
Content Creation on the Web: Mashing Up the
Real World With the Internet

Vlad Trifa

Institute for Pervasive Computing, ETH Zurich
SAP Research CEC Zurich,

Kreuzplatz 20, 8008 Zurich, Switzerland
vlad.trifa@ieee.org,

Homepage: http://www.vladounet.com

Abstract. The creation and management of digital content has become
more and more complex with the constant miniaturization of sensing
and computing devices. With the heterogeneity of sensors, hardware and
software platforms, middlewares, and protocols available, there are still
many challenges that need to be solved before being able to live safely in
a world with computers embedded everywhere. In particular, it is very
difficult to develop systems that can be seamlessly integrated with exist-
ing infrastructures and other networks, and that could be unambiguously
understood and used by other humans or machines. Therefore, we pro-
pose some insights on how one could use the Internet and its standard
protocols (HTML, XML, etc) to connect heterogenous sensors/actuators
networks together and to allow external user to use them easily.

1 Introduction

In the last decade, a tremendous progress in the field of embedded systems has
given birth to a myriad of cheap, tiny, and generic computers (such as Arduino1,
Gumstix2, SunSPOTs3, etc), where virtually any type of sensors/actuators can
be attached. Provided sufficient computational resources, and low-power commu-
nication capabilities, collaboration between multiple devices is possible, which
opens a whole world of possible applications that could not be envisioned before.
Such tools would be an invaluable help for field biologists, artists, structural en-
gineers - if only they were simpler to program and to use. Indeed, usage of these
off-the-shelf devices is limited to the few makers and geeks among us [1].

Although the state-of-the-art in wireless sensor networks does not allow these
systems to comply with hard real-time constraints, the technology is widely
available nowadays. Yet, most research projects are still devoted to improve the
performance of existing tools rather than develop fully functional systems that
hold on their promises. Why is that to use sensor networks one needs to hire

1 http://www.arduino.cc/
2 http://www.gumstix.com/
3 http://www.sunspotworld.com/



2 Vlad Trifa

an army of computer engineers who are paid to re-implement similar functions
and interfaces over and over again? Simply because every project uses its own
hardware and software; therefore interoperability and performance comparison
is nearly impossible in such a heterogeneous ecosystem of protocols, platforms,
and controllers.

In spite of the increasing popularity of the MAKE movement [2] and the
flourishing of open source communities, progress is still being limited by the
lack of clear, standardized, and interoperable communication protocols. For the
realm of the Internet of Things to materialize (and be scalable), there is an
unmet need to define a common language that can be understood by my fridge,
your TV set, and her car.

Another complication is that for every project, a large amount of work is
devoted to low-level programming on the one hand, and to the creation of flashy
user interfaces on the other hand, which is a waste of resources that could be
used by developers to focus on the application logic. Worse yet, most of these
applications will never be reused again because it simply takes longer to upgrade
them than to create new software from scratch.

The Internet is a stunning example of a global network of computers inter-
operate smoothly together, despite of the large amount of different software and
hardware platforms available. For this reason, we describe in this paper how
open standards that are commonly used on the Internet could be extended to
operate with physical devices (e.g. sensor and actuator networks, mobile phones,
etc). One of the advantages of using Web standards is that devices will be able to
finally ”speak” the same language as other resources on the Internet, therefore
making it very easy to integrate physical devices with any other Web page.

With the large amount of devices that will be connected to this Internet of
Things, manual management and configuration for each device will be simply
impossible, therefore methods that will support automated discovery, configura-
tion, and access to devices will be necessary. With this goal in mind, Semantic
Web Technologies could be used to enable self-configuration of network devices
and automated collaboration among them. In the following section we will dis-
cuss the important components that could be used to offer a simple system to
seamlessly interconnect physical devices to the cyberspace by using Web stan-
dards.

2 Tools and methods

With the miniaturization and pervasiveness of sensing technologies, the gap be-
tween the physical and virtual world is constantly shrinking[3], however inter-
operability between devices from different manufacturers remains very limited
because no unique standard to connect physical devices with Web applications
has been adopted. We have been developing an initial prototype of such a dis-
tributed architecture with an emphasis on clear decoupling between the applica-
tion logic, the physical devices, and the user interface to control it [4]. Access to
a sensor network through a well-defined API would allow virtually any developer



Content Creation on the Web 3

to hit the keyboard and start coding right away while focusing on the applica-
tion logic. And leave the presentation for visual designers. And the low-level
programming to those who like it. Using Web Services, new interaction rituals
can be conceived, where the user interface design is left to the end-user, and the
code doesnt contain a hint about the presentation.

Web Services (WS) can be defined as loosely-coupled, modular, self-contained,
and reusable software components that can be used to develop distributed ap-
plication using standard Web protocols. We advocate the usage of Web Services
for the communication between physical devices and applications, because au-
tomated discovery of new devices, metadata exchange for improved machine-
to-machine communication, secure and reliable messaging, are only a few of the
features offered by Web Services. Combined with a robust platform for the back-
end system as is Java Enterprise, robust and flexible infrastructures for dynamic
networks of heterogenous devices can be implemented (see Figure 1).

Fig. 1. The general architecture of our system is composed of four parts. From left to
right: The Physical layer, consisting of the actual devices; the Gateway layer, which
isthe connection between the physical devices and the system; the Logic layer, contain-
ing the back-end system that logs the data from the devices; and the Interface layer,
which includes any device or interface for an external user or users. Reprinted with
permission from [4].

Allowing any user to create mashed-up applications by composing them at
a functional level on top of existing devices and networks, while abstracting the
low-level implementation can result in significantly reduced development time.
Moreover, using Web Services as a universal interface to access functionality of
devices allows easy integration of networked computing devices from various con-
structors into different visualization and control interfaces, ranging from mobile



4 Vlad Trifa

phones, to Web pages, to enterprise applications. In addition, flexible reconfigu-
ration at run-time to adapt unexpected situations becomes simpler than it has
ever been before.

2.1 Devices and resources on the Web

Unfortunately, Web Services are still not flexible enough to be commonly used
on embedded systems, in particular their use is very limited in highly dynamic
environments where new, unknown devices continuously appear, while other ones
disappear. In addition, Web Services use the Internet only as a transport protocol
instead of being directly integrated into it [5] in which case there would be no
need for any additional API as . We intend to fully leverage widely adopted Web
standards rather than creating new ones in order to facilitate the development of
Web applications that merge physical world and the cyberspace, and are suited to
work in highly dynamic environments. The idea of integrating physical devices in
not quite new [6], however recent Web technologies have become enough mature
and powerful to be used flexibly in highly dynamic contexts, as for example the
stream feeds [7].

We advocate the development of future networked things using the ”repre-
sentational state transfer” (REST) architectural principle, first coined in Roy
Fielding’s PhD thesis [8]. The idea behind REST is that the different properties
and functionalities of a devices can be viewed as resources that can be accessed
using a global identifier (URI), and data can be exchanged between the different
components of the network directly over HTTP with no need for an additional
messaging layer (such as SOAP). The main advantage is that, this provides a
much more loose coupling than Web Services, as devices are stateless, and func-
tions can be called simply by accessing a specific URL. More information about
how REST could be used to integrate physical things in into the Web can be
found in [5]. A few examples of possible function calls will are shown. The return
type of these function will ideally be suited to the context of the call (current
user and application, with other contextual data, such as location, etc).

Retrieve information about the owner of a device (by default could returns
the data using hCard microformat, see section 2.2):

http://mydevice/owner/

Get the current geo-location of the device in a format context-dependent
format depending on the process or device that accesses this URL (for example
global coordinates or the address of a building):

http://mydevice/location

Get the list of all italian restaurants in this city:

http://mydevice/location/city/restaurants/italian

Book a table for 4 persons at the third restaurant returned in the previous
list:



Content Creation on the Web 5

http://mydevice/location/city/restaurants/italian/3/book/people/4

There is a need to provide a means to automatically retrieve the possible
functions that can be called on a device, and in the context of Web Services this
could be done by creating a machine-readable using the Web Service Description
Language (WSDL). However, when it comes to tiny embedded devices with
limited communication and computing power, it would be difficult to store a
complete WSDL file locally. New devices that connect to the network should only
send minimal information about themselves (device type), and a more powerful
gateway will dynamically generate a proxy Web page for the device by using a
WSDL retrieved on the homepage of the constructor for example. In addition
to the static information retrieved from the WSDL file, real-time information
about the device could also be embedded into the device homepage by data send
directly from the device. The idea of associating a Web page for each device
(be it stored locally or created on the fly by more powerful devices) is to allow
any device to be indexed, searched, and accessed in a similar way that is done
by current search engines. However, static indexing of devices is not possible in
dynamic context where new devices (dis)appear continuously.

2.2 Semantic Web technologies

The Semantic Web is not a new technology, as it has been developed in parallel
with Web Services to allow increased automation, by transforming the data pub-
lished only for humans in a format that is machine readable. In order to enable
digital content to be understood by software agents, one has to use a formal
and unambiguous representation of knowledge, and for that languages such as
OWL4 or RDF5 can be used, but we won’t discuss these in detail here. Our idea,
is to adapt these languages to be useful in the context of Ubiquitous computing,
in particular to allow autonomous configuration of devices, and collaboration
between them to execute high-level task with no human intervention. One could
find initial efforts in this direction in [9]. However, in our research we intend to
use Microformats6, which are a set of simple and open data formats built upon
existing standards, as they intend to extend existing Web, rather than building a
new one. Also, the idea behind microformats is to embed simple semantic infor-
mation within standard xhtml code, so that a single page can be simultaneously
understood by a human and processed by a machine.

2.3 Dynamic discovery of services

The concept of discovery has been central in most distributed computing paradigms,
and play an essential role in sharing and using resources on open networks. In
particular, when it comes to highly dynamic environments, where many devices

4 http://www.w3.org/TR/owl-features/
5 http://www.w3.org/RDF/
6 http://microformats.org/



6 Vlad Trifa

connect and disconnect, there is a need for a robust mechanism that allows one
to quickly identify, locate, and use devices or services that might not be contin-
uously connected to the network. There are several efforts towards automated
services discovery (for example WS-Discovery or UDDI), unfortunately many of
them offer only very limited options when it comes to the ”real world”, where
no centralized repository can be used and available services on the billions of
devices connected to the Web can dynamically be searched on demand by the
user. Several possibilities for dynamic discovery and search in the context of de-
vices augmented with semantic information about their capabilities have been
proposed, as for example mRDP [9]. To be flexible enough we identify here four
different methods for finding appropriate services which need to be supported in
our system:

– Listen to new devices that appear on the network, and ”bookmark” them in
a central repository to be reused later

– Search by matching keywords or textual information that describe static
metadata (device type, available sensors)

– Browse through a tree classification based on different criteria and on the
current context (location, hierarchy, etc.)

– Use a search string or query that partially describes both static and dynamic
properties of devices (QoS, available battery life, network connectivity)

2.4 Ruby on Rails

We will emphasize the use of Ruby on Rails (RoR)7 for developing different parts
of the system. RoR is a framework based on the Ruby programming language for
developing Web applications according to the Model-View-Control pattern. RoR
offers many advantages that are particularly well suited for fast prototyping of
Web-based distributed application that (REST support by design, easy integra-
tion with Web Services, content negotiation using URI templates), also because
it is a simple and clean language which offers reduced development times.

2.5 Processing

In future work, we plan to explore the programming environment PROCESS-
ING8, developed by Fry and Reas [10], because of the endless possibilities offered
in terms of visualization and integration with other programming languages and
platforms. Also, PROCESSING is a amazing platform for fast prototyping and
interfacing with real devices. We are investigating different connectors within
PROCESSING that will allow any user to design their own interfaces for con-
figuring and controlling various devices that are connected with TCP/IP. In
particular, we plan to start the visualization of large amounts of high frequency
data, and then move on towards decentralized control of devices.

7 http://www.rubyonrails.org/
8 http://www.processing.org



Content Creation on the Web 7

3 Discussion

It is essential to work together towards the development of a set of reusable,
modular, and interoperable software components that will allow to seamlessly
interconnect any type of embedded devices with back-end systems, data-bases,
computing clusters, and visual interfaces. To offer a solid basis for new applica-
tion developers, one should stop considering such applications as monolithic and
unique-usage software that serves only for a special applications with a special
hardware, and end in a cupboard afterwards. Collaboration between researchers
and hackers, and sharing of simple and tested software components will allow
extremely short prototyping times, and be useful to the whole community.

In this direction, we propose to reuse widely used Web standards to build an
interoperable network of heterogenous devices that can be found and used both
by machines and humans. Using adopted standards as opposed to creating yet
other specific ones, will allow to easily make any physical device ”Web-ready”,
thus significantly reducing the development time and costs of distributed Web
applications. Besides, by using a REST approach as opposed to Web Services,
we further increase the modularity and interoperability of the different contents,
which result in an increased scalability and integrate better in available Web
content.

References

1. Igoe, T.: Making things talk. O’Reilly (2007)
2. Gershenfeld, N.: FAB: The Coming Revolution on Your Desktop - From Personal

Computers to Personal Fabrication. Basic Books (2005)
3. Ishii, H., Ullmer, B.: Tangible bits: Towards seamless interfaces between people,

bits and atoms. In: CHI. (1997) 234–241
4. Trifa, V., Cianci, C., Guinard, D.: On the usage of web services for flexible and

dynamic reconfiguration of robotic swarms. In: Proceedings of the International
Symposium on Artificial Life and Robotics (AROB 13th). (2008)

5. Wilde, E.: Putting things to rest. Technical Report UCB iSchool Report 2007-015,
School of Information, UC Berkeley (November 2007)

6. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal,
G., Frid, M., Krishnan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M.:
People, places, things: web presence for the real world. Mob. Netw. Appl. 7(5)
(2002) 365–376

7. Dickerson, R., Lu, J., Lu, J., Whitehouse, K.: Stream feeds: an abstraction for the
world wide sensor web. In: Proceeding of the 1st Internet of Things conference
(IOT), Zurich, Switzerland (2008)

8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, Irvine, California (2000)

9. Vazquez, J.I., de Ipiña, D.L., Sedano, I.: Soam: A web-powered architecture for
designing and deploying pervasive semantic devices. IJWIS - International Journal
of Web Information Systems 2(3-4) (2006)

10. Reas, C., Fry, B.: Processing: a programming handbook for visual designers and
artists. MIT Press (2007)



8 Vlad Trifa

4 Biography

Vlad Trifa is a Research Associate with SAP Research in Zurich, Switzerland,
and studies Wireless Sensor Networks in the context of Enterprise Service-
Oriented Architectures. In the meanwhile, he is also a PhD student at the Insti-
tute for Pervasive Computing at the Swiss Federal Institute of Technology (ETH
Zürich). Prior to that, he designed sensor networks and software to monitor and
recognize tropical antbirds in the Mexican rainforest and in Californian natural
reservations with the Center for Embedded Networked Sensing Group and the
Department of Biology at the University of California, Los Angeles (UCLA).
Afterwards, he spent a year at ATR International Research Center, in Kyoto,
Japan, working on multimodal human-computer interaction, humanoid robotics,
and computational neurosciences. He graduated with a Ms.C. degree in Com-
puter Science with a concentration in robotics and artificial intelligence, from
the École Polytechnique Fédérale de Lausanne (EPFL).


