endpoint is captured as well.
In this case, the connection is broken by definition. Thus, we can consider
two paths as “disjoint” if all the shared nodes between them are close to the
endpoints, thereby increasing the risk of security breaches only minimally.

The most important task in a disjoint path setting is to find or set up disjoint
paths in the first place. We will present a method, which takes the previous
considerations into account, in Chapter 5.

Remark Multipath communication is very common in the physical world, al-
though multiple paths are used rather sequentially than in parallel. One popular
example is the distribution of credit cards and their associated PIN numbers.
Here, separate letters are used for sending the credit card itself and its PIN
number, and one of them is sent with a delay of a few days. The underlying
assumption is that under these conditions, it is unlikely that both letters can
be intercepted by malicious parties. Another example is key distribution for
e-banking. The keys are sent by paper mail, where endpoint verification is
possible, while the actual banking statements etc. are sent via the Internet.

3.5.3 Assessing the Security Level

When devising techniques that provide a level of security that is not equivalent
to end-to-end security, it is helpful to be able to somehow quantify how close
they are able to approximate end-to-end security. For wireless sensor networks,
such a quantification is canonically based on the number of nodes that are able
to communicate (or, generally, act) securely. For wireless sensor networks, we
propose two measures: the fraction of node pairs that are able to communicate
securely, and the number of nodes that are able to participate in agreement
schemes.

Secure Pairwise Communication

A fundamental requirement in a communication system is that two hosts can
communicate securely (w.r.t. confidentiality or authenticity) with each other.
The probability with which a connection provides the required security prop-
erties is an indication of the security level the network provides. Related to
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this is the fraction of pairs of uncompromised nodes that can communicate se-
curely. From the adversary’s point of view, this means that the adversary is
able to manipulate a certain fraction of the messages that are sent throughout
the network.

Note the difference between link and path security. Link security prevents
a passive adversary from reading messages that are sent between two adjacent
nodes. In case of an active adversary that operates only at the link level, link
security prevents the adversary from manipulating messages. If the active ad-
versary is also able to compromise nodes, link security is not sufficient to keep
the adversary from eavesdropping or manipulation. In a multi-hop environment
and an adversary of the latter kind, link level security provides no protection
against this adversary. In this case, it is necessary to protect communication
paths instead of links only. A path provides a connection between two nodes
that are non-adjacent. All nodes on that path cooperate relaying messages.
There is a certain level of trust that must be put into them to provide the neces-
sary protection.

A live path is an end-to-end connection in which both endpoints are uncom-
promised. This is independent of the fact whether these nodes can communi-
cate securely with each other or not. If they have a unique secret shared key,
secure communication is possible independent of the number of compromised
nodes that relay the messages. The shared key guarantees that intermediate
nodes cannot tamper with the message. If the nodes use disjoint multi-path
routing, a shared secret key is not necessary, but there is a limit on the number
of compromised paths that can be tolerated. Using a secret sharing scheme, t
out of n available paths may be compromised without affecting the traffic.

A functional path is a path that provides a secure connection between two
uncompromised endpoints. If end-to-end security means are available, such as
a shared key, any path that is alive is considered functional. Only its ability to
relay messages is required. Security is provided by the shared secret key. If no
end-to-end security means are available, the path itself is responsible for pro-
viding security properties. For example, in a hop-to-hop authentication scheme
all nodes are trusted to relay a message untampered.

For defining a measure for the level of security, we consider the set of live
paths as the basic reference. This seems sensible as the integrity of a path is
irrelevant if one of the endpoints is compromised. Formally, we define as a
measure for the security of a sensor network the quotient

|{π ∈Π : π is functional}|
|{π ∈Π : π is alive}| (3.1)

where Π is the set of all paths (i.e., pairwise multi-hop connections) in the net-
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work. This measure is defined only if there is at least one live path in the net-
work. It is consistent with end-to-end security techniques: for these, it always
yields 1, independent of the number of compromised nodes in the network,
since every live path is also functional.

Byzantine Agreement

In many applications of distributed systems, at some point a consensus prob-
lem has to be solved. For example, the hosts have to agree whether or not to
perform a specific action, such as committing a database transaction. In sensor
networks, nodes may have to agree on the value of aggregated sensor data be-
fore reporting it. Or a distributed intrusion detection system is concerned with
the expulsion of a sensor node that is suspected to falsify sensor readings.

The problem of reaching consensus in the presence of malicious faults is
called the Byzantine agreement problem. It is well-known that solutions to this
problem exist only under specific conditions on the synchronization of hosts,
the characteristics of the communication network, and the authentication of
messages. We will not go into detailed descriptions of appropriate conditions.
We are interested in evaluating the ability of a network to reach consensus
when it is subject to an attack. This evaluation provides a metrics for the level
of security that is delivered by the network.

Our model is a synchronous system with point-to-point connections. In a
fully connected network, this would allow for Byzantine agreement in case
there are n > 3t nodes in the network. Since we are dealing with a sparsely
connected, multi-hop network, message authentication is used to simulate full
connectivity, i.e. provide resilient point-to-point connections. Digital signa-
tures would allow tolerating arbitrary values of t, but we disregard this possi-
bility here and concentrate on end-to-end security properties.

The synchrony assumption is a strong assumption to be made in a sensor
network. This assumption demands that messages are reliably transmitted be-
tween nodes within a “round” of operation. This requires a reliable message
transport service that retransmits lost messages. Transmission failures have to
be detected. Such a service should be possible to implement in a sensor net-
work, though it may be unusable in practice.

Protocols for distributed consensus are very complex. In order to tolerate t
faulty nodes, they require at least t + 1 rounds of message exchanges between
all node pairs. It is clearly unacceptable in a large-scale sensor network to in-
clude all nodes in such a protocol. Thus, we do not consider Byzantine agree-
ment among all nodes in a sensor network to be of practical value. However,
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we consider the ability of a network to reach consensus useful as a means for
comparing authentication schemes. Authentication based on pairwise keys pro-
vides the highest security level in this framework, since it prevents the adver-
sary from manipulating messages. This allows secure communication among
all pairs of uncompromised nodes. Alternative authentication schemes, as de-
scribed in chapters 6 and 5, provide secure communication only for a fraction
of the node pairs. This reduces the ability of the uncompromised nodes to
reach a network-wide consensus. The fraction of nodes still able to participate
in this network-wide consensus yields a quantitative measure for the provided
security.

Bibliographic notes The problem of Byzantine agreement has been defined by
Lamport, Shostak, and Pease [138, 108]. Protocols and complexity bounds for
distributed consensus are presented in an accessible way in the book by Nancy
Lynch [119].

3.6 Related Work

The standard attacker model in cryptographic research has been defined by
Dolev and Yao [57]. It assumes a distributed system in which hosts commu-
nicate by exchanging messages. It considers two (or more) honest parties that
are trying to communicate, while the attacker tries to tamper with this commu-
nication. The attacker is assumed to be nearly omnipotent, having access to all
communications and being able to suppress or fabricate messages. He is only
limited by cryptography, which is assumed to be secure. This model has proven
to be useful for the analysis of cryptographic protocols. However, as discussed
in [45] within the context of ubiquitous computing, often other threat models
are more useful for the analysis of security protocols. In such settings, addi-
tional security assumptions are being made that allow to relax the Dolev-Yao
model by going beyond the availability of unbreakable cryptographic primi-
tives.

One condition, which is often fulfilled in practice, is the existence of a low-
bandwidth but secure channel that can be used for a short period of time. One
example where this is exploited is the “pairing” of consumer Bluetooth devices.
Here, the (human) user enters the same random code on both devices. This code
is then used as a seed for creating a secret key [106] that allows future secure
communication between these devices. The underlying assumption is that the
attacker does not have access to the codes entered by the user.
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Location-constrained channels [11] are a similar means for authenticating
messages or entities. They can be used to restrict access to physically close
users, thereby excluding an attacker that is too far away. However, setting up
such a channel is non-trivial. Restricting the range of a wireless radio transmis-
sion is often not possible. For example, using special equipment it is possible
to interact with a Bluetooth-enabled mobile phone from a distance as long as
1.78 km (in contrast to the advertised 10 m) [80]. Alternatives such as sound
or light have been proposed, for which range limitation can be achieved more
reliably.

Access to the communication medium can also be restricted in time, for
example during the deployment phase of a WSN. Just after the nodes have
been positioned, for example after being dropped from a plane, the adversary
may not have access to the deployment area. This short time window can then
be used to set up secret keys between the nodes by exchanging short plain-text
messages [5]. The LEAP key distribution scheme [205] depends on a similar
condition. Here, it is assumed that the time consumed for a node to detect
its direct neighbours will be shorter than the time it takes for the attacker to
compromise a node. This condition is necessary since each node initially uses
a master key. This key is erased after neighbour discovery has taken place (and
before the attacker is successful). Nevertheless, the use of a master key that is
the same for all nodes is problematic. A single captured node with the master
key still intact would suffice to take over the entire network. Therefore, it is
required that all nodes erase the key reliably.

3.7 Summary

The topic of this chapter was the description of a security model for wireless
sensor networks. The purpose of such a model is to provide a framework within
which possible attacks on a sensor network can be considered, such that the
most likely type of attacks can be determined for a certain deployment.

We first considered how a wireless sensor network could be attacked in gen-
eral, namely by hardware or software manipulation, or through its communica-
tion interfaces. We then discussed the possible objectives of an attacker. They
not only refer to the resources that a WSN provides but also include detection
evasion. Following that, we described the “design space” for attackers, which
determines the attacker’s characteristics and capabilities. Since our major con-
cern is communication security in wireless sensor networks, we took a closer
look at end-to-end security measures and their associated costs for implemen-
tation in WSNs.
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As we concluded that end-to-end mechanisms would be either too costly or
too constraining in many applications of wireless sensor networks, we consid-
ered the approximation of end-to-end security as an alternative approach that
provides a level of security that is sufficient for many purposes and may deter
potential attackers in many cases.



Chapter 4

Key Establishment

Shared secret keys are a prerequisite for communication that is secured by
cryptographic means with regard to the three “classical” security properties:
confidentiality, integrity, and authentication. In wireless sensor networks, con-
fidentiality is important if, for example, sensor readings or aggregated data
are regarded as secrets that have to be protected against unauthorized reading.
Integrity and authentication are required for WSNs that operate in critical envi-
ronments where the manipulation of data may have harmful consequences.

In communicating systems, cryptographic keys can be established in a va-
riety of ways, which can be broadly categorized in two classes. The first is
ususally described as key exchange: Two (or more) parties each contribute a
partial key that are combined into the final key. A key exchange protocol solves
the problem of how to efficiently convey the partial key to the other party with-
out compromising the final key. The second class is usually called key agree-
ment. Here, it is not necessary that both parties contribute key material. The
final key can be chosen externally (and both parties simply agree to use it), or
it can be assigned by one party to the other. Such a case is sometimes called
key transport.

In identity-based key agreement protocols, the only information that may be
exchanged are the identities of the involved parties. Identities are not equivalent
to keys as they are (often) not randomly chosen, static, and public. Based on
the identities, the shared key is determined. This often involves the use of
additional key material, which can be either (pseudo-)randomly constructed or
could be already present. The latter case is the result of key pre-distribution.

In this chapter, we describe identity-based key agreement protocols for wire-
less sensor networks. The properties of such protocols match the resource con-
straints of WSNs such that they are advantageous over alternative key agree-
ment approaches.
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4.1 Requirements for Key Agreement

The objective of key establishment protocols is to create a key that is known
to, and only to, the legitimate nodes involved in the protocol, thereby creating
a secure association between these nodes. That means, no information about
the key whatsoever must leak to outsiders. In general, this is only achievable
by using resource-intensive protocols based on public-key security, or by pair-
wise key distribution, which are both impractical for wireless sensor networks.
Public-key cryptography is expensive and slow, and pairwise key distribution
would require extensive memory capacity (N−1 keys have to be stored on each
node for network size N). However, in sensor networks, it is often not neces-
sary to guarantee perfect key confidentiality but a certain probabilistic security
level is acceptable. This is an opportunity for the use of more economical key
agreement schemes.

In general, a key agreement scheme for a WSN should be based on the
exchange of only a very small amount of data and it should be sufficient to
send one message in each direction. Additionally, the scheme should be based
on cryptographic functions that are easy to compute.

From a cryptographic point of view, a key establishment protocol must be
designed in a way to ensure that it is secure against an attacker as defined by
Dolev and Yao, i.e. the protocol must not allow the rearrangement or manipula-
tion of messages such that the attacker can eventually learn the key. It is valid,
however, to assume that the cryptographic primitives are secure against crypt-
analysis. In practice, this latter assumption means that only widely recognized
and tested cryptographic algorithms must be used.

For specific application scenarios, usually further assumptions can be made
that allow the relaxation of the threat model (as discussed in the previous chap-
ter). In wireless sensor networks, it may be acceptable that a pairwise key used
by two nodes is also known to a small fraction of the other nodes in the net-
work. This global trust assumption means that a key agreement scheme has to
provide key confidentiality only with a certain probability (which, of course,
should be as high as reasonably possible).

4.2 Random Key Pre-Distribution

Random key pre-distribution for sensor networks has been first proposed by
Eschenauer and Gligor [64]. The objective of a key pre-distribution scheme
is to allow two sensor nodes establish a shared secret key that can be used for
securing their bilateral communication, i.e. for encrypting or authenticating
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messages. The EG scheme is based on a pool of keys of which a subset is
known to every node. Two nodes can derive a pairwise key, a link key, from
the intersection of their subsets. Note that here, link refers to a connection in
the authentication graph of a network, which is not necessarily equivalent to a
radio link.

Such a scheme does not provide “perfect” security since it cannot be guar-
anteed that a derived key is known exclusively to one pair of nodes. An attacker
who captures a set of nodes acquires the key material known to these nodes and
can, with a certain probability, derive from that the link key that has been es-
tablished between two other, uncompromised nodes. Depending on the chosen
parameters, the scheme provides a certain resilience against such attacks.

Due to its probabilistic nature, the scheme cannot guarantee that two nodes
will be able to establish a link key at all, as it is possible that the intersection
of their key material subsets is empty. The parameters can be chosen such that
connectivity (i.e., the probability with which two nodes can establish a pairwise
link key) will be high, but it will be usually below 1, and a high connectivity
will lead to reduced resilience.

4.2.1 A Model for Key Pre-Distribution

The following elements are required for a random key pre-distribution scheme.
The key space defines the set of values that are eligible as keys. These values

must be of sufficient length to provide computational security when being used
as cryptographic keys. A typical length could be 128 bit.

For some pre-distribution schemes, for example full pairwise key distri-
bution, keys are drawn from the complete key space. For random key pre-
distribution, only a subset of the complete key space is used. This subset is
randomly chosen and is called key pool K .1 The size of the key pool deter-
mines the connectivity and resilience of the scheme, as we will see later. We
will denote the key pool size as S.

We assume that each of the N nodes has a unique identifier IDu (u ∈
{1, . . . ,N}). To each node, a set of keys is assigned, which is called a key ring.
The elements of a key ring are selected from K by using a selection function
F , which will be defined shortly. First, we define the following elements:

• K is the key pool, i.e. an ordered set of keys.
1It should be noted that some cryptographic algorithms, such as DES or Blowfish, have “weak keys”, i.e. keys

with certain properties that lead to insecure results. Although weak keys are usually very rare, one might check
if the key pool contains such keys and replace them, if a cryptographic algorithm with weak keys is being used.
There are no known weak keys for the current cryptographic standard AES/Rijndael.
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• S = |K | denotes the size of the key pool.

• m is a global parameter and denotes the key ring size, which is the same
for all nodes.

• A (pseudo-) random number sequence generator Ψg where g acts as a
seed.

Ψ takes four parameters: a node identifier, a lower bound on the output,
an upper bound on the output, and the number of elements in the generated
sequence. Ψ may generate “real” random numbers or pseudo-random num-
bers. In any case, we assume that Ψ is “stable”, i.e. for the same input, it will
produce the same output in a given context (which is determined by g). The
produced numbers are integers within the given (inclusive) bounds. If the num-
bers are generated pseudo-randomly, the node identifier is used as part of the
seed. This enables other parties to reproduce the same sequence of numbers.
As an additional constraint, Ψ will produce any number at most once.

Based on these elements, we define a key selection function F , which returns
for a given node ID a set of keys:

F(IDu) = 〈K [v1], . . . ,K [vm]〉
where Ψg(IDu,1,S,m) = 〈v1, . . . ,vm〉 for a given g.

4.2.2 Pre-Distribution Phase

The initial phase of a key pre-distribution scheme is performed in a secure
environment, assuming that the adversary does not have access to the nodes
during this phase, e.g. before deployment. The key distribution center (KDC)
is responsible for performing this initial phase. The KDC computes for each
node u the key ring F(IDu) and loads the selected keys onto the node.

There are two parameters in this scheme that can be varied and that are
important regarding the security properties of the scheme: the size S of the key
pool and the size m of key rings. There is a trade-off between connectivity and
attack resilience. The larger the key pool is, the more resilient the scheme will
be against an attacker, since the probability that a captured node contains the
root keys required to derive a certain link key is lower. However, connectivity
suffers since the intersection of the key rings of two nodes trying to establish
a link key tends to be smaller. Larger key rings, on the other hand, increase
connectivity as the intersection of two key rings contains more elements. But
an attacker also learns more root keys when capturing a single node, thereby
increasing his chance to compromise a link key.
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4.2.3 Identity-based Key Rings

The selection of keys in a key ring can be entirely random, as it has been ini-
tially proposed by Eschenauer and Gligor. Alternatively, it can be based on
a public pseudo-random sequence of indices that is derived from the identity
of the node (as proposed by Zhu et al. [204]). This identity-based selection
of keys has the advantage that during the key agreement phase, nodes have to
exchange only their IDs in order to be able to reconstruct which keys the other
node holds. It has the additional advantage of providing a kind of entity authen-
tication. More precisely, by verifying that a node has knowledge of a specific
set of keys, it is established that this node belongs to the group of nodes that
are legitimatly participating in the network’s operation.

Since the generator Ψ is accessible to all nodes, every node can determine
the indices of the keys in any other node’s key ring, if the other node’s identity
is known. However, the actual keys are not disclosed. Thereby, nodes can
determine their common set of keys, but a party that does not know the keys in
advance will not learn them.

4.2.4 Establishing the Common Key Set

In order to derive a link key, two nodes have to learn which of the nodes from
the key pool they have in common. There are several possibilities for that, with
different advantages and disadvantages.

As proposed in [64], a node can simply broadcast the indices of the keys in
its key ring. Neighbours overhearing this message compare the indices to their
own and decide whether they are able to establish a link key to the broadcasting
node.

When key rings are selected based on a node’s identity, it is sufficient that
a node broadcasts its own ID. Nodes that receive that message can derive the
set of of key indices from that ID and determine the shared set of keys. This is
easily achieved by making the following function available to each node:

ψ(IDu) = Ψg(IDu,1,S,m) .

(Since storing the complete output of Ψ during the pre-distribution phase in
each node is infeasible, this is only efficient if Ψ generates its output pseudo-
randomly, for example based on a hash function, such that a node can do this
calculation itself.)

These two approaches have the disadvantage that an adversary learns which
keys (more precisely, their indices) are contained in a node’s key ring. This
might facilitate certain attacks since the adversary can now selectively target
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nodes and try to capture them in order to obtain certain keys which he does
not yet possess. The first approach has the additional disadvantage that the
broadcast messages are quite large, comprising at least m log2 S bits of index
information.

Another possibility is to broadcast the key indices only in an indirect man-
ner. As proposed similarly in [143], a node broadcasts the following informa-
tion:

α,H(x0,α),H(x1,α), . . . ,H(xk−1,α)

where α is a random nonce, H is a keyed hash function, and xi are the keys from
the node’s key ring. A value H(·) is called a hash commitment. An overhearing
node computes H(yi,α) for every key yi in its own key ring. By comparing the
results to the received values, it can determine which node it shares with the
broadcasting node.

This last approach has the advantage that it does not reveal any information
about the key indices unless the corresponding keys are already known. There-
fore, it does not help an adversary to focus his attack on certain nodes. On the
other hand, overhearing nodes have to perform a moderate number of computa-
tions. They have to execute m applications of function H and m2 comparisons
(each of their own results with each of the received values). Also, the broadcast
message is quite large.

Note that in [143], instead of a keyed hash function, encryption and decryp-
tion operations were used. The broadcasting node encrypts α with each of its
keys, and a receiver decrypts every value with each of its keys, resulting in m2

decryptions. Additionally, the m2 comparisons are still necessary. By eliminat-
ing the need to apply each key to each of the transmitted values, our version
reduces complexity from O(m2 +m2) to O(m+m2) on the receiver’s side.

Sending hash commitments uses a lot of bandwidth. The output of a hash
function has n bits (e.g. n = 160 for SHA-1), and is considered completely
random. The size of a broadcast message can be reduced by including not
the full hash commitments, but only a substring for each of them. Instead of
n bits, only k < n bits could be transmitted for each hash commitment. The
comparisons are then based on these substrings. Since they are smaller, the
likelihood that a comparison yields a false positive result is higher than for the
full length.

The impact of a false positive match would be that a node assumes that its
set of shared keys with another node is larger than it is in reality. This leads
to an attempt at establishing a shared key based on this extended set of keys,
which would fail. The nodes would then not be able to communicate securely.
Therefore, we would like to keep the probability of such an event as small as
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possible. Based on the birthday paradox, we can compute which k is required
such that the probability of such false positives is below a certain threshold.

The probability that at least two collisions occur if v samples are given out
of d possible values, is [192]:

p(v,d) = 1− d!
(d− v)!dv

Of course, if v > d, the probability becomes 1. In our case, we set d = 2k

and v = S. Using the approximation given in [196], we then get for a desired
collision probabiliy p,

k =




log2
S2

2ln
(

1
1−p

)



Example 1 (Reduced hash commitments for key comparison). Let’s assume the
key pool contains S = |K |= 50000 elements. We demand that the probability
for false matches when comparing the hash commitments of keys is p = 0.01.
Using above formula, we get k = 37, i.e. compared to full hash commitments of
length 160 using SHA-1, we can save 123 bits for each key without significant
impact to the connectivity.

4.2.5 Key Derivation

After establishing its common set of root keys, a pair of nodes can derive a
link key from the root keys. If the common set is empty, the nodes don’t share
any keys and thus they cannot establish a link key. In the basic scheme of Es-
chenauer and Gligor, one common key is sufficient to establish a link key. The
q-composite scheme [39], which is an extension of the basic scheme, demands
that at least q (q≥ 1) keys are avaialable and are combined to form the link key.

In the basic scheme, even if there are two or more keys in the common set,
only one of them is being used as the link key. However, better resilience can be
achieved if all the available keys are used. We now discuss different methods
for deriving a link key from a number of root keys.

Let q be the number of root keys in the common key set, and xi (0≤ i < q)
denote these common keys. These keys can be combined in the following way
(proposed in [143]):

K = x0⊕ x1⊕ . . .⊕ xq−1

where ⊕ is the bitwise exclusive-or operation. This will yield a link key of the
same size as the root keys.
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Another possibility for deriving a link key is to apply a hash function on the
input material. The root keys are concatenated first, resulting in a bitstring to
which the hash function is applied:

K = h(x0|x1| . . . |xq−1)

This method has been proposed in [39]. In contrast to the previous approach,
the order in which the keys are concatenated must be the same at both commu-
nicating parties. For example, the order in which the root keys occur in the key
pool could be used. Key derivation through the application of a hash function
is a common method for deriving a cryptographic key from input material such
as a password [103].

Note that a hash function can handle input data of arbitrary length (see sec-
tion 2.8.1) but yields output data of fixed size. If the result is too large (for
example, SHA-256 yields 256 bit), a substring of the output data can be used
as the key.

It may be advisable to include a piece of random data in the key derivation.
One of the nodes (or both) may generate a random value that is then included
by both nodes in the key derivation, for example by appending that random
value to the root keys before applying the hash function. This gives better
resilience against attacks that occur later. Even if the adversary finds out which
keys were involved in deriving the key, he cannot simply repeat the process.
Only if he has recorded all the network traffic during key establishment (when
the random values are exchanged), he has all data he needs to reconstruct the
keys. Otherwise, he would have to try out all possible random values, which is
infeasible if the space from which they are drawn is large enough.

Note that if we assume the adversary does not record any traffic data during
key establishment, we can drop the key establishment scheme altogether and
simply use random values as pairwise keys. This is the approach proposed
in [5].

4.2.6 Connectivity

The term connectivity refers to the probability with which two nodes can estab-
lish a link key. In a pre-distribution scheme where pairwise keys are distributed
before network deployment, full connectivity can be achieved, since every node
has a link key with every other node. In a probabilistic scheme as described
above, connectivity is traded against attack resilience. High resilience can be
achieved if lower connectivity is acceptable. In a highly redundant sensor net-
work, a relatively small connectivity (for example, 30%) could be appropriate.
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The link keys define the authentication graph that exists “on top” of the
communication graph, in which the edges are determined by radio connectiv-
ity. (The vertices of both graphs correspond to the sensor nodes.) If we allow
link keys only between nodes that are spatially close, i.e. between which exists
a radio link, the authentication graph is a subgraph of the communication graph.
If we also allow link keys between remote nodes, the edgeds in the authentica-
tion graph become arbitrarily distributed, being constrained only by the ability
of pairs of nodes to establish link keys. In the former case, the authentication
graph is geometric, while in the latter case, it is closer to a random graph.

Nodes with few neighbours may not be able to connect to any neighbour at
all. A small number of nodes being disconnected from the main component of
the network should not pose a problem in practice. As a matter of fact, it can
be expected that some nodes will fail to function during the course of normal
operation, and the network will have to deal with such failures anyway. Some
application scenarios may depend on a network that is densely connected, with
each node having many neighbours to talk to. For other scenarios, a lightly
connected network may suffice. It is part of deployment planning to determine
the necessary and economically feasible density of the network.

A random predistribution scheme yields a certain probability pc with which
two nodes are able to establish a link key. This probability depends both on
the key pool size and the key ring size. While the key ring size is usually
constrained by the available memory in the nodes, the size of the key pool can
be varied arbitrarily, since it exists in full only in the key distribution center.

As defined in section 4.2.1, let S be the key pool size and m the number
of root keys in a node’s key ring. In order to determine the probability pc,
we first determine the probability with which two nodes share exactly i keys
(0≤ i≤ m), which is

Pr[i shared] =

(S
i

)( S−i
2(m−i)

)(2(m−i)
m−i

)
(S

m

)2 (4.1)

Chan et al. [39] have given a derivation of this expression. Here, we give a
slightly modified explanation of its terms. The numerator designates the num-
ber of possibilities to select two key rings which have exactly i common ele-
ments:

• We assume i common keys. There are
(S

i

)
ways to select i items from the

key pool.

• There are m− i distinct keys left to be drawn for each node from the key
pool, so 2(m− i) keys in total. The i keys that already have been deter-
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mined as common keys cannot be selected again. Thus, there are
( S−i

2(m−i)
)

ways to select those remaining 2(m− i) keys.

• These 2(m− i) keys have to be distributed among the two nodes. Since
each node gets m− i keys, there are

(2(m−i)
m−i

)
ways to do that.

• The denominator equals the total number of possibilities to select two key
rings.

Two nodes can establish a link key if they share sufficiently many root keys.
For the q-composite schemes, q keys are required. The basic scheme requires
one common key, thus its connectivity equals that of the q = 1 composite
scheme. It is therefore sufficient to give the connectivity of the q-composite
schemes, which is determined as

pc = 1−
q−1

∑
i=0

Pr[i shared] . (4.2)
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Figure 4.1: Connectivity depending on key pool size. A key ring size of 200 is assumed

Figure 4.1 shows the connectivity depending on the size of the key pool for
the q-composite schemes for a fixed key ring size. The larger the key pool
is chosen, the smaller the connectivity will be. Additionally, the connectivity
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degrades more steeply the more root keys are required to set up a link key. This
behaviour is, of course, expected, since the likelihood that a pair of nodes has
q common root keys gets smaller with increasing q.

4.2.7 Resilience Against Link Key Compromise

Our attacker model assumes that if a node is compromised, the adversary gains
complete access to the key material stored in that node. By collecting the key
material of various compromised nodes, the adversary may gather a significant
fraction of the key pool. He might then be able to recover the link key estab-
lished between a pair of uncompromised nodes. This would allow the adversary
to eavesdrop on the communication between the nodes (if the link key is used
for encryption) or to inject messages into the network with a faked origin (if
the link key is used for authentication).

As the attack parameter, we consider the number x of captured nodes. All
root keys from these nodes are available to the adversary. We denote the prob-
ability with which a link key can be reconstructed from this collected key ma-
terial as pκ.

Under the basic scheme, a link key is derived from exactly one root key.
The probability that this key is known to another node is m

S . Therefore, when
faced with x compromised nodes, the probability that at least one of them has
knowledge of that key is

pκ = 1−
(

1− m
S

)x
(4.3)

Assuming the q-composite scheme, the probability that two nodes can es-
tablish a link key is given by pc. The probability that a link key is being derived
from i root keys is (i≥ q):

Pr[i shared]
pc

In accordance to the reasoning above, the expected fraction of root keys being
compromised is 1− (1− m

S )x. If i keys were involved in deriving a link key, the
probability that this link is compromised is (1− (1− m

S )x)i as all involved root
keys have to be compromised. When x nodes have been captured, the probabil-
ity that a link key between two uncompromised nodes is being compromised is
therefore [39]:

pq
κ =

m

∑
i=q

(
1−

(
1− m

S

)x)i Pr[i shared]
pc

(4.4)

These measures of resilience show that these schemes reveal information
about the whole network to an adversary who captures a fixed number of nodes.
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pκ and pq
κ denote the probability with which a communication link between a

pair of nodes are subject to eavesdropping or manipulation by an adversary who
has captured x nodes. It has to be noted that this probability is independent of
the number of nodes that are present in the network.

For illustration, Figure 4.2 shows graphs of equations 4.3 and 4.4 for differ-
ent connectivities.

The difference between the basic scheme and the q = 1 composite scheme
stems from the fact that in the basic scheme only one root key is used to deter-
mine a link key while in the composite scheme, all shared root keys between
a pair of nodes are used for deriving the link key. This makes the composite
scheme more resilient against an attacker who needs to obtain more key mate-
rial to compromise a link key.

As pointed out in [39], the composite schemes are more resilient than the
basic scheme for small-scale attacks. However, the composite schemes for
q > 1 tend to reveal more information than the basic scheme to an attacker as
he captures more nodes. Hence, at some point, this advantage turns into an
disadvantage.
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Figure 4.2: Link key compromise probability of key pre-distribution schemes under attack.
The key ring size is m = 200. The key pool size depends on the connectivity and the parameter
q
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Figure 4.3: Two nodes using a hash chain to agree on a key

4.3 Key Agreement Based on Hash Chains

In this section, we describe how to use hash chains as a means for key agree-
ment between two parties. We exploit the fact that element q of a hash chain
can be derived from element p if and only if p≤ q.

4.3.1 Hash Chains

Let h be a one-way hash function that is publicly known. A hash chain is a
sequence

σ = (zω)

for 0≤ω < T where T ∈ IN is the length of the hash chain. z0 is the seed of the
hash chain. For all ω ≥ 1, the element σ[ω] = zω is obtained by applying the
hash function h to the previous element of the sequence, i.e.

zω = h(zω−1) = hω(z0) .

We refer to the elements of a hash chain as (hash) chain values. The position
of a chain value zω is that value’s index ω in the hash chain. Whenever we refer
to a chain value, we implicitly assume that its index is also available.

Assuming that one element zu of the hash chain is known, it is easy to com-
pute all following elements zu+v,v > 0 in the chain. However, the one-way
property of h forbids it to compute any elements of the chain preceding the
known value. In particular, it is not possible to reconstruct the seed z0 of a hash
chain unless z0 is already known.

4.3.2 Single-Chain Key Agreement

Key distribution The key distribution center (KDC) generates a hash chain σ
of length T . For each node X , the KDC selects randomly (and uniformly) a
position ωX on the hash chain (0 < ωX < T ). The index ωX and its associated
chain value σ[ωX ] is distributed to the respective node. We assume that Alice
and Bob receive the chain values σ[ωA] and σ[ωB], respectively.
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Algorithm 1 Determine common key
Global values:

h: a one-way hash function
Input:

X : ID of the local entity executing the algorithm
Y : ID of the peer entity
ωX ,HX : local hash chain information

Output:
The common chain key K

1: send(ωX )
2: ωY := receive()
3: if ωX < ωY then
4: K := hωY−ωX (HX)
5: else
6: K := HX
7: end if
8: return K

Key agreement Alice and Bob agree on a common value using the hash chain
in the following way. First, they exchange their chain indices. Then, they select
the chain value that is “lower” in the chain, i.e. the one with the bigger position
index, as their common value. The agreed-upon value K will either be σ[ωA] or
σ[ωB]:

K = σ[max(ωA,ωB)]

The node whose value is “higher” (i.e., closer to the seed) in the chain per-
forms a number of applications of the hash function to eventually arrive at the
other node’s value. This number is determined by the difference between both
position indices. This procedure is described as Algorithm 1.

Example 2 (Key agreement based on a hash chain). Consider the situation in
Figure 4.3 where a hash chain of length seven is shown (only indices, no key
values are visible). Alice’s value ωA = 2 is “higher” in the hash chain than
Bob’s value ωB = 4. Therefore, the agree-upon common value will be σ[ωB].
Alice performs two hash computations to obtain Bob’s chain value from σ[ωA].
Note that Bob cannot construct Alice’s value σ[ωA] on his own and also does
not learn that value during the protocol’s execution.

4.3.3 Chain Key Resilience

Let’s assume that there is an adversary Eve who tries to sneak on Alice and
Bob’s communication, i.e. carry out an attack on the confidentiality of their
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shared key. As she cannot get direct access to Alice’s or Bob’s key material,
she obtains key material from a single or several other nodes (such as Carol), for
example by breaking into their key stores or by talking them into collaboration.
This allows Eve to obtain up to j chain values and their respective position
indices νi:

(ν1,σ[ν1]),(ν2,σ[ν2]), . . .(ν j,σ[ν j])

The amount of key material that Eve is able to obtain is limited in most
cases. Possible reasons are:

• Eve has to pay a certain price for each value, but has only a limited amount
of money.

• The KDC distributes chain values to a finite number of nodes in the first
place.

• There is only a limited number of nodes willing to cooperate in an attack.

The attack on Alice and Bob’s key K is successful if Eve can construct K
from her own chain values, i.e. if the following condition holds:

A ≡ ∃i ∈ {1, . . . , j}.νi ≤max(ωA,ωB) .

We observe that with a bigger j, it is more likely that Eve will be able to
derive the key. We consider the probability of the complementary event that
comprises the outcomes where all of Eve’s chain values are located “below”
max(ωA,ωB), which is the event that is favourable to Alice and Bob:

A ≡ ∀i ∈ {1, . . . , j}.νi > max(ωA,ωB)} (4.5)

The probability of this event is

Pr[A ] =
∑T

u=1 ∑T
v=u(T − v) j +∑T

v=1 ∑T
u=v+1(T −u) j

∑T
u=1 ∑T

v=1 T j
(4.6)

which is explained as follows. We consider the number of favourable (from
Alice’s and Bob’s point of view) outcomes versus the number of possible out-
comes, when assigning a position to Eve. The favourable outcomes are com-
puted by enumerating all possible locations of Alice’s value (u) and Bob’s value
(v) and counting the possible positions of Eve that are favourable for Alice and
Bob. Since Eve’s positions have to be located further “down” in the chain than
the maximum of Alice and Bob’s values, there are T −v, respectively T −u, of
such positions for each of the j values.

The number of possible outcomes is obtained by summing up all possible
positions of Eve, which leads to ∑T

u=1 ∑T
v=1 T j = T ·T ·T j = T j+2
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Example 3. Consider hash chains of length T = 100 and T = 500, respectively.
For different attack strengths j, the probability that a key established between
Alice and Bob based on σ remains secure is, according to equation (4.6):

T = 100 T = 500
j = 1 Pr[A ] = .328 Pr[A ] = .332
j = 2 Pr[A ] = .163 Pr[A ] = .166
j = 3 Pr[A ] = .0975 Pr[A ] = .0995

The example shows clearly that the resilience of this key agreement scheme
is quite low for a single hash chain σ. In most practical cases, this would not be
a favorable scheme if there is any chance that Eve obtains even a small number
of values on σ. As we will see later, the scheme can be extended by using
multiple hash chains simultaneously, which yields much better resilience.

The example also suggests that a larger hash chain is slightly advantageous,
since the resilience of a shared key increases with a larger chain. On the other
hand, a larger hash chain implies a larger overhead for Alice and Bob when
they compute their shared value. Therefore, we have to consider the question
what the optimal length of a hash chain would be.

4.3.4 Choosing the Length of a Hash Chain

The previous example suggests that the size of T makes a (small) difference for
the resilience of this key agreement scheme. A larger T increases the probabil-
ity that the key remains secure under attack. Intuitively, the reason seems to be
that with a small T , the values are too close together. This makes a “collision”
between Eve’s value(s) and the key very likely. A collision occurs when one of
Eve’s values is located exactly at the same position in the hash chain as either
Alice’s or Bob’s value. With a larger T , such collisions become more unlikely,
giving Alice and Bob a small advantage.

When choosing a value for T , a trade-off is involved. In order to reduce
collisions, T should be as large as possible. But the value of T is important in
two more respects. First, it determines the overhead in establishing a link key
between a pair of nodes. Second, storing a position index requires dlog2 Te bits.
Thus, due to computational and storage efficiency, it is advisable to choose T
as small as reasonably possible.

When T approaches infinity, the probability of collisions approaches zero.
Obviously, such an infinite hash chain can not be implemented in a computing
system. However, it defines the theoretically achievable resilience of the key
agreement scheme. For each practical model, we can examine the disadvantage
(for Alice and Bob) it results in, compared with this ideal model.
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The resilience of the infinite model can be derived from the following sim-
ple combinatorial construction. We assume an urn model, with an urn initially
holding two blue balls and j red balls. The blue balls represent the chain val-
ues of Alice and Bob, while the red balls represent those of Eve. The position
indices on the hash chain are independently chosen. We simulate this by ran-
domly placing the balls on a line of fixed length. We stipulate that the leftmost
ball on that line represents the chain value with the smallest position index. The
ball next to it corresponds to the key with the second-smallest index and so on.
The two left-most balls determine whether Alice and Bob’s key is secure or
not. If these are both blue balls, their key is secure. Otherwise, at least one red
ball is placed on the left from a blue ball, which means that there is at least one
of Eve’s values from which the key can be constructed.

There are j+2 balls in total, from which the two left-most balls are selected.
Out of all possibilities to choose these two balls, only in one case two blue balls
are chosen, which yields a probability for key security of

β =
1( j+2
j

) =
2

( j +2)( j +1)
(4.7)

It turns out that the difference between β and Pr[A ] is, from a practical point
of view, quite small even for moderate sizes T . This fact is illustrated in Fig-
ure 4.4. It is therefore unnecessary to use long hash chains in order to achieve a
good approximation to the theoretically possible resilience. For practical pur-
poses, T = 256 should be sufficient in most cases. For example, this would
lead, for j = 2, to a difference of β−Pr[A ] = 1.29 · 10−3. This means that
about one in one thousand link keys is compromised due to the fact that hash
chains are finite. Compared to the overall compromise probability of 5/6, this
is a negligible fraction.

4.3.5 Discussion

Man-in-the-middle attack

Note that the protocol as it stands does not provide any authentication of the
transmitted position indices, and the identities of the involved nodes are not
verified. This makes a man-in-the-middle attack possible. An attacker, Eve,
may intercept Alice’s message to Bob and instead send her own position in-
dex to Bob. Bob would proceed, computing the shared key between him and
Eve, but assuming that he shares this key with Alice. Similarly, Eve tricks Al-
ice into establishing a shared key with her. Every further message exchange
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Figure 4.4: Fraction of compromised link keys due to the finite length of hash chains

between Alice and Bob passes through Eve, who can thus eavesdrop on their
communications.

Key weakening

Another problem is the fact that each of the communication partners can de-
liberately weaken the shared key by transmitting a position index that is bigger
than its own index. In the extreme case, a node may transmit the value T − 1
as its position index. The agreed-upon-value will then be the last value of the
hash chain, which can easily be constructed by any other node. Weakening the
key is, of course, not in the interest of legitimate nodes. However, it may be a
vulnerability in a poor implementation. Also, a communication partner collab-
orating with Eve can exploit it to make the key visible to Eve without having to
send any message to Eve.

Computational overhead

Without loss of generality, assume that ωA < ωB. The number of applications
of h that Alice must perform to arrive at Bob’s chain value is the difference
between both indices, which is at most T − 1 (there are only T elements in
the hash chain). We claim that on average, Alice must perform approximately
T/3 such iterations. We do not formally prove this claim here, but refer to
the geometric analogy: On a line segment of unit length, the expected distance
of two randomly selected points is 1/3 (proof is given in [193]). Scaling this
distance up to a line of length T , the expected distance between two points (and
therefore between Alice’s and Bob’s chain indices) is T/3.
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Applicability of the Scheme

The rather low security of this key agreement scheme may seem disappointing
at first. Without any effort, an adversary can expect to learn the keys resulting
from at least 2/3 of such agreements. This has to be considered an unsecure key
agreement scheme compared to other schemes, such as those based on Diffie-
Hellman or RSA. These provide a level of security that corresponds to the com-
plexity of the discrete logarithm problem or integer factorization, respectively.
They contain no element of chance that gives the adversary access to the secret
key for free in a fraction of protocol executions.

Nevertheless, the proposed scheme has certain advantages. First, it does
not require any public-key infrastructure. Second, it is easy to implement, and
third, it has low computational complexity. As we will see in the following,
multiple instances of the scheme used at the same time can be effectively used
not only to implement a more secure key agreement scheme, but it can also be
used to improve the security of random key distribution schemes.

4.4 Multiple Hash Chains for Key Agreement

We have shown that by using a single hash chain, it is possible to agree on a
shared secret key, but with quite high probability that the adversary is able to
break such a key. Still, a hash chain does provide a small degree of resilience
(approximately one third of key agreements are secure when facing a single-
valued attacker) and we are able to devise a scheme that uses multiple hash
chains at the same time, thus providing a significantly higher resilience.

4.4.1 Key Distribution

For key distribution, the KDC sets up m hash chains {σi|1≤ i≤ m}. For sim-
plicity, all hash chains are of equal length T (there would be no advantage
choosing different lengths). Now, each node is assigned a position index on
each of these chains. We assume a ID-based, pseudo-random assignment func-
tion Φg, where g is a seed. For node u and a hash chain i, Φ yields a chain
position a, 0≤ a < T :

Φg(IDu, i) = a .

Node u is then assigned the key ring

〈ha1(σ1[0]), . . . ,ham(σm[0])〉
where 〈a1, . . . ,am〉= 〈Φg(IDu,1), . . . ,Φg(IDu,m)〉.
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The assignment function can be made public, such that two nodes can au-
tonomously determine each other’s chain indices. This will not leak any infor-
mation about the actual values at these positions, but minimzes the exchanged
data. The assignment function can be made available to all nodes as ϕ, which
we define as follows:

ϕ(IDu, i) = Φg(IDu, i) = h(g||IDu||i) mod T

where h is a hash function. Note that g is a constant value that can be chosen
arbitrarily, but must be the same within one WSN deployment.

4.4.2 Key Agreement

Key agreement is straightforward. First, the nodes exchange their IDs. Then,
each node determines the other’s chain indices using ϕ and independently com-
putes the common key for each hash chain. Finally, the keys of all chains are
combined to form the link key as shown in Section 4.2.5.

4.4.3 Resilience

For evaluating the resilience of this key agreement scheme, we again assume
that the adversary, Eve, has access to j key rings. In order to compromise a
link key, Eve has to reconstruct all t chain keys that contribute to the link key.
The probability that a single chain key “survives” an attack is approximated by
equation (4.7). Let A i be the event that the key on chain i (1≤ i≤ t) “survives”
Eve’s attack. The complementary event Ai corresponds to the chain key i being
compromised. Since values on a hash chain depend only on the seed of that
chain, and all seeds are chosen independently of each other, all these events Ai
are pairwise independent. Hence, the probability that all t chain keys are being
compromised by the attacker is

Pr[A1∩A2∩ . . .∩At ] = Pr[A1]×Pr[A2]× . . .×Pr[At ]

=
(

1− 1
( j+2

2 )

)t (4.8)

Depending on the strength of the adversary, which is given by j, and a de-
sired resilience ε, we are able to choose t accordingly. Let ε be the desired
probability of a link key compromise. The following condition has to be met in
order to achieve this level of resilience:

(
1− 1

( j+2
2 )

)t

< ε
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After some transformation steps, we get
1

logε

(
1− 2

( j+2)( j+1)

) < t (4.9)

From this equation, we obtain that t grows with approximately the square of
j if a certain resilience has to be maintained. Figure 4.6 illustrates this fact (a
ten-fold increase in the attacker strength roughly requires 100 times the number
of chains to maintain the same resilience).

Example 4. Figure 4.5 shows an example where two nodes establish a key
based on seven hash chains. The white boxes represent the chain values of the
two legitimate nodes. The black boxes represent those of the adversary ( j = 1).
The numbers shown indicate the position indices of the values. The actual
numbers are not important, and it is also irrelevant to which legitimate node
which white box belongs. Only the position of the black box relative to the
lower white box is important. The chain value represented by the lower white
box is the contribution of the hash chain to the shared key. Here, the adversary
is able to construct all but two of these contributions (σ3 and σ7 are secure). It
is sufficient for one contribution to be secure to get a secure link key.

Example 5 (Resilience of multiple hash chains). Let’s assume we expect an
attacker of strength j = 10 and we would like to achieve a resilience of at least
ε = 0.01, i.e. only one out of hundred link keys should be compromised. Using
equation 4.9, we can determine the number of hash chains necessary to achieve
this resilience:

t =




1

log0.01

(
1− 2

(10+2)(10+1)

)



= 302
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4.4.4 Comparison with Random Key Pre-Distribution

Both the key agreement scheme based on multiple hash chains and the q-
composite random key predistribution scheme provide a probabilistic level of
resilience. In both cases, it is measured by the fraction of a set of link keys that
can be expected to be compromised.

The hash chain scheme provides full connectivity, i.e. every node is able to
establish a link key with any other node. In contrast, the q-composite scheme
provides only partial connectivity. However, the latter allows the connectivity
to be set arbitrarily close to one if a reduced level of resilience is accepted.

The resilience of the hash chain scheme depends on the number t of chains
being used, and the size j of the attacker. The resilience of the q-composite
scheme depends on the size of the attacker n, the connectivity pc, and the pa-
rameter q.

In terms of computational complexity, the hash chain scheme requires a
certain overhead since a number of hash computations have to be made by each
node before the link key can be derived.

We are going to compare the resilience of both schemes by an example. We
assume the same key ring size in both cases and ignore the storage overhead
for indices, which are roughly the same size in both cases and small compared
to the key size.
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Example 6. Assume a key ring size of m = 200. For the q−composite scheme,
we further assume q = 1 and a desired connectivity pc = 0.999. This requires
a key pool size S = 5992. For the multiple hash chain scheme, we are us-
ing t = m = 200 hash chains. This results in approximately the same storage
requirements for both schemes. Figure 4.7 shows both schemes in compari-
son with a varying attacker size. Obviously, the hash chain scheme performs
worse than the q-composite scheme. Only when the number of hash chains is
increased (which leads to higher memory consumption), the scheme becomes
competitive.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100

P
ro

b
. 

o
f 

lin
k
 k

e
y
 c

o
m

p
ro

m
is

e

Compromised nodes

Hash chain set, m=200
q=1, m=200, p=.999

Hash chain set, m=1200

Figure 4.7: Resilience of hash chain sets for key agreement

This comparison shows that the q-composite scheme is in principle superior
to the hash chain scheme and will be preferable over the latter in most cases. We
conclude that the hash chain scheme may be considered for use in cases where
full connectivity is required, and only attacks on a small scale are expected.

4.5 Strengthening Random Key Pre-Distribution

In this section, we reconsider the elements of the key pool of a random key pre-
distribution scheme. In the basic and q-composite key pre-distribution schemes
elements from the key pool were directly combined to form a link key between
two parties. Now, we rather regard a key pool element as the seed of a hash
chain. Instead of distributing these seeds, only derived values, i.e. elements



4.5. Strengthening Random Key Pre-Distribution 121

from the hash chains, are distributed to the nodes. After determining the com-
mon set of hash chains, these are used to agree on a link key between two nodes
as described above. By combining both key agreement schemes in this way, we
retain the advantages of both. This results in an increased resilience compared
to either one of the schemes.

4.5.1 A Combined Approach

We generalize the key selection function F to include the additional step of
transforming an element of the key pool into a hash chain value. First, we fix
two seeds g1 and g2 that define two different contexts for the pseudo random
sequence generator Ψ and the pseudo random number generator Φ. We will
also need to choose the maximum length of key chains, T , and a hash function
h for generating hash chains. Next, we introduce two new functions F1 and F2
that represent the different phases of the new scheme:

• F1(IDu) = Ψg1(IDu,1,S,m) = 〈v1, . . . ,vm〉
• F2(IDu,s, i) = hai(s) for Φg2(IDu,0,T −1,m) = 〈a1, . . . ,am〉

This leads to our new definition of the key selection function F :

F(IDu) = 〈F2(IDu,K [F1(IDu)[1]],1), . . . ,F2(IDu,K [F1(IDu)[m]],m)〉
Operationally, this means that, for each node u, the KDC first selects m keys

from the key pool uniformly at random, using the (pseudo-) random sequence
generator Ψg1. On each of these root keys, it then applies the hash function h
repeatedly, where the number of repetitions is determined by Φg2, to obtain the
final keys that go into the node’s key ring.

The key establishment between two nodes now proceeds in two steps. First,
the common set of indices into K is determined in the same manner as previ-
ously described. Then ϕ = Φg2 is used to determine the hash chain positions of
the other node and the link key is established as described in section 4.4.

We will now show that although key establishment based on hash chains
alone yields only small resilience, the resilience of a random key predistribution
scheme is significantly improved through this combined approach. We assume
that hash chains are of sufficient length such that equation (4.7) provides a valid
approximation to hash chain key resilience.

4.5.2 Resilience

The strength of the adversay is now not only determined by the number of
distinct root keys he obtains, but also on their hash chain positions. The more
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keys from the same hash chain the adversary captures, the better are the chances
that he can construct a larger part of that hash chain. We therefore consider the
probability that the adversary has access to r keys on the same hash chain. Let
x be the number of captured nodes. S denotes the size of the key pool, while m
is the size of an individual node’s key ring. The probability that the adversary
obtains r values from a single, arbitrary hash chain, is determined as:

Pr[X = r] =

(x
r

)(|S|−1
m−1

)r(|S|−1
m

)x−r

(|S|
m

)x =
(

x
r

)
mr (S−m)x−r

Sx (4.10)

Explanation: The r keys are located on the same hash chain but in different
key rings, thus r out of the x compromised nodes are selected, which hold these
keys. For each of these r nodes, the remaining m−1 keys are selected from the
|S|−1 remaining chains in the key pool. The rest of the nodes are assigned all
of their m keys from these |S|−1 chains. The denominator’s term denotes the
total number of ways to select the compromised key rings.

We use the probability given in equation (4.7) as (an approximation of) the
probability that a chain key is compromised when faced with an adversary of
certain strength. The overall probability that a chain key is compromised is
thus determined by the sum over all possible attacker strengths:

pµ =
x

∑
r=1

Pr[X = r]

(
1− 1(r+2

2

)
)

(4.11)

We can now examine how the hash chain scheme collaborates with the q-
composite random schemes. A link key is compromised if all partial link keys
are compromised. For the q-composite scheme, equation (4.4) describes the
probability that a link key between two uncompromised nodes is compromised.
If we use hash chains for strengthening the components of the link keys, it is
not sufficient that the adversary knows values from the hash chains that are used
to establish the link key, but these values must also be suitable for deriving the
respective partial link keys. Thus, both conditions have to be met in order to
break a link key.

We obtain the final compromise probability by summing up over the possi-
ble numbers of root keys involved in creating a link key. Each single root key
must be compromised, thus we consider pµ to the power of i (the number of
root keys). We also have to take into account the probability with which i root
keys are involved. Therefore, the probability pξ for key compromise, which
depends on the parameters S,m,x,q, is given as

pξ =
m

∑
i=q

pi
µ
Pr[i shared]

pc
(4.12)
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pc = 0.33
Du-Deng ω = 3,τ = 1
q-composite / HC q = 1,S = 100081
MIOS n/a

pc = 0.5
Du-Deng ω = 15,τ = 3
q-composite / HC q = 1,S = 57918
MIOS n/a

pc = 0.98
Du-Deng ω = 24,τ = 8
q-composite / HC q = 1,S = 10437
MIOS n/a

Table 4.1: Example parameters

Example 7. Fig. 4.8 illustrates various key agreement schemes in comparison.
For all schemes, the same storage requirements are assumed, determined by
the key ring size m = 200. Three different probabilities for sharing a common
key between two nodes (connectivity) are shown. The parameters chosen are
shown in Table 4.1.

MIOS (multiple ID-based one-way function scheme) is a scheme devised by
Lee and Stinson [110] that is based on a combinatorial key assignment. DDHV
is another scheme, described by Du, Deng, Han, and Varshney [60], which is a
variant of Blom’s key distribution scheme that has been adapted to the needs of
wireless sensor networks. Finally, LN designates Liu and Ning’s scheme [117],
which relies on polynomials for key agreement.

4.6 Related Work

Key (pre-)distribution A general overview over key distribution schemes can be
found in [122] (chapter 12). One of the earliest key pre-distribution schemes
was described by Blom [24]. It allows each pair of hosts to derive a shared
secret key. The scheme relies on a generator matrix G and a secret symmetric
k× k matrix D. Each host Ui gets G and a secret key Si, which is row i of the
n× k matrix S = (DG)T . Two hosts Ui and U j are then able to compute their
common key as element Ki j = K ji of the symmetric n×n matrix K = (DG)T G.

The parameter k defines a security threshold. If less than k hosts are compro-
mised, all pairwise keys are secure, since no knowledge about them is revealed
to the adversary. However, as soon as k hosts are compromised, all keys are
compromised. This scheme saves storage compared to full pairwise key distri-
bution since k is usually chosen much smaller than the number of hosts.
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Figure 4.8: Comparison of different schemes (m = 200)
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Figure 4.9: Comparison of different schemes (m = 400)
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Based on Blom’s scheme, an optimized version for wireless sensor networks
has been proposed in [61]. Two modifications have been made: first, not only
one key space but multiple spaces are being used (i.e. multiple Blom schemes
are run in parallel), and second, the matrix G is not explicitly given but instead
generated from a seed (which saves storage space). Out of the ω key spaces
generated, the KDC chooses τ of them randomly for each node. Therefore, this
approach is a combination of random key-predistribution with the deterministic
Blom scheme. Two nodes can establish a shared key if they have at least one
key space in common. This is the complementary probability of the event that
two nodes share no key space. It is given by

1−
(ω

τ
)(ω−τ

τ
)

(ω
τ
)2 = 1− ((ω− τ)!)2

(ω−2τ)!ω!

The resilience of the scheme can be expressed as follows. Assuming x nodes
have been compromised, the probability that a pairwise key of two uncompro-
mised nodes is broken is

pκ =
x

∑
j=k+1

(
x
j

)( τ
ω

) j (
1− τ

ω

)x− j

Key agreement based on hash chains Hash chains were introduced by Lam-
port [107] for the verification of one-time passwords. First, a hash chain is
generated from a seed. The seed is secretly given to the user, while the last el-
ement of the chain is given to the host where the user wants to log on. In order
to log on, the user sends the value of the chain that hashes to the value that is
stored in the host. If both values match, access is granted and the host stores
the value just sent. This procedure continues until the seed has been used for
logging on.

This method has the advantage that passwords are safe even if they are over-
heard by an enemeny, since each password is used only once. The one-way
property of h ensures that verification of passwords is possible, while it is in-
feasible to derive the next password to log on from the current one.

Key agreement based on multiple hash chains has been described in [112].
The authors describe a more general variant first, where purely random values
instead of hash-computed ones are distributed to the participants. This provides
unconditional security, but has the disadvantage that large data sets have to be
distributed. They then develop the version based on hash-computed values,
which is more efficient but provides only computational security that is based
on the infeasibility to inverse one-way functions.
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The security of the scheme is discussed, as in our work, in terms of the
probability with which an attacker can eavesdrop on a pairwise key. While they
derive upper bounds for this probability, we provide an exact combinatorial
derivation as well as an approximation that is well-suited for practical purposes.

Combination of random key pre-distribution and hash chains The combination of
the hash-based scheme with random key pre-distribution schemes has been in-
dependently described by Ramkumar and Memon [148], who call this scheme
“hashed random preloaded subsets” (HARPS). Using a similar methodical ap-
proach, they arrive at basically the same conclusions as us.

4.7 Summary

The tight resource contraints on nodes in wireles sensor networks, both in com-
putational and storage terms, make traditional key management mechanisms
based on public-key cryptography largely impractical. Nevertheless, security
goals like resilience against eavesdropping, impersonation, and the creation of
fake identities should be achieved. On the other hand, wireless sensor net-
works are constrained in several regards that make it possible to rely on certain
assumptions when designing appropriate key management mechanisms. It can
be assumed that all nodes in the network originate from the same administra-
tive domain, the set of nodes is known before deployment and relatively static
throughout the network’s lifetime, the number of secure associations per node
is small compared to the overall size of the network, and the contribution of a
single node to the overall functionality of the network is also relatively small.

The key agreement schemes discussed in this chapter are designed to be ap-
plicable in wireless sensor networks as their resource consumption is very low.
They require a moderate memory size, which is independent of the network
size, and only computationally cheap operations, such as hash functions. The
fact that nodes are within one administrative domain means that for authentica-
tion, nodes have to simply prove that they belong to this domain, which makes
it possible to rely on a probabilistic authentication scheme. Pre-distributing
key material before deployment is easily possible since it is known in advance
which nodes are going to be deployed together. Under the assumed node cap-
ture attack model, it has to be assumed that a certain fraction of nodes is under
control of the attacker. As a consequence, it has to be assumed that some of the
reported data by sensor nodes is potentially manipulated, a fact that has to be
dealt with on the application layer.
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The security of these key agreement schemes is based on the fact that no
central entity within the sensor network has complete knowledge of the ba-
sic key pool. With a small set of captured nodes, an attacker has only a very
small probability of acquiring knowledge about the key material of other nodes.
However, with an increasing number of captured nodes, this probability rises
and allows the attacker to leverage the key material from her captured nodes
for breaking into the communication of other nodes, i.e. eavesdrop on links or
impersonate nodes.

We have discussed two basic key agreement schemes for wireless sensor
networks. For the q-composite scheme, a set of keys is distributed to each
node before deployment. Since all keys are drawn from a large, common pool
of keys, it is likely that any pair of nodes has a certain number of keys in
common. However, it is unlikely that any other pair of nodes shares the same
keys. Whenever two nodes want to establish a common key, they can use their
common keys to set up a link key, which is unique with a high probability.
The second scheme is based on hash chains. A set of hash chains is created in
advance. Each node is assigned a position on each of these chains. The one-
way property of hash functions makes it easy to compute the chain values at
positions in the chain that are located below a given position. Out of this, a key
agreement scheme can be constructed that provides comparable resilience as
the q-composite scheme, though at a higher memory complexity. Finally, we
have devised a novel approach that combines both key agreement schemes and
provides higher resilience than any one of them alone.

Key agreement is a prerequisite for secure communication between nodes,
both for ensuring the confidentiality and the authenticity of messages. As we
have discussed in Section 3.4, key agreement between remote nodes in a WSN
incurs a significant overhead that is often not justified given the dominant tran-
sient communication patterns. Therefore, our goal is to leverage the existence
of shared keys on a local level, i.e. within a limited neighbourhood of a node, in
order to enable secure communication between remote nodes without incurring
the usual overhead. In the next chapter, we show how to achieve secure commu-
nication over long distances by interleaved local message authentication. The
basic scheme will be extended by using few long-range security relationships
per node, which provides additional protection against certain attack patterns.
The presented schemes protect the integrity of messages and thus are effective
countermeasures against manipulation attacks.
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Multipath Communication

The use of multiple paths for transmitting a single message or a stream of mes-
sages has been studied for a long time. Multiple paths potentially provide in-
creased bandwidth, improved resilience against network failures, and security
against tampering and eavesdropping. However, they require additional effort
in order to actually achieve these goals. In most cases, either node- or link-
disjointness is required. For example, bandwidth can only be increased if no
low-bandwidth links are shared between the used paths. Ensuring such a prop-
erty increases the complexity and the overhead for a multipath routing protocol.
This may be the reason that in practice, multipath routing is seldomly used.

In this chapter, we propose a multipath communication scheme for wire-
less sensor networks that provides security against node capture attacks. The
scheme is designed to minimize path selection complexity, and it achieves its
security goals through the spatial separation of paths.

5.1 Principles of Multipath Communication

5.1.1 Single vs. Multiple Paths

Some network topologies, such as stars or trees, admit only a single path be-
tween any two nodes. In such networks, multipath communication is obviously
not possible. But even a simple topology like a (bidirectional) ring provides
more than one path, and in complex mesh topologies, many paths between any
pair of nodes may exist. In practice, redundant links are often introduced in
order to provide resilience against link failures.

Finding the “optimal” path from a sender to a receiver is one of the common
tasks of routing protocols. Usually a path is selected that performs best accord-
ing to some cost metric, such as transmission delay or energy consumption.
This single best path can then be used to transmit all messages from sender to
receiver until an event occurs that breaks the path, such as a node or link fail-
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ure, or a re-evaluation of the available paths shows that a different path would
perform better.

The transmission of all data over a single path has certain advantages. For
continuous data streams, such as digitized voice or other media streams, a sin-
gle path provides predictable communication parameters like delay and band-
width and thus avoids jitter. ATM networks have been designed to support a
variety of applications running over the same packet-switching network simul-
taneously, including streaming applications [124]. In order to support continu-
ous data transfer, a path is set up between endpoints before actual data transfer
begins.

In networks with high failure probabilities, running a separate path setup
routine introduces long delays when a failure occurs. Fast switching to a
backup path avoids this, but requires the capability to quickly find an alternate
path. Some routing schemes therefore concurrently maintain multiple paths,
e.g. OSPF [128], or construct a detour around the failure location dynami-
cally [68].

Using multiple paths simultaneously for transmitting either a single mes-
sage or a data stream is often not advantageous. Even if multiple paths exist,
they may overlap at some node. This node then becomes a bottleneck for data
transmission, and the resilience of this transmission is only partially increased.

The real advantages of mulipath communication are only achieved with dis-
joint paths. Node-disjoint paths, and similarly link-disjoint paths, can provide
increased bandwidth and better resilience, among other advantages, than a sin-
gle path. Since we are concerned with wireless sensor networks, which operate
on a shared medium, we are mainly interested in node disjoint paths.

These considerations demonstrate that the transition from using single paths
to multiple paths is not as sharp as one might expect. In the literature, “multi-
path” is often associated with using single paths one after another. Some of the
benefits, discussed in the next section, can be achieved through such schemes,
while others are best achieved by using multiple paths at the same time.

5.1.2 Advantages of Multiple Paths

There are some advantages when using multiple paths for routing messages
between endpoints, which can best be used for data that does not have strict
timing requirements:

• By splitting up a message stream into several parts and transmitting every
part over a distinct path, the bandwidth may be effectively increased.
Note that despite the fact that paths may be partially overlapping, they
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could still increase the available bandwidth. For example, they could share
some high-capacity links while using disjoint low-capacity links.

• Similarly, the load for transmitting and relaying messages can be dis-
tributed over a larger set of nodes.

• The reliability of message transmission is increased if multiple copies of
a message are transmitted over independent paths. As long as one path
delivers the message, it will be received, thereby ensuring availability.

• The integrity of a message is supported if multiple copies of a message
are transmitted. If a message is sent over n independent paths, its integrity
is protected as long as less than n/2 paths are compromised. Under this
assumption, the receiving node can determine the original content of a
message by a majority decision. If bn/2c+1 identical copies of a message
are received, it is clear that these match the original message posted.

An attack on the integrity and authenticity of a message can still be de-
tected if at least two disjoint paths are being used, and at least one of them
is not compromised. If the copies of the message received over all paths
do not match, it is obvious that there is an active attacker.

• Using a threshold scheme [165], a message is encoded into n parts in such
a way that a party that obtains at least t out of the n parts will be able to
reconstruct the original message. On the other hand, if less than t parts are
known, no information about the message can be inferred. Such a scheme
protects the confidentiality of a message if every part of the message is
transmitted over a separate path.

• If failures or attacks are highly linked to locations, spatial separation of
paths can provide additional reliability and security.

The disjointness of paths is crucial to the materialization of most of these
benefits. However, partially disjoint paths may often be practically helpful as
well.

5.1.3 Path Setup

In general, the path selection criteria for single paths also hold for multiple
paths. At best, multiple paths should be usable at minimal total cost. How-
ever, in some cases the cost for a single end-to-end connection is not the most
important aspect to consider. Other criteria such as path setup cost or spatial
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separation may prove more relevant when a trade-off between cost and security
is to be found, for example.

Most algorithms for constructing multiple paths treat every pair of sender
and receiver separately. Since there is substantial overhead required for con-
structing and maintaining multiple paths, this does only pay off for longer-
lasting communication relationships between nodes. In WSNs, there are usu-
ally many node pairs exchanging messages at the same time, and communica-
tion relationships are mostly transient. Conventional multipath schemes do not
amortize set-up overhead over all node pairs, and are inefficient for short-term
connections.

There are many possible metrics that could be used for evaluating and se-
lecting paths. Especially in dynamic (e.g. mobile) networks, it is important
that these metrics can be efficiently evaluated. There is a trade-off between the
overhead induced by the metric evaluation and the penalty that must be paid for
using non-optimal paths. Our attacker model suggests that spatially separated
paths are desirable as such paths can circumvent areas that are under attack.
For efficiency reasons, we would like to amortize the set-up and maintenance
overhead over many communication relationships. Current approaches mainly
emphasize the set-up of an alternate path in case the currently used path fails.
Usually, the replacement path is very close to the replaced path, which means
that most nodes are shared between both. In terms of our attacker model, this
means that if one path is being compromised, the replacement path is probably
also compromised.

The idea for setting up multiple paths we present in this work is based on
the concept of spanning trees, which is fundamental for shortest path construc-
tion (cf. Dijkstra’s algorithm, described in [44]) and multicast. A multicast
tree can be shared by all senders that are located on the tree, thereby reduc-
ing the overhead compared to a separate tree for each sender [12]. We use the
same principles for end-to-end communication. Messages are routed based on
the paths determined by spanning trees, and all senders use the same set of
spanning trees. This leads to suboptimal path lengths, but using different trees
simultaneously provides spatially separated paths.

5.2 Routing on Spanning Trees

5.2.1 The Basic Scheme

We propose a multipath communication scheme that adequately addresses the
requirements of wireless sensor networks. It uses spanning trees as routing
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A

B
R2

R1
R3

Figure 5.1: Spanning tree multiple path routing

structures. Each spanning tree determines a path between any two nodes, and
multiple such paths are used for message exchange. We show that, similar
to Canvas, this scheme provides an adequate level of integrity protection for
wireless sensor networks.

The fundamental idea of this approach is to set up multiple spanning trees
and use them to create paths between pairs of nodes, which are node-disjoint to
a certain extent. An example is shown in Figure 5.1. Three spanning trees with
roots at R1,R2,R3 determine three paths between A and B.

Obviously, pairs of paths are not necessarily node-disjoint. In the example,
only pairs AR1B,AR2B and AR1B,AR3,B are node-disjoint, while AR2B,AR3B
overlap. Despite the overlap, path AR3B does not degrade the security of the
set-up but adds to it. The overlap occurs close to B, so the principle of locality
applies: In order to exploit the overlap, the attacker must be active in the vicin-
ity of B. If the attacker is only active further away from B, three locations have
to be attacked in order to compromise a message exchange. This significantly
increases the burden on the attacker.

Setting up a spanning tree is a costly procedure, as all nodes are involved.
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However, a tree provides a routing path for each pair of nodes. In total, the
spanning tree requires less effort than maintaining pairwise paths individually.

As for the price to pay, the length of a tree path is usually longer than the
shortest path between any two nodes. We therefore prefer constructions for
spanning trees that minimize their depth. Using optimal (shallow) spanning
trees, we can expect the average path length to be approximatly twice the length
of a direct path.

5.2.2 Spanning Tree Construction

We describe a simple distributed spanning tree construction algorithm. This
algorithm is not optimized to take parameters like link quality into account.
However, an improved version could be designed based on existing approaches
such as [9].

One node initiates the construction of a tree and will become its root. New
spanning trees are constructed according to a certain schedule, or they may
be constructed “spontaneously”, i.e. any node can initiate a tree construction
when it sees fit. When using tree-based routing, the message load is unequally
distributed. Nodes closer to the root of a tree are likely to be burdened with
forwarding more messages than nodes closer to the leaves, thus a tree should
have limited lifetime. When a tree’s lifetime expires, the associated information
can be deleted. In order to avoid synchronisation issues between nodes, we
assume that all nodes have lightly synchronised clocks and we assume that
when the lifetime of a tree t expires, a node would cease to send own messages
along that tree, but still relay messages from other nodes for a certain period.

The algorithm for constructing and routing on a tree is semi-formally given
as Algorithm 2. It is defined in an event-driven manner, i.e. each node con-
tinously runs this algorithm and reacts to the described events. Construction
starts with a node sending a INIT message to its neighbours, who will forward
this message to their own neighbours, and so forth. Each node then waits for
its neighbours to respond with either a CHILD or a BOUND message. After
all neighbours have answered, the node itself responds to the neighbours from
where it has received the INIT message. The response contains an address space
A that describes all the addresses being reachable within its subtree. The actual
type for addresses will be discussed later.

Note that the algorithm does not explicitly enforce shallow trees. For sim-
plicity, we assume that this property of trees emerges from the fact that a mes-
sage on a direct link is always faster than on an indirect link over multiple
hops. As this assumption may not hold in practice, the algorithm might have to
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be adapted to ensure that a node is connected to the parent that is closest to the
root.

Each node maintains a data structure T for each spanning tree, which holds
the information required for routing. For a tree with identifier t, an entry T [t] is
maintained. Such an entry has the following components:

• parent – The parent node within this tree (where the root is its own parent).

• reach – A mapping from child identifiers to their covered address space.
For a child c, T [t].reach(c) is a representation of the address space reach-
able through c. If a message is destined to address d and d ∈ T [t].reach(c),
node c may either be qualified to handle the message itself, or deliver it to
a node closer to d.

It is well possible that, during tree construction, overlaps between children
occur and part of the address space is covered by multiple children. This is due
to the (possible) fuzziness of the ] operator, which merges the address spaces
of a node and its children. We will discuss the inefficiencies that may arise
when instantiating the routing framework with concrete schemes.

5.2.3 Addressing on Spanning Trees

A critical aspect of tree-based routing is which type of addressing should be
used. We discuss a canonical addressing scheme, which is useful only for a
limited range of applications, and a more generally applicable geographical
addressing scheme.

Definitions

Generally, we can consider an abstract address space D . With each node u, a
set

coveru ⊂D

is associated that comprises the set of addresses under which node u can be
reached. Viewed from a different perspective, if for a target address d ∈ D
of a message, d ∈ coveru, node u will be eligible to receive and process the
message. A node may be part of multiple trees and for every tree, the above
predicate should yield a different part of the address space. For a specific tree
t, we will therefore write cover(t)

u .
We require an operation for combining addresses, which we will denote as

]. Two address covers D1,D2 ⊂ D combined using this operation satisfy the
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Algorithm 2 Tree construction and routing algorithm, running on node u
1: on construct spanning tree:
2: /* This event is spontaneously fired */
3: create unique tree-identifier t
4: create tree record T [t]
5: set T [t].parent := u /* the root is its own parent */
6: send INIT〈t,u〉 to all neighbours
7:
8: on receive message INIT〈t,v〉:
9: if T [t] already exists then

10: respond with message BOUND〈t,u〉
11: else
12: create tree record T [t]
13: set T [t].parent := v
14: send INIT〈t,u〉 to all neighbours except v
15: end if
16:
17: on receive message CHILD〈t,v,A〉:
18: set T [t].reach(v) := A
19:
20: on receive message BOUND〈t,v〉:
21: note response of v
22:
23: on all neighbours have responded to INIT (or timeout):
24: construct A := cover(t)u ]Uv∈dom(T [t].reach) T [t].reach(v)
25: send CHILD〈t,u,A〉 to T [t].parent
26:
27: on data D ready to be delivered to destination d:
28: for d ∈ dom(T ) do
29: send DATA〈t,u,d,D〉 to self
30: end for
31:
32: on receive message DATA〈t,s,d, p〉 from j:
33: if d ∈ cover(t)u then
34: /* handle message */
35: else if ∃c : c 6= v∧d ∈ T [t].reach(c) then
36: forward DATA〈t,s,d, p〉 to c
37: else if T [t].parent 6∈ {u,v} then
38: forward DATA〈t,s,d, p〉 to T [t].parent
39: else
40: /* invalid destination */
41: end if
42:
43: on lifetime of tree t exceeded:
44: delete t from T
45:
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Algorithm 3 Variant: Forward a message to all covering children
1: on receive message DATA〈t,s,d, p〉 from j:
2: if d ∈ cover(t)u then
3: /* handle message */
4: end if
5: ∀c : c 6= v∧d ∈ T [t].reach(c): forward DATA〈t,s,d, p〉 to c
6: if T [t].parent 6∈ {u,v} then
7: forward DATA〈t,s,d, p〉 to T [t].parent
8: end if
9:

condition
D1∪D2 ⊆ D1]D2 ,

i.e. all addresses contained in either D1 or D2 are also contained in the resulting
set. For some address spaces, it may be impractical to represent subsets of that
space both efficiently and accurately. We therefore admit some “fuzziness” in
the union operation, i.e. we allow

D1]D2 \ (D1∪D2) 6= /0 .

This means that additional addresses may be in the combined covers that are
not covered by either of the components.

In the following, we show how to instantiate this general scheme with con-
crete addressing schemes.

Tree Addressing

Within a tree, there is a canonical addressing scheme, assuming a static order
on the children of each node. Starting from the root, each node can be given a
unique index address

i0.i1.i2. . . . .ih

where i j ∈ IN denotes the index of a child of the current node. If two such
addresses have the same prefix, they are located in the same subtree. Note that
the root’s address is the empty index sequence ε. Addressing nodes in this way
is efficient since this scheme requires no further state information except for
the static order on children.

Index addressing has the drawback that the same node has a different address
in every tree, therefore an address is only valid for the lifetime of the tree. Also,
the sender has to know the index address of the destination node in order to send
a message. Getting the current index address of the destination to the sender
requires additional overhead.
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An application scenario where index addresses are useful is aggregation.
Assume that multiple spanning trees are used for routing. Let one node be the
aggregation point, collecting messages with sensor data from a large number of
other nodes. The aggregating node has a different address in each spanning tree
(note that the aggregator needs not necessarily be the root of any such tree). In
order to send their sensor data messages to the aggregator, the sensing nodes
have to know the tree addresses of the aggregator. This can be done by a single
broadcast message. Compared to the overall task, this constitutes a moderate
overhead, so using tree addressing is feasible in such a scenario.

The instantiation of the abstract addressing scheme is as follows:

• cover(t)
u represents the index address of node u with regard to a specific

tree t. This means, a node covers only itself.

• a]b := a∪b, i.e. the union operator is simply the set union. The root of
a subtree covers all addresses of its children (and the nodes below them).
In fact, representing T [t].reach(v) is straightforward: it is simply node v’s
tree address as this is the prefix of the addresses of all of its children.

Geographic Addressing

In a WSN, often geometric addressing is desired, e.g. for sending a message
to a certain location (geographic anycast). Tree addresses as discussed before
require the address of a specific node to be known to the sender, which is often
not desirable. Geographic addressing is not supported by such tree addresses.
Nevertheless, we would like to be able to use spanning trees for routing mes-
sages based on geographic addressing as well. This can be achieved in the
following way.

Each node is assigned a geographic area for which it directly accepts mes-
sages. This is the “cover area” of a node. The shape of such an area may be
arbitrary, but since we need to represent such shapes, they would be usually
restricted to simple shapes such as rectangles or circles. The cover area may or
may not be correlated to the radio range of a node, or its sensoric or actuatory
reach.

When a tree is established, all nodes report the area they cover directly or
indirectly, i.e. including the cover areas of their children, to their parent nodes.
The representation of this cover area poses a problem, since an exact represen-
tation would require a large data structure. In the worst case, one entry per node
has to be kept. However, we would like to keep the overhead to a minimum,
so a different solution is required. One possibility is to give up exactness and
choose a less accurate but also less costly representation.
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Target

Source

Root of subtree

Figure 5.2: Target address contained in the convex hull of the cover area, but not in the cover
area itself

Here, we propose to use the convex hull of a set of regions to represent
the sum of the regions. Convex hulls have some desirable properties. First, a
convex hull can be represented by very few points compared to the point set
it represents. Second, if the point set is extended, the new convex hull can be
solely computed from the existing points on the hull and the new point set. No
information about the points contained in the convex hull is required. A third
property is efficient computability using Graham’s algorithm (cf. [44]), which
has O(n logn) time complexity in the number of nodes.

Using convex hulls for representing the area covered by a set of nodes in
a subtree has the disadvantage that the convex hull may contain areas that are
in fact not covered by any nodes in the subtree. This means that although an
address, i.e. a geographic location, may be purportedly reachable through a
subtree, since it is contained within the convex hull covered by the subtree,
there is in fact no node in the subtree that actually covers this location. Hence,
such a message will be routed through that subtree without ever reaching a node
that actually covers the addressed location.

Such a situation is depicted in Figure 5.2. The boxes illustrate the cover
areas of the nodes, the union of these boxes is the total cover area of the subtree.
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Obviously, the target location is contained in the convex hull of the subtree’s
cover area, but none of the nodes actually covers the target location. Therefore,
the message cannot be delivered within this subtree.

This problem can be mitigated by forwarding a message not only to one
child node that is supposed to cover the target location, but to all of them. This
variant of the algorithm is shown as Algorithm 3. Here, we make sure that the
message reaches all of the eligible nodes by forwarding it up the tree as well.
This increases the overall load but makes sure that the message is eventually
delivered.

The fact that a location is usually covered by multiple nodes and many of
them may receive a message addressed to this location may lead to problems in
certain applications, where only one node should actually process a message.
In such a case, the receivers of a message, which are located in close proximity,
have to coordinate themselves.

For geographic addressing, we instantiate the addressing scheme as follows:

• cover(t)
i represents the covered area of node i, which we set to a square

with side length w and the node i at its center.

• The operator a] b yields the convex hull of a and b, where a and b are
point sets representing polygons.

5.2.4 Message Forwarding

Hierarchichal tree addressing, as discussed above, allows the direct forwarding
of a message to a specific node. At each node, it is immediately clear if the
message should be forwarded towards the root of the tree, or to a certain child
node.

Geographic addressing is more “fuzzy”. Although the cover area of a node
may contain the target address of a message, there might be no node among
the children and subchildren of that node that actually covers this location.
Therefore, even if a message is forwarded to that node, the message may not
reach its target. This deficiency may be overcome by an additional local routing
scheme that is initiated by the node holding the message without any child
nodes to which the message can be delivered. However, this node may still be
far away from the target location, and the advantages of the tree routing may
be lost.

Also in contrast to tree addressing, multiple nodes may qualify as receivers
when geographic addressing is used, which we denote as geographic anycast.
Such a situation needs to be resolved on a higher system layer, for example
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by the application. However, this leads to a higher overhead as messages are
unnecessarily forwarded to certain nodes. Nevertheless, forwarding a message
to all eligible child nodes mitigates the coverage problem described in the pre-
vious paragraph. Some of the redundant messages will be dropped anyway
further down in the tree, but the message will actually be delivered to a quali-
fied target node.

5.2.5 Choice of Tree Paths

At any given time, there exist S active spanning trees in the network. A sender
can freely choose the trees that it wants to use for routing. In order to minimize
the probability of intersections, the sender can select trees whose roots are lo-
cated on different sides of the line between itself and the target location. This
will probably only lead to intersections that are close to the end-points.

5.3 Properties of Tree Paths

We are interested in routing messages over multiple paths that are spatially
separated and mutually node-disjoint. In addition, the overhead incurred in
terms of message load and delay should be acceptable. We now examine the
characteristics of tree paths with regard to these criteria.

5.3.1 Spatial Separation

Spatial separation describes a property of pairs of paths. Two paths with a
high degree of spatial separation will have minimal exposure to a location-
constrained attacker. We will not go beyond this informal definition of the
term.

Spatial separation can be measured in several ways. We will assume any
measure that is negatively correlated with the impact of a location-constrained
attacker. A high spatial separation would correspond to a minimal attack sur-
face to a location-constrained attacker.

The spatial separation of paths that share the same source and target nodes
is naturally limited. A location-constrained attacker, even if he would be con-
strained to capturing a single node, would be able to compromise both paths if
he captured one of the end-points.

Tree paths are not necessarily disjoint, thus they may share more than just
the end-points. This increases their vulnerability to location-constrained at-
tacks. However, in many cases they provide a good spatial separation even if
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they are not disjoint. For many nodes on one path, the distance to the closest
node on the other path is quite high.

5.3.2 Path Disjointness

On first sight, tree paths seem inadequate for providing spatially separated paths
since there is a non-zero probability that two tree paths intersect. Thus, it may
happen that whenever a message that has been split into multiple shares is sent
over a set of tree paths, there will be at least one node that sees multiple shares
of the message. This is a violation of the assumptions on which the secret
sharing mechanism is based. The overall security therefore depends on the
probability with which intersections occur.

A B

C

D

D'

Figure 5.3: Intersection and intersection-free zones

We first consider an idealized geometric model of the network. Nodes are
represented by points in the Euclidean plane. Figure 5.3 shows an example.
The two communicating nodes, A and B, form triangles with the tree roots C
and D (respectively, D′). Two tree paths intersect in at most one point.1 In
this example, the tree paths ACB and ADB intersect, while ACB and AD′B do
not. Of course, whether an intersection occurs or not depends on the relative
position of the two tree roots. Given the position of C, if D falls within the non-
shaded area, both triangles are intersection-free, while D placed in the shaded

1Note that we simplify here and ignore bordercases such as C = D or D falling onto one of the lines AC or BC.
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area would yield an intersection.
When the deployment area is a square, we can roughly approximate the

probability with which an intersection between two trees occurs in the follow-
ing way. The “grey” zone occurs only on the side of line AB on which C is
located. The closer C is to one node, the smaller the grey zone on this node’s
side will be, but it will be larger on the other’s (this can be seen in Figure 5.3,
where the shaded area close to B is much smaller than that close to A). In the ex-
treme case, the grey zone will fill out the whole upper area almost completely.
The other extreme is C being close to the line AB, and placed between A and B;
in this case, the grey zone will be rather small in total. For a rough estimation,
we may assume that one half of the upper area will be grey. In total, this means
that in about one quarter of all pairs of tree paths, there will be an intersection.

Figure 5.4: Paths crossing each other without an intersection node

This estimate is based on an ideal, continuous model. A real WSN is a
discrete system, communication paths are not straight lines, and their density
is limited. This leads to a number of differences to the ideal model:

• Paths that intersect in the model do not necessarily intersect in a real de-
ployment. An example is shown in Figure 5.4. Note that if a Gabriel
graph would be used, which is not necessary for tree routing, a situation
as in this example cannot occur and the paths will definitely intersect.

• In the real world, it is likely that paths intersect in a location close to the
communication endpoints since paths are closer to each other and, since
there are only finitely many nodes to choose from, it is more likely that
they have one or more nodes in common.

• An intersection need not be restricted to one common node. It is pos-
sible that two paths have a segment in common, especially close to the
endpoints. An example is shown in figure 5.6.

These considerations lead us to the conclusion that the fraction of tree paths
that intersect should be roughly above one-quarter, but below one-half. In order
to validate this assessment, we performed a simulation experiment. Simulation
runs were executed for ten different networks, 30 spanning tree pairs for each
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B

Figure 5.5: Intersection-free (disjoint) tree paths

R1

R1

A

B

Figure 5.6: Tree paths with a common subpath
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network, and 100 node-to-node connections for each pair of trees, i.e. 30 000
samples were taken in total. Each network consisted of N = 500 nodes, the
communication range was set to R = 100 units, and the deployment area was
the standard square with a side length of 1000 units. The simulation experiment
did not take a specific addressing scheme into account but considered node-to-
node connections.

We define the distance of an intersection of two tree paths as follows:

δI = max
∀X

min{δ(X ,A),δ(X ,B)}

Informally, this means that the shared node that is furthest away from both
end-points determines the distance of the intersection itself. A small value
means that an intersection occurs close to an endpoint, which is advantageous
for the network due to the locality principle. For the same reason, a higher
value provides an advantage for the attacker.

Figure 5.7 shows the distribution of the intersection distance for our simula-
tion experiment. The disjoint tree paths are not included in this diagram; they
account for approximately 40% of all instances. Another 18% have an intersec-
tion distance of one, which means that the (only) shared node is a neighbour of
one of the end-points. Therefore, about 58% of all tree paths are virtually dis-
joint. Another positive aspect is that very great distances are very rare, which
means that the attacker can exploit intersections only in very few cases.
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Figure 5.7: Distribution of the intersection distance

Another interesting measure is the number of nodes at which two tree paths
intersect. The higher this number, the easier it is for an attacker to exploit an
intersection. Figure 5.8 shows the distribution obtained from the simulation
experiment. Here, zero is included, illustrating the fraction of intersection-free
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Figure 5.8: Distribution of common nodes between tree paths

pairs of tree paths. As expected, due to the physical separation of tree paths,
the number of tree pairs that share a large number of nodes decreases rapidly.

5.3.3 Traffic Overhead

Tree paths are not designed to minimize the number of hops necessary to deliver
a message. They are intended to provide for disjoint and spatially separated
paths. In addition, the use of tree paths in conjunction with a geographical
addressing scheme leads to failures in delivering messages. Thus, the intended
gain in security must be paid for in terms of a higher hop count and a delivery
rate below one.

Let L be the average length (hop distance) of shortest paths in the network.
Using a tree path, a message is routed first to the root, and then on to the target.
If all messages are routed through the root, this yields a path length of approx-
imately Lm ≈ 2L. However, a few messages do not need to go through the root
as the source and the destination node are both contained in the same subtree.
These connections lower the average tree path length by a small amount. From
the same simulation experiment as above we also obtain the distribution of the
path lengths. Figure 5.9 shows the distribution of the shortest path lengths, i.e.
the shortest connections between source and destination with no tree involved.
The average path length is 6.9. Figure 5.10 illustrates the distribution of the
tree path lengths; this yields an average of 11.9, i.e. Lm ≈ 1.72L. This exper-
iment shows that the expected path length using tree routing is well above the
best achievable path length but would still be acceptable in many cases.
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Figure 5.9: Distribution of shortest path lengths

Figure 5.10: Distribution of tree path lengths
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Figure 5.11: Distribution of out-degree

5.3.4 Delivery Rate

As discussed above, the convex hull created from the cover areas of a set of
nodes may contain locations that are actually not in the cover area of any of
these nodes. Thus, a message may be routed to a subtree that does not contain
any node covering the target location of the message. The delivery rate depends
on the topology of the network and the cover density, i.e. the number of nodes
whose cover area contains a certain location.

Figure 5.12 shows the increase of the delivery rate when the cover area of
single node is increased. It seems clear that a nearly full delivery rate, for
example r > 0.99, cannot be achieved practically. The reason is that this would
require a cover area per node that is very large compared to the size of the
deployment area. For high precision of results, and low resource usage, it is
best to keep the cover area small.

An increase node density d, which denotes the average number of neigh-
bours of each node, leads to a larger number of subtrees in each node as the
tree construction favours shallow trees. This causes the available cover nodes
to be distributed among a larger number of subtrees, thereby reducing the prob-
ability that a cover node is contained in a subtree.

Figure 5.13 shows that an increased cover density has the same effect on
graphs whose topology is determined by the Gabriel graph. However, using
the Gabriel construction, the topology is invariant to changes in node density.
Therefore, node density shows little to no effect in the simulation results.
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Figure 5.12: Delivey rate for varying node density (d) with increasing cover density; graph
topology is based on reachability
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Figure 5.13: Delivery rate for varying node density (d) with increasing cover density; graph
topology is determined by Gabriel graph (G)
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There are several other ways to increase the delivery rate. One method is
to switch the routing mode as soon as the message arrives at a node of the
routing tree where neither the node’s cover area nor any of its children contains
the message’s target location. Now, the subtree is chosen whose cover area is
closest to the target location, and the message is routed to this subtree. This
continues until the message arrives at a leaf node, from which point on the
message is routed, for example, using a geographical routing scheme. This
procedure only kicks in when routing has gone wrong. The overhead of this
method would be slightly more complex code in the nodes to implement the
search for the closest cover area and geographical routing scheme over short
distances. No additional messages are sent, but the delivery rate is increased to
100%.

Another method to increase the delivery rate is to pass a message always
to all subtrees that presumably cover the target location. That way, the mes-
sage will eventually reach a node that covers the target location. However, the
message will also travel many more hops than are necessary, increasing the
message overhead significantly at much simpler node logic.

5.4 Security Evaluation

5.4.1 Basic Security Model

The security of a multi-path communication scheme is, first of all, provided
by the fact that the attacker has to compromise multiple intermediate nodes in
order to break a single communication relationship. If k (k ≥ 2) paths are used
for transmitting a message, or authentication codes, compromising a number of
paths smaller than k will at least lead to detection of the attack. Thus, if at least
one path remains sound, the integrity of messages is ensured.

We assume that the individual paths of a multi-path scheme use only link
authentication. This means that a single compromised node on such a path
will compromise the complete path. It is, of course, possible to employ more
advanced authentication schemes on individual paths. This possibility will be
explored in the next chapter.

For the basic determination of the security of tree paths we consider a ran-
dom spread attack. Using a link authentication scheme, a single compromised
node will break an individual path. Let x be the number of compromised nodes
in the network, and N be the total number of nodes. For a tree path, this leads
to the following compromise probability: pc = 1− (1− x

N )Lm. Using k paths in
a multi-path scheme, the integrity of a message is compromised if all paths are



5.4. Security Evaluation 151

compromised, i.e. with probability pk
c.

Under a concentrated attack, we intuitively expect an advantage from the
spatial separation of tree paths. This is in contrast to a random attack, where
spatial separation provides no such advantage. But when a certain confined
area is under attack, compromising all paths that lead through that area, we
can hope to circumvent the area with at least one of multiple paths. We would
therefore expect that a concentrated attack is not as effective as a random attack
against the multiple tree path scheme.

The improvement spatial separation can provide has its limitations, however.
First of all, the approach does not scale well beyond two paths. A third path
will likely have intersections with the other paths, and it will be on the same
side of the line given by the communication endpoints as another path. Thus,
with more than two paths, there is no real spatial separation anymore.

The second limitation is that spatial separation works well only if the ge-
ometrical arrangement of paths and attack area is favourable. In many cases,
spatial separation does not help. If the attack area is close to one of the com-
munication endpoints, the spatial separation between paths is low, and it is not
unlikely that both paths go through the attack area. If the attack area grows, it
also becomes more likely that it covers both paths.

If both endpoints are close to each other, multiple paths are mostly useless.
If the endpoints happen to be both outside of the attack area, it is likely that
the nodes between them are also uncompromised. In that case tree paths or, for
that matter, any multiple path scheme, can provide no additional security. On
the other hand, if one of the endpoints is compromised, no security scheme can
help.

5.4.2 Resilience Against Attacks

Figure 5.14 shows simulation results for the tree-based multipath scheme under
various attacks. It is easy to see that, as discussed in the previous section, the
multipath scheme provides to advantage to hop-to-hop authentication under a
random spread attack. This type of attack does not geographically cluster the
compromised nodes, thus the spatial separation of the multipath scheme is of
no use.

The scheme is also not helpful against a partitioning attack. If both end-
points are located on different sides of the attack line, all paths between them
are affected by the attack, so using multiple of them does not provide an advan-
tage.

The simulation verifies, however, that the scheme is helpful against the types
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Figure 5.14: Resilience of the tree-based multipath scheme under various attacks

of attacks where compromised nodes are clustered. In both cases, the hitpoint
and the concentrated attacks, the scheme has significant advantages.

5.5 Related Work

The transmission of data over multiple paths has been widely studied and is
extensively used in modern communication networks. Most practically used
schemes, however, do not use the paths to transmit data redundantly but to
increase the availability or the bandwidth of a connection. The basis for the
security of a multipath scheme is threshold security.

5.5.1 Multiple Paths for Performance

Multipath routing is a commonly used technique on the Internet, where the
OSPF (Open Shortest Path First) protocol [128] is widely supported. It sup-
ports the maintenance of routing information about multiple paths that all have
equal cost. A router computes the shortest paths to all target nodes and keeps
a list of possible next hops for each target. One of them is selected for each
new transmission. Thereby, multiple paths are used between two end-points
sequentially.

For mobile ad hoc networks, node-disjoint multipath routing has been widely
studied. The main focus has been on improving the performance, i.e. band-
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width usage and latency, and the reliability of message transmissions over mul-
tiple hops. Establishing fixed routes between end-points is impossible in such
networks due to the mobility of the intermediate nodes or the end-points them-
selves. Node-disjointness is desirable in order to minimize the dependency of
paths on specific nodes. There are many variants how multiple node-disjoint
paths can be established, but most of them fall into two categories, either on-
demand or proactive protocols.

In the on-demand approach, a sender that wants to transmit a message first
sends out a message requesting path establishment. This message will be for-
warded to the destination over multiple paths by intermediary nodes. The path
information is recorded in these messages and can be used by the destination
to select the best paths (for example, the most disjoint with the lowest delay).
The information about the selected paths is then transferred back to the sender.
An example of such a protocol is split multipath routing [111].

The proactive approach demands that nodes continuously maintain routing
information. One example is “meshed multipath routing” [48]. A centralized
communication architecture is assumed, with many source nodes and a single
data sink, where nodes relay messages always towards this sink. For this pur-
pose, they classify their neighbours into two categories: nodes that are farther
away from the sink and nodes that are closer to it. Messages are generally for-
warded to all neighbours that are closer to the sink. Alternatively, only one
neighbour is selected to which the message is forwarded. Note that in this ap-
proach, node-disjoint paths are not explicitly created but if they exist, they are
implicitly used.

The multipath routing schemes described by Ganesan et al. [68] are intended
to provide alternate paths in the event that a node on the primary path fails. The
primary path is usually the shortest path, or the path that provides the lowest
latency. There are two kinds of alternate paths, either completely or partially
node-disjoint to the primary path (the latter are called braided baths, since they
try to circumvent single nodes on the primary path). The method of construc-
tion prefers alternate paths that are geographically close to the primary path, for
both types of alternate paths. The construction of alternate paths depends on
local interactions only, nodes need no global knowledge about the topology of
the network. The goal is to be as energy-efficient as possible. By construction,
this approach does not lead to spatial separation but instead prefers paths that
are in close proximity.

Spanning trees have been proposed by Chen et al. [40] for routing in mobile
ad hoc networks. In that work, the focus has been put on maintaining a single
spanning tree while nodes are mobile. Nodes are identified by their IP addresses
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and each node keeps a complete list of all addresses of the nodes in its subtree.
Based on that work, multiple trees have been proposed in [139] for improving
the message delivery rate and optimizing path length. The set-up of a new tree
is initiated when this new tree can provide a more efficient route for a message
flow. Using (multiple) tree paths for security purposes has not been considered
in these papers.

A related problem to ours is finding disjoint paths such that every commu-
nicating pair of terminals uses an exclusive path. This is important for admis-
sion control (where paths are allocated to sessions based on quality-of-service
parameters) and optical routing (where router switches along the path are syn-
chronized). This allows a maximum of N/2 = O(N) communicating pairs at
any time out of a maximum of N(N − 1)/2 = O(N2). An algorithm for ap-
proximating the exact number of pairs that can be connected is given in [93].
In mesh networks, it is hard to achieve a high number of disjointly connected
nodes. Each node acts as a router as well, and each connection being routed
through a node diminishes its choice of connections to build itself. The maxi-
mum number of overall connections is reached if all connections are between
direct neighbours.

5.5.2 Spatial Separation

An interesting approach to multipath routing has been proposed by Burmester
et al. [33]. Based on the locations of the sender and the target, circles are calcu-
lated that are incident with both the sender and the target. The center of a circle
and its radius, as well as an orientation are piggy-backed on a message. Each
node forwards the message to the next best node according to these parame-
ters such that the message travels close to the circle line. The piggy-backed
information is sufficient to make this decision locally. This approach is prob-
lematic in networks with “holes” as it may not be possible to stay close to the
circle line. For such cases, this approach could be extended with a mechanism
similar to face routing.

Figure 5.15 shows an example with four possible circles. One of them is
clearly too large, since it exceeds the boundaries of the network and would not
be usable for routing. The other three are usable, and it is easy to send three
messages on routes that are spatially well separated from each other. In order to
achieve a high degree of spatial separation, the orientation for one of the small
circles would be chosen clockwise and counter-clockwise for the other one.
For the medium-large circle, either clockwise or counter-clockwise orientation
would be appropriate, depending on the cost one is willing to spend for spatial
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separation.

Figure 5.15: An example for circle based geographic multi-path routing. The crosses indicate
the centers of the circles

Spatially separated paths are also created by the approach proposed by Voigt
et al. [185] with the intention of avoiding interference between transmitting
nodes. The goal is to allow the transmission of messages on multiple paths
at almost the same time. To that end, a “forbidden zone” between sender and
target is established, which is a corridor of a certain width through which a
message may not be routed. Two paths around this corridor, one on each side,
are established for routing. If the corridor is broad enough, interferences are
minimized.

5.5.3 Threshold Security

Generally, the attacker model in a multipath environment is determined by an
upper bound k, where k is the number of compromised paths between a fixed
source and a fixed destination [165]. Compromising a path means either that
messages on this path can be read by the attacker (a passive attack, breaking
the secrecy), or that messages can be manipulated or injected by the attacker
(an active attack, breaking the resilience).
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Threshold security schemes can cope with up to k compromised parties,
which could be represented by nodes, links, or paths, for example. A (n, t)-
threshold scheme is defined by the number of shares n and the minimum num-
ber t of shares that are necessary and sufficient to reconstruct the secret d. The
security of the scheme relies on its properties: (1) less than t parties cannot
construct d (2) any set of t distinct shares is sufficient to construct d.

As shown in [56], 2k+1 disjoint paths are required to obtain secure message
transmission when faced with a k-bounded attacker who completely controls k
paths, i.e. can read and write messages at will on these paths. Intuitively, this
result is obtained by encoding and splitting up a message such that (1) k + 1
correct parts are sufficient and necessary to reconstruct the message and (2) no
information about the message can be learned by reading k or less parts.

When using multipath routing in order to achieve a security goal, such as
confidentiality or integrity, one must not only think about encoding and rout-
ing the messages themselves. It is also important to consider the possibility
that the adversary tries to manipulate the process by which the used paths are
constructed. If the adversary manages to convince a sender that multiple dis-
joint paths exist while in fact there is only one path that is controlled by the
adversary, the sender cannot communicate securely. This issue is addressed
in [10], where an algorithm is described for constructing edge-disjoint paths
that is itself resilient against attacks.

5.6 Summary

Establishing short multiple disjoint paths in a network may be hard, thus we
devised a method that yields longer paths but makes path set-up very easy. Our
method has the additional advantage that the constructed paths are spatially
separated, which can be an advantage in certain attack scenarios.

In general, establishing disjoint paths involves a trade-off between set-up
complexity and path length. In order to minimize path lengths, a set-up pro-
cedure is required that involves complex message exchanges and keeping local
state information. On the other hand, a simple procedure can be used if longer
path lengths are acceptable.



Chapter 6

Integrity-Preserving Communications

6.1 Authentication and Integrity Protection

Authentication is an important tool for ensuring the identity and integrity of
objects that are outside of one’s own control. In particular, we consider the
protection of the integrity of messages that are transmitted within a WSN. We
show how message integrity relates to the communication patterns within a
WSN and the assumed threat model.

6.1.1 Definitions

Being authentic for an entity means “being actually and exactly what is
claimed”, especially “worthy of acceptance [. . . ] as conforming to or based on
fact” and “true to one’s own personality, spirit, or character” according to [125].
The last part of this definition suggests that authenticity is strongly linked to
certain characteristics (“personality, spirit, or character”) of an entity, which
could be subsumed under the notion of identity. We will not go into the philo-
sophical details of this notion. For our purpose it is sufficient to assume that
there are features based on which the identity of an object can be established.
The process, which accomplishes this, is called authentication.

In the context of computer and network security, there are three main kinds
of objects to authenticate: entities (users, principals, nodes), keys, and data
(messages). For the latter, an important property is integrity. The following
definitions are taken from the Handbook of Applied Cryptography [122]:

Definition 6.1. Entity authentication is the process whereby one party is as-
sured (through acquisition of corroborative evidence) of the identity of a sec-
ond party involved in a protocol, and that the second has actually participated
(i.e., is active at, or immediately prior to, the time the evidence is acquired).
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Definition 6.2. Key authentication is the property whereby one party is assured
that no other party aside from a specifically identified second party (and possi-
bly additional identified trusted parties) may gain access to a particular secret
key.

Definition 6.3. Data origin authentication is a type of authentication whereby
a party is corroborated as the (original) source of specified data created at some
(typically unspecified) time in the past.

Definition 6.4. Data integrity is the property whereby data has not been altered
in an unauthorized manner since the time it was created, transmitted, or stored
by an authorized source.

In the course of this work, we most often refer to “messages” instead of
“data”. As a message, we understand a container for data, which is represented
in some encoded form. However, in many cases these terms are used inter-
changeably. Also, we talk about “hosts” or “nodes” instead of “parties”, but
these terms are used interchangeably.

There are a variety of methods for entity and message authentication being
used. In the physical world, biometric techniques are used for authenticating
human beings: Fingerprints may be used for entity authentication, while voice
recognition is commonly used for entity and message authentication (over the
phone, for exmple). In electronic communication systems, cryptographic, key-
based methods are required. Standard mechanisms for authentication include
digital signatures and message authentication codes (cf. 2.8.2).

Maintaining data integrity is often achieved through mechanisms like re-
dundant storage or checksums. This is sufficient to counter unsystematic errors
which occur in natural phenomena like fatigue of material or random interfer-
ence. In cases where data integrity is threatened by a skillful, malicious adver-
sary, this is not sufficient. In such a case, data origin authentication through
cryptographic means is used to detect unauthorized tampering with data. There
is no known cryptographic primitive, which can be used to ensure integrity
(against malicious adversaries) without recourse to authentication.

It has to be stressed that node authentication alone does not guarantee cor-
rectness. A compromised node may correctly report its identity and authenti-
cate its message as it is expected from a correctly operating node. However, the
data it reports may be manipulated, and there may be no way of detecting such
manipulations. This is the reason why node capture attacks are so powerful.

The last two definitions will be the most important ones for this work, and
both data integrity and data origin authentication (also called message authen-
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tication) are strongly related. We are going to discuss these issues in further
detail in the following section.

In order to make message authentication possible, some identity must be at-
tributed to the source of a message. Otherwise, it would not be meaningful to
claim that a message originated from some specific entity. The message source
has to be described in a unique way to assign an identity to it. Usually, this is
achieved by giving all potential sources (nodes) names that are unique within
the respective frame of reference. This makes it possible to issue a statement
like “message M originates from node p”, where M may be represented by a
bitstring, and the name p by an integer, for example. The purpose of authenti-
cating message M is then to yield evidence about the validity of that statement.

When the authentication of message M is successful, the association to its
source p is established. At the same time, it is ensured that M has not been
changed since it was created by its source. Thus, authentication provides the
authenticating party with two pieces of information about a message:

1. A source is attributed to the message.

2. The integrity of the message is ensured.

In this regard, authenticity is a stronger property than integrity alone, since it
implies integrity and additionally links an attribute (usually an identifier) of the
source to a message. Vice versa, if the integrity of a message is violated, i.e.
part of the message is altered or deleted, its authenticity (with regard to the
statement above) is lost.

Some considerations may illustrate this fact. If a message is altered (i.e. at
least one bit changes) after the message has emerged from its source, a new
message is in fact created. The original message has served as input for this
transformation, and both messages may share large pieces of data. Still, two
different messages now exist. And, unless the modification was done by the
original source, they have different sources. Thereby, an altered piece of data
looses its authenticity.

Differently stated: If it is possible to verify that a message originates at the
source that it is claimed to come from, this means that the message has not
been changed since the time it emerged from its source. Such a verification is
usually based on a statement issued by the source itself, which acknowledges
that the source has created the message. This statement applies to the message
in its specific form at creation time, and any change to the message invalidates
the statement.

These considerations are intended to illustrate that integrity can be achieved
through authentication, and the violation of a message’s integrity makes it im-
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possible to authenticate the altered message with regard to the original state-
ment of origin.

6.1.2 Identity, Integrity, and Authentication in WSNs

Identities of nodes in a communication network may exist on different system
levels. For example, serial numbers or structured, unique addresses such as
the 6-byte MAC layer identifiers used in Ethernet networks, simple random
numbers (with a high probability of uniqueness), or public/private key pairs are
being used. Often, identities are the foundation for security measures such as
access control, which could be based for example on ID filtering or public key
signatures.

The key distribution schemes of Chapter 4 assume that a (random) identifier
exists for each node. This identifier is used to create a pseudo-random number
sequence that determines, which keys are assigned to a node. Additionally,
the assigned subset of keys can also be considered as an identifier for a node,
although it is only unique with a certain probability. However, a key subset
has the advantage that its validity can be checked by other parties by testing
whether the node actually knows the keys that have been assigned to it. In fact,
the major purpose of this kind of identifier is not to corroborate some unique
name for each node, but to prove that the node is legitimately participating in
the sensor network.

As mentioned above, the knowledge of the identity of a message’s source
does not imply any trust in that source or the truthfulness of a message’s con-
tent that is attributed to that source. This trust has to be established through
some means that is usually outside of the scope of a direct communication re-
lationship. In a WSN, trust is usually assumed based on the fact that nodes
belong to the same WSN deployment, or are operated within the same admin-
istrative domain. Membership in the same deployment can be established, as
mentioned in the previous paragraph, by using a key predistribution scheme.
Alternatively, a list of valid identifiers could be predistributed to all nodes, or
certificates could be used.

A system where trust is assumed if a valid key set is presented may be vul-
nerable to the so-called Sybil attack [58]. This attack is based on the creation
of new identities. By recombining the key sets of captured nodes, new key sets
can be created, which can then be used to simulate a potentially large number
of virtual (fake) nodes and influence the result of a WSN’s operation. An in-
trusion detection system [137] may help to detect such virtual identities, but it
may involve a significant overhead.
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It has been noted [46] that in many systems, other characteristics than iden-
tity are usually more important to know, such as location or behaviour. For
example, it may be important to know that the device, with which a commu-
nication relationship is being established, is indeed located at a certain place.
However, this information cannot be conveyed by an identifier of the device
alone and must be established through other means. For example, if an inter-
face based on physical contact, such as a cable plug, can be accessed, proximity
is immediately established. Verifying the location of a remote device is much
harder and usually involves a trusted entity, such as a location beacon [158].

Sometimes, authentication is merely used to ensure integrity. In [42], the
protection of military, large-scale WSN deployments against attacks on their
integrity has been studied. The main objective is to prevent an adversary from
placing a majority of malicious nodes within an area. This ensures that re-
liable information (e.g. for surveillance) can be retrieved. For that purpose,
nodes are equipped with batch keys, which correspond to their deployment
area, and diversity keys, which provide uniqueness within a deployment area.
When information is retrieved from a set of nodes, it is made sure that nodes
with duplicate diversity keys or inappropriate batch keys are disregarded. Thus,
cryptographic node authentication servers as a means to ensure the integrity of
application-level data.

In summary, we observe that identity serves an important purpose for mes-
sage authentication. However, identity is not as important in WSNs as in other
systems. The reasons are that trustworthiness is not guaranteed solely by a
known identifier, and group membership is more relevant than individual iden-
tity. We thus conclude that integrity protection without individual authentica-
tion is sufficient for many applications. In this chapter, we show how message
integrity protection can be achieved with much less costly means than would
be necessary for end-to-end authentication.

6.2 Basic Interleaved Authentication

In the following authentication scheme, messages are authenticated not end-
to-end, i.e. between the source and the sink, but locally, i.e. only between
intermediate nodes within a small hop distance. Thereby, it is unnecessary
to transfer any secret keys or certificates to the sink, while the scheme still
effectively preserves the integrity of messages.
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6.2.1 Protocol Description

Consider the basic linear graph in figure 6.1 representing a simple sensor net-
work. The solid edges between adjacent vertices represent physical communi-
cation links that are used for transmitting messages. This communication graph
is obtained, for example, by constructing the routing graph used for geographic
routing protocols such as GPSR [91]. For constructing such a graph, certain
edges are removed from the full connectivity graph, which contains informa-
tion about which nodes are reachable from which other nodes. This could mean
that, in principle, S1 may be able to send a message directly to S3. However, for
various reasons this link is not used.1 Thus, S2 is a one-hop neighbour, while
S3 is a two-hop neighbour of S1.

S
1

S
2

S
3 S4

Figure 6.1: A simple communication graph with interleaved security relationships

The dashed edges represent pairwise shared keys. Together with the ver-
tices, they form the authentication graph of the network. In the example, each
node has a shared key with each node within its two-hop neighbourhood, i.e.
with all of its one-hop and two-hop neighbours. The key shared between nodes
Si and S j will be denoted as Ki j = K ji. It is relatively straightforward to set up
such a setting using the techniques described in chapter 4.

Whenever a message is forwarded along a communication path, it is be-
ing authenticated using these keys. There are two cases we have to consider,
message creation and message relaying.

Message creation When a message is generated from scratch, the source node
creates k MACs targeted at the subsequent nodes on the path. As each of these
nodes has a shared key with the source of the message, the authenticity of the
message can be directly verified. For the first k hops on a path we can therefore
speak of message authentication. If any of the first k−1 nodes tampers with the
message, the following node will detect the manipulation based on the MAC
from the source.

1One of the reasons is energy efficiency. When transmitting a message from S1 to S3 via S2, both S1 and S2
can reduce their transmission power. In total, this saves energy compared to S1 directly sending to S3 with higher
signal strength. Another reason is that geographic routing requires a planar communication graph.
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In our example, S1 creates a message M and two MACs {M}K12 and {M}K13,
and sends everything to S2. The message includes an identifier denoting its
origin, S1 in this case. S2 uses this identifier to determine that it shares a key
with the message source, and can therefore directly verify the authenticity of the
message. S2 computes {M}K21 and checks that the result matches the respective
value received from S1. As S2 has established the authenticity of the message,
it creates two new MACs using its keys K23 and K24, and forwards them to S3
together with the message itself and the remaining MAC that was created by S1.
Similarly, S3 checks that the MAC from the source is valid. The MAC {M}K23

provides no significant additional value beyond link authentication as S1 and
S3 share a key anyway, and since S1 is the creator of the message, S3 does not
require a “second opinion” on the validity of the message.

Message forwarding A node that is too far away from the message source to
share a key with it accepts a message only if it has k MACs from different
nodes attached that the relaying node can verify. Since these MACs have been
created not by the message source itself but by other relaying nodes, we call
them attestations. If all attestations are verified correctly, the relaying node can
be more or less sure that the message has not been tampered with. This belief
is justified if there are not too many colluding compromised nodes. Under the
assumption that key material has not been disclosed, all k attestating nodes
would have to collaborate in order to convince the relaying node to accept a
falsified message.

In the example, S4 is the first node on the path that cannot verify the mes-
sage’s authenticity directly but has to rely on attestations only. Both S2 and S3
have created such attestations for S4. If both can be verified, S4 assumes that
the message is correct and creates attestations for S5 and S6. If both S2 and
S3 are compromised, they can convince S4 to accept a message as originating
from S1 even if they have altered the content of the message. There is no way
for S4 to know what the original content has been as there is no direct channel
between the source and S4.

In this basic form, we call this authentication scheme k-Canvas or simply
Canvas if the parameter k is known. In most examples throughout this work,
we will use k = 2. The name has been chosen since the graphical representation
of the scheme resembles the visual impression of a cut through a canvas fabric
common in cloth manufacturing.
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Figure 6.2: Location of the Canvas layer in the network stack

6.2.2 Formal Specification

We are now going to take a closer look at the details of the Canvas authentica-
tion scheme. We describe the embedding of Canvas in the network stack of a
sensor node, and the operations necessary for its implementation.

The task of the network stack is to determine how to handle incoming and
outgoing messages. For example, it must decide whether a message should be
handed over to a higher system layer (e.g. an application), or rather be routed
to a neighbour. The Canvas scheme is being used as part of the routing layer of
the network stack: each incoming message is checked for its attestations before
it is further processed, and to each outgoing message the necessary attestations
are attached. The placement of Canvas within a (simplified) network stack is
shown in Fig. 6.2.

We require a few helper functions for the Canvas layer to work. The first
is prefetch-hop, which exists in the routing layer and can be called from the
Canvas layer. It takes a small integer n as an argument and returns the ID of
the n-th-next node on the path towards the message’s destination:

prefetch-hop : Integer → Node-ID

Thereby, it can be determined which keys must be used for creating the neces-
sary attestations.

Another function, called neighbours, delivers the IDs of a node’s neigh-
bours that are located exactly in a specified hop-distance:

neighbours : Integer→ P (Node-ID)

Note that neighbours(i) ∩ neighbours( j) = /0 for i 6= j.
The core functionality of the Canvas layer is checking whether a message

should be accepted as “authentic” (or “genuine”). The decision procedure for
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this is encapsulated in the function canvas-accept. Pseudo-code for this func-
tion is shown in Algorithm 4. The function takes all available message param-
eters as input, i.e. its source, destination, payload, and authentication informa-
tion. The latter, given in the variable C , is a set of tuples. The components of
these tuples are drawn from the following data types:

• A node ID denoting the creator of the authentication code.

• A node ID denoting the addressee of the authentication code.

• An integer counter value.

• An authentication code.

The function returns true either if the message is authenticated directly by
the source, or there are k attestations for the message. There must be an attes-
tation from a node in every i-hop distance from the current node. This prevents
acceptance of attestations that have only been created within, for example, the
1-hop distance of a node, which reduces the opportunities for an attacker. Note
that counter values are also checked for freshness to prevent the replay of mes-
sages that have already been seen.

The function canvas-auth (Algorithm 5) creates new authentication codes
for a message. First, incoming authentication codes are removed from the au-
thentication information block of the message. MACs that are not intended for
the current node are retained. The function prefetch-hop is used to obtain the
IDs of the subsequent nodes on the path. For the next k of them, the respective
counter values are increased and MACs are created.

direct-accept-and-forward:
M = 〈DIRECT,A,P,m,C 〉
d(X ,P) > τ
d(X ,P)≤ δ
canvas-accept(A,P,m,C )
C ′ := canvas-auth(A,P,m,C )
send: 〈DIRECT,A,P,m,C ′〉

direct-accept-and-process:
M = 〈DIRECT,A,P,m,C 〉
d(X ,P)≤ τ
canvas-accept(A,P,m,C )
process A,m

Table 6.1: Canvas message accept rules
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Algorithm 4 canvas-accept(A,P,m,C )
Global values:

X : ID of current node
k: Parameter of the Canvas schme

Input:
A: message source
P: destination location
m: message text
C : authentication information, a set of tuples

Output:
Return true if Canvas authentication succeeds
1: if ∃(A,X ,c,a) ∈ C then . Is there a MAC from the source?
2: b := {A,P,m,c}KXA

3: if a = b∧ c > cAX then
4: cAX := c
5: return true
6: else
7: return false
8: end if
9: else

10: for i in {1, . . . ,k} do . Otherwise, check attestations
11: if ∃V.(V,X ,c,a) ∈ C ∧V ∈ neighbours(i) then
12: b := {A,P,m,c}KXV

13: if a 6= b∨ c≤ cV K then
14: return false
15: else
16: cV K := c
17: end if
18: else
19: return false
20: end if
21: end for
22: end if
23: return true

M = 〈 flag, source, dest, data, mac 〉
flag DIRECT (marking a Canvas-authenticated message)

source purported source node’s identifier
dest destination specifier
data data payload of the message
mac Canvas message authentication codes

Table 6.2: Canvas message format

d distance function
τ allowed acceptance distance from a destination
δ allowed forwarding distance from destination

Table 6.3: Auxiliary rule parameters
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Algorithm 5 canvas-auth(A,P,m,C )
Global values:

X : ID of current node
k: Parameter of the Canvas schme

Input:
A: message source
P: destination location
m: message text
C : authentication information

Output:
Return modified authentication information

1: C ′ := C \{(_,X ,_,_) ∈ C} . Remove all MACs for X
2: for i in {1 . . .k} do
3: V := prefetch-hop(i)
4: cXV := cXV +1
5: a := {A,P,m,cXV}KXV

6: C ′ := C ′∪{(X ,V,cXV ,a)}
7: end for
8: return C ′

The fundamental message acceptance rules for the Canvas authentication
scheme are shown in Table 6.1. Messages are marked with flags that denote
their type. Here, only type DIRECT is used, which indicates that the authenti-
cation of the message is completely handled locally, i.e. at each hop. Later, we
will see another type, SHORTCUT, which extends the authentication of mes-
sages to larger distances. The format of messages is explained in Table 6.2.
The destination location of a message is specified by geographic coordinates.

Table 6.3 lists the remaining parameters that are being used in rules. The
distance function d yields the geographic distance between a node and a lo-
cation. τ is a global parameter that determines the acceptable deviation from
the exact destination location. If a node is located within a range of τ from a
destination location, this node is qualified to be the final receiver of a message.
This means that this node will not further relay the message. It could, however,
inform the nodes in its vicinity that it has received the message. There could be
multiple nodes that are qualified to receive a message for a certain destination,
and multiple messages addressed to the same destination could be received by
different nodes. It is up to a higher system layer, such as a clustering protocol
or the application itself, to coordinate the activities of all these nodes.

Another global parameter denoting a geographic distance is δ. This parame-
ter denotes the maximum distance over which Canvas-authenticated messages
should be forwarded. If δ = ∞, there is no limit on that distance, and full
reachability is maintained. For variations of the basic authentication scheme
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discussed later in this chapter, a finite value of δ can limit the impact of com-
promised nodes without losing reachability.

The rule direct-accept-and-forward is applied when the current node does
not qualify as a receiver of the message (since it is too far away from the des-
tination), the destination is within a distance of δ, and Canvas authentication
is successful. If these conditions are fulfilled, attestations are created and the
message is forwarded.

The rule direct-accept-and-process on the other hand is applied when the
current node qualifies as a receiver of the message and Canvas authentication
succeeds. Here, the message is processed by the current node.

6.2.3 Interaction with Routing Protocols

The purpose of a routing protocol is to forward a message between hosts (nodes
in the context of sensor networks) so it eventually arrives at its destination. Two
major issues in routing are addressing the destination of a message, and path
setup. Conventional routing protocols are often not suitable for sensor networks
since they fail to appropriately consider the limited resources of sensor nodes,
the prevalent communication patterns, and the inherent redundancy in sensor
networks. Here, we consider routing mechanisms that are well-suited for sensor
networks, and examine how interleaved authentication interacts with them.

Flooding

The simplest mode of propagating a message through a network is flooding.
While it guarantees that every relevant node receives the message, many re-
dundant messages are transmitted. Due to its inefficiency, its applicability is
rather limited. However, it deserves consideration as in some cases it is the
only reliable way of distributing a message.

In a simple flooding protocol, each forwarding node transmits a message
to all of its neighbours (except the one from which the message has been re-
ceived). A node needs only to be aware of its immediate neighbours. Using the
Canvas scheme for message authentication, a forwarding node has to transmit
not only the message itself but also authentication codes for all the nodes on
the next k levels of its forwarding tree. Although it is possible to send all these
codes to all neighbours, it is very inefficient, since the nodes on deeper levels
will not be able to make use of most of the authentication codes they receive.
In order to reduce the overhead, it is reasonable for a forwarding node to im-
pose some structure, a “forwarding tree”, on its k-neighbourhood, and use this
structure to transmit only selected authentication codes to its neighbours.
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This forwarding tree is constructed as follows. The source node starts by
designating each of its neighbours as the root of a forwarding subtree of depth
k. In Fig. 6.3(a), an example for k = 2 is shown. The source transmits authenti-
cation codes to these roots for all the nodes that are contained in their respective
subtrees.

Each root then proceeds by adding another level to its own subtree. The
nodes on the next k− 1 levels of the tree are already fixed, so a root has to
determine only the nodes that have to be included in the tree on the last level.
It includes the nodes that fulfill the following two requirements:

1. They are located in a distance of k hops from the current root.

2. They are reachable from any node on the last level in the current forward-
ing tree.

Each of the thereby selected nodes is then assigned as a child to one of the
(k− 1)-level nodes of the current forwarding tree. Figure 6.3(b) shows the
example situation after the first expansion step.

(a) (b)

Figure 6.3: The first two stages when flooding a message with Canvas (k = 2). The message
source is shown as a big black dot. (a) In the first step, its immediate neighbours receive the
message with authentication codes for the neighbour itself and the next level of nodes. (b) In
the second step, the message is transferred to the next level and authentication codes for the
second-next level are created. Thick black lines indicate the links over which the message
is being sent. Thick grey lines represent the following tree level determined by the message
authentication codes

This procedure guarantess that all nodes that are reachable from the source
will eventually receive the message. The reason is that every node that is reach-
able from the source is included in at least one forwarding subtree, and all nodes
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Figure 6.4: Canvas message overhead on the link level. Left: Authentication codes for
broadcast-based flooding. Right: Authentication codes for a tree structure. Using a tree is
much more economical

in a subtree will receive the message. Nodes that become a member of multiple
subtrees, which is likely to happen for many nodes, will receive the message
multiple times. As root, such a node will construct its own subtree as the union
of all subtrees it is part of. This ensures that all nodes will eventually receive
the message.

Compared to simple flooding, the number of authentication codes that are
transmitted is significantly reduced. This can be seen by looking at a simple
example. Figure 6.4 shows a network where nodes are labelled with numbers.
Node number 1 is the source and floods a message to its neighbours. It adds
authentication codes for its 1-hop and 2-hop neighbours (the links are labelled
with the target nodes of these codes; the message flow is from top to bottom). In
Figure 6.4(a), simple flooding is shown. In addition to the authentication code
for its immediate neighbour, a node adds authentication codes for all of its 2-
hop neighbours to each outgoing link. This is necessary since simple flooding
is not aware of the topology beyond single-hop neighbourhood. Figure 6.4(b)
shows a similar graph with some edges missing. Since a node constructs a
tree before it forwards a message, not all links will be used to transmit the
message. Nodes are now aware of their 2-hop neighbourhood and thus they
can limit the set of authentication codes that have to be sent over a certain
link. Thereby, a significant amount of data can be saved. This is confirmed
by a large-scale simulation (500 nodes on a 1000 × 1000 plane with varying
transmission range and therefore varying number of neighbours per node). As
Figure 6.5 shows, the difference between simple flooding and the structured
approach is approximately 10-fold.
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Figure 6.5: Total Canvas message overhead when using broadcast-based flooding vs. flooding
over a tree structure. The difference amounts to an order of magnitude

Content-Based Routing

The main idea of content-based routing is to forward a message only to those
nodes, which have stated an interest that matches the type of content the mes-
sage carries [35]. This kind of data dissemination is especially suited for en-
vironments in which the sources and receivers of messages frequently change,
and where there is no need for a mutual relationship between a source and the
receivers. A good metaphor of this kind of data dissemination is the spreading
of rumors: The exact source of a rumor is often unknown, and everybody can
either act on the message the rumor conveys, tell it to others, or simply ignore it.
This simplicity is advantageous in large-scale sensor networks. Consequently,
a protocol for content-based data dissemination in sensor networks has been
proposed that builds on this idea [31]. The main idea of “rumor routing” is
that a message source distributes an event notification over a limited number of
(random) paths. Any node interested in a certain kind of events releases a query
that is forwarded along a (also random) path through the network. As soon as
the query hits a node that is part of a matching event path, which happens with
high probability, a path between source and sink can be established.

Rumor routing builds event and query paths randomly, i.e. at each hop, the
next hop is determined by randomly selecting a node from the set of neigh-
bours. The extension to a k-neighbourhood and adding Canvas authentication
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codes is straightforward. A node receiving a message also receives authenti-
cation codes for the next (k− 1) hops, so the following hops on the path are
already determined. The current node therefore has to select only the kth hop
following the current node on the path. An authentication code for that node is
added to the message before it is forwarded along the path. Thereby, event and
query messages are being Canvas-authenticated. Establishing a random path
using Canvas requires a “lookahead” of k hops instead of one. As the paths
are set up randomly in any case, there is no fundamental difference. Thus, the
functionality of such paths is not affected by choosing randomly the kth-next
hop instead of the immediate next hop.

A second, query-driven, approach to content-based routing is to set up gra-
dients from a message source to interested receivers, called “directed diffu-
sion” [86]. First, the query is flooded. When it reaches a matching source, the
source sets up gradients to those neighbours from which the query has been
received. These nodes do the same until a path from the source to the sink is
established. Gradients are used for selecting the optimal path, and for repairing
broken paths.

Canvas authentication for flooded queries can be performed as described in
the previous paragraph. The prospective message source receives possibly mul-
tiple copies of the request and sets up gradients in the opposite direction. Note
that a message carries the node identifiers of the last k hops in the authentica-
tion records. The source stores the last k hops for every gradient. This allows it
to do k-Canvas authentication for the event messages as they are being sent to
interested nodes.

Note that Canvas authentication alone does not make these protocols “se-
cure” per se. It may still be possible for an adversary to attack these protocols
on a different level than message authentication. For example, the event paths
set up for rumor routing may be misdirected in such a way as to minimize the
chance of them hitting query messages. Or, a node may set up bogus gradients,
thereby cluttering up the memory of other nodes. Message authentication alone
cannot prevent such attacks.

Geographic Routing

Geographic routing [91, 100] uses location information for addressing nodes
instead of identifiers. It is assumed that all nodes know their locations, and
the locations of the nodes in their immediate neighbourhood. It is straightfor-
ward to extend this knowledge to the k-hop neighbourhood, which is required
for Canvas authentication. Routing proceeds in two modes: greedy and face
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routing.
In greedy mode, the next hop is selected based on distance from the target.

The neighbour which is closest to the target will be the next hop. Since routing
decisions are made deterministically, a node can pre-compute the decisions
that will be made by the next k nodes as their location information is known.
Therefore, it can attach the required authentication codes for the next k hops to
the message. Effectively, each node adds the kth-next hop to the path instead
of the next one.

If no suitable neighbour is available for selection in greedy mode, the pro-
tocol switches to face routing. Here, the selection of the next node is based on
the location of the current node, its location relative to the target, and the loca-
tion of the node that switched to face routing mode. The latter information is
conveyed as part of the message. Again, all relevant information can be made
available for the next k hops. Thus, the current node can anticipate the path and
the required authentication codes can be attached to the message.

Sometimes it is necessary to make the selection of the next hop at the current
node instead of the k-th-previous node, for example due to load balancing or
compensation for node failures. This is equivalent to a change in the network’s
topology, which has to be communicated back to the previous nodes.

Dynamic Source Routing

Dynamic source routing (DSR) is a routing scheme which is not well adapted to
the requirements of sensor networks. Route establishment is based on flooding,
which can exhaust the resources of sensor nodes quickly if used too often.
Therefore, it is better suited for small networks. It has been introduced in the
context of ad hoc networking [87].

Route discovery is based on flooding a route request message until it arrives
at the target node. A unique request identifier set by the initiating node allows
the detection of messages that have already been handled. Each intermediate
node adds its own identifier to the route record of the message before it re-
broadcasts it. Thereby, loops can be detected, and the record can be returned to
the initiator which uses it to determine the path to the target. The propagation of
route requests can be adapted to a k-neighbourhood as discussed in the section
on flooding above. Note that the flooding model results in optimal routes, i.e.
with minimal hop count, as required by the DSR scheme.

Route maintenance is based on implicit (by overhearing the retransmission
of the message by the next hop) or explicit acknowledgements (if implicit ac-
knowledgement is not available) between hops. If a link fails, a route error is
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returned to the source which then deletes the route from its cache. It may then
initiate a new route discovery for that target.

The flooding of route requests can be Canvas-authenticated as described
above. Data messages are routed according to the path included in the mes-
sages, which has been set by the source. A node can easily extract the next
k hops from this path and create the Canvas authentication codes accordingly.
Explicit acknowledgements are exchanged between neighbouring nodes, so the
local keys shared between these nodes can be used for their authentication.
Implicit acknowledgements can remain unauthenticated; the overhearing node
can decide if the message has been forwarded correctly based upon the mes-
sage text it receives. Route error messages are sent back to the message source
over a potentially large distance. They would be Canvas-authenticated just as
ordinary data messages. In summary, it can be said that Canvas authentication
integrates well with DSR.

6.2.4 Application to Data Aggregation

Data aggregation is an important application in WSNs. Many (or all) nodes
are supposed to send a message each to a single sink. Forwarding such a large
number of individual messages is expensive, since the nodes that are close to
the sink have to deal with many messages (for each node in their subtree, there
is one message). However, such an approach would allow the sink to authenti-
cate the messages it receives, assuming that it has a shared key with each node.

From an efficiency point of view, it is better to let forwarding nodes do some
preprocessing and only send aggregated messages towards the sink. In contrast
to broadcasting, where each node receives the broadcast message once, now
each node has to send a single message. However, such aggregated messages
cannot be attributed to single nodes, and therefore authenticating them is im-
possible.

The threat against aggregation schemes is that nodes that are close to the
sink can control what is being forwarded to the sink. The sink is not able to
check whether the information it receives has been calculated based on data
generated by more remote nodes.

Some techniques have been devised to enable authentication of aggregated
data (cf. Section 2.7.4). Here, we describe how the influence of a malicious
node can be mitigated using interleaved authentication. Note that in the fol-
lowing, we do not explicitly mention authentication codes for 1-hop messages,
though we assume they are always included. Figure 6.6 shows an example ag-
gregation tree with node A as root. Node B aggregates data that it receives from
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Figure 6.6: Aggregation tree

nodes C, D, and E, and forwards it to A. Usually, the message from B to A only
contains the aggregated data calculated by B, based on the input from B, C, D,
and E. This leaves A with the only choice of trusting that B sends correct data.
However, from time to time, A checks whether the calculation done by B is
correct. For doing so, it requests the following additional data:

• The original inputs from B, C, D, and E.

• Authentication codes from C, D, and E for their original inputs to B. Since
these nodes are 2-hop neighbours of A, creating such authentication codes
is possible.

This data allows A to check whether the calculation of B is correct by perform-
ing the same calculation itself. If the result differs from what B has sent, this
should be interpreted as a sign for a potential ongoing attack. Additionally, B
may be considered for exclusion from further operation in the network, and the
aggregation tree rebuilt.

The times when A performs such checks must be chosen randomly to avoid
that B being able to predict them, which would obviously allow B to render
these checks ineffective. Also, the additional data that is required for check-
ing amounts to a significant transmission load, so the check should only be
done rarely. This constitutes, of course, a trade-off between efficiency and the
likelihood of catching a malicious node.

6.3 Performance Evaluation

The evaluation of Canvas is based on a comparison with a generic end-to-end
signature scheme. We compare the increase in time to delivery, which is due
to additional, e.g. cryptographic, operations, and the transmission delay for
additional data. We first look at the overhead for a single message. Then, we
consider the overhead for a sequence of messages, e.g. a sensor data stream.
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6.3.1 Single Message Overhead

For each message being transmitted from the source to a target node, the Can-
vas scheme requires that each node on the path checks k authentication codes
(MAC) and generates another k MACs addressed to nodes further down the
path. Nodes close to the source will check fewer MACs, while nodes close to
the target will generate fewer of them. In general, on each link, T = k(k+1)/2
MACs are transmitted. For links that are close to the source or the sink, some
of these MACs are “missing”, and we can adjust the number of MACs being
transmitted by:

δ(d) =
(k−d)(k−d +1)

2
,d < k

where d is the distance of the link from the source/target, starting with d = 1
for links that are adjacent to the source/target. For each link with d < k, T is
reduced by δ(d) in order to determine the number of transmitted MACs.

At each node, checking and generating the MACs consumes time, which
delays the relaying of the message. If the HMAC construction is used, the
complete message has to be processed separately for each MAC being verified
or generated. From a performance point of view, the secret suffix construction
is therefore preferred as it requires the message to be hashed only once. The
hash value generated is then used for MAC verification and generation.

When a digital signature scheme is being used, the following information
has to be transmitted in order to authenticate a message: the public key of
the source node, a certificate stating that the public key is authorized, and a
signature of the message. For each pair of communicating nodes, the public key
and the certificate have to be exchanged only once. The encoding format for
keys, signatures, and certificates may induce additional overhead. For example,
a certificate format such as X.509 [81] contains information about the validity
of the certificate and other facts that need not to be explicitly represented in the
context of wireless sensor networks. Therefore, we can restrict ourselves here
to the minimum amount of data required. An ECDSA signature is a pair (r,s).
The size of both r and s is governed by the parameter n, which should be at
least 160 bits large according to [88]. Thus the size of a signature is at least
320 bits. The public key is the result of a multiplication of the private key with
a point. Using a standardized elliptic curve with key length 192 bits, this yields
a public key size of around 600 bits.

The effort of generating and verifying the signature is only induced at the
source and the target nodes. Intermediate nodes on the path do not have to per-
form any computation but need to simply relay the message. Thus, no further
delay is introduced by this scheme.
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We compare the 2-Canvas scheme with elliptic curve signatures. The com-
parison is illustrated along three measures: the overall single-message band-
width overhead, i.e. the sum of the authentication data transmitted by all nodes;
the time overhead for a single message; and the bandwidth overhead if multiple
messages are being exchanged.

The parameters are fixed as follows: the message sizes used are 64 byte and
512 byte, which makes a difference for the Canvas scheme as the message must
be hashed by each node. For the Canvas authentication codes we use either all
20 bytes that are output by the SHA-1 algorithm, or the truncated version with
7 bytes, which correspondes to the security level of DES. The key length for EC
signatures is assumed to be 192 bits, which provides a lower security level than
the 160 bits of the SHA-1 output. The times required for performing operations
are taken from Tables 3.1 and 2.2 whereby the time for EC signature generation
is estimated to be 600 ms.

Figures 6.7 and 6.8 show the time overhead induced by each of the authen-
tication schemes. The delay of the signature scheme is constant as only the
source and the target nodes have to perform additional operations. With the
Canvas scheme, each intermediate node has to perform operations that pile up
over the path. At some path length, the overhead produced by Canvas will be
larger than that of a signature scheme. The graphs show clearly the disadvan-
tage of HMAC, which requires the message to be hashed for each MAC. The
time overhead increases the end-to-end latency of the message, in addition of
the transmission time.

Figure 6.9 illustrates the bandwidth overhead of the authentication schemes.
In each hop, authentication information must be transmitted that adds to the
overall amount of transmitted data. It shows the clear advantage of the Canvas
scheme, which produces less data overhead than a signature scheme. Espe-
cially when the output of the MAC generating function is truncated, only a
small overhead is produced. This option is not available for signature schemes,
where the signature always has to be transmitted in full length. However, MAC
truncation means that the security level is effectively reduced.

6.3.2 Multiple Messages Overhead

When using a signature scheme, the certificate data only has to be exchanged
once between a pair of nodes. This allows to amortize this additional overhead
if multiple messages are being exchanged. This is illustrated in Figure 6.10. In
this example, if more than seven messages are exchanged, the signature scheme
is advantageous over Canvas when MACs are transmitted in full length. If
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MACs are truncated, the advantage of Canvas is retained, however.

6.4 Security Evaluation

Before we actually present these results, we give a brief overview of the method
that has been used to retrieve the numerical values for these comparisons.

6.4.1 Analytical Assessment of Resilience

We introduce here the function B(x), which takes the number x of compromised
nodes as input and returns an approximation of the number of compromised
paths. It is obvious that this approximation can be very rough only. The number
of compromised nodes says nothing about the topological position of the nodes
within the network. Each position differs in how many paths it will help to
compromise.

As a network model, we will use a random geometric graph. We loosely
assume it has rectangular shape, and we ignore border effects.

The suffix E for B() describes an approximation if end-to-end authentication
is being used. In this case, only those paths are considered compromised that
have at least one compromised end node. For each compromised node, there
are on average 2(N−1) paths to other nodes that are considered compromised



180 Chapter 6. Integrity-Preserving Communications

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  2  4  6  8  10  12  14  16  18  20

B
a

n
d

w
id

th
 o

v
e

rh
e

a
d

 (
b

y
te

)

Number of messages

EC
Canvas, |mac|=20
Canvas, |mac|=7

Figure 6.10: Signature bandwidth overhead amortization

(one incoming and one outgoing path to every other node). Counting these
paths, we get

BE(x) =
x

∑
j=1

2(N− j) = 2Nx− x(x+1) (6.1)

as the total number of compromised paths, adding in each step the number of
paths to the yet uncompromised nodes.

When using Canvas for message authentication, we use the suffic C. For this
approximation, additional parameters are required.

First, we determine the average distance D to a neighbour node, which will
be used later to determine the hopcount of an average path. Let r be the radio
range. The probability of finding a node in distance q ≤ r is proportional to
the circumference of a circle with radius q. In order to compute the average
distance, we first sum up over all distances being weighed by the corresponding
circumference. This sum is then averaged over the total area, which yields the
average distance of a node to the center:

D =
R r

0 2πqq dq
πr2 =

[2
3πq3]r

0
πr2 =

2
3

r (6.2)

Next, we determine the average hopcount of paths. According to [194], two
randomly picked points on a unit square on average have distance ∆(2)≈ 0.52.
Let W be the side length of the square that constitutes the deployment area for
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a sensor network. In terms of hop count, we get an average path length of

L = ∆(2)W/D≈ .52W/D

hops.
Now we can estimate the number of paths going through a single node as

follows. The total number of paths in the network is N(N−1) and the average
path length is denoted as L. To each position on each path, a node needs to
be assigned, thus the total number of such assignments is LN(N− 1). These
assignments are assumed to be equally distributed over all nodes, disregarding
border effects, so there are

LN(N−1)
N

= L(N−1) (6.3)

assignments per node, which equals the number of paths that each node is part
of. We observe that border nodes are part of fewer paths than central ones.
Since we are interested in an average case analysis only, we will not deal with
such effects.

Under the Canvas authentication regime, a path with non-compromised end-
points is compromised only if there are two adjacent compromised nodes some-
where on the path. Whenever a new node is being compromised, all of its paths
that are shared with compromised neighbours will also be compromised. The
number of newly compromised paths is thus dependent on the number of com-
promised neighbours. We can assume that a fraction of x/N of the neighbours
are already compromised. Recall from Section2.5.3 that d denotes the den-
sity of the network. Thus, L(N− 1)/d · xd/N = L(N− 1)x/N new paths are
compromised. But we must be careful not to count already compromised paths
since a good deal of them might already be compromised by other pairs of
nodes. Therefore we introduce another factor, c, which is the fraction of so far
non-compromised paths:

c = 1− BC(x)
N(N−1)

.

Through the multiplication by c we ensure that we count only a certain fraction
of the newly compromised paths. Finally, this yields the following equation
that describes the number of compromised paths when there are x compromised
nodes:

BC(x+1) = BC(x)+ c
(

2(N−1)+
L(N−1)x

N

)
(6.4)

Figures. 6.11 and 6.12 show the approximation given in equation 6.4 com-
pared to the simulation of Canvas on the standard square. N = 500 and N =
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1000 nodes with a communication range r = 100 have been used, the simulated
attack was a random spread attack. The figures show the absolute and relative
errors of the approximation compared to the simulation result.

For smaller numbers of compromised nodes, the approximation and the sim-
ulation results match quite well. Both the absolute and relative errors increase
but are within acceptable limits – for x < N/4, the relative error remains below
0.1 in both cases. For higher x, the error increases slowly but remains below one
until x ≈ 3

4N. Beyond that threshold, the relative error increases rapidly. The
approximation overestimates the number of non-compromised paths, leading to
inaccurate results for high values of x. However, the absolute error remains in
the order of magnitude of the actual approximated values, so the approximation
is qualitatively still useful.
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Figure 6.11: Precision of approximation compared to simulation, N = 500

To conclude, Equation 6.4 gives a good estimate of the number of functional
paths (or, equivalently, of the compromised paths) for smaller x assuming a ran-
dom spread attack. For other types of attacks we expect the approximation to be
much less accurate. For structured attacks, the impact of a compromised node
highly varies with its position relative to other compromised nodes. Especially
the partitioning attack achieves a big impact with only a small set of nodes.

Assuming a k-connected graph, in the worst case (from the network operator
point of view), the k nodes in the cut-off set and some of their neighbours are
captured. This leads to a partitioning of the network. This could be achieved
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Figure 6.12: Precision of approximation compared to simulation, N = 1000

by capturing k + kd/2 nodes, where d is the average node degree. Assuming
the partition has two approximately equally sized parts, there are about N/2
nodes in each of it. This leaves about 2×N2/4 = N2/2 secure communication
paths in total, i.e. half of the total number of communication paths. However,
half of the secure paths are fully contained in one block of the partition, and
the other half in the other block. All paths between both blocks are compro-
mised. If important messages flow from one block to the other, they are prone
to manipulation.

6.4.2 Numerical Approximation

A node capture attack proceeds by successive compromise of nodes. Thus,
the status of a node can either be non-compromised or compromised. A con-
figuration defines for each node its status. Thus, it is a mapping C : N →
{legitimate,compromised}. For brevity, we write C(x) = {s∈N : C(s) = x},
where x ∈ {legitimate,compromised}.

An attack is a sequence of configurations C0,C1, . . . ,Cn. The initial con-
figuration contains no compromised nodes, i.e. C0(compromised) = /0. All
subsequent configurations build monotonously on the previous one, such that
Ci(compromised)⊂Ci+1(compromised). The nodes whose status is newly set
to compromised in each step are chosen according to the different types of at-
tacks, which are described in Section 3.3.6. For example, in a random spread
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attack, the selection probability is equal for all nodes, while in a clustered at-
tack, nodes that are spatially close to the center of attack are selected.

By using a simulation tool, which has been designed and built for this spe-
cific purpose, we are able to simulate such attacks. For each configuration that
occurs during a simulated attack, using the tool we evaluate the statuses of the
communication paths, which depend on the statuses of the nodes. Thereby,
we can count the number of paths that are live or functional. This yields the
measure described in Equation 3.1.

Using the information on the status of communication paths, we are then
also able to compute the set of nodes that are, at least in principle, able to
consent (cf. Section 3.5.3).

Simulation will yield only an approximation to the exact mean value for each
of these measures. However, this seems to be acceptable since variations will
occur in practice. Figure 6.13 shows Ψi for five simulation rounds. It is easy to
see that there is a certain jitter in the level of security that the Canvas scheme
provides, depending on the actual course of an attack. We are interested in the
mean level, and from the same figure it seems likely that the mean is indeed
within the interval defined by these sample simulations. Thus, we should be
able to approximate the mean by taking the average of a sample.
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Figure 6.13: Sample simulation rounds, exhibiting the jitter of the security level

For the sake of saving simulation time, we prefer small samples. However,
a minimum level of confidence is required. In order to calculate the required
sample size, we consider the t-distribution [195], which approximates the Nor-
mal distribution if mean and variance are unknown, and only sample data is
available.
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We assume that a confidence level of at least

p≈ 0.80

is desirable. Further, we assume that an approximation that lies within an inter-
val of size

ε = 2.7 · sse ,

where sse is the standard error of the sample, is acceptable. These parameters
are chosen such that they can be obtained by performing 10 to 20 simulation
rounds for each sample. Taking into account that performing a simulation round
takes considerable time, this seems reasonable. For example, observing 50
configurations from a random spread attack in a network with 500 nodes, takes
about 4.5 minutes on a state-of-the-art laptop computer. A smaller interval and
a higher confidence level at the same time would hardly be achievable using
this method. Using the sample size, we would have to accept an interval size
of ε≈ 3.5 · sse for a confidence level of p = 0.90. (Exact values for the interval
size, given a sample size and a confidence level, can be obtained from a t-
distribution table, which can be found in many textbooks on statistics.)

As a baseline, we use the respective measures for end-to-end cryptographic
schemes. These are easy to obtain as they depend only on the number of com-
promised nodes:

• The number of functional paths equals the number of live paths for end-
to-end schemes.

• Unless more than 1/3 of all nodes are compromised, all uncompromised
nodes are consensus-enabled.

6.4.3 Simulation Results

This section examines the effectiveness of the Canvas scheme under various
attack types and in different network topologies. It is assessed based on the
measure introduced in Section 3.5.3: the number of functional paths remaining
in the network, and the number of nodes still able to engage in a Byzantine
agreement protocol. The reference on the lower end is a simple link authenti-
cation scheme, also called hop-to-hop authentication. This scheme provides no
protection against manipulations by single nodes, thus a single captured node
degrades the integrity of all communications that pass through it. On the upper
end, an end-to-end authentication scheme is assumed, such as one based on
public-key signatures. Such schemes provide the highest security level achiev-
able, where the integrity of a communication exchange is solely under control
of the endpoints.
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The standard topology being used for simulations is a 1000×1000 units
square on which 500 sensor nodes are randomly and uniformly placed. The
nodes have a communication range of 100 units. This choice of parameters
guarantees almost certainly, i.e. with a probability greater than .99, full con-
nectivity of the graph according to equation (2.1), whereas border effects are
being ignored.

Simulation results have been obtained by taking the average of a set of sim-
ulation runs. As discussed in the previous section, each such set contains data
from usually 20 or more simulation rounds.

The simplest attack model is a random spread attack, where each node being
captured is randomly and independently chosen. Figure 6.14 shows the effect
of such an attack on the absolute number of live and functional paths. The live
paths correspond to the functional paths under an end-to-end authentication
scheme, which is the best achievable result. The number of live paths deteri-
orates rapidly under an attack, since each captured node removes a live path
for each remaining uncompromised node. With half the nodes being captured,
only a quarter of the live paths remain.

The number of functional paths for the Canvas and the hop-to-hop authenti-
cation schemes are well below the number of live paths if there is a high num-
ber of compromised nodes in the network. This, of course, is expected, since
hop-to-hop authentication provides no protection against malicious nodes at all.
Thus, the difference to the end-to-end scheme is dramatic. Canvas is able to
perform much better if there are few compromised nodes, but as this number
grows, more of them will be placed adjacent to each other and thus become
able to undermine the protection provided by Canvas.

The strength of Canvas is with a small number of compromised nodes,
against which it is quite effective. Canvas is able to keep the number of func-
tional paths close to the live paths, since isolated captured nodes can do no
harm to paths of which they are not endpoints. Only when captured nodes are
placed close to each other, they diminish the integrity of other paths. In the
graph, this effect surfaces when around 50 nodes, i.e. 10% of all nodes, are
captured.

While Figure 6.14 shows the absolute number of paths, the picture gets more
detailed if the number of live paths is used as a baseline and Ψ is used as a mea-
sure, as defined in Equation 3.1. Using this measure, the graph in Figure 6.15
is obtained. Here, the advantage of Canvas compared to hop-to-hop authenti-
cation is visible even more strikingly. While Canvas manages to keep Ψ close
to one for a small number of compromised nodes, it rapidly falls for the hop-
to-hop scheme right from the start.
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Figure 6.16: Resilience of Canvas under various attacks

While Canvas is able to maintain the integrity of many communication paths
under a random spread attack, at least for small attack sizes, it is more difficult
for attacks where captured nodes are arranged into some structure. If compro-
mised nodes are clustered, they can manipulate many more paths.

Figure 6.16 shows simulation results for all four attack types. The parti-
tioning attack, which is the most structured attack, has the highest impact on
the communication security. It is very effective in breaking the protection pro-
vided by Canvas, as it is designed for this purpose. Under this attack, Canvas
provides only a very small advantage compared to link-only authentication.

Under other attacks, Canvas performs much better, but it is clear that struc-
tured attacks are very effective even for a small number of compromised nodes.
A “concentrated” and a “hitpoint” attack will also reduce the number of func-
tional paths quickly. The concentrated attack is more efficient for a small num-
ber of compromised nodes than the hitpoint attack. This shows that a big cluster
of nodes controlled by the attacker is more effective than distributed pockets of
nodes. However, if more nodes can be compromised, it is better to distribute
them in smaller clusters. In general, the effectiveness of these two attacks is
reduced when more nodes are compromised – the benefit of an additional com-
promised node is reduced. This suggests that there are areas in the network that
are hardly affected by the progressing attack.

Another way of assessing the security of a network under attack is the abil-
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ity of the network to reach consensus among the uncompromised nodes. As
long as more than 2/3 of the nodes are uncompromised, consensus is possible.
However, only those nodes that are able to communicate securely to the uncom-
promised nodes are able to draw the same conclusion. The number of nodes
that are able to do so serves as the second security measure. Using an end-
to-end scheme, all uncompromised nodes would be able to reach agreement if
no more than 2/3 of the nodes are compromised. As soon as this threshold is
exceeded, no agreement is possible anymore.
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Figure 6.17: Consensus-enabled nodes under different attacks
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Figure 6.18: Correspondence between Ψ and consensus-enabled nodes

Figure 6.17 shows how Canvas behaves with regard to consensus-enabled
nodes under different attacks. For comparison, the behaviour of hop-to-hop
authentication under a random spread attack is also included.
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This picture corresponds well with the functional path quotient Ψ shown in
Figure 6.16. Indeed, as Figure 6.18 illustrates, there is a strong correspondence
between the two security measures. This correspondence can be explained by
the dependency of consensus on the availability of functional communication
paths. In an end-to-end scheme, this dependency is not given – all paths with
uncompromised endpoints are considered functional.

6.4.4 Addressing Message Injection

As laid out in this chapter, the Canvas protocol can only be applied if one
is willing to accept a certain risk of message manipulation. Another risk is
message injection. The authentication strength of Canvas could be considered
“weak”, in contrast to end-to-end authentication as two compromised nodes
could, at any time, create a new message, both sign it, and pass it on to another
node. This (legitimate) node would accept the message and pass it on to its
destination. This, of course, could lead to an overwhelming amount of fake
messages in the network.

The legitimate fraction of messages could sink below a threshold, where
its impact on the operational outcome of the network would become neglibile.
This can quickly render data collecting applications useless, since the most data
they receive (and pass on) would be garbage.

The amount of fake messages, which can be produced by a set of compro-
mised nodes, can be limited by a number of means. They all impose certain
rules on the behaviour of nodes. Any violation of these rules would lead to
attack detection. Since it may not be clear which node exactly is compromised,
this could be considered a weak form of intrusion detection.

Limit Sending Rate

One of the immediate countermeasures against heavy message injections is to
limit the rate by which a node can issue messages. A node receiving more than
a threshold of messages from a single source would immediately stop accepting
them and issue a warning. This limits the overall fraction of fake messages. It
also limits the impact of fake messages that are received by a single node.

Clocked Transmissions

A simple model avoids, by definition, message injection. In this model, mes-
sage transmission is only possible in certain time slots. Time slots are arranged
in phases that are (loosely) synchronized throughout the network. The duration
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of the phase allows that each node can send exactly one message to each of its
neighbours. The model also demands that in each slot a message must be sent.
By construction, this forbids the possibility of message injection.

Message Sequence Numbers

Any node issuing a message must attach a sequence number to it. A node
receiving multiple messages from the same source would then be able to notice
the existence of injected messages if the same sequence number is used twice.

A message injection attack might be successful for a certain period of time,
until the original source starts emitting messages to the same recipients as the
attacker. If one of them reaches a recipient, the attack is detected.

Source Address Verification

We describe two approaches to source address verification: one that relies on
the cooperation of the source’s neighbours; and a second one that challenges
the source on a random basis. Both procedures could be combined and thus
further reduce the risk of message injection.

The first approach is based on monitoring. Whenever a new message is
created, it must be broadcast. This ensures that a number of nodes get a copy
of the message. In many cases, broadcast channels are used by default, thus no
additional changes are required.

When the second node passes the message on, it also has to broadcast the
message. This adds more nodes to those that know the message. Now, a con-
sensus protocol is executed between the knowing nodes. Only if an agreement
can be achieved, the third node on the path is allowed to accept the message.

This approach has a number of drawbacks. First, potentially many nodes
are participating in the consensus protocol, which implies a significant effort.
Second, it only works if there are neighbours available. A third drawback is the
requirement that messages must be sent in cleartext, i.e. without a link layer
encryption step, at least for the duration of the agreement phase.

The second approach requires additional message exchange between the
source and the receiver. The receiver of a message may send a challenge to
the original sender. This challenge contains part of the received message such
that the sender can verify if the sender is the source of the message. If this is the
case, the sender returns an acknowledgement. Only if the acknowledgement is
correctly received, the receiver will accept the message.

The challenge is useful in another way, too. If a node gets a challenge about
a message that it has not issued, this indicates the presence of an attacker. This



192 Chapter 6. Integrity-Preserving Communications

information can be used in the quality assessment of the computed result.

6.4.5 MAC Security

Canvas requires that in general each node verifies k MACs before accepting
a message. An attacker who manipulates a message has to make sure that all
k MACs will be accepted by the receiver. A single compromised node would
therefore have to manipulate the message and the MACs in either of the follow-
ing ways. Assume that K is the key used for authentication. The adversary must
either create a manipulated message m′ such that MAC(m′,K) = MAC(m,K),
i.e. perform a second preimage attack. Or, the adversary may exchange the
authentication code a for a new one a′ such that MAC(m′,K) = a′, i.e. perform
a preimage attack.

Both preimage and second preimage attacks are considered hard for good
hash functions. For a hash output length of n bits, 2n guesses are required
to come up with a correct match. This makes it practically infeasible to find
preimages if n is sufficiently large. As an alternative to finding a hash preimage,
the adversary could try to recover the key K by an exhaustive search. This will
also be infeasible if the key is of sufficient length.

The choice of the MAC length and the key length determines the security
level. Depending on the resources available to an adversary, a value between
n = 56 (which equals the security level of the DES cipher) and n = 80 is usu-
ally considered secure. However, with technology improvements, such attacks
become cheaper and more feasible. For example, DES keys can be recovered
within nine days at a cost lower than 10,000 USD [101].

HMAC is a very secure construction for a MAC as it can mitigate weak-
nesses of the underlying hash function. Even if the hash function is vulnerable
to a second preimage attack, such an attack cannot be applied to HMAC since
the key K is prepended to the actual message. Unfortunately, the prepending
of the key makes using HMAC inefficient for Canvas. Since for each MAC
being generated, a different key is prepended and thus in fact a new message
is created, the complete message has to be hashed separately for each MAC. It
would be more efficient if the message could be hashed only once and each key
is applied to the result.

The secret suffix construction for MACs allows to first create a hash of the
message independent of the key. The MAC creation in Algorithm 5 would be
implemented as

{A,P,m,cXV}KXV = h(A||P||m||cXV ||KXV ) .
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The secret suffix construction has the disadvantage that if the underlying
hash function h is not resistant to finding second preimages, a MAC can be
easily constructed for forged messages. This is particularly undesirable since
the attack can be executed offline, i.e. no interaction with the receiving node
is necessary. The original message m is known, so the attacker can use this
knowledge to search for a message m′ that yields the same hash output as m.
The attacker can then transmit m′ and the original MAC a. The verification
done by the receiver will be successful.

It is not known whether modern cryptographic hash functions, such as the
family of SHA functions, is indeed resistant to second preimage attacks. Weak-
nesses are continously showing up but it hasn’t been demonstrated yet that arbi-
trary second preimages can be easily found. SHA-1 has been found to be weak
against collision attacks [188], meaning that pairs of messages m1 and m2 can
be found that yield the same hash value. However, this does not immediately
lead to a vulnerability regarding second preimages, which requires to find a
second message that yields the same hash value as a given message. Thus, we
can safely use SHA-1 as an example hash function. However, any other hash
function can be used in the Canvas scheme as well.

It is important to note that public key signature schemes are vulnerable to
the same preimage attack as the secret suffix MAC if the signature is created on
the hashed message. Only if the signature is created on the message directly,
this attack does not apply. However, this is only possible if the message is short
enough. Thus in general, hash-based signatures are applied. To conclude, the
secret suffix method will yield a similar security level as a public key signature
scheme.

6.4.6 Example: A Dynamic Application Scenario

Figure 6.19 shows the layout of a building with a number of rooms and a hall
connecting these rooms. A possible application of a wireless sensor network
in such a scenario is the reporting of sensor data to a guard walking through
the hall. Sensor nodes are distributed throughout the area. The sensor data is
reported to the node that is closest to the guard. It is assumed that the guard
walks straight through the hall and collects data at regular intervals, twenty
times in total. Each time, a randomly selected node from each room sends a
message towards the location of the guard.

Figure 6.20 shows the number of non-tampered messages that are obtained
by the guard while the network is under a random spread attack. With a small
number of compromised nodes (up to 50, in this case), more than 80% of the
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Figure 6.19: Rooms scenario for sensor data collection; 100 nodes captured
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messages are correct. With more nodes being compromised, this rate quickly
falls. This is due to the fact that the “doors” in this scenario are a bottleneck
through which all messages have to pass. If the attacker happens to select
nodes in such an area, all messages from the respective room will be subject to
manipulation.

6.5 Extended Interleaved Authentication

The simple Canvas scheme provides basic protection against message manip-
ulations that are carried out in unstructured attackes. But a highly structured
attack, such as a partitioning attack, can render the Canvas scheme ineffective.
We will now show that by introducting shortcuts in the authentication graph,
structured attacks can be mitigated as well. They effectively force the attacker
to become active (i.e. compromise nodes) in the close vicinity of the target
location.

6.5.1 Protocol Description

We describe here a protocol that extends the basic Canvas scheme, i.e. all
checks that are made when using Canvas only are made here as well. The
extended protocol provides an additional layer of security that specifically ad-
dresses the weakness of Canvas that a cluster of compromised nodes can ma-
nipulate all messages that pass through nodes in this cluster.

The proposed scheme extends the basic Canvas scheme in the following
way. Each node maintains a (small) number of security relationships with
nodes that are not within its k-hop neighbourhood but distributed throughout
the whole network. These long-range links are used for authenticating mes-
sages that are sent to remote locations. Having a direct security relationship
between the source of the message and a node that is close to the receiver,
large, potentially compromised, parts of the network can be bypassed. An at-
tacker will only be able to tamper with messages if he is active within close
range of the receiving node.

The long-range security relationships of nodes will be called “shortcuts”,
and the remote peer of a node will be called a “shortcut node”. The security of
this extended scheme is based on two principles:

1. If the distance between the sender of a message and its target location is
less than δ, i.e. d(A,P) ≤ δ, it is sufficient to Canvas-authenticate the
message. This is based on the consideration that if the attacker is active
in the vicinity of the target location, there is a certain probability that
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A B C

Figure 6.21: A shortcut path

the node eventually processing the message is compromised as well. An
additional authentication path through a shortcut would add no security in
such a case.

2. For longer distances, the sending node A has to select a shortcut node
B that is close to the target location P. This means that if d(A,P) > δ,
a node B is selected with which A shares a shortcut key and for which
d(B,P) < d(A,P) and d(B,P) ≤ δ. A attaches a MAC using the shared
key between A and B and the message is then first sent to B. After B
has checked the validity of the MAC, the message is forwarded to P us-
ing Canvas authentication. This procedure ensures that clusters of com-
promised nodes on the path from A to B are not able to manipulate the
message.

The parameter δ limits the distance over which messages may be sent with
Canvas authentication only. This effectively limits the impact of clusters of
compromised nodes. Messages passing through such a cluster are subject to
manipulation. However, δ ensures that such manipulations manifest themselves
only in the vicinity of the compromised cluster.

In the following, we assume that a message is addressed to a target region
instead of a specific node. A target region is specified by a geographic location
and a radius τ. Any node with a maximum distance of τ from the target location
is a valid recipient of the message.

The resulting path of a message from source node A to a target node C may
look as depicted in Fig. 6.21. Note that in this figure, the underlying Canvas
authentication layer is omitted. It’s obvious that the resulting path, which has
to include shortcut node B, may be longer than the direct path from A to C.
However, as we will see later, this must not be the case and the resulting path
may even be shorter.

The rules for communication based on shortcut authentication are listed in
Table 6.4. The rules describe the behaviour of a node X receiving a message
M that originates at node A. There are two message formats being used, tagged
with either SHORTCUT or DIRECT.

A SHORTCUT message is one that is being forwarded to node B because B
is a shortcut for A. It carries an authentication code and a message counter for
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B. Nodes different from B simply forward this message after the verification
of the attached Canvas authentication information C (rule shortcut-accept-and-
forward applies).

For the shortcut node B, there are two rules. Which one of them applies
depends on the condition whether B itself is the target of the message. If con-
dition d(B,P)≤ τ holds, B itself is qualified to process the message, since it is
close enough to the target location. In that case, rule shortcut-authenticate-and-
process applies. Otherwise, rule shortcut-authenticate-and-forward is applied:
B converts the message into a DIRECT message and forwards it further to the
target location. In either case, the verification conditions must be fulfilled, i.e.
the purported counter must be greater than the stored value, and the authentica-
tion code must be valid.

A DIRECT message is targeted at its final destination. A node that encoun-
ters such a message accepts it only if its own location is close enough to the
target of the message. Depending on whether the node itself qualifies as a
receiver, the message is either immediately processed (rule direct-accept-and-
process) or forwarded toward the target (direct-accept-and-forward). In both
cases, the Canvas information must be verified.

As introduced above, the parameter δ is used for deciding whether a DI-
RECT message will be further forwarded. This has the effect that messages
that are only authenticated using Canvas can be sent only within a range δ
from a source. Messages with a target location further away than δ are simply
discarded.

The number of shortcuts nS that exist per node must be big enough such that
coverage is maintained given parameter δ. On the other hand, nS should be as
small as possible since maintaining relationships to shortcut nodes consumes
resources. This leads to the consideration that nS must be at least, and should
be close to

nS ≥ A
πδ2 .

The actual value depends on additional considerations. First, the minimum
number can only be achieved if the shortcut nodes are optimally distributed
throughout the network. Second, a certain redundancy may be desirable for
increased robustness against node failure. Third, the available memory on each
node limits the space for shared keys and therefore limits the number of shortcut
nodes a single node can support.

Note that the shortcut relation is not necessarily symmetric. A node B that
serves as a shortcut to node A does not necessarily use A as one of its own
shortcuts. Although such a symmetric relationship is favourable since fewer
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shortcut-accept-and-forward:
M = 〈SHORTCUT,A,B,c,P,m,aAB,C 〉
X 6= B
canvas-accept(A,P,m,C )
C ′ := canvas-auth(A,P,m,C )
send: 〈SHORTCUT,A,B,c,P,m,aAB,C ′〉

shortcut-authenticate-and-forward:
M = 〈SHORTCUT,A,B,c,P,m,aAB,C 〉
X = B
c > cAB
aAB = {A,B,c,P,m}KAB

d(B,P)≤ δ
d(B,P) > τ
cAB := c
C ′ := canvas-auth(A,P,m,C )
send: 〈DIRECT,A,P,m,C ′〉

shortcut-authenticate-and-process:
M = 〈SHORTCUT,A,B,c,P,m,aAB,C 〉
X = B
c > cAB
aAB = {A,B,c,P,m}KAB

d(B,P)≤ τ
cAB := c
process A,m

direct-accept-and-forward:
M = 〈DIRECT,A,P,m,C 〉
d(X ,P) > τ
d(X ,P)≤ δ
canvas-accept(A,P,m,C )
C ′ := canvas-auth(A,P,m,C )
send: 〈DIRECT,A,P,m,C ′〉

direct-accept-and-process:
M = 〈DIRECT,A,P,m,C 〉
d(X ,P)≤ τ
canvas-accept(A,P,m,C )
process A,m

Table 6.4: Rules for shortcut communication. The current node is denoted as X
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data has to be stored at each node, it might not be feasible to set up these
symmetric relationships efficiently. Setting up shortcut relationships is the topic
of the next subsection.

6.5.2 Establishing Shortcuts

In principle, it is possible to establish shortcuts by physical links. However, this
requires the use of additional hardware that exceeds the capabilities of standard
wireless sensor nodes. Therefore, we confine ourselves to “virtual” shortcut
links, which may span several physical communication links and are manifest
only in the authentication graph, i.e. there is a shared key between two nodes
involved in a shortcut.

The information, which nodes should act as shortcut nodes to other nodes
can be either distributed in the pre-deployement phase of the network, or imme-
diately after deployement. The first approach has the advantage that no further
messages have to be sent in order to establish shortcuts. However, the disad-
vantage is that if nodes are randomly deployed, the locations of shortcut nodes
are not known, which induces additional cost for actually sending a message to
a shortcut. The second approach requires significant traffic overhead until all
shortcuts are established. However, once shortcut nodes are known (including
their locations), they can be efficiently used without any additional overhead.

Pre-determining shortcuts can be easily done during the key predistribution
phase. The number of shortcuts per node, nS, is determined according to the
anticipated requirements of the concrete WSN deployment. For each node X ,
nS other nodes are randomly selected. For each such node, a secret shared key
is created and assigned to both nodes, and the identifier of the selected shortcut
node is announced to X . If nodes are randomly deployed, it can be expected
that the shortcut nodes of some node X are evenly distributed throughout the
network. Thus, good coverage of the network should be given.

An alternative approach is a systematic assignment of shortcut nodes after
deployment. Here, we describe two methods: one is based on a virtual token
ring, the other is a directed selection of regions.

The idea of the token ring based approach is that for each node X , a token is
circulated through the network that “collects” shortcut nodes for X . Assuming
length l of the ring, after the token has travelled l/(nS + 1) hops, the current
node adds its own identifier to the token as another shortcut node for X and
resets the hop counter of the token. When the token arrives at X again, enough
shortcut nodes are accumulated.

A token ring allows to include all nodes in the network to be equally in-
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cluded in the process of shortcut assignment. By adding some tolerance to
the number of hops the token travels between assignments, the assignment can
be balanced such that all nodes will eventually serve as shortcuts to the same
number of other nodes.

There are two major problems with this approach. First, the number of mes-
sages that have to travel through the network is very big. A ring can be easily
constructed based on a spanning tree, for example using an Echo algorithm,
which however leads to a rather inefficient ring structure. For n nodes in the
network, such a spanning tree contains n− 1 edges and therefore the corre-
sponding ring contains approximately 2n edges. In the optimal case, the ring
has n− 1 edges, but such a ring is hard to construct. Since each token has to
travel along each edge once, in total between roughly n2 and 2n2 messages have
to be transmitted. A related problem is the fact that each node has to process
at least n messages in total. The second problem is the distribution of short-
cut nodes. With the described approach, an even distribution of shortcut nodes
cannot be guaranteed.

A more efficient assignment of shorcut nodes, which also provides an even
shortcut node distribution, is based on a controlled selection process. Each
node X partitions the network in nS geographical regions and sends a request to
the center of each of these regions. The regions have to be constructed in a way
such that with one shortcut node in each region, full coverage is provided. By
construction, this approach provides an even distribution of the shortcut nodes.
Its scalability is also improved compared to the token ring approach. Each node
sends nS request messages, receives the same amount of responses, and each
message travels about L hops (average path length in the network). Thus, in
total 2nnSL messages are sent.

6.5.3 Long-Range Interleavings

In very large networks, it may be impossible to achieve full coverage with a
limited number nS of shortcuts and a given δ as a message may not be able to
reach the δ-neighbourhood of its destination with a single shortcut. However,
there might be another node, which is already part of the message path, that has
a shortcut in the δ area of the target, or at least closer to it than the previous one.
Thus, while a message travels on its path to its destination, additional shortcuts
can be used to span the complete distance to the δ-region of the destination.

This idea is depicted in Figure 6.22. Here, two additional shortcuts are being
used in order to get the message closer to the target G. The authentication links
“monitor” each other: The link between B and E ensures that the message is
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not manipulated either by C, D, or any other intermediate node. The last piece
of the path is bridged with Canvas.

A B C D E F G

Figure 6.22: A path with long-range interleaved authentication

There is a simple rule according to which the nodes on a path act: Try to
attach a long-range authentication code, i.e. a shortcut, that gets closer to the
target than the previous one. At any given time, there are zero, one, or two
shortcuts attached to a message. There may be a primary and a secondary
shortcut. When the message starts off from the source, it has only one such
shortcut, which is the primary shortcut. Following nodes on the path look for
own shortcuts that are more closely located to the target than the primary short-
cut. If a node finds one, it attaches a corresponding MAC to the message, which
becomes the secondary shortcut. If there are two shortcuts already attached to a
message and a path node finds a closer shortcut than the secondary one, the sec-
ondary shortcut is substituted by this new one. When the message gets closer to
the destination, all shortcut MACs will be gradually removed and the message
is confined to Canvas authentication.

The function to substitute or add a shortcut authentication code, subst-short-
cut, is captured in Algorithm 6. Part of the input is a “list” of authentication
code, γ, which has either zero or one elements. This list does not reflect the
primary shortcut of the message, which is targeted at B, but may only contain
the secondary shortcut if it exists. If γ is empty and a shortcut node can be found
that is closer to the destination than B is, a secondary shortcut for the message
is created. If a seondary shortcut already exists but a “better” one is found, i.e.
one that is even closer to the destination P, the existing secondary shortcut is
discarded and a new one is created. Note that the function find-closest-shortcut
is not further detailed here. It simply returns the shortcut node of the current
node that is closest to P.

Table 6.5 defines the rules for long-range interleaved authentication. The
rule shortcut-authenticate-and-forward applies if the current node X is the pri-
mary shortcut of the message. It is checked whether the primary shortcut au-
thentication code is correct and whether the Canvas protocol is adhered to.
This rule demands that a secondary shortcut exists for this message (condition
len(γ)≥ 1). This becomes the new primary shortcut for the message, and a new
secondary shortcut is attached if one is found. To that end, the function subst-
shortcut is invoked, which either creates a new shortcut authentication code
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or returns the empty list. The message is passed on with appropriate Canvas
authentication.

The rule shortcut-accept-and-forward is the standard forwarding rule for
intermediate nodes that are not involved in the long-range authentication pro-
tocol. Such nodes simply check for the correct Canvas authentication. Addi-
tionally, they try to add a better secondary shortcut than the existing one. This
is reflected by the invocation of the function subst-shortcut. It may happen, of
course, that no appropriate shortcut is found, so the set of MACs remains the
same.

The next rule, shortcut-authenticate-and-forward-exit is similar to the first
one. Here, only a primary shortcut exists and the current node is the target
of this shortcut. The necessary validity checks for the shortcut are performed,
and the Canvas authenticity is checked as well. Additionally, this rule applies
only if the current node does not qualify as a destination node of the message,
i.e. d(P,X) > τ. The message is forwarded towards its destination as a simple
Canvas-authenticated message.

The rule shortcut-authenticate-and-process applies when the current node
X is not only the target of the primary shortcut, but X itself also qualifies as a
destination node of the message. In this case, the message is consumed by the
current node.

The rules direct-accept-and-forward and direct-accept-and-process from the
basic Canvas authentication (see Table 6.1) are used in this scheme as well.
They are used for handling messages that are close to their destination and are
only Canvas-authenticated.

The ¯ notation should be understood loosely as a list appending operation.
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Algorithm 6 subst-shortcut
Input:

X : current node
P: destination location
B: next shortcut node on path
γ: list of shortcut authentication codes (length is either zero or one)

Output:
list of shortcut authentication codes, possibly equal to γ

1: sflag := false
2: W := find-closest-shortcut(X ,P)
3: if len(γ) = 0 ∧ d(W,P) < d(B,P) then
4: sflag := true
5: else if len(γ) = 1 then
6: (Y,V,c′,a′) := γ
7: if d(W,P) < d(V,P) then
8: sflag := true
9: end if

10: end if
11: if sflag then
12: cXW := cXW +1
13: a := {A,X ,W,cXW ,P,m}KXW

14: return (X ,W,cXW ,a)
15: else
16: return γ
17: end if
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shortcut-authenticate-and-forward:
M = 〈SHORTCUT,A,P,m,(Z,B,c,a)¯ γ,C 〉
X = B
c > cZB
a = {A,Z,B,c,P,m}KZB

len(γ)≥ 1
canvas-accept(A,P,m,C )
cZB := c
C ′ := canvas-auth(A,P,m,C )
γ′ := subst-shortcut(X ,P,B′,ε) where (_,B′,_,_) = γ
send: 〈SHORTCUT,A,P,m,γ¯ γ′,C ′〉

shortcut-accept-and-forward:
M = 〈SHORTCUT,A,P,m,(Z,B,c,a)¯ γ,C 〉
X 6= B
canvas-accept(A,P,m,C )
C ′ := canvas-auth(A,P,m,C )
γ′ := subst-shortcut(X ,P,B,γ)
send: 〈SHORTCUT,A,P,m,(Z,B,c,a)¯ γ′,C ′〉

shortcut-authenticate-and-forward-exit:
M = 〈SHORTCUT,A,P,m,(Z,B,c,a)¯ γ,C 〉
X = B
c > cZB
a = {A,Z,B,c,P,m}KZB

len(γ) = 0
d(P,B) > τ
canvas-accept(A,P,m,C )
cZB := c
C ′ := canvas-auth(A,P,m,C )
send: 〈DIRECT,A,P,m,C ′〉

shortcut-authenticate-and-process:
M = 〈SHORTCUT,A,P,m,(Z,B,c,a)¯ γ,C 〉
X = B
c > cZB
a = {A,Z,B,c,P,m}KZB

d(P,B)≤ τ
canvas-accept(A,P,m,C )
cZB := c
process A,m

Table 6.5: Rules for long-range interleaved communication
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6.5.4 Performance Evaluation

Routing a message not directly to its destination but to one or more intermedi-
ate nodes beforehand implies a certain overhead as the intermediate nodes are
unlikely to be on the shortest path from the source to the destination. When
selecting intermediate nodes, we may demand that the next intermediate node
must be closer to the target node than the last intermediate node (or the source
node, if the first intermediate is selected). How big the overhead is depends
mainly on the number of intermediate nodes to choose from. Figure 6.23 shows
the average length of interleaved paths relative to the shortest path length based
on data obtained through simulation. If only 1% (5 out of 500) of all nodes are
available as intermediates per node, the interleaved path may be almost twice
as long as the shortest path. However, as the number of intermediates grows,
this overhead shrinks quickly. At 2%, the overhead is about 50%, and at 6% (30
out of 500), it is as low as 20%. We therefore conclude that with a sufficiently
large number of relays for each node, the increase in the path length is not a
critical issue.
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Figure 6.23: Relative length of interleaved paths

6.5.5 Security Evaluation

The security of interleaved authentication is based, like for the preceding schem-
es, on the creation of multiple authentication paths. Unless all of these paths
are compromised, the integrity of a message will be ensured. The correctness
condition for a communication path can be summarized as follows:
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A node receives the correct message if at least one incoming authen-
tication link carries the correct MAC.

This condition is encapsulated in the decision procedure is-path-compromised
(Algorithm 7). The idea of the procedure is simple. Nodes are colored and start
off being “white”. Going along the path, a node is colored “red” if it is either
compromised, or all incident authentication links emerge from nodes that have
been already colored “red”. The path itself is compromised it the target node is
colored “red”. Trivially, if one of the endpoints of the path is compromised, the
path is also compromised. The path is not compromised if there is at least one
authentication path from the source to the target that comprises only “white”
nodes.

Long-range interleavings shorten the length of authentication paths by re-
ducing the number of involved nodes. This makes a single path less vulnerable
to an attack, since now a path depends on the integrity of fewer nodes. The re-
duction of the authentication path length by increasing the number of shortcuts
corresponds to the observation that by adding a few long-range links to a graph
that is dominated by local clusters (such as a wireless sensor network), a small-
world graph can be constructed [191], where the mean path length is greatly
reduced. By introducing long-range authentication links, the authentication
graph becomes a small-world graph while the underlying physical communi-
cation graph remains a geometric graph.

Interleaved paths make it more difficult for an adversary to attack a certain
path, and thus reduces the overall impact of an attack. In order to compromise a
path, the adversary has to perform an attack that is focused on specific nodes. In
particular, a path is compromised if one of the following conditions is fulfilled:

1. One of the endpoints (i.e. either the source or the target node) is compro-
mised.

2. For a path segment that is not protected by a long-range authentication
link, a consecutive group of k nodes on this segment is compromised.

3. If there is a long-range link starting at node A and there is a long-range link
incident to node B and B is located closer to the target than A and there is
no other node between A and B that is the endpoint of a long-range link,
then both A and B have to be compromised, and either A or B have to be
part of a compromised group of k consecutive nodes.

The results from simulations shown in Figure 6.24 demonstrate the secu-
rity performance of long-range interleavings. For all examined attack types,
the scheme performs on a high level until approximately half the nodes are
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Algorithm 7 is-path-compromised(p)
Global values:

A : the set of authentication links (pairs of nodes)
B: the set of compromised nodes

Input:
p: a communication path

Output:
Return true if p is compromised, false otherwise

1: c[s] := WHITE for all s ∈ p . Initialize colors
2: for i in {1, . . . , len(p)} do
3: s := p[i]
4: if s ∈ B then
5: c[s] := RED . Compromised nodes are colored RED
6: else
7: if ∀ j < i.(p[ j],s) ∈ A ⇒ c[p[ j]] = RED then
8: c[s] := RED . RED, if all incident authentications from RED nodes
9: end if

10: end if
11: end for
12: return c[p[len(p)]] = RED . Target node RED?

compromised. With an increasing number of nodes being compromised, se-
curity deteriorates at a different rate for each attack type. For a large number
of compromised nodes, the protection is highest against a concentrated attack
and lowest against a random spread attack. For low numbers, the scheme holds
up well against all attack types, even the partitioning attack. Of course, this
result confirms the assumption as this scheme was intended to provide good
protection against the partitioning attack.

6.6 Comparing Interleaved and Multipath Authentication

6.6.1 Multiple Physical vs. Virtual Paths

There is an immediate similarity between interleaved authentication and multi-
ple path communication. Interleaved authentication creates multiple authenti-
cation paths on top of a physical communication path. In multi-path communi-
cation, multiple communication paths are explicitly used to transfer a message
and associated authentication codes. Thus in both cases, multiple (disjoint)
paths are being used for transmitting authentication information. By introduc-
ing redundancy, both schemes are able to tolerate a number of compromised
nodes.

While establishing disjoint paths in a multi-path scheme requires a trade-
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Figure 6.24: Resilience of interleaved authentication under various attacks

off between set-up complexity and path length, multiple “virtual” paths on the
same physical path are established in the interleaved authentication scheme
that are disjoint by construction. These virtual paths are guaranteed to exist,
and they are easily constructed. In addition, only one physical path is involved
and the virtual paths are not longer than the physical path.

6.6.2 Combining Authentication Techniques

While we have considered authentication based on multiple physical and virtual
paths separately, both techniques can be combined. Each tree path itself may
use another layer of authentication, for example Canvas authentication. In that
way, the advantages of both, multi-path routing and Canvas authentication, are
combined, cf. Fig. 6.25. Table 6.6 shows that this combination gives a slight
advantage over each of the schemes alone.

6.7 Applications

A fundamental idea underlying interleaved authentication is security through
collaboration: Two (or more) independent entities provide information about
the authenticity of a message, thereby reinforcing the confidence of the receiver
that the message is indeed correctly transmitted. We give some examples where
this principle is applied.
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Table 6.6: Ψ for various configurations
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6.7.1 Coupling Heterogeneous Networks

Suppose two sensor networks are deployed in close proximity to each other by
different operators, and both networks share a small overlapping area. Each
operator uses his own network for monitoring purposes independently. At one
point, the operators decide to coordinate their efforts. They want to allow both
networks to exchange messages. However, they don’t fully trust each other and
want to keep the security relationships between nodes of both networks to a
minimum.

The solution is to let the nodes in the overlapping area establish additional
security relationships. A fresh set of keys is deployed to nodes in that area. The
nodes then engage in a new key agreement phase where they establish shared
keys in their k-hop neighbourhoods. The location address space is extended in
both networks to include the area covered by the two networks. A node from
one network is then able to send a Canvas-authenticated message to a node
in the other network. The path necessarily passes through the common area,
where the message is handed over from one network to the other. Initially, the
source of the message may even have a shortcut in the overlapping area and au-
thenticate the message directly to this node. The latter then hands the message
over to a node from the other network, which passes it on further towards the
destination location, possibly again using its own shortcut relationships. This
situation is shown in figure 6.26.

Figure 6.26: A path across two networks

Only nodes in the overlapping area need to be aware of the existence of
the second network. To the other nodes, it simply looks like the address space
has been extended, and they now are able to send messages to a greater area.
In order to send a message, they choose the one shortcut that is closest to the
destination, and this shortcut will still be a member of their own network. By
geographic routing, the message will pass through the overlapping area. Here,
the nodes are aware that a second network exists and that the message needs
to be handed over in order to reach its destination. They will choose nodes
from the second network as authentication targets. Unless k such authentication
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codes are attached to the message, the message is only routed within its original
network. As soon as k authentication codes targeted at a node from the second
network are available, the message is handed over.

A node in the overlapping area first looks at the message to determine how
many authentication codes for the second network are already available. Re-
member that the k next hops are already determined by previously attached
authentication codes. If none of them is targeted at a node from the second
network, the node selects an own k-hop neighbour that is a member of the sec-
ond network and creates an authentication code. From then on, all following
hops have to be members of the second network. The reason is that when the
message leaves the overlapping area, there have to be k authentication codes
from nodes in the second network.

6.7.2 Physical-World Examples

An example in the physical world is the requirement of witnesses for the ac-
ceptance, e.g. by some government authority, of certain types of documents.
Often, one or more witnesses have to attest that an applicant has indeed signed a
document himself. Thereby, it is much harder or even impossible for the signer
to later repudiate the signature.

Another example is the delivery of credit cards and their associated PIN
codes in two separate letters. Here, the goal isn’t authentication but to avoid
that an adversary gets access to both the card and the PIN code. This system
helps against casual adversaries, even if they are located within the postal sys-
tem, getting access to credit card letters. It is assumed that the path of both
letters is sufficiently diverse such that the group of people seeing both letters is
very small. Of course, this is insufficient to counter a dedicated, well-organized
adversary. An adversary targeting a single victim, intercepting all letters ad-
dressed to the victim, could still obtain both letters.

6.7.3 Internet Applications

A well-known example from the virtual world, where security is achieved
through the collaboration of multiple parties, is the PGP web of trust (described
in, e.g., [23, 69]). The authenticity of a hitherto unknown public key is estab-
lished through certificates that have been issued by others. If the issuers are
unknown as well, certificates for them have to be obtained first. This continues
until some known, trusted parties are encountered. Such a chain must not ex-
ceed a certain length (which the user can specify). The more of such (disjoint)
chains exist, the higher is the confidence in the authenticity of a public key.
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The use of independent paths to convey authentication information is com-
mon on the Internet. As an example, consider user accounts for web sites.
Operators of such sites are usually interested in giving user accounts only to
human beings but not to “robots”. It has become a general practice to generate
and display blurred pictures containing a code word on the account registra-
tion page. To complete the registration, it is required to enter that code word
before the account is granted. Since this code word can only be understood
by a human being, automatically operating programs cannot generate new user
accounts, which inhibits denial-of-service attacks.

Another common example, in the same domain, is the acknowledgement
of a newly generated user account through a second communication channel,
usually e-mail. After a user has signed up for an account, he retrieves an e-mail
message that he has to acknowledge before the account is activated. Thereby,
the validity of the e-mail address is confirmed, which also constitutes a form of
authentication.

6.7.4 E-Mail Origin Authentication

The fight against illicit e-mail, commonly called spam, has attracted some at-
tention recently. One major solution attempt is the introduction of the ability
to verify the purported identity of the sender of an e-mail mesage, i.e. message
authentication. The Internet standard protocol for transmitting e-mail, Simple
Mail Transfer Protocol (SMTP) [94], is not prepared to do so by default. Spam
messages often originate at spoofed origins (for increasing their credibility and
for distributing the load of creating and sending them). A large fraction of these
messages could be filtered out reliably if it could be detected that the purported
sender did in fact not send the message.

A number of proposals exist for different mechanisms to authenticate e-mail
messages. The most prominent ones are DomainKeys [85, 73] and SPF/Sender
ID [197]. The main idea of DomainKeys is to digitally sign a message (and
some invariant header information) before it is being sent. The digital signature
is created by the sending SMTP server (not the mail client program of the user).
For verification, the public key is obtained from DNS. The outgoing SMTP
server must ensure that only authorized users can send messages, otherwise a
sender of spam messages could exploit such an open server.

SPF relies on authenticating the IP address of the sender’s mail transfer
agent (MTA, i.e. the outgoing SMTP server). The IP address is obtained
through the TCP/IP connection between the sending MTA and the receiving
MTA. DNS must be extended to contain a list of allowed IP addresses for every
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domain. The receiver looks up the DNS record corresponding to the sender’s
e-mail address. If the IP address from which the message was received is not
contained in that record, the message is rejected.

Van Oorschot [178] has proposed a mechanism for sender authentication
that does require neither extension of the DNS nor public-key cryptography.
The idea is to convey authentication information about e-mail messages through
a second, access-restricted channel. For each message being sent, a hash value
is computed and stored in some publicly readable location to which only the
legitimate owner of the e-mail address has write access. The receiver of a mes-
sage looks up the list of hash values and verifies whether the one matching the
received message is present. Only if the hash value is found, the message is
accepted.

This approach matches the first two steps in a Canvas protocol run. In the
Canvas authentication scheme, the originator A sends a message through two
channels provided by mutually shared secret keys. One message goes to the
second-hop neighbour C, which corresponds to the receiver of an e-mail mes-
sage. The other message goes to a one-hop neighbour B that is adjacent to both
the originator and the receiver. Node B corresponds to the publicly readable
site that conveys an authentication code for the message. This code is made
available to C through the private channel between B and C.

A difference between Canvas and van Oorschot’s proposal is that in the
latter case, B is merely a passive storage location to which only A can write
but everybody can read from. In Canvas, B is an active player and creates
the authentication code for a message by itself. The fact that B includes the
sender’s identity of a message in that code corresponds to the exclusive write
access in van Oorschot’s proposal.

One problem of van Oorschot’s proposal, which he also recognizes, is that
the public site where message fingerprints are stored must be familiar to the
receivers of messages. He assumes that this relationship may be established
through out-of-band mechanisms, or through web sites that are uniquely as-
sociated with e-mail addresses. Out-of-band mechanisms raise problems for
short-lived communication relationships where additional effort is usually un-
desirable. Establishing a site that provides fingerprints under URLs such as

http://www.e-mail-fingerprints.org/address=john@company.com

may be feasible, but raises questions regarding scalability, funding, and secu-
rity. Such a central site would have effective control over what messages would
be considered as spam, and which not. This would be obviously undesirable
in an open communication network. The best solution might be to extend the
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DNS and store an additional record that provides, for each address domain, the
URL of a site that contains the message fingerprints. Thereby, domain owners
are free to administer their own servers.

6.8 Related Work

To our knowledge, interleaved authentication schemes have been independently
conceived independently from our work [180, 181, 182] by several authors [71,
206].

The first record is by Goodrich [71], which has been extended later [72].
In his scheme, for each node x, there is a key k(x) that is shared among all
nodes in the neighbourhood of x, excluding x itself. A node adjacent to x uses
k(x) to add an authentication code to a message before it sends it to x. When
x passes the message (including the authentication code) on to another one of
its neighbours, the receiver can verify that x has not modified the message.
The difference to Canvas is the use of a single key shared by all neighbours to
protect against the possible compromise of a node (x). In this approach, x can
forward a message according to local requirements. It is not required that the
sender of a message knows the path further down of x. Canvas requires this
knowledge and thus implies additional communication. Goodrich applies the
technique to securing the set-up of routing tables.

The second independent record is by Zhu et al. [206], who proposed inter-
leaved authentication for integrity checking of messages that are passed along
a path from sensor nodes towards a base station. Similar to our work, they ex-
tended the scheme for interleavings of more than two hops, which allows for
protection against colluding nodes on the path. Their main application of the
technique is filtering compromised messages before they actually reach a sink.

6.9 Summary

In this chapter we have presented a family of protocols for communication in-
tegrity protection. The protocols are especially suitable for the use in wireless
sensor networks as they do not rely on extensive end-to-end security relation-
ships. Instead, local security relationships between k-hop neighbours (with a
small k) and interleavings of authentication paths provide a security level that
approximates that of end-to-end security schemes. The security level can be
further improved by introducing a small number of long-range security rela-
tionships. We have shown the security performance of these protocols through
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simulations and by comparison with conventional hop-to-hop and end-to-end
schemes.
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Chapter 7

Conclusion

This work proposed a security infrastructure for protecting the communications
in wireless sensor networks. We have identified the node capture attack as an
important threat to wireless sensor networks. In order to protect a WSN against
this threat, a range of mechanisms are required, covering all layers of the sys-
tem. This includes the hardware design of the sensor platform, all protocol
layers of the wireless communication, the platform’s runtime environment, and
the application software.

In this work, we have focused on providing the foundation for secure com-
munications in a WSN. We started from the assumption that a node capture
attack cannot be fully prevented and thus an attacker would be able to com-
promise a certain number of nodes. The goal has been set to provide a certain
level of security for the communication in the network even under such adverse
conditions.

The following contributions have been made:

• Based on existing approaches to key pre-distribution, we proposed a novel
key agreement scheme that uses hash chains for strengthening the negoti-
ated keys.

• For protecting the integrity of messages in a WSN, we proposed an inter-
leaved authentication scheme that uses locally shared keys to create mul-
tiple, virtual authentication paths between communication endpoints and
thus approximates the security guarantees of end-to-end authentication.

• Building on interleaved authentication, we proposed a protocol extension
that leverages a small number of long-range security relationships to coun-
teract sophisticated, structured attacks.

• Complementing the virtual authentication path approach, we proposed a
novel way of constructing multiple physical communication paths that
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provide physical communication redundancy, which can provide similar
security guarantees.

7.1 Secure Communication in Wireless Sensor Networks

7.1.1 Key Establishment

Shared secret keys are a prerequisite for cryptographically secured communi-
cation between nodes in a network. In wireless sensor networks, key establish-
ment schemes should be used that minimize the overhead for setting up shared
keys. Therefore, key pre-distribution has been proposed as a mechanism as it
achieves a two-fold goal. First, it requires only little computational effort dur-
ing the actual key agreement phase, which takes place after node deployment
when nodes have to rely on their individual, limited power supply. Second, it
provides node authentication on the group level, i.e. only nodes that belong to
the legitimate set of deployed nodes are able to successfully engage in a key
agreement.

Random key pre-distribution is the most generally applicable pre-distribution
scheme as no assumptions are made on the distribution of nodes after their de-
ployment. If information about their distribution is available, more efficient
schemes are possible. Key pre-distribution schemes rely on a large pool of
keys, from which a subset of keys is assigned to each node. Pairwise key es-
tablishment is comprised of first determining the keys that both parties have in
common, and second deriving a value from these keys, which then acts as the
shared key.

We have considered another approach to key agreement that is based on sets
of hash chains. Exploiting the one-way property of hash functions, keys can be
derived from hash chain values that are resistant to low-strength attackers.

The real benefit of hash chains is realized when they are used to strengthen
the keys that have been established using a random pre-distribution scheme. By
combining both techniques, the resilience of keys is significantly enhanced.

7.1.2 Multiple Path Communication

Communication over a single path is generally vulnerable against failures and
security threats. Usually, these vulnerabilities are mitigated by high-level pro-
tocols that, in case of link or router failures, verify the reliable transmission
of messages and initiate retransmissions if necessary. Additional protocols can
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ensure the secure transmission of messages by authenticating routers, or ensur-
ing link security, for example.

An alternative communication scheme that can potentially counter these
problems is multi-path communication. Here, the same message is sent over
multiple paths that only share the same end-points, but use no common com-
munication links or routers (or neither of them). Here, a threshold scheme can
ensure that an attacker cannot reconstruct or modify without detection a mes-
sage. Generally, constructing short disjoint paths is a complex task with a high
computational overhead.

Protocols that work in conventional networks with high-powered nodes do
not necessarily work well in highly resource-constrained environments like
wireless sensor networks. Therefore, alternative approaches have been devised.

We have proposed a scheme for constructing multiple disjoint (node) dis-
joint paths that is suited for wireless sensor networks. The basic concept are
routing trees that can be set up very easily by selecting a root for each tree
and a single wave of broadcast messages for tree construction. A message is
then routed along the links that are contained in a tree. This increases the path
length by a manageable amount, but also provides for a high degree of disjoint-
ness for pairs of tree paths. This scheme therefore provides a practical trade-off
between additional complexity and security.

7.1.3 Interleaved Authentication

One of the main goals of a secure communication protocol is to provide a means
for remote nodes to exchange messages that are protected against manipula-
tions that may happen while the messages are in transit. In a wireless sensor
network, nodes act as routers, relaying messages on behalf of other nodes. Se-
cure communication between two nodes thus depends on the collaboration of
all intermediate nodes. Especially, intermediate nodes are expected to relay
messages with their contents unaltered. An integrity-protecting communica-
tion scheme ensures that manipulations would be detectable.

In a conventional approach, an end-to-end message authentication protocol
is being used, which is based on public key cryptography or pairwise shared
keys. Public key cryptography introduces a relatively large overhead regard-
ing computational effort for creating and verifying signatures, and requires the
transmission of authentication data of significant size. On these grounds, pub-
lic key cryptography is often dismissed for use in resource-constrained envi-
ronments. An alternative are fully pairwise shared keys, which allow the use
of more efficient symmetric key cryptography. However, the storage require-
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ments are overwhelming and such a system would be very much constrained in
its flexibility to accomodate extensions to the network.

Our approach to secure communication relies on the availability of shared
keys only between nodes that are in close proximity to each other. This limits
the overhead for key storage considerably. The Canvas scheme proposed in
this work requires that each node shares a key with each of its one- to k-hop
neighbours (k ≥ 2). In a typical deployment setting with k = 2, this would
require each node to store about 10 to 20 keys, which sensor nodes are well
capable of. A message that is about to be transmitted to a remote node is au-
thenticated by the source using at least two keys, which are shared with the
following nodes on the communication path. This requires only minor adjust-
ments on the routing layer, namely a look-ahead of k nodes on the routing path.
The same authentication pattern is repeatedly applied by all nodes on the path.

The protection provided by such a scheme is able to render single compro-
mised nodes ineffective. A message is authenticated by at least two authentica-
tion codes, but only one of them can be manipulated by the compromised node,
thus any change in the message’s content would be discovered by the next node
on the path. At that point, the network would become aware of the attack –
something an attacker wants to avoid as this degrades the trust in the network,
which also degrades the value of the attack.

This interleaving of message authentication codes corresponds to creating
multiple independent authentication paths, i.e. paths on which authentication
information is passed. With k = 2, Canvas creates two such paths. Thus it is
able to accomodate compromised nodes on both paths that are not adjacent to
each other on the communication path. Canvas is similar to having two phys-
ically disjoint communication paths in the regard that a single compromised
path cannot break the authentication. Additionally, Canvas gives the advan-
tage that both paths are interlinked and breaking both of them requires a certain
configuration of compromised nodes.

The Canvas scheme has a limited reach in that only isolated compromised
nodes can be countered. As soon as the attacker manages to subvert clusters
of nodes, the scheme becomes partially ineffective. Any message that passes
through a pair of compromised nodes would be subject to manipulation. In
order to counter certain attack patterns, it is therefore necessary to introduce
long-distance authentication relationships.
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7.1.4 Shortcut Authentication

The limited reach of Canvas is overcome by the introduction of authentication
shortcuts. Such a shortcut is a security relationship, implemented by a shared
secret key, between remote nodes. One node acts as a “trusted relay” for an-
other node. A source sending a message to a receiver that is far away uses such
a shortcut to strengthen the authentication of the message. The source adds an
authentication code addressed to the relay and sends the message to its destina-
tion through a relay close to the destination. After authenticating the message,
the relay forwards the message on to the target. Thereby, long distances can be
spanned by a single authentication code, mitigating attacks that rely on clusters
of compromised nodes.

A shortcut effectively shortens an authentication path. Thereby, shortcuts
minimize the “attack surface” of the system. Simply stated, there are fewer
nodes involved in authenticating a message, thus the attacker has fewer op-
portunities to attack a message. In general, this makes a WSN more robust
against node capture attacks. In particular, shortcuts are the only effective
means against partitioning attacks.

7.2 Future Work

Wireless sensor networks are an emerging technology that has a broad potential
use in industrial, commercial, and personal applications and for public safety
and security. The miniaturization of microprocessors and the further develop-
ment of wireless communication and power generation for tiny devices give rise
to the expectation that wireless sensor networks will become an integral part of
structures of any kind, either natural or artificial. Thus, decisions will rely in-
creasingly on the data provided by wireless sensor networks and it is important
to ensure the secure and reliable operation of these networks. In this work, we
have highlighted need for integrity protection and devised methods for doing
so. It will be important to come up with a comprehensive framework for the
security of wireless sensor networks that includes all aspects important to secu-
rity, ranging from access control, privacy protection, integrity, timeliness, and
accuracy. The challenge will be to find the right trade-off between the complex-
ity that is necessary to provide the security guarantees, and the power-efficiency
that is necessary for implementation on tiny, highly constrained devices.
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