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Figure 1: We propose a method that allows to determine the finger and the force applied in touches. We present several applications
using this method to enrich the interaction with devices.

ABSTRACT
Identifying the finger used for touching and measuring the
force of the touch provides valuable information on manual in-
teractions. This information can be inferred from electromyo-
graphy (EMG) of the forearm, measuring the activation of the
muscles controlling the hand and fingers. We present Touch-
Sense, which classifies the finger touches using a novel neural
network architecture and estimates their force on a smartphone
in real time based on data recorded from the sensors of an in-
expensive and wireless EMG armband. Using data collected
from 18 participants with force ground truth, we evaluate our
system’s performance and limitations. Our system could allow
for new interaction paradigms with appliances and objects,
which we exemplarily showcase in four applications.
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INTRODUCTION
Finger touches, presses, and grasps are among the most impor-
tant ways humans interact with their surroundings. Evolution-
ary biologists speculate that the ability to manipulate objects
is to a large extent responsible for the remarkable development
of primates’ brains, which ultimately made humans the domi-
nant species of the planet [9]. Tools built throughout human
history take advantage of the wide spectrum of human touch.
A piano, for example, can only be meaningfully played with
several fingers at once, and its keys react to the force applied
with differently loud tones. This richness of human touch,
however, is only poorly represented in most technological de-
vices. A traditional light switch, for example, is insensitive
to both the pressure of the touch, and to the finger(s) used
in the process. It will uniformly turn on the light, with the
same colour and brightness. Taking the pressure of the touch
gesture into account already yields more sophisticated devices,
such as dimming light switches. Considering also the specific
finger used in the interaction can add new and more features,
and perhaps open entirely new interaction possibilities.

The lack of adaptation leaves space to explore the use of
techniques that identify the finger and estimate the force (or
pressure) of finger touches. Nevertheless, even amongst the
newer touch-based devices such as tablets and smartphones
only very few feature a pressure-sensitive input surface which
do not have the means of identifying the finger either. Apple’s
newer products incorporate the technology “Force Touch”1,
which is able to distinguish between different degrees of force
being applied to the screen, thereby adding an input dimension.

1https://en.wikipedia.org/wiki/Force_Touch
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Instead of augmenting specific devices with such sensing ca-
pabilities, it is beneficial to augment the humans themselves
to sense the fingers used and the corresponding force of their
touches. That would allow any surface on any object in the
environment to act as an input interface and enrich the hu-
man’s interaction capabilities. For example, one could turn
on the lamp by pressing on a surface nearby, such as a wall
or a table, or control the TV from the sofa by touching the
armrest. For such a system augmenting the human to work,
one would either have to augment the user’s fingertips with
force sensors, which is rather obtrusive, or measure the con-
traction of the muscles in the forearm to infer the finger used
and estimate the force exerted by that finger, since the mus-
cles in the forearm control the fingers. The latter is possible
using electromyography (EMG), the measurement of muscle
activation potentials. EMG devices are usually very expensive
and require large amplifiers; however, in recent years, an inex-
pensive and wireless EMG armband, the Thalmic Labs Myo2,
has become commercially available.

In this paper, we present TouchSense, a system for classifying
finger touches of the thumb, forefinger, and middle finger and
estimating the exerted force. We only utilize the Thalmic Lab’s
Myo EMG armband and a standard Android smartphone which
continuously receives the EMG signal via Bluetooth, making
our system wireless and mobile. For finger identification, we
use a light-weight neural network running on the smartphone
with a short average inference time of under 10 ms, thus ful-
filling real time requirements. Furthermore, the network has
a model size of less than 140 KB. Subsequently, the force is
estimated and output on a continuous scale. We collected the
necessary data from 18 participants and measured force ground
truth values with a self-built hardware setup. This enables us
to train a regressor for the true force values. We evaluate
our system in several experiment designs, including a user-
independent design, a user-dependent but session-independent
design, and a session-dependent design. Moreover, we demon-
strate its use in four demo applications. Overall results show
that a user-independent system is difficult to achieve, however,
a user-dependent, but session-independent system is possible,
i.e. our system has to be trained once for every user.

BACKGROUND AND RELATED WORK
Electromyography (EMG) measures the electrical activation
of a muscle. Muscle fibres are controlled by motor neurons
by electrical impulses. These activations induce a measurable
difference in the potential of the muscle cells. Thereby, each
muscle contraction can be associated with an EMG signal. We
use the Myo armband, a EMG device applied to the forearm,
thereby measuring the muscles controlling hand and fingers. A
great challenge when performing EMG analysis are the strong
variations between people due to interpersonal differences in
anatomical properties, such as muscle strength, position of
bones, and skin conductance. Furthermore, the measurements
of two sessions for the same person may differ because the
exact placement of the electrodes changes.

Most previous work using EMG in the HCI domain has been
done in the area of hand and finger gesture recognition [1,
2https://www.myo.com/

3, 6, 10, 14, 18, 20, 23, 25]. However, the mentioned works
investigate only full-hand gestures or coarse-grained finger
gestures. Moreover, many previous works differ from ours by
either using mostly expensive, specialized, wired or custom-
built hardware for measurement, some with a high number of
channels, performing an offline analysis, and not being able to
run in real time, or combining EMG with other sensors.

There is relatively little work considering finger touches and
the applied force. In the following, we briefly discuss previous
research concerning finger touching gestures and the estima-
tion of applied force. DiDomenico et al. show the feasibility
of using EMG for finger strength regression for the purpose of
evaluating the ergonomics of finger-intensive tasks [5]. They
collect force ground truth in an experiment including 30 par-
ticipants performing finger gestures (e.g. pinches) simulating
hand-intensive tasks. EMG data was gathered using three
wired electrodes attached to the forearm. For regression, they
fit linear models and show that this results in an acceptable
error. However, they do not use the models on unseen data in
a test case and only perform an offline analysis.

Saponas et al. classify finger gestures engaging the fore- and
middle finger, extended or curled, tap, and lift and also classify
finger strength into hard and light [21]. They show that it is
possible to determine the finger which is used for pressing
and distinguish the two pressure classes with high accuracy.
However, they trained and tested with data from the same
session. When performing a cross-user-validation, the per-
formance decreases significantly. While they only classify
into two force levels, we envision a system which estimates
a continuous force level. Their EMG electrodes are wired to
an expensive measurement setup with a high sampling rate
of 2048 Hz (more than ten times higher than for our device).
Moreover, they only perform an offline analysis. They contin-
ued their work and also built an online system for pinching
gestures [22] using a custom-built wireless EMG armband.
They show that it is possible to obtain over 70% accuracy in
a two-session experiment design for pinching gestures using
the fore-, middle, and ring finger. We go further and per-
form the analysis directly on a smartphone, thereby creating a
completely mobile system using off-the-shelf hardware.

Benko et al. have built on the work done in [21] to perform
finger identification and additionally estimate the finger pres-
sure by using a smoothed average over all EMG channels [2].
They use this pressure estimate in a combination with the
touch-sensing capabilities of a tabletop computer to allow
extended input, such as adapting the width of a stroke in a
painting application according to pressure. However, as they
use the same system as in [21], their setup is also static and
processed on a desktop machine. Furthermore, their design is
session-dependent (i.e. it needs to be trained for each partici-
pant before every use and not only once per participant) and
as they never collected force ground truth, it is not possible
to say how well their estimate correlates to the actual force
exerted by the finger onto the screen. In contrast, we collect
ground truth data using our hardware setup and fit a regressor
to the EMG data and the ground truth.

https://www.myo.com/


Various other modalities have been examined for achieving
finger identification. Vision-based approaches employ cam-
eras viewing the scene from above tracking the users’ fin-
gers [4, 15, 19, 26]. Others view transparent displays from
below and recognize individual fingerprints [13]. While these
approaches have the benefit of not having to augment the users
with any sensors, the interaction is limited to a fixed space.
Furthermore, it is not possible to determine the applied force.

Contrarily, other researchers attached sensors directly to the
fingers or integrate them in a glove in order to identify which
finger is used in an interaction [11, 12, 16, 17]. This allows
highly accurate finger identification, however, none of the re-
searchers show how to estimate the force of touch interactions.
Most importantly, they are rather obtrusive systems in terms
of finger interaction. Another solution is to incorporate RFID
tags into fake finger nails, which are detected by RFID readers
in the interaction devices [24]. While this provides a method
which does not interfere with the finger interaction, it requires
the interaction surfaces to contain an RFID reader. Besides,
force estimation is not possible.

Concerning the measurement of force, manufacturers of com-
mercial products focus on hardware solutions in touch screens,
as the aforementioned ForceTouch from Apple, or touch pads,
such as Synaptics’ Force3 pad, a laptop touch pad which is
able to measure the force applied by the fingers. However,
the input surface is confined to the relatively small size of the
touch screen or touch pad, whereas our system can turn any
surface or object into an input surface.

In conclusion, the main differences to previous work are the
following: we use an inexpensive, wireless, off-the-shelf EMG
armband with a low sampling rate for finger classification
and force estimation; we collect force-ground truth for finger
presses and are thereby able to evaluate our force estimation
and finally we run an online, real time analysis on a smart-
phone, through which our system becomes mobile.

THE TOUCHSENSE SYSTEM

Data Collection
To record EMG data, we use the Myo armband from which
we deliver the EMG data to an Android smartphone via Blue-
tooth. Additionally, we collect ground truth force data using
a measurement setup. This allows us to train regressors for
the exerted strength and the force values also serve as labels
for classification (then reduced to zeros and ones). The setup
consists of a measurement circuit using three movable force-
sensitive resistors wired to an Arduino Yún, which is itself
connected to a computer. The force-sensitive resistors are
fixed to a board by Velcro pads, in order to adjust them to each
participant’s hand anatomy. We provide a circuit diagram in
the supplementary material for potential follow-up research.
The smartphone and the Arduino are synchronized via an NTP
time server. Note that the setup for ground truth is only re-
quired for collecting training data and not at test time or in a
real application. We convert the force signal to Newtons (reso-
lution 0.01 N). Typical pressing forces that can be comfortably
3https://www.synaptics.com/products/touchpad-family/
forcepad

exerted range from 0 to 12 N. The Myo samples at a rate
of 200 Hz from eight channels (i.e. eight sensors) in a value
range from -128 to 127 (unitless). The Myo’s sampling rate is
relatively low when compared to standard EMG measurement
devices (sampling rate commonly around 2 kHz). Potential
line noise interference at the frequencies 50 Hz and 60 Hz are
automatically filtered.

Each session consists of a series of presses for each finger,
with soft (around 2 N to 4 N) and strong presses (around 8
N to 12 N), and a period where the participant modulates the
pressing force from low to high (i.e. from 0 N to 12 N). This is
done for the thumb, the forefinger, the middle finger, and also
all combinations of the three. Because we also record combi-
nations, we only included three digits in the data collection
in order to keep sessions short. A single session takes around
five to seven minutes. We segment every recording in time
windows with a length of 10 EMG samples with an overlap of
9, i.e. every window represents a time span of 50 ms over eight
EMG channels and for every 5 ms of recording we produce a
new window. This way we generate a high number of training
samples even for short data collection trials.

We collected data from 18 participants (six females, 20 to
66 years old, average age 27 years). During data collection,
the participants were sitting at a table. We tried to keep the
placement between different sessions and participants as simi-
lar as possible. In total we gathered 1,819,846 samples. All
our participants wore the armband on the right arm, however
it should be simple to integrate also the left-handed case by
mirroring the EMG channels [14]. For fifteen participants,
we collect a second EMG session for a user-dependent, but
session-independent experiment design. For two of these, we
recorded another seven sessions, i.e. nine in total, in order to
examine the effect of utilizing an increasing amount of train-
ing data. For all the participants with at least two sessions, the
recordings were carried out at least one day apart from each
other. As mentioned above, our dataset also includes touch
and force data for any combinations of thumb, forefinger, and
middle finger which were collected in the same sessions and
the same way as the single touch gestures. They are not used
in the evaluation of this paper, but we plan to do so in the
future.

Finger Classification and Force Estimation
As dataset for the classification task, we use all samples with
forces over 2 N for a single finger and under 1 N for the other
two fingers to remove finger combinations, and converted the
force values into classification labels. In most previous works
based on EMG, researchers have used hand-crafted features
for classifiers such as Support Vector Machines. In first exper-
iments using the data of all participants, we evaluated several
approaches with several different sets of features gathered
from the literature. However, although we tested a vast set of
combinations of features, we could not exceed a test accuracy
of around 65% on our dataset. Thus, we decided to design a
neural network for finger classification with the intention that
the network would learn the best features, relieving us from the
requirement of performing feature engineering and selection,
an approach recently also followed by other researchers [7, 8].

https://www.synaptics.com/products/touchpad-family/forcepad
https://www.synaptics.com/products/touchpad-family/forcepad
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Figure 2: Our architecture for finger classification consisting of two convolutional layers with k and l filters, one fully-connected
layer with m units, three stacked LSTM cells with m units each, and finally a softmax layer. The LSTM cells take five consecutive
windows into account.

Our architecture is depicted in Figure 2. Since hand-crafted
features are mostly computed per EMG channel, we decided
to do the same. The first network layer learns features per
channel. Since we want it to learn the same features for each
channel, the weights of the corresponding neurons are shared.
This has the beneficial property of being the same as a con-
volution over an image with 1×w filters without padding,
where w is the width of the image. In our case the “image”
consists of eight EMG channels with a window of 10 values
each, hence the filters have the shape 1×10. The result of this
first layer are k 8×1 feature maps, where k is the number of
filters. Keeping k variable allows to control the complexity of
the network. To reduce the number of feature maps we add
a convolutional layer with l 1×1 filters (l should be smaller
than k). These take all k features from the previous layer into
account and produce l higher-level features.

The feature maps are then reshaped into a single vector which
is the input to the rest of the network. It consists of a fully
connected layer with m units, three fully connected LSTM
(Long Short Term Memory) cells, also with m units each, and
a softmax layer to output the probabilities for each finger. In
the fully connected layer we use dropout with a dropping
probability of 0.5. The fully connected layer is able to take
every combination of features resulting from the convolutional
layers into account. This is a great advantage compared to
other classifiers, where these combinations of channel features
have to be encoded in specific multi-channel features (c.f. for
example [6]). The motivation for the LSTMs is that they allow
us to take information over several windows into account, thus
allowing to exploit both temporally local information from
single windows as well as longer dependencies. We train the
LSTM cells on sequences of five windows and during testing
also feed sequences of five windows. The number of outputs of
the softmax layer corresponds to the number of fingers taken
into account in the specific experiment, i.e. there are either
two or three. The number of feature maps in the convolutional
layers, and the number of units in the LSTM cells are given as
variables to control the complexity of the network to adapt to
different amounts of available training data. We use a cross-
entropy loss function, an Adam optimizer with a learning rate

of 0.0025 and a batch size of 200. The number of training
epochs varies for the different experiments, to control for
overfitting. We implemented the network in TensorFlow4,
trained it on a computer and exported the model file to our
Android application. The model size is only about 140 KB.
The runtime for all our models is below 10 ms on average on
an LG Nexus 5X and hence fulfils real time requirements for
human-computer interaction. We smooth the predictions using
a majority vote over the last five predictions to make the results
more stable. In the evaluation this is only done when we test
on whole sessions (either in the user-independent or the user-
dependent, session-independent setting), as the smoothing
requires time-continuous sequences.

To obtain a force value for the finger press, we use the mean
absolute value over all channels and the whole window (MAV)
as calculated by MAV = 1

8∗w ∑
8
1 ∑

w
1

∣∣vi j
∣∣ where i indexes one

out of the eight channels and j indexes one out of the w sam-
ples per window. This is a good indicator of force (cf. Sec-
tion “Evaluation”), which does not have to be learnt. As
the predictions, we also smooth the MAV to make the val-
ues more stable. If we allow user-dependent calibration,
we can also fit a regression function. We use a linear re-
gression model solely based on the MAV to map the MAV
to actual force values. The code and data are available at
https://github.com/vincentbecker/TouchSense.

EVALUATION

Finger Classification
We carry out several experiments, including mixing all data
and performing cross-validation, a user-independent, and a
session-independent design. For all our experiments, the de-
scription, including the network configuration, the evaluation
method, and the average accuracy are given in Table 1. When-
ever applicable, we perform 30-fold cross-validation, other-
wise we apply cross-validation across participants or multiple
sessions of the same participant. For the user-independent
(no. 2 and 5) and the session-independent experiments (no. 3
and 6) we apply prediction smoothing as mentioned in Sec-
tion “Finger Classification and Force Estimation”. For the
4www.tensorflow.org
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Experiment no. Setting Cross-validated Fingers Configuration Accuracy

1 All data mixed 30-fold t, f, m 64, 8, 256 97.4%
2 User-independent Across users t, f, m 64, 8, 256 48.4%
3 User-dependent, session-independent Across sessions per participant t, f, m 32, 4, 32 72.6%
4 All data mixed 30-fold t, m 64, 8, 256 98.7%
5 User-independent Across users t, m 64, 8, 256 70.1%
6 User-dependent, session-independent Across sessions per participant t, m 32, 4, 32 86.8%

Table 1: The description of the experiments including the cross-validation, which fingers were included (t: thumb, f: forefinger, m:
middle finger), and the network configuration (k, l, m). The results are given as the average accuracy over all folds and participants.

other experiments, the data is shuffled, hence it loses its se-
quential character and smoothing is not applicable. We always
balance the data for training, i.e. we use the same number
of samples per class to avoid skewed data proportions in the
training process. Whenever possible, we also give more de-
tailed performance figures in the form of confusion plots and
accuracy charts. The confusion plots display the normalized
confusion matrix (all numbers divided by the total number
of samples), which in case of experiments no. 2, 3, 5, and 6
is the average of the normalized confusion matrix for each
participant (no. 2 and 5) or session (no. 3 and 6). The accuracy
charts display the accuracy when testing on a single participant
in the user-independent experiments (no. 2 and 5) or the aver-
age test accuracy per participant for the session-independent
experiments (no. 3 and 6).

Classification with three fingers
First of all, we perform our evaluation on all the data, including
the thumb, the forefinger, and the middle finger.

Experiment 1
In a first experiment, we evaluated the setting of mixing the
samples of all users and performing cross-validation. Due to
the large number of samples, we deploy a relatively complex
network. We train for 100 epochs and obtain a test accuracy
of 97.4%. The confusion plot in Figure 6a shows how few
misclassification there are. This proves that our neural network
is able to capture the characteristics of the EMG signals.

Experiment 2
In a second experiment, we attempted the most challenging
setting, a cross-validation on users, i.e. excluding a single
participant’s data from the training set and testing on this
data in order to evaluate how user-independent our system is.
Unfortunately, we obtain poor results for most participants as
shown in Figure 3, and confirmed by the confusion matrix (c.f.
Figure 6c). This is a result of the inter-personal anatomical
differences and that the sensors are placed a little differently
for every participant. It shows how individual the EMG data of
each participant is. The user-independent design is generally
a challenge in previous literature as well. The performance is
generally poor, however our main goal and measure is high
performance in the session-independent experiments.

Experiment 3
As a consequence of experiment 2, we moved to a user-
dependent, but session-independent design in the third ex-
periment, which resembles a real-world scenario where the
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Figure 3: Accuracies for participants in experiments 2 and 5.

system has to be trained once per user. For this purpose, we
recorded at least two sessions for fifteen participants. We
perform cross-validation on the sessions, i.e. we test on each
session, after having trained on all the others. Note that for
this experiment, we have much less training data, so we re-
duced the training epochs to 20 and also the layer sizes as
shown in Table 1 to avoid overfitting. The results (c.f. Fig-

1 2 4 5 6 7 8 9 10 11 12 13 14 17 18

Participant

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

All fingers

No forefinger

Figure 4: Accuracies for participants in experiments 3 and 6.

ure 4 and confusion matrix 6e) are much improved from the
user-independent setting, as the variance now is only caused



by differences between sessions, but not between people. As
the sessions were at least a day apart, this proves that we can
generalize over a longer time period. As our evaluation for the
limited set of two participants with nine sessions each show
(cf. Section “Finger Classification with more Data”), we can
expect to obtain better results with more data per participant.

Classification with two fingers, experiments 4 to 6
A problem we identified and which is shown clearly by the
confusion matrices in Figures 6a, 6c, and 6e is that the forefin-
ger is often confused with either the thumb or the middle finger.
We thus also investigated the case of only classifying thumb
and middle finger and reran all our previous experiments. We
show the result in the confusion matrices in Figures 6b, 6d, and
6f and as second bars in the accuracy figures. As expected, the
results for this case are better than in the three-finger case for
all experiments. Especially experiment 6 with over 86% shows
that our system can be valuable for real-world applications.

Finger Classification with more Data
As mentioned above, for two participants we collected nine
sessions to investigate the effect of training with more data on
the classification accuracy in the session-independent case. In
Figure 5 we show the accuracy when training on an increasing
amount of sessions and performing cross-validation for each of
the two participants (including all three fingers, i.e. resembling
experiment 3). With more sessions used for training, the
performance significantly increases for both participants. We
believe that we could achieve a higher overall performance
with more training data for each participant.
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Figure 5: The accuracies in the session-independent exper-
iment for two participants when increasing the number of
sessions for training.

Force Estimation
As mentioned in Section “Finger Classification and Force
Estimation” we use the mean absolute value over all channels
and the whole window (MAV) as default force estimation.
The Pearson’s correlation coefficient of the force ground truth
value and the MAV for all participants is 0.87 on average,
which proves that the MAV is a good proxy for the force and
changes in the MAV correspond to changes in the force. For
participants with more than one session, we average the results
over all of them.

Nevertheless, if data for calibration is available, e.g. in the
multi-session setting, we can fit a regression function. For
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Figure 6: Confusion plots for all the experiments.

each participant, we fit a linear regression model based on
the MAV and cross-validate it (10-fold). For participants with
multiple sessions, we average their results again. The average
mean absolute error (MAE) over all participants is 1.26 N,
i.e. roughly 10% of the usual force range, which reaches up
to 12 N. When smoothing the results over five predictions,
as we do it also for the classification, the MAE decreases to
1.22 N. Figure 7 depicts the ground truth force values, the
MAV (scaled by a factor of 50), and the predicted force values
from a linear regression model for a segment of a session with
10,000 samples. It exemplifies that the MAV reflects changes
in the force well. Nevertheless, the regression model performs
better, especially in areas where no force is applied. Here
the MAV is still positive, which results from sporadic EMG
activation. For all participants with two sessions, we fit a linear
regression function on one session and applied it on the other
(and vice versa) without smoothing. The average MAE for
this session-independent scenario is 1.28 N, which shows that
the calibration of the regression system works across multiple
sessions. The results of this evaluation are given in Figure 8.

LIMITATIONS
The user-dependence still is a strong limitation, i.e. our system
has to be trained per user. Besides, to be able to train the force
regression, ground truth force values are necessary, which we
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Figure 8: The mean absolute errors (MAE) when cross-
validating linear regression models trained on the MAV and
force ground truth from individual, and from multiple sessions.

measure with our hardware setup. However, this is not avail-
able everywhere and it does not appear reasonable for every
user to have one. Nevertheless, the finger classification could
be trained without the exact force information only by instruct-
ing the user to perform a series of finger presses and recording
the data. This approach would not require any hardware apart
form the smartphone and the Myo, which are anyway needed
for the normal use. Furthermore, the user could still obtain
a force estimate through the MAV which does not have to
be learnt from training data. The user-dependence might be
solved by using more data for training, as the original Myo
gestures also work user-independently. A further practical lim-
itation is that the Myo is not particularly comfortable to wear,
especially after a longer period of time. However, we expect
there to be lighter and more comfortable device developments
in the future, maybe even sewn into clothing garments.

APPLICATIONS
We created several demo applications employing our system.
They show that it is possible to use TouchSense in real-world
scenarios. A visual overview of all the applications is shown
in Figure 1. It is important to note that for all the demos we
use the same model, i.e. did not finetune the model to the
specific use case. Furthermore, in none of them the system
was calibrated during the demo session. A video of our demos
is included in the supplementary material.

The first application (Figure 1a) demonstrates how any sur-
face can be used as an input surface in order to control smart
devices without them being required to have an interaction
surface of their own. Here, a smart lamp can be controlled by
pressing on any surface around it. Pressing with the forefin-
ger decreases the brightness, pressing with the middle finger
increases it. The magnitude of the change adapts to the force
applied by the finger, i.e. strong presses change the brightness
quickly while soft presses change it slowly.

As second application (Figure 1b), we created a tablet app
for marking text. On the screen any finger can be used for
marking the text in a semi-transparent colour. We extend
the interaction surface of the tablet by an imaginary colour
palette controlled by finger presses. Pressing outside of the
tablet screen, e.g. on a table, controls the palette. It includes
three options: Pressing with the thumb changes the colour to
the next colour, pressing with the forefinger sets the stroke
width according to the strength of the touch, and pressing with
the middle finger reverts the last stroke. By employing this
concept we can mitigate the size limitations of the display.

We realized that our system also works for objects held in
the hand without further training. We took advantage of this
and created a tablet drawing application using a stylus (Fig-
ure 1c). The drawing behaviour adapts to the way the stylus
is pressed with the fingers and provides a new drawing inter-
face. When pressing with the thumb on the stylus, the colour
is changed to the next colour, as before. Pressing strongly
with all fingers activates an erase function. This shows that
TouchSense cannot only enhance the interaction with smart
devices such as tablets, but also extend the functionality of
usual “non-intelligent” objects such as the stylus.

In our last demo we present an outdoor use case (Figure 1d).
We create an Android map application for cycling, showing a
map and the current position, which can be controlled by press-
ing on the bicycle’s handlebar without letting it go, strongly
facilitating the control of the map. While riding the bicycle,
the cyclist can change the map type by pressing the thumb on
the handlebar, zoom out by pulling on his / her forefinger, and
zoom in by pulling on his / her middle finger.

CONCLUSION
We presented TouchSense, a mobile system to augment a
human with a sensing mechanism to classify touch gestures
including the thumb, the forefinger, and the middle finger and
estimating the force of the touch from EMG data. Through
TouchSense, all surfaces in the environment are turned into
interaction areas. Besides, existing interaction paradigms can
be enriched with additional features.



To gather the EMG data, we employ an inexpensive, wireless
EMG armband. The EMG data is then processed on a smart-
phone in real time to classify the finger used in the interaction
and estimate the force applied. Moreover, for training we
collect ground truth force data in order to provide labels and
enable us to fit regression models for the force estimation. The
classification is done by a convolutional neural network we
specifically designed for the purpose of EMG analysis. It runs
on a standard smartphone in under 10 ms per inference and is
at most 140 KB large. The evaluation showed that, as expected
also from previous works, a user-independent setting is chal-
lenging and the results are insufficient for a real application.
Nevertheless, in a user-dependent, but session-independent set-
ting our network produces satisfying results, especially when
being trained and tested for only two fingers, which could be
sufficient for many applications. We furthermore showcased
several demos, which prove our system’s real world value.

In the future we plan to collect more data in order to tackle the
challenging user-independent scenario. Furthermore, we aim
at improving our classification neural network and in particular
want to design more sophisticated force regression methods,
such as a regression network running in parallel to the classifi-
cation or a unified architecture for both tasks. Finally, another
challenge we consider for the future is classifying not only
single fingers, but also finger combinations.
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