
Design and Implementation of a Gateway for
Web-based Interaction and Management of

Embedded Devices

Vlad Trifa1,2, Samuel Wieland1, Dominique Guinard1,2, and Thomas Bohnert2

1 Institute for Pervasive Computing, ETH Zurich
2 SAP Research CEC Zurich

8008 Zurich, Switzerland
Corresponding author: vlad.trifa@ieee.org

Abstract. Wireless Sensor Networks provide unprecedented possibili-
ties for monitoring and interacting with the real-world. Unfortunately,
the lack of open and simple standards for ad-hoc collaboration between
heterogeneous embedded devices makes it difficult to build large-scale
deployments; every particular application requires complex integration
work, and therefore technical expertise, effort and time. Inspired by the
success of Web 2.0 mashups, we propose a similar lightweight approach
for interacting with networked devices. In particular, we describe a gate-
way architecture that enables to access sensor nodes through a RESTful
interface. With this approach, interacting with a sensor node becomes
as easy as typing a URI in a Web browser. By reusing the architectural
principles of the modern Web, we show how one can built a loosely cou-
pled infrastructure for the Web of Things that scales well and extends
the current Web to the real world.

1 Introduction

Although the field of wireless sensor networks (WSN) is still in its infancy, com-
panies that sell embedded sensing systems are already flourishing (Sentilla, Arch
Rock, Streetline, etc). These devices provide unprecedented possibilities for mon-
itoring and interacting with the real-world and could be an invaluable help in
many disciplines. Unfortunately, most sensor network projects have focused on
building vertical solutions designed for very specific applications that run as
isolated, small scale testbeds. As a consequence, the lack of commonly agreed
standards for sensor networks has resulted in a wide variety of hardware and soft-
ware platforms that are usually incompatible. Without a set of simple and open
standards for ad-hoc networking and interaction with embedded devices, build-
ing and maintaining large-scale sensing applications on top of embedded devices
requires extensive effort and expert knowledge, in particular when devices from
different constructors are used. To hide the complexity and heterogeneity of de-
vices and network protocols used, various middlewares for sensor networks have
been proposed [1]. Unfortunately, most existing approaches are too complex for



2 Trifa et al.

non-experts, and also are based on tightly coupled components, which strongly
affects the scalability and evolvability of the whole system. As a consequence,
a worldwide Sensor Web (also called the Internet of Things) where billions of
“smart” objects are shared and can be easily reused, still remains unfeasible.

As demonstrated by the success of the Web, loosely coupled approaches
posses high scalability and robustness - which are fundamental properties for
building a worldwide network of devices. Furthermore, the real value of such ap-
plications comes from the sharing and integration of data among heterogenous
devices. Based on these considerations, we describe in this article a generic and
easy to use middleware to enable ad-hoc interaction between embedded devices.
Our key requirements are to maximize reuse and sharing of embedded devices,
while minimizing the time needed for fast prototyping applications that run on
top of physical sensors. Because the number of embedded devices with direct In-
ternet connectivity is rapidly growing, we propose to fully leverage the existing
and ubiquitous Web standards to build a middleware for embedded devices.

Our approach is based on smart gateways, which are lightweight and exten-
sible software components that enable Web-based interactions with all kinds of
embedded devices. In addition, gateways can be linked together to form hierar-
chical trees that can be further mapped to physical locations. In this manner our
approach can highly scale, and at the same time support location-based services.
The role of gateways is not to replace existing sensor networks, but to facilitate
finding and reusing of shared devices using standard Web technologies. From the
perspective of a web programmer, devices become web resources that can be ad-
dressed and used to build mashups. More experienced programmers can change
the driver implementation that controls the communication between the sensor
network and the gateway to fit their particular needs. For WSN developers, the
gateway simplifies greatly the process to export data and functionality of the
WSN to be provided to end users on the web. Using our gateway system do not
require to change existing deployments, but only to implement a specific driver
into the gateway to interact with the sensor network.

For certain applications tight coupling using proprietary solutions remains
the most desirable choice for building high-peformance systems with real-time
requirements (as for example in the industrial automation or banking domain).
Specific tight-end coupling can be used in back-end for such very particular tasks
(based on proprietary solutions). These systems can expose their functionality in
a high-level abstraction that can be accessible from the web in a plug-and-play
manner so that it can be used directly over HTTP. However, much simpler loosely
coupled approaches are to be preferred for tasks with more modest requirements
(which represent most use cases for data monitoring and home applications),
because of their inherent flexibility and intuitive use.

2 Related Work

The idea of linking physical objects with the Web is not new, and early ap-
proaches used physical tokens (such as bar codes or RFID tags) to retrieve infor-



Gateways for Interaction and Management of Embedded Devices 3

mation about objects they were attached to [2, 3]. For example, in the Cooltown
project [4] each thing, place, and person have an associated Web page with
information about them. Shaman was an early gateway system that enabled
low-power devices to be part of wider networks [5]. With advances in computing
technology, tiny Web servers could be embedded in most devices [6]. The idea
of each device having its own Web page is appealing because device pages could
be indexed, searched, and accessed by search engines, and this directly from a
Web browser. However, static indexing of mobile devices is not possible when
new devices appear and disappear continuously. Besides, the goal of earlier work
in Web-enabled devices was to provide an online representation of real things
for humans (real-time status displayed on a HTML page), but no attempts to
seamlessly integrate devices into the Web as proactive units nor enabling sharing
and reuse of device-level functionalities has been mentioned.

Many technologies for building distributed applications on top of heteroge-
neous devices have been proposed. Among them, the now classical systems are
CORBA, JINI, or RMI. JXTA [7] is a set of open protocols for allowing devices
to collaborate in a peer-to-peer fashion. JXTA was among the first real attempt
to bridge physical objects in the world with the Internet. More recently, Web
services have also been used to interconnect devices on top of standard Web
protocols [8]. However, these approaches are based on tightly coupled solutions,
where each element had full knowledge about the other peers and the functions
they offered. Unfortunately, such solutions are too rigid to deal efficiently with
the constraints and requirements of mobile embedded devices, in particular for
ad-hoc interaction with new devices with unknown properties.

Several systems for integration of sensor systems with the Internet have been
proposed [9–11]. SenseWeb [12] is a platform for people to share their sensory
readings using Web services to transmit data onto a central server. Pachube
[13] offers a similar community Web site for people to share their sensors and
uses more open data formats. Unfortunately, these approaches are based on a
centralized repository and devices need to be registered before they can publish
data, thus are not sufficiently scalable. Prehofer et al. [14] recently proposed
a Web-based middleware that is similar to our approach, however, they used
the Internet only as a transport protocol, and no references to use a fully Web-
like approach has been mentioned. Also, an interesting approach to use the web
architecture and the semantic Web technologies can be found in [15].

However, most of the existing Web-based approaches use HTTP only to
transport data between devices, whereas HTTP is in fact an application pro-
tocol. Projects that specifically focus on re-using the founding principles of the
Web as an application protocol are still lacking. As pointed out in [16], creation
of devices that are Web-enabled by design would facilitate the integration of
physical devices with other content on the Web, in which case there would be no
need for any additional API or descriptions of resource/function. The approach
found in [17] is similar to ours, but focuses mainly on the discovery of devices
and a more systematic approach and system evaluation is lacking.



4 Trifa et al.

3 Infrastructure for the Web of Things

Even though more and more embedded devices are being connected to the Inter-
net [6, 18], a common ground to enable them to communicate using a uniform ab-
straction is still lacking. As illustrated by the growing popularity of open source
communities and of the do-it-yourself technology, it is very likely that billions
of sensors and physical objects throughout the world could be soon available
on the Internet. The central research question remains - how can one build a
(globally) scalable network of physical devices where these devices can interact
together without any a priori knowledge about each other? As many appliances
have built-in Web servers, and Web access is available practically everywhere
with mobile phones, we propose to reuse the core principles of the modern Web
architecture for sensor networks to take advantage of the scalability, reliability
and “mashupability” properties of the Web. These principles are summarized
under the REST architectural style as described in [19].

The success of todays Web can be explained to a great deal to its simplicity
and openess. Only a few easy guidelines describe how Web components should be
developped and integrated into the Web - and following them leads to so-called
RESTful applications:

– Resources are uniquely addressable through URIs.
– The format and type of the resource representation is described through

MIME-types which give the communication partner the possiblity to chose
the most suitable resource representation available (example: language aware
websites).

– Resources can be accessed/modified with HTTP instructions PUT, POST, GET,
DELETEthat are comparable to traditional database operations. All the in-
structions are self explaining by their name which leads to a much better
understanding of Web interfaces.

4 Gateway System Design

The gateway architecture was designed with three main goals in mind: simplic-
ity, extensibility and modularity. Simplicity and extensibility to enable users
to extend and customize the gateway to their needs. Modularity so that inter-
nal components of the gateway can interact only through small interfaces, thus
allowing the evolution and exchange of individual parts of the system. Our gate-
way implementation is written mainly in Java with several driver components
in C/C++ or Python. The architecture is composed out of three major layers
- the presentation layer (4.2), the control layer (4.3) and the device abstraction
layer 4.4) - each responsible for a well defined set of tasks. Figure 1 shows a high
level overview of the gateway.

4.1 Core

The core specifies the “kernel” of the gateway providing utility classes for all the
components of the architecture. To ensure that there is only one core available



Gateways for Interaction and Management of Embedded Devices 5

Fig. 1. High level overview of the gateway architecture. The graph shows the REST
”External API” towards external clients, The plugin architecture (Eventing, ...) and
the device abstraction (Sunspot Driver, Tmote Driver, ...)

at runtime, the “Singleton-pattern” [20] is used where the core can be accessed
through the static method public static Core getInstance(). At startup configu-
ration files are loaded, the HTTP server for the presentation layer (4.2) is started
and the plugins for the control layer (4.3) are initialized. At shutdown the core
makes sure that the current configuration of the gateway gets stored back to the
configuration files and that all the resources occupied are freed again.

4.2 Presentation

The presentation layer makes the gateway components accessible to the outside
world. It is a thin layer on top of the control layer (4.3) managing requests
from clients through a REST interface. We have used the Restlet framework3

as HTTP server in order to model the most important HTTP operations (GET,
POST, PUT, DELETE).
All the resources on the gateway can currently be retrieved in four different for-
mats (XML, RDF, HTML and plain text) allowing clients to choose their pre-
ferred format. In HTTP requests, the MIME type is used to specify the desired
format. On the server side, in a first phase an XML is generated and then trans-
lated with XSLT stylesheets on the fly. This allows machines to use semantically
enriched RDF formats whereas humans can retrieve an HTML representation.
In addition new formats can be easily added by using XSLT stylesheets.
In order to make the devices attached to the gateway accessible through the
Web, a mapping from device names to URI is performed by the presentation
layer. A device with the name “sensor1” will be mapped to “/sensor1”. This
allows users to browse dynamically the device list. Requests from the web onto

3 http://www.restlet.org



6 Trifa et al.

such a mapping will be redirected to the responsible device driver that then is
responsible to handle the request accordingly (4.4).

4.3 Control

The control layer is composed of several independent components called plugins.
A plugin is a software component that is loaded at startup of the gateway through
the core (4.1). Users can write their own plugins and place them (packed as a jar
file) into the classpath of the gateway. The jar file has to contain a “marker”-file
props/plugins.xml that contains a descriptor for the plugin with the mandatory
fields Version, ID, and Dependency (IDs of plugins that need to be loaded before
this plugin). The “marker” contains the class name that will be used later for
the class-loading. A sample descriptor has the form:

<Descriptor>
<ID>ch.ethz.inf.vs.gateway.plugin.devices.Devices</ID>
<Version>1.0.0</Version>
<Lazyload>true</Lazyload>
<Dependencies/>

</Descriptor>

Plugins are allowed to depend on other plugins (example: the eventing plugin
depends on the device management plugin). To keep a loose coupling between
plugins, a lightweight synchronization mechanism is implemented with the “ob-
server pattern” [20]. The observer (plugin depending on some other plugin) will
be registered on the observable. As soon as the observable changes its state, an
internal synchronization method is invoked informing all the observers about
the change (example: the devices plugin calls this method whenever a device is
removed or added).

Device management plugin The Device Management plugin maintains a
high level view on devices registered at the gateway by using the device ab-
straction (4.4). New device drivers are loaded through dynamic class loading.
By sending a PUT request to the device management with the parameters class
(fully qualified name of the class implementing the device driver) and a unique
device identifier ID new instances of the driver instances can be invoked. Other
plugins (or other layers within the architecture) can query and access the devices
currently registered at the devices plugin by using the unique id.
On each device driver, a “heartbeat” protocol is installed that requires the de-
vice to keep its status “alive”. This means that at regular intervals, a watch-dog
is invoked and iterates over all the drivers and invokes the method isAlive():
boolean. If a driver does not respond with true, the driver gets removed from
the device list. Note that the implementation does not poll the real device for
aliveness - the aliveness test within the driver towards the physical device is
usually performed using an optimized manner depending on the device.



Gateways for Interaction and Management of Embedded Devices 7

Eventing plugin Many sensors read their state in a regular interval and a
programmer usually has to check periodically whether this state has changed or
not. When using sensors over the Internet, polling is inefficient and creates un-
necessary load that can be avoided by using an asynchronous publish/subscribe
model.
From the clients perspective, this is a simple POST-request to the event regis-
tration URI with three mandatory parameters - the leasetime to specifying how
long the registration shall be valid, the keyword specifying the type of event the
registration is for and the callback giving an address where to deliver the events
(see Figure 2). Consider the tree structure from Figure 3. The client registers
at the top node (floor1) for a “fire”-event triggered by any of the sensors in the
subtree of the “floor1”-gateway. As soon as a “fire”-event is triggered on the
gateway, the client will be notified about the event through the callback address
provided in the registration request. In our case, the “floor1”-gateway is also
connected to other gateways in its subtrees. It therefore has to register on these
gateways as well for fire-events. This registration works in exactly the same man-
ner as with the client registration, but this time with the “floor1”-gateway as
client on the different “room”-gateways.

POST /_eventing/registration HTTP/1.1

Host: ip_of_the_registering_client

leasetime=6000

callback=client_callback_address

keyword=fire

Fig. 2. Example for a client event registration. The registration is valid for 6 seconds
(6000ms). Events of type “fire” will be sent to the callback ”client callback address”.

In the current implementation of the gateway, we use this simple event-
ing approach. However, more advanced approaches would be more appropriate
for larger scale implementations. We are currently investigating message broker
methods such as MQTT4 or XMPP5.

4.4 Device Abstraction

Like in almost any modern operating system, the gateway provides an abstrac-
tion for devices. For higher level applications, any type of device looks the same,
even if the underlying implementation differs. The mechanism is comparable to
the one used in Section 4.3.
The device abstraction is illustrated on the left part of Figure 1. Different special-
ized drivers are used to communicate through their ”proprietary” protocol with

4 http://mqtt.org/
5 http://xmpp.org/



8 Trifa et al.

Client

ww

77

floor1

room1

==

}}
room2

gg

((

sensor1

==

}}
sensor2

hh

((

Fig. 3. Sample gateway hierarchy with a gateway at the top of the tree (floor1) with
two gateways in the subtree (room1 and room2). The solid arrows indicate the path
the registration message takes through the gateway. The pointed arrows indicate the
path the event message follow.

the respective physical device (example: SunspotDriver communicates through
ZigBee with the SunSpot). However, from a higher level perspective all the
drivers implement the abstract class Device allowing the device management
plugin to treat all the devices in the same manner.
For devices that are already Web-enabled (that is they support HTTP over
TCP/IP), the driver implementation can simply forward requests from the pre-
sentation layer (4.2) to the physical device. However, when the device is not
Web-enabled (e.g. sunspots do not have an IP stack), the driver is responsible
to translate the web request into a protocol understood by the physical device.
A crucial feature of a device driver is the capability to act as a resource repre-
sentation (or proxy) for the underlying physical device. Consider a temperature
sensor changing its temperature seldomly. Instead of polling the device every
time a client requests the temperature, the driver can store the temperature and
return the value directly, thus minimizing the actual communication with de-
vices. This caching mechanism is very useful for shared access to quasi real-time
sensor data collected with low-power devices.
Along with the eventing mechanism (4.3) and with the fact that all devices are
accessible as Web resources, it is easy to compose higher level devices by com-
bining devices from lower level devices (for example the “RoomState” virtual
resource in Section 5, which is actually a combination of physical sensors).

5 Experimental Design

To illustrate the different properties of the proposed gateway architecture, we
have implemented a simple prototype scenario illustrated in Figure 4. The gate-
way was installed on a laptop computer (2 x 1.6GHz, 2GB RAM), where we
attached a SunSpot base station for ZigBee communication and a Tikitag RFID



Gateways for Interaction and Management of Embedded Devices 9

reader6 to read the Tikitag RFID tags. As SunSpots per se are not IP capable,
a reverse proxy (described in [21]) is used to multiplex ZigBee communication
streams so that the SunSpots can access Web content directly through HTTP.
The virtual RoomState device simulates a temperature regulator of the room.
This regulator can increase or decrease the temperature, and is capable of re-
turning the current value (both directly using REST).

Fig. 4. Prototype setup. The gateway maintains a virtual roomState device. The
Tikitag-reader is attached through the Tikitag driver.The SunSpot connects to the
gateway with HTTP through the reverse proxy.

The RoomState device has registered for events sent by the Tikitag driver. By
placing different Tikitags onto the RFID reader, users can dynamically adjust
the value of the roomstate (e.g. using tag A increases the temperature on the
RoomState device by one degree, whereas tag B decreases the value accordingly).
The SunSpot periodically polls the RoomState device on the gateway using a
GETon the URI of the RoomState resource to read the current value (the tem-
perature of the room). The value is then displayed using different LED colors
(e.g., blue when the temperature is below 10 degrees, green when between 10
and 25 degrees and red when over 25 degrees). Additionally, the SunSpot can
also be used as an input to control the room temperature, for example by using
the acceleration sensor onboard (shaking the sunspot for 5 seconds will issue a
POSTrequest on the RoomState resource). This simple system illustrates a trivial
mashup built on top of completely different devices, where their interaction is
only defined by calling different URIs.

6 System Performance Evaluation

Based on the prototype we described in Section 5, in this section we evaluate
a few interesting aspects with a larger evaluation setup. We have implemented
the gateway on two different test platforms.
6 http://www.tikitag.com/



10 Trifa et al.

– Two computers both running gentoo gnu linux with sun-jre-1.5.0.17 linked
by a 1Gbit ethernet. The gateway was installed on the test server (1.1GHz,
2GB RAM, 1Gbit NIC). The test client (2 x 2.13GHz, 8GB RAM, 1Gbit
NIC) simulated several clients “calling” the server.

– One NSLU running debian gnu linux with sun-jre-1.5.0 as test server (133MHz,
16MB RAM, 100Mbit NIC) and a test client (2 x 2.13GHz, 8GB RAM, 1Gbit
NIC).

6.1 Subscriber Churn

In this test, we evaluate the gateway eventing mechanism under high churn
(meaning that many clients are registering and leaving). The parameters for
testbed 1 (Figure 5) have been set to 100, 500 and 1000 simultaneous clients, for
testbed 2 (Figure 6) to 20, 40 and 100.

100 sub. 500 sub. 1000 sub.

RT 50% 20ms 50ms 170ms

RT 80% 50ms 200ms 3020ms

Mean 24ms 243s 1325ms

Fig. 5. Eventing mechanism in an environment with high churn. The x-axis shows the
delay in miliseconds, the y-axis the percentage of requests fulfilled at the delay (testbed
1 with 1.1GHz server).

When the gateway is installed on the NSLU (setup 2), the results might
indicate a performance problem. To verify this assumption, we must run the
tests also on different hardware with comparable CPU power. On the faster
server, however, the test results indicate that the gateway scales nicely with a
large number of simultaneous clients. With a moderate increase of computational
power (CPU and memory), a much larger number of clients could be supported.

6.2 Caching

To speed up the response time when delivering a page that has to be generated,
a caching mechanism has been used within the gateway. As long as the repre-
sentation did not change, the generated representation will be cached and the



Gateways for Interaction and Management of Embedded Devices 11

20 sub. 40 sub. 100 sub.

RT 50% 4280ms 5280ms 6690ms

RT 80% 4540ms 7720ms 8320ms

Mean 3942ms 6319ms 6800ms

Fig. 6. Eventing mechanism in an environment with high churn. The x-axis shows the
delay in miliseconds, the y-axis the percentage of requests fulfilled at the delay (testbed
2 with 133MHz NSLU server).

no cache with cache

RT 50% 55ms 5ms

RT 80% 90ms 10ms

Mean 80ms 14ms

Fig. 7. Response times measured with/without cache on testbed 1 (1.1GHz server).

cache will be returned upon subsequent requests. In testbed 1 (Figure 7) and
testbed 2 (Figure 8) 150 GETrequests have been performed sequentially.

In both testbeds caching reduced response time significantly.

7 Discussions

In this article, we have described a lightweight gateway architecture to enable
Web-based interaction with low-power devices that do not have direct connec-
tions with IP-based networks. As the gateways can be easily extended to incor-
porate new devices, users can easily create drivers for any embedded device or
sensor network. This will enable to expose their functionality as URI-identified
resources that are directly accessible on the Web, thus can be manipulated using
HTTP.



12 Trifa et al.

no cache with cache

RT 50% 3560ms 195ms

RT 80% 3640ms 205ms

Mean 3604ms 211ms

Fig. 8. Response times measured with/without cache on testbed 2 (133MHz NSLU).

We have shown that the gateway eventing infrastructure can scale enough to
support many simultaneous clients with a reasonable speed. In most applications,
room-level gateways will have only a few devices and users connected simultane-
ously, therefore are sufficient for most use cases where a delay of a few seconds
is tolerable. The tests with the NSLU device have shown possible bottlenecks
when dealing with constrained devices, so further work is required to reduce
the computational requirements. Nevertheless, the results we have obtained are
encouraging and the overhead introduced by our system when gateways are con-
nected directly to the Internet are negligible. However, the overhead increases
quickly when gateways are combined into complex trees, unless all the gateways
in the system can be accessed directly from the Internet.

In addition, we have shown how caching of sensor values reduced response
time significantly. This is especially true for reading data from physical devices
that seldomly change their state. However, in the case where the cache entry
is invalidated right after generation by a state change on the device, the cache
maintenance overhead could degrade overall performance of the gateway. For
most monitoring application where devices are shared publicly, data from devices
can be accessed directly using the resource URI, while in fact the data is being
generated by the gateways, and no real communication with the device is taking
place. This process is fully transparent to Web clients, so this contributes highly
to the global scalability of the system, even when the gateway is running on a
small device such as the NSLU.

Web standards allow any device to speak the same language as other re-
sources on the Web, making it much easier to integrate the real world with any
other Web content, so that physical things can be bookmarked, browsed, googled,
and used just like any other Web page. However, a resource-oriented approach
shall not be religiously considered as the miracle solution for all problems. In
particular, tightly coupled system that involve very specific functionalities and
need high performance would still benefit more from the traditional RPC-based
approaches. Nonetheless, Web 2.0 mashups have significantly lowered the entry



Gateways for Interaction and Management of Embedded Devices 13

barrier for the development of Web applications, which is now accessible to non-
programmers. As demonstrated by the success of the Web, the development of a
set of simple, reusable, and modular software components can greatly facilitate
the integration of embedded devices within Web applications.

8 Conclusions and Future Work

In this paper we have shown how the Web can be used to build a network of
heterogenous, yet interoperable, devices that can be found and used both by ma-
chines and humans. By using a resource-oriented approach and REST, instead
of SOAP-based Web Services, we fully leverage the existing Web standards to
increase the modularity and interoperability of the different components. This
results in more flexible applications that scale well, but also that blend symbi-
otically with the existing Web without requiring any change. We have described
a prototype of such a fully web-compliant architecture suited for wireless sen-
sor networks. We have used this prototype to illustrate how one can very easily
combine real-time information from different physical devices without requir-
ing any advanced knowledge in Web Services and complex middleware systems.
Our proposal is to reuse the core principles of the Web (REST) as a basis for
a lighter and standardized middleware for networking all kinds of devices. By
considering sensor networks as distributed Web applications, one can shift from
monolithic applications towards a fully decentralized and flexible solution. Such
an open and standardized middleware would encourage widespread adoption by
maximizing reuse and lowering the access barrier for people to use and develop
applications on a much wider ecosystem of interconnected devices. In the long
run, extending the Web to easily integrate physical devices will reshape the In-
ternet into a multipurpose collection of physical and virtual resources that can
be easily (re)combined at run-time to solve any task at hand.

References

1. Wang, M.M., Cao, J.N., Li, J., Dasi, S.K.: Middleware for wireless sensor networks:
A survey. Journal of Computer Science and Technology 23(3) (May 2008) 305–326

2. Roy, W., P., F.K., Anuj, G., L., H.B.: Bridging physical and virtual worlds with
electronic tags. In: CHI ’99: Proceedings of the SIGCHI conference on Human
factors in computing systems, New York, NY, USA, ACM (1999) 370–377

3. Ljungstrand, P., Redström, J., Holmquist, L.E.: Webstickers: using physical tokens
to access, manage and share bookmarks to the web. In: DARE ’00: Proceedings of
DARE 2000 on Designing augmented reality environments, New York, NY, USA,
ACM (2000) 23–31

4. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal,
G., Frid, M., Krishnan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M.:
People, places, things: web presence for the real world. Mob. Netw. Appl. 7(5)
(2002) 365–376

5. Schramm, P., Naroska, E., Resch, P., Platte, J., Linde, H.: Integration of limited
servers into pervasive computing environments using dynamic gateway services.



14 Trifa et al.

Technical Report 0202, Computer Engineering Institute, University Dortmund,
Germany (2002)

6. Borriello, G., Want, R.: Embedded computation meets the World Wide Web.
Commun. ACM 43(5) (2000) 59–66

7. Traversat, B., Abdelaziz, M., Doolin, D., Duigou, M., Hugly, J., Pouyoul, E.:
Project JXTA-C: Enabling a Web of Things. In: Proceedings of the 36th Annual
Hawaii International Conference on System Sciences. (2003) 282–290

8. Priyantha, N.B., Kansal, A., Goraczko, M., Zhao, F.: Tiny Web services: design
and implementation of interoperable and evolvable sensor networks. In: SenSys
’08: Proceedings of the 6th ACM conference on embedded network sensor systems,
New York, NY, USA, ACM (2008) 253–266

9. Gibbons, P., Karp, B., Ke, Y., Nath, S., Seshan, S.: IrisNet: an Architecture for a
Worldwide Sensor Web. IEEE Pervasive Computing 2(4) (2003) 22–33

10. Balazinska, M., Deshpande, A., Franklin, M., Gibbons, P., Gray, J., Nath, S.,
Hansen, M., Liebhold, M., Szalay, A., Tao, V.: Data management in the worldwide
sensor web. Pervasive Computing, IEEE 6(2) (2007) 30–40

11. Open Geospatial Consortium Inc.: OGC Sensor Web Enablement: Overview and
High Level Architecture. White paper OGC 07-165 (2007)

12. Kansal, A., Nath, S., Liu, J., Zhao, F.: SenseWeb: an infrastructure for shared
sensing. IEEE Multimedia 14(4) (2007) 8–13

13. Haque, O.: Pachube. Online at http://www.pachube.com

14. Prehofer, C., van Gurp, J., di Flora, C.: Towards the web as a platform for ubiq-
uitous applications in smart spaces. In: Second Workshop on Requirements and
Solutions for Pervasive Software Infrastructures (RSPSI), at Ubicomp 2007. (2007)

15. Vazquez, J.I., de Ipiña, D.L., Sedano, I.: Soam: A web-powered architecture for
designing and deploying pervasive semantic devices. IJWIS - International Journal
of Web Information Systems 2(3-4) (2006)

16. Wilde, E.: Putting things to rest. Technical Report UCB iSchool Report 2007-015,
School of Information, UC Berkeley (November 2007)

17. Stirbu, V.: Towards a RESTful Plug and Play Experience in the Web of Things.
IEEE International Conference on Semantic Computing (Aug. 2008) 512–517

18. Dunkels, A., Vasseur, J.: IP for Smart Objects Alliance. Internet Protocol for
Smart Objects (IPSO) Alliance White paper (September 2008)

19. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, Irvine, California (2000)

20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional (November
1994)

21. Guinard, D., Trifa, V., Pham, T., Liechti, O.: Towards Physical Mashups in the
Web of Things. In: Proceedings of the 6th International Conference on Networked
Sensing Systems (INSS). (2009)


