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Abstract. So-called “Smart Dust” is envisioned to combine sensing, comput-
ing, and wireless communication capabilities in an autonomous, dust-grain-sized
device. Dense networks of Smart Dust should then be able to unobtrusively mon-
itor real-world processes with unprecedented quality and scale. In this paper, we
present and evaluate a prototype implementation of a system for tracking the lo-
cation of real-world phenomena (using a toy car as an example) with Smart Dust.
The system includes novel techniques for node localization, time synchroniza-
tion, and for message ordering specifically tailored for large networks of tiny
Smart Dust devices. We also point out why more traditional approaches devel-
oped for early macro prototypes of Smart Dust (such as the Berkeley Motes) are
not well suited for systems based on true Smart Dust.

1 Introduction

Smart Dust is commonly used as a synonym for tiny devices that combine sensing,
computing, wireless communication capabilities, and autonomous power supply within
a volume of only few cubic millimeters at low cost. The small size and low per-device
cost allows an unobtrusive deployment of large and dense Smart Dust populations in the
physical environment, thus enabling detailed in-situ monitoring of real-world phenom-
ena, while only marginally disturbing the observed physical processes. Smart Dust is
envisioned to be used in a wide variety of application domains, including environmental
protection (identification and monitoring of pollutions), habitat monitoring (observing
the behavior of animals in their natural habitats), and military systems (monitoring ac-
tivities in inaccessible areas). Due to its tiny size, Smart Dust is expected to enable a
number of novel applications. For example, it is anticipated that Smart Dust nodes can
be moved by winds or can even remain suspended in air, thus supporting better mon-
itoring of weather conditions, air quality, and many other phenomena. Also, it is hard
to detect the bare presence of Smart Dust and it is even harder to get rid of it once
deployed, which might be helpful for many sensitive application areas.

Current research (cf. [1] for an overview) is mainly focusing on so-called COTS
(Commercial Off The Shelf) Dust, early macro prototypes of Smart Dust. COTS Dust
nodes such as the Motes [24] developed at UC Berkeley are built from commercially
available hardware components and still have a volume of several cubic centimeters.
Unfortunately, these devices cannot be simply scaled down to the cubic millimeter size
of true Smart Dust. First Smart Dust prototypes [21] demonstrate that the tremendous



volume reduction (factor 1000 and more) may require radical changes in the employed
technologies (e.g., use of optical instead of radio communication) compared to COTS
Dust. These technological changes have important implications for algorithms, proto-
cols, systems, and infrastructure. Our goal is to examine these implications and develop
solutions for the resulting problems. To identify and illustrate these issues, we have de-
veloped an object tracking system that makes use of Smart Dust. This system allows
tracking the location of “targets” with Smart Dust, using a remote-controlled toy car as
a sample target.

Since Smart Dust hardware is currently in a very early prototyping stadium, our
implementation still uses COTS Dust. However, our algorithms and protocols are de-
signed to be directly portable to true Smart Dust, once the hardware becomes available.
In the following sections we first outline the characteristics of Smart Dust, before pre-
senting the details of our object tracking system. Particularly, this includes novel tech-
niques for synchronizing time among the nodes of the network, for localizing Smart
Dust nodes in physical space, and for ordering event notifications according to their
time of occurrence. This will be followed by the presentation of some measurements
and a discussion.

2 Smart Dust

The envisioned dust-grain size of Smart Dust nodes has a number of important impli-
cations with respect to their hardware design. Most importantly, it is hardly possible to
fit current radio communication technology into Smart Dust – both size-wise (anten-
nas) and energy-wise (power consumption of current transceivers) [21]. Hence, Smart
Dust prototypes developed at UC Berkeley utilize a more power and size efficient pas-
sive laser-based communication scheme to establish a bidirectional communication link
between dust nodes and a so-called base station transceiver (BST). For downlink com-
munication (BST to dust), the base station points a modulated laser beam at a node.
The latter uses a simple optical receiver to decode the incoming message. For uplink
communication (dust to BST), the base station points an unmodulated laser beam at a
node, which in turn modulates and reflects back the beam to the BST. For this, the dust
nodes are equipped with a so-called Corner Cube Retro Reflector (CCR), which is a
special Micro Electro-Mechanical System (MEMS) structure consisting of three mutu-
ally perpendicular mirrors. The CCR has the property that any incident ray of light is
reflected back to the source under certain conditions. If one of the mirrors is misaligned,
this retroreflection property is spoiled. The Smart Dust CCR includes an electrostatic
actuator that can deflect one of the mirrors at kilohertz rates. Using this actuator, the
incident laser beam is “on-off” modulated and reflected back to the BST.

This type of design implies a single-hop network topology, where dust nodes cannot
directly communicate with each other, but only with a base station. The base station
can be placed quite far away from the nodes, since the employed laser communication
works over a range of hundreds of meters, provided a free line-of-sight between the BST
and the nodes. Communication may suffer from significant and highly variable delays
if the laser beam is not already pointing at a node which is subject to communication
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Fig. 1. (a) Remote-controlled car (b) “Smart Dust” node.

with the BST. Smart Dust nodes can be highly mobile, since nodes are small enough to
be moved by winds or even to remain suspended in air, buoyed by air currents.

Early prototypes of Smart Dust [22] implement the optical receiver, CCR, a light
sensor, a solar cell, and a simple control unit within 16 cubic millimeters. Future devices
are expected to include a complete processing unit instead of the simple control unit,
provide a wider variety of sensors, and will feature further reductions in size and energy
consumption.

Due to the limited size, on-board devices for energy storage and harvesting can only
provide a tiny amount of energy, thus every hardware and software component has to
be optimized for energy efficiency. Despite the passive optical communication scheme,
data communication still consumes most of the energy. Hence, communication has to
be kept to a minimum. In addition, many thousands of sensors may have to be deployed
for a given task – an individual sensor’s small effective range relative to a large area
of interest makes this a requirement, and its small form factor and low cost makes this
possible. Therefore, scalability is another critical factor in the design of the system.
Note that Smart Dust is subject to frequent communication failures (e.g., line-of-sight
obstructions) and node failures (e.g., destruction due to environmental influences, de-
pleted batteries). Hence, applications must be robust against these types of failures.

While the tiny size of Smart Dust nodes leads to a number of challenging problems
as pointed out above, the anticipated high density of Smart Dust deployments may
allow to monitor environmental phenomena with unprecedented quality and detail. The
tracking system described in the following section has been specifically designed with
the above requirements and characteristics in mind.

3 The Tracking System

The purpose of the tracking system is to track the location of real-world phenomena
with a network of Smart Dust nodes. We use a remote-controlled toy car (Figure 1
(a)) as a sample target. The current tracking system assumes that there is only one car.
Wirelesse sensor nodes are randomly deployed in the area of interest and can change
their location after deployment. When they detect the presence of the car (Section 3.1),



they send notifications to a base station. The base station fuses these notifications (Sec-
tion 3.2) in order to estimate the current location of the car. A graphical user interface
displays the track and allows to control various aspects of the system. The data fusion
process requires that all nodes share a common reference system both in time and space,
which necessitates mechanisms for node localization (Section 3.3) and time synchro-
nization (Section 3.4).

Unfortunately, true Smart Dust hardware is not yet available. Some recent proto-
types are presented in [22], but they still do not include important components like a
full-fledged processing unit. Therefore, we still use COTS Dust for the implementation
of our prototype system. Note however, that this is only an intermediate step to demon-
strate the feasibility of our approaches. Our ultimate goal is to implement the tracking
system using true Smart Dust.

The current sensor node hardware is based on BTnodes (Figure 1 (b)) [25], which
provide Bluetooth communication, an ATMEL ATMega 128L microcontroller, and var-
ious external interfaces for attaching sensors on a matchbox-sized printed circuit board.
The base station consists of a Linux laptop computer equipped with a Bluetooth ra-
dio. In analogy to the single-hop network topology of Smart Dust described in Section
2, BTnodes do not directly communicate with each other, but only with the base sta-
tion. Before communication can take place, the base station has to set up a so-called
Bluetooth Piconet containing no more than 7 BTnodes. To support more than 7 nodes,
the base station has to periodically switch the Piconet in a round robin fashion, such
that eventually every BTnode gets a chance to talk to the base station. Again, this is
very similar to Smart Dust, where the base station has to point the (typically slightly
defocused) laser beam at a group of nodes in order to enable communication with them.

3.1 Target Detection

Tracking targets with networks of sensors has been an active research topic for many
years, [3, 8, 18] give a good overview of many tracking algorithms. Most of the ap-
proaches are optimized for sparse networks, where a high tracking accuracy should be
achieved despite a relatively low node density. To achieve this, many approaches make a
number of assumptions about the tracked target. Methods which estimate target distance
based on signal strength estimates, for example, require knowledge of the intensity of
the signal emitted by the target in order to achieve good accuracy. Approaches based on
measuring the difference of time of arrival of a signal emitted by the target at different
sensor nodes are typically limited to sound or other signal modalities with low propaga-
tion speed. Signal modalities with high propagation speeds such as radio waves would
require distributed clock synchronization with an accuracy of few nanoseconds, which
is typically not available. Other approaches need to know lower and upper bounds of
the velocity or the acceleration of the tracked target.

While these assumptions help to achieve good tracking accuracy, they also limit the
applicability of the tracking system. In order to make our system applicable to a wide
variety of targets, we tried to avoid making assumptions about the target as much as
possible. In order to achieve a satisfactory tracking accuracy nevertheless, we exploit
the anticipated high density of Smart Dust deployments – which is expected because of
the intended small size and low cost of Smart Dust devices.
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Fig. 2. (a) Estimating car location by centroids (b) Data fusion algorithm.

Our approach assumes that the presence of the target can be detected with an omni-
directional sensor featuring an arbitrary but fixed sensing ranger, that is, the sensor can
“see” the target if and only if the distance to the target is lower thanr. The data fusion
algorithm presented in the following section needs to know an upper boundR of this
sensing range. In many applications, the target cannot be instrumented for tracking pur-
poses (e.g., a cloud of toxic gas, an oil slick, fire). The remote-controlled car (used as
a sample target in our tracking system) emits a characteristic acoustic signature which
could be used for detection. However, this signature depends on the velocity of the car.
To avoid the intricacies with detecting this variable signature, we chose in our exper-
iment a different solution based on infrared (IR) light, leaving detection based on the
car’s acoustic signature as future work.

In the current version of the prototype, we equipped the car with an omnidirectional
IR light emitter consisting of eight IR LEDs mounted on top of the car (Figure 1 (a)).
Accordingly, the sensor nodes are equipped with an omnidirectional IR light detector
consisting of three IR photo diodes (Figure 1 (b)). The used IR photo diodes include a
filter to cancel out visible light. The output of the IR detector is connected to an analog-
to-digital (ADC) converter of the BTnode’s microcontroller. If the output value of the
ADC exceeds a certain threshold, the presence of the car is assumed. Using a low-pass
filter, the threshold value is adopted to slowly changing daylight, which also contains
IR components. With this setup, the BTnodes can detect the car at a distance of up
to approximately half a meter. When a node first detects the car, it sends a “detection
notification” to the base station, containing its node ID as well as its time and location at
the time of detection. When the node no longer sees the car, it sends a “loss notification”
to the base station, which contains its node ID and its current time. If the node changes
its location during the presence of the car, a loss notification is emitted, followed by a
detection notification with the new node location.



3.2 Data Fusion

Following the argumentation at the beginning of the previous section, we try to avoid
making assumptions about the target as much as possible. Therefore, the base station
has to derive the current location of the tracked target solely based on detection notifi-
cations and loss notifications received from the sensor nodes.

We use an approach that estimates the car’s location at timet by the centroid of the
locations of the sensor nodes that “see” the car at timet. The centroid of a set ofN
locations{li = (xi, yi, zi)} is defined aŝl := 1
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Consider Figure 2 (a) for an example. Depicted are three sensor nodes (black squares)
with their respective sensing ranges, and two car locations (black circles). The hollow
circles indicate the respective estimated locations (i.e., centroids).

Figure 2 (b) illustrates an algorithm to calculate the car location estimates given the
detection and loss notifications received from the sensor nodes as described in Section
3.1. The figure shows sensor nodes 1 and 2, their respective sensing ranges, and the
trajectory of the car (dotted arrow). When the car enters the sensing range of nodei, a
detection notificationdi is emitted, containing timedi.t and locationdi.l of nodei at
the time of detection. Accordingly, nodei emits a loss notificationli when the car leaves
the sensing range. In a first step, all notifications are sorted by increasing timestamps
di.t (li.t) as depicted on the time axis in the lower half of Figure 2 (b). In a second step,
we iterate over these sorted notifications from left to right, recording the active nodes
(those that currently see the car) in a setS. If we come across a loss notificationli,
we removei from S. If we come across a detection messagedi, we addi to S. Addi-
tionally, we remove all nodesj from S, whose sensing ranges do not overlap with the
detection range of nodei, that is, for which|di.l − dj .l| > 2R holds. This is necessary
to compensate for missed loss notifications, which would otherwise permanently affect
the accuracy of the tracking system by not removing the respective entries fromS. A
missing enter notification will lead to a temporarily decreased tracking accuracy, but
will not otherwise permanently affect the system.

The location of the car during the time interval starting at the currently considered
notification and ending at the next notification is estimated by the centroidŜ of the lo-
cations of the nodes inS (i.e.,d1.l during[d1.t, d2.t), (d1.l+d2.l)/2 during[d2.t, l2.t),
andd2.l during[l1.t, l2.t)).

The localization accuracy of a similar centroid-based algorithm was examined in [2]
in a different context under the assumption that nodes are located on a regular grid. We
can interpret their results for our setting as follows. The localization accuracy depends
on the sensing ranger of the nodes (about 50cm in our case) and the distanced between
adjacent nodes. Forr/d = 2 (i.e., d ≈ 25cm in our case) the average and maximum
localization errors are0.2d (i.e., 5cm) and0.5d (i.e., 12.5cm), respectively. In general,
largerr/d values yield better accuracy. Therefore, the accuracy can be improved by
increasing the node deployment density, since that reducesd while keepingr constant.

3.3 Node Localization

In order to derive the location of the tracked car from proximity detections as described
in Section 3.1, the locations of the sensor nodes have to be estimated. Various systems
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Fig. 3. (a) Lighthouse with parallel beam (b) Lighthouse implementation with two rotating
laser beams (c) 2D location system using two lighthouses.

have been designed for localization purposes. However, most of them are not suited for
Smart Dust. Will will first explain why this is the case, before outlining the solution we
developed for the localization of Smart Dust nodes.

Energy, size, and cost constraints preclude equipping Smart Dust with receivers for
localization infrastructures like GPS. With Smart Dust, it might not even be possible to
equip sensor nodes with transceivers for radio waves or ultra sound due to the tiny size
and energy budget of Smart Dust nodes. Hence, traditional ranging approaches such
as ones based on time of flight of ultrasound signals or received radio signal strength
might be unusable in the context of Smart Dust.

Many localization systems such as [2, 20] depend on an extensive hardware infras-
tructure. Localization systems based on trilateration, for example, require many spa-
tially distributed and well-placed infrastructure components in order to achieve high
accuracy. This is not an adequate solution for Smart Dust, since it contradicts the ad hoc
nature of Smart Dust, where nodes may have to be deployed in remote, inaccessible, or
unexploited regions. Other localization approaches such as [4, 16] require centralized
computation, which results in systems that do not scale well to large numbers of nodes.
To overcome the limitations of infrastructure-based approaches, various schemes for ad
hoc localization have been devised (e.g., [14, 15]). However, these schemes depend on
inter-node communication, which is not scalable with Smart Dust, since any inter-node
communication has to pass through the BST.

An important overhead involved in setting up a localization system is node calibra-
tion in order to enforce a correct mapping of sensor readings to location estimates [23].
In systems based on radio signal strength, for example, the received signal strength
is mapped to a range estimate. Variations in transmit power and frequency among the
nodes can cause significant inaccuracies in the range estimates when used without cali-
bration. Since the cheap low-power hardware used in sensor nodes typically introduces
a high variability between nodes, sensor nodes have to be individually calibrated. This,
however, may not be feasible in large networks.

To overcome the above limitations, we designed and implemented a novel local-
ization system for Smart Dust. This system consists of a single infrastructure device,
which emits certain laser light patterns. By observing these patterns, dust nodes can
autonomously estimate their location with high accuracy. Since dust nodes only pas-



sively observe light flashes, this system is very energy efficient on the side of the nodes.
Moreover, optical receivers consume only little power and can be made small enough to
fit in a volume of few cubic millimeters. Since dust nodes do not need to interact with
other nodes in order to estimate their location, the system scales to very large networks.
Also, node calibration is not necessary due to using differential measurements, where
constant offsets cancel out due to using the difference between two measurements that
use the same signal path.

To understand our localization approach, consider a lighthouse with aparallel beam
(i.e., a beam with constant widthb) as depicted in Figure 3 (a). Assume that it takes the
lighthousetturn for one rotation. When the parallel beam passes by an observer (black
square), the observer will see the lighthouse flash for a certain period of timetbeam.
Note thattbeam and hence the angleα = 2πtbeam/tturn under which the observer sees
the beam, depend on the observer’s distanced from the lighthouse rotation axis, since
the beam is parallel. Usingα, the observer’s distanced from the lighthouse rotation axis
can be expressed asb/(2 sin(α/2)).

A parallel beam can be implemented as depicted in Figure 3 (b): two rotating laser
beams (at high speeds) define the outline of a wide “virtual” parallel beam, which in turn
is rotating around a central axis (at much lower speeds) to create a rotating lighthouse
effect. An observer looking at such a lighthouse sees two sequences of short laser flashes
as the two “laser light planes” rotate by.tbeam can then be obtained by measuring the
amount of time elapsed between the two flash sequences.

Using two such lighthouses, a 2D location system can be constructed as depicted
in Figure 3 (c). The two lighthouses are assembled such that their rotation axes are
mutually perpendicular. The distancesd1 andd2 to the lighthouse rotation axes then
equal they andx coordinates of the observer in the 2-dimensional coordinate system
defined by the lighthouse rotation axes. Accordingly, a 3D location system can be built
out of 3 lighthouses with mutually perpendicular rotation axes. Realizing a lighthouse
with an exactly parallel beam is very difficult in practice. Therefore we developed a
geometrical model of a more realistic lighthouse with an approximately parallel beam
in [13]. Using this model, a 2D prototype (see Figure 4) of the system allows to estimate
sensor node locations with an accuracy of about 5cm in our tracking system.

Figure 1 (b) shows a BTnode with the hardware for receiving the laser light flashes
attached to it. The size of the current prototype of this receiver hardware is about 7cm×
3cm. Using an ASIC, however, this receiver can be fit within few cubic millimeter. The
Smart Dust prototypes presented in [22], for example, contain a similar optical receiver
within a volume of 16 cubic millimeters.

3.4 Time Synchronization

The car location estimation described in Section 3.2 assumes that the timestamps con-
tained in notification messages refer to a common physical time scale, requiring syn-
chronization of clocks of the Smart Dust nodes. Various clock synchronization schemes
exist for a variety of application domains. We will first outline why these approaches
are not suitable for Smart Dust, before presenting our own synchronization approach.

As with node localization, energy, size, and cost constraints preclude equipping
Smart Dust with receivers for time infrastructure like GPS [6] or DCF77 [26]. Also,
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logical time [7] is not sufficient, since it only captures causal relationships between “in
system” events, defined by message exchanges between event-generating processes. In
contrast, phenomena sensed by dust nodes are triggered by external physical events
which are not defined by in-system message exchanges; physical time must be used to
relate events in the physical world.

Many traditional synchronization approaches such as NTP [10] are based on fre-
quently exchanging “time beacons” – messages containing clock readings of the sender
at the time of message generation – among nodes to be synchronized. This leads to syn-
chronization algorithms which are typically not energy efficient. For example, the CPU
is used continuously to perform frequency disciplining of the oscillator by adding small
increments to the system clock. In addition, synchronization beacons are frequently ex-
changed, which can require significant amounts of energy. Also, the CPU may not be
available if the processor is powered down to save energy.

These problems can be solved by rethinking various aspects of a time synchro-
nization service [5]. Energy efficiency, for example, can be significantly improved by
exploiting certain characteristics of sensor network applications. As with our tracking
system, sensor networks are typically triggered by physical events. Hence, sensor net-
work activity is rather bursty than continuous and rather local than global. This leads
to a situation, where synchronized clocks are only required occasionally and only for
certain subsets of nodes. One possible way to exploit these characteristics is called
post-facto synchronization. There, unsynchronized clocks are used to timestamp sensor
events. Only when two timestamps have to be compared by the application, they are
reconciled in order to establish a common time scale.

Our time synchronization approach lets the node’s clocks run unsynchronized.
Timestamps are generated using these unsynchronized clocks. However, if a notifica-
tion message containing a timestamp is sent to the base station, the contained timestamp
is transformed to the receiver’s local time. This transformation can often be performed
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without any additional message exchanges by piggybacking on the notification mes-
sages that have to be exchanged anyway.

Consider Figure 5 to understand how this can be achieved. The figure depicts two
consecutive notification message exchanges (and according acknowledgments) between
a sensor node and the base station. At sensor-node-timete the car enters the sensing
range. The respective notification message is sent to the base station at timet3, contain-
ing te as the timestamp. We want to determinet′e, the base-station time that corresponds
to sensor-node-timete. If we knewt′4 (i.e., sensor-node time for base-station-timet4),
we could calculate the message delayD := t′4 − t3. UsingD, we could transformte to
base-station time by calculatingt′e := t4 −D − (t3 − te).

Unfortunately we don’t knowt′4, since the clocks are unsynchronized. However, we
can estimateD by 0 ≤ D ≤ RTT with RTT := (t4 − t1) − (t3 − t2). This gives us
the following estimation fort′e: t4 − RTT − (t3 − te) ≤ t′e ≤ t4 − (t3 − te). We can
thus transformte into the time interval̃te := [t4 − RTT − (t3 − te), t4 − (t3 − te)]
with t′e ∈ t̃e. We usẽte as the notification’s transformed timestamp in the base station.
Appropriate interval-arithmetic operators can be used to compare such “time-interval
stamps” (e.g.,[tLA, t

R
A] < [tLB , t

R
B ]⇔ tRA < tLB).

Note that(t3− t2) and(t3− te) can be piggybacked on thenotification2 message,
such that the base station can perform the time transformation without additional mes-
sage exchanges. Also note that the base station can be relieved of storingt1 between
two consecutive message exchanges by sending backt1 to the sensor node as part of the
ack1 message. By includingt1 in the followingnotification2 message, the base station
will have t1 available to calculate the timestamp transformation.

The above transformation rule can be extended to take into account the clock drift,
which we demonstrate in [12]. This approach allows us to estimatet′e with an accuracy
of about 10 milliseconds in our tracking system.

3.5 Message Ordering

The data fusion algorithm described in Section 3.2 requires sorting notifications by
their timestamps. The time transformation approach described in Section 3.4 enables
us to compare and sort timestamps originating from different nodes. However, we still
have to ensure that a notification message is not processed by the data fusion algorithm
until all earlier notifications arrived at the base station. This is of particular importance



for Smart Dust, since messages are subject to long and variable delays as described in
Section 2.

One particularly attractive approach to message ordering is based on the assumption
that there is a known maximum network latency∆. Delaying the evaluation of inbound
messages for∆ will ensure that out-of-order messages will arrive during this artificial
delay and can be ordered correctly using their timestamps. That is, message ordering
can be achieved without any additional message exchanges. The literature discusses a
number of variants of this basic approach [9, 11, 17].

However, there is one major drawback of this approach: the assumption of a
bounded and known maximum network latency. As discussed earlier, Smart Dust suf-
fers from long and variable network delays. Using a value for∆ which is lower than
the actual network latency results in messages being delivered out of order. Using a
large value for∆ results in long artificial delays, which unnecessarily decreases the
performance of the tracking system.

We therefore introduce a so-called adaptive delaying technique that measures the ac-
tual network delay and adapts∆ accordingly. Doing so, it is possible that the estimated
∆ is too small and messages would be delivered out of order. Our algorithm detects
such late messages and deletes them (i.e., does not deliver them to the application at
all). Recall that the data fusion algorithm presented in Section 3.2 was specifically de-
signed to tolerate missing detection and loss notifications. Hence, deleting a message
only results in a less accurate track, since then one Smart Dust node less contributes
to the estimation of the target location. We argue that this slight decrease of accuracy
is acceptable since deleting a message is a rare event, which only occurs at startup or
when the maximum network latency increases during operation (i.e., when the value of
∆ is lower than the actual maximum network latency). The expected high density of
Smart Dust deployments can also compensate this decrease of accuracy. Additionally,
our algorithm includes a parameter which can be tuned to trade off tracking latency for
tracking accuracy.

Specifically, the adaptive delaying algorithm executed in the BST maintains a vari-
able∆ holding the current delay value, a variabletlatest holding the timestamp of the
latest message delivered to the application, and a queue which stores messages ordered
by increasing timestamps. Initially,∆ is set to some estimate of the maximum network
latency,tlatest is set to the current timetnow in the base station, and the queue is empty.

Upon arrival of a new notificationn with timestamp (interval)n.t, the actual mes-
sage delayd := tnow − n.tL is calculated1. ∆ is then set to the maximum of∆ and
c · d. The constant factorc influences the chance of having to delete an out-of-order
message and can thus be tuned to trade off tracking latency for tracking accuracy. We
usec = 1.2 in our prototype. Now we check iftlatest < n.tL holds, in which casen
can still be delivered in order. If so,n is inserted into the queue at the right position
according ton.t. Otherwise,n is deleted.

The first elementn0 of the queue (i.e., the one with the smallest timestamp) is
removed from the queue as soon as the base station’s clock (tnow) shows a value greater
thann0.t

R + ∆. Now tlatest is set ton0.t
R andn0 is delivered to the data fusion

algorithm.

1 tR (tL) refers to the right (left) end of the time intervalt.
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Fig. 6.Measurement setup (not drawn to scale).

4 Evaluation

In order to assess the accuracy of the proposed tracking system, we performed a set of
initial measurements. Figure 6 shows the setup of our measurements. The lighthouse
device (“LH” in the picture) was placed in the upper left corner and defines the origin
(0,0) of a 2D coordinate system. Six sensor nodes (numbered rectangles in the figure)
were placed in an area of about one square meter. The car moved then through the sensor
field. Location estimates were obtained at 12 positions of the car (indicated by the black
squares in the picture). We performed the whole experiment 10 times and calculated
averages. The sensor nodes as well as the car locations are annotated with coordinates
(x±∆x, y±∆y), where(x, y) are the ground truth positions in centimeters obtained by
a tape measure.±∆x and±∆y indicate the average errors of the output of the tracking
system relative to the ground truth position in the x and y axis, respectively. Theaverage
error of the sensor node location estimates is∆̄x = 4.16cm and∆̄y = 1.83cm. We
attribute the larger∆̄x value to mechanical problems with one of the lighthouses. The
averageerror of the car location estimates is̄∆x = 12.5cm and∆̄y = 3.5cm. The
maximumerror of the sensor node location estimates is∆̂x = 5cm and∆̂y = 2cm.
Themaximumerror of the car location estimates iŝ∆x = 28cm and∆̂y = 6cm. The
difference between the values for thex andy axis is due to the asymmetry of the node
arrangement.

The tracking latency is defined as the delay after which the state of the real world
is reflected by the output of the tracking system. This delay depends on the following
additive components: (1) the sampling interval of the sensors, (2) processing delays in
the sensor nodes, (3) the network latency, (4) delays caused by the message ordering
algorithm, and (5) delays caused by the algorithm used to compute the target loca-
tion estimate. The minimum value of (1) heaviliy depends on the sensor and processor



Fig. 7.Measurement setup as shown by the graphical user interface.

hardware. In our implementation, (1) is limited to about 0.1ms by the analog-to-digital
converter. Components (2) and (4) are small in our system due to the simplicity of the
used algorithms.

To evaluate the tracking latency of our system, we measured the sum of (2), (3), (4),
and (5) by calculating the age of each notification after it has been processed by the lo-
cation estimation algorithm. During the course of our experiment, the average age was
56ms. We also monitored the value of∆ used by the message ordering algorithm. We
used an initial guess of∆ = 20ms. At the beginning of the experiment, this value was
quickly adapted to 52ms. Recall from Section 3.5 that messages may be dropped by the
ordering algorithm if the value used for∆ is lower than the actual maximum network
latency. Surprisingly, during our experiments not a single message was dropped. This
is due to the fact that the time between arrival of successive notifications at the base
station was always greater than the network latency in our experiment. However, this
is typically not the case for a real deployment, where the network latency can be sig-
nificantly larger and where many densely deployed nodes may detect the target almost
concurrently and generate according notifications in short intervals.

Note that the above values give only a rough impression of the performance of
the tracking system, since we had only 6 sensor nodes available. We plan to build the
necessary sensor hardware for a significantly larger number of sensor nodes, which will
allow us to perform more thorough measurements.

Figure 7 shows the above measurement setup as depicted by the graphical user inter-
face. In the top left, a number of controls are shown to lookup sensor nodes (“Lookup”),
to disconnect from the sensor nodes (“Disconnect”), to adjust the frequency of sensor
readout (“Rate”), to control the detection threshold (“Gap”), and to clear the displayed
track (“Clear track”). The table below the controls contains one line for each sensor
node, showing x and y position, the current detection threshold, number of detections,
the currently detected signal strength, and the time of the last detection. On the right, a



display of the tracking area is shown, depicting the sensor nodes (larger rectangles) and
some of the location estimates of the car (smaller squares) moving from right to left.

5 Discussion

The use of passive optical communication allows the construction of tiny and energy
efficient sensor nodes compared to current radio-based COTS devices. However, it must
be emphasized that this mode of communication implies a number of drawbacks. Be-
sides requiring a free line of sight for communication, Smart Dust networks have a
single-hop topology, where sensor nodes can only communicate with a base station
transceiver. That is, Smart Dust nodes cannot talk to each other directly. Additionally,
the base station can become a scalability bottleneck, since all communication must pass
through the BST.

In the presented tracking system, we tried to achieve scalability despite these limita-
tions. This is achieved in part by strictly avoiding inter-node communication. Addition-
ally, the algorithms employed in the BST are designed to be independent of the actual
number of nodes in the network. Instead, the overhead of the base station algorithms
depends on the number ofactivenodes – those that currently “see” the tracked target.
Also, the base station only has to store state information for active nodes.

Despite some similarities in the communication scheme (both true Smart Dust and
our prototype use a single-hop network topology), there is one important difference
between our prototype and a system based on true Smart Dust. While in our system
nodes can send messages to the BST at any time, communication with a Smart Dust
node requires that the BST points its laser beam at that particular node. Even though the
developers envision a slightly defocused laser beam to enable the BST to communicate
with many nodes at a time, the laser has to sweep over the deployment area to give
each node a chance to talk to the BST. We deal with the resulting long and variable
network delays by introducing a message ordering technique which adapts to the actual
maximum network latency.

The data fusion algorithm used in our system might seem somewhat simplistic com-
pared to many approaches described in the literature. However, it achieves a reasonable
accuracy while only making a minimum of assumptions about the tracked target. The
loss of accuracy can be compensated by increasing the node density – which is be pos-
sible due to the expected small size and low cost of Smart Dust nodes.

The tracking system has been designed to tolerate node failures, since these are
likely to happen. Messages lost due to node failures will only affect the accuracy of
the estimated track. However, this can be compensated by a higher node deployment
density.

6 Related Work

Current sensor network research is mainly focusing on COTS Dust platforms such as
[24], thus developing algorithms, protocols, and systems that typically depend on the
characteristics of these platforms, and which are therefore often not portable to true
Smart Dust. Systems for fine-grained sensor node localization, for example, often rely



on direct node-to-node communication or use ultrasound [15]. Approaches for clock
synchronization often ignore the fact that time synchronization in networks of sensors
is often only needed when and where an “event” occurs, thus wasting energy for con-
tinuously synchronizing all clocks [5].

Algorithms for localization and tracking of targets using networks of sensors have
been extensively studied in the literature [3, 8]. However, there are only few reports on
actual tracking systems with complete support for node localization and time synchro-
nization. Many systems like [27], for example, place sensor nodes at well-known posi-
tions and cannot deal with node mobility. Systems for target localization like [19] are
often too slow to track the location of a moving target in real-time. Moreover, the em-
ployed Time-Difference-Of-Arrival (TDOA) method limits this system to targets which
emit acoustic or other signals with low propagation speeds. We are not aware of tracking
systems that have been specifically designed for true Smart Dust.

7 Conclusion and Outlook

We have presented a complete proof-of-concept system for tracking the location of
real-world phenomena with Smart Dust, using a remote-controlled toy car as a sam-
ple target. We presented approaches for target location estimation, node localization,
time synchronization, and message ordering that match the requirements of Smart Dust.
Since target location estimation is solely based on detecting the proximity of the target
by individual Smart Dust nodes, the presented tracking system should be applicable to
a wide range of possible target types.

As one of the next steps we want to base car detection on the car’s acoustic signature,
and plan to evaluate the system using a larger number of sensor nodes. The ultimate goal
is to reimplement the system using true Smart Dust.
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