
Technical Report TR-VS-97-01

An Infrastructure for Web-Agent-based Service Providing

Stefan F�unfrocken

Department of Computer Science, Darmstadt University of Technology,
Alexanderstr. 10, D 64283 Darmstadt, Germany

Email: fuenf@informatik.th-darmstadt.de

Abstract. Mobile agents are a new paradigm in distributed computing. In this paper we
describe a platform, which supports Web agents | mobile agents that live in web servers
and communicate with users through web browsers. Our belief is that this World Wide
Web scenario identi�es an application area for which the mobile agent abstraction which is
well-suited. We present the state of implementation, and we give an outlook on our future
work.

Keywords: mobile agents, service providing, World Wide Web, security, infrastructure,
mobile agents application

1 Introduction

`Mobile Agents' are programs that can move from computer to computer to ful�ll a task on behalf

a user. To overcome the problem of heterogeneity, mobile agents are mostly programmed in an

interpreted language for which an interpreter is available for a wide range of computer systems.

Using an interpreted language also solves, to a certain extent, one of the most important problems

for mobile agent systems: security. Since the interpreter which executes the mobile agent is local

to a computer system, it can be modi�ed to intercept all `dangerous' commands of the interpreted

language which interact with system resources. In this way, foreign agents interact with the local

system through a trusted third party. Currently there is only one language which was designed

for use as an agent language: Telescript by General Magic [Whi94]. There are several interpreted

languages which o�er a so-called `secure interpreter', like safe-tcl [Bor93] or safe-python [Maj96].

Most of them, however, lack agent-related language constructs and concepts (e.g. a language-

provided command to initiate agent transportation, or security concepts) and depend on external

libraries for such functionality.

When the mobile agent concept �rst was promoted by General Magic [Whi94] with its Tele-

script Language, there was much hype about the new paradigm. Since General Magic had a very

restrictive policy about implementation information of their system, several research groups began

to build their own agent systems providing a general infrastructure for mobile-agent-enhanced ap-

plications. Although the paradigm seems to be very appealing at �rst glance, after a few years of

research there is still no area of application for mobile agents which perfectly �ts to the `mobile

agents' paradigm. This, together with security concerns (most systems implemented only weak

security features in their �rst releases), is probably the reason why the agent paradigm hasn't met

a wide acceptance so far. Without any reasonable dissemination of mobile agent systems, mobile

agent technology will not have the chance of proving its power.

On the other hand, the World Wide Web is still growing at an exponential rate [Net96], and

buzzwords like `web centric computing' or `Intranet' promote traditional Internet technology every-

where. There we have a widespread, well-accepted architecture, to which more and more existing,

traditional data processing systems and applications (e.g. databases, newspapers, �nancial portfolio

applications) are adapted and integrated.

To combine mobile-agent-technology with the infrastructure the World Wide Web o�ers, we

developed an architecture which supports so-called Web agents.



2 The WASP Project

The infrastructure we present was developed as part of the WASP project. With the `Web Agent-

based Service Providing (WASP)' project, we aim at providing services on Web data and using

mobile agents to implement these services. The underlying hypothesis is that services for the World

Wide Web is one application domain for which the mobile agent paradigm is a well-suited model.

Possible services on Web data include services which are as simple as link checking for a given

web page, or as complex as for example a distributed work group service which maintains a set of

web pages that are distributed between the di�erent locations of the work group. In addition to

managing di�erent versions of a web page, the agent providing such a work group service collects

and merges new versions of the pages (accessible to local work group members only) from the

di�erent web servers and publishes them for public access on a dedicated web server.

Both examples show that the mobile agent abstraction matches the user's expectation of such

services: `There is someone I can tell to care about our workgroup pages, and he or she will move

to all the places to collect the information and bring it to the publication server.' Since the current

WWW development shows that more and more existing data will be accessible through web servers

we can o�er services on that data, for which otherwise special solutions would be necessary. To

provide services on such data, it is straightforward to integrate any service-supporting platform

into web servers. With this in mind, the Web agent abstraction (i.e., mobile agents that live in

web servers) is most apporpriate.

As an implementation language for our system and for agent-programming, we chose Sun's web

language Java [Arn96], which already provides code shipping by the way of applets and persistent,

movable objects by the means of object serialization. Because of this, we found that it is very easy

to implement a system that provides rudimentary mobile agent functionality. This is also supported

by the fact that there are several other research projects that deal with Java-based mobile agent

systems like Mole [Hoh95], Aglets [Lan96], Java-to-go [Wei96], and MOA [Mil96]. To gain insight in

Java's potential as an agent programming language, and because of announced Java API packages

(i.e., security and electronic commerce) that o�er valuable functionality in a standardized way,

we decided to build a system of our own this also allows us to customize our environment to our

special needs.

One major goal of the WASP project is to o�er means to support web service providing. This

support includes on the one hand an infrastructure for Web agents which are used to implement

the services, and on the other hand tools to help a service provider to generate and manage those

agents.

The remaining part of this paper will focus on the infrastructure we developed for Web agents

in our project.

3 WASP Infrastructure

The necessary infrastructure for the proposed web services should enable web servers to start,

receive, and execute Web agents. Additionally, web agents may access the Web data of the server,

may want to communicate with a user1, and have to be managed. Starting, executing, accessing

Web data, and management of agents is done by a special extension module: the Server Agent

Environment (SAE). In this way, the code of web servers does not need to be changed. Of course

this implies that the server has to provide a well-de�ned interface like CGI, Jeeves' serveletts

[Jee96], or Jigsaw's �lter interface [Bai96], which is able to pass all relevant information to the

SAE2. Figure 1 shows the overall architecture of the WASP infrastructure which consists of the

user's web browser, the web server, and the server's SAE.

Generally speaking, our scenario is divided into two phases: the agent startup and con�guration

phase, and the service phase. In the �rst phase, a user wants to access a service which is located at

1 Communication between agents that are not belonging to the same service is yet not addressed by the
project.

2 We also assume that a server understands the http POST method.



File

SAE

File

SAE

Agent

User’s Web Browser Web Server

normal HTTP
Request

normal HTTP
Response

read File

User’s Web Browser Web Server

Request

Response

Agent

Agent Redirect

Fig. 1. General WASP Infrastructure

a web server. Since the service is provided through a web server, the user uses its local web browser

to connect to the server and requests the start of the Web agent representing the service. Since all

agent related actions are executed by the SAE, the server redirects the user's request to it, which

then loads the agent and starts it. The �rst action of a Web agent is to get customized to the user's

demands3. To do so, it sends its graphical user interface to the user's browser, which returns the

required con�guration-data to the agent after the user is done with his or her con�guration. After

that, the second phase begins: depending on the con�guration, the service is executed by the Web

agent. This normally requires that the Web agent accesses the local Web data of the server and

may include migration to other web servers to access their Web data. After completing its task, the

agent may return to the server by which it was started and possibly notify the user about results

of its work4.

3.1 Server Agent Environment

The SAE (see �gure 2) serves as an execution environment for web agents and can be compared

to any other mobile agent system, except that it is specialised to a certain kind of agents. Its

primary task is to load Web agents either from the local disk when an agent gets started, or from

the network when a Web agent migrates itself from some other SAE, and to guarantee access and

security restrictions speci�ed by the administrator of the web site. Unlike other agent environments,

it provides Web agents with a uniform interface to the server's Web data (see Section 3.5) so that

a Web agent doesn't have to care about the way web data is stored locally.

In addition to agent related tasks, an execution environment has to address problems like:

{ con�guration

{ administration

{ controlled startup and shutdown

{ persistency in case of crash and recovery

3 Of course there are services that don't need to interact with users. But this simply means to skip any
user interaction.

4 This scenario describes a service which requires that the Web agent returns to its starting server and
presents results to the user. This is only one case of possible service scenarios. Other scenarios don't
require a response to the user or even the return of the agent.



Server Realm 
Manager

Manager
Server Agent

Agent
GUI

read
write

read
write

Realm 
Manager

SAE Agent
Scheduler

Resource
Manager

Comm
Manager

start/restart
Agent

use server
realms

Server’s Web Data

SAE

Security M
an

ag
er

N
et

w
or

k

Web Data Interface

Agent

Manager
SAE Agent

Fig. 2. SAE Architecture

which we also care about by o�ering a con�guration and administration tool. A site administrator

can use it by loading it into his web browser after identifying himself to the system5. Concerning

persistency, Java's object serialization o�ers an appropriate way to implement object persistency

in general.

3.2 Agent Startup

Figure 3 shows the agent startup scenario. When a user requests an agent to start by a http get

request of a special URL which points into the servers SAE, the server hands this request to its

SAE that identi�es and loads the agent. After loading and starting, the agent sends its interface to

the user's Web browser. This is done through an agent-generated HTML page, which points to the

agent's GUI applet and serves as response to the user's http get request. The browser executes the

Web agent's GUI applet, which requests all necessary information from the user. After the user is

done, the con�guration data is sent back to the Web agent.

A-Gui

Agent

Agent

Agent
Manager

redirect to SAE

Web ServerWeb Browser

active Agent

SAE

Agent
Gui
Display

Agent Gui Server’s
WWW Data

starting Agent

Request
manager

inactive Agent

pointing to its GUI
Agent sends Page

GET GUI

GET Agent

Agent GUI Applet

Configuration
Information

Fig. 3. Agent Startup Scenario

5 Since this is a service on Web data, we provide this service through a special Web agent.



Technically, the communication between the agent GUI and the agent is done through the

communication manager of the SAE (see Sections 2, 3.1, 3.6). After starting a web agent, the

agent informs the communication manager that it awaits its GUI callback. In this way, the GUI

can connect to the communication manager and request connection to its web agent to hand back

the data.

By using a communication manager, it is possible that the web agent's GUI can wait for the

return of its agent to pass back any result the user awaits. For this, the Web agent requests

connection to its GUI from the communication manager. For services which require some time, the

agent may respond to its GUI with a speci�c URL the user has to monitor for the results of the

service.

3.3 Migration

Web agents have to conform to a certain interface in order to enable the SAE to control the agent.

Since we use Java as an agent programming language, we can provide this interface by a class from

which any Web agent implementation has to be subclassed. This, together with Java's possibility

to declare methods �nal and therefore unchangeable by subclasses, allows us to �ll this template

with prede�ned functionality.

In our scenario, Web agents migrate themselves to other web servers by calling their go-method

(inherited from the Web agent template) with the new destination. This method uses Java's object

serialization functionality to dump the Web agent and initiates a http post request to the speci�ed

target web server. The target URL is a SAE-speci�c URL which the target web server identi�es

as a request of an agent in migration to enter the system and hands it to its SAE which handels

the deserialization of the agent.

Since we use object serialization, the migration of Web agents is not transparent to the agent

as for example in Telescript [Whi94] or ARA [Pei95]: the 
ow of control cannot directly be reestab-

lished to that point in the code of the Web agent where it executed the go method. We consider

this not to be a conceptual drawback6, although this puts some burden on the programmer of the

Web agent. As other systems that use this scheme of migration (Mole [Hoh95], Aglets [Lan96],

FFM [Lin95], Tacoma [Joh95]), we provide a special method which is called by the target SAE

when it restarts the 
ow of control for a migrated Web agent. The agent programmer has to �ll

this method in such a way that its agent will execute the correct code depending on its internal

state.

Inside the post request, Web agents are transported as MIME [Bor93] message. If the server

requires any authentication to perform the post request, the agent has to provide that information

at the time it is sent (i.e., when the post request is constructed). For that purpose, the Web

agent template de�nes (unchangeable) methods which yield the necessary security information,

and provides the Web agent with means to �ll in that information (see Section 3.6).

3.4 Dissemination

One concern for a web services is its dissemination. Depending on the kind of service, the service

originator may decide to have its service present on a single web server, on a list of web servers

(which may be prede�ned or dynamic, depending on server characteristics), or even on every

web server the agent visits. To o�er a variable dissemination scheme, our architecture provides

Web agents with a special method which asks the server it is currently running on to install the

agent locally. This call expresses the Web agent's wish to get installed, but does not install it

automatically. Depending on the SAE con�guration by the site administrator, the SAE possibly

grants the Web agent's wish or simply ignores it.

6 Obviously, every Java program using transparent migration can be transformed automatically to one
using nontransparent migration and executing the original code statements in the same order and with
the same variable values. Because of this, there is no conceptual di�erence between transparent and
nontransparent migration.



We provide the site administrator with the possibility to specify classes of agents, for which

can be specify how the SAE should react to an installation request. Possible reactions include:

denial, allowance7, and storing. If a Web agent is not installed, it may be stored in a place where

someone has to inspect the Web agent and possibly run it in a separate environment and then

decide whether to install it locally.

Using this technique yields a very 
exible set of dissemination schemes which can be matched

to any service requirement and respects site policies. Chaotic Web agents that repeatedly try to

install themselves everywhere can be trapped by denying the post request of such an agent8.

3.5 Web Data Interface

To provide Web agents with a uniform way to access any Web data, we aim at developing a

Web data interface which hides the fact that the same type of Web data is stored and retrieved

in di�erent ways. Generally, a Web agent can read and write Web data such as a HTML page

and it should not matter whether the page comes from a �le, is generated by a program, or by

a database9. Our current research in this part of the project deals with integrating database-

generated Web pages into this interface. Writing to such a generated page is nontrivial because

not only the database data used in the document has to be updated (which may include a schema

modi�cation) but possibly the generating program too.

Web agents will not only be able to read and modify existing data. To avoid restricting the

service classes which can be implemented on top of our infrastructure, we allow agents to generate

new Web data at a server. To prevent any denial of service attacks of malicious agents that write a

huge amount of data, we provide our SAE with a resource control and security model (see Section

3.6). Technically, writing more data than allowed (either by resource negotiation or by server rule)

will yield an exception to which the Web agent should react or will get terminated by the security

manager on the next attempt to write more data.

3.6 Security

For mobile agent systems, security is one of the most important concerns. Site administrators

allowing foreign agents to enter their system must be sure that the agent system prevents compro-

mising their system. There have to be means to control agent access to the system, any resource

usage by agents, and access rights to local data. Because of the importance of security, we planed

our infrastructure from the beginning with a security model in mind.

Security is provided in our system by the means of `protection domains', so-called realms. A

realm consists of a set of data, speci�ed by local URLs, to which access is restricted. Any user

accessing the protected data has to identify to the system by the means of a password which,

together with the user's name, is stored with the con�guration data of the realm. In our system

human users and Web agents are treated the same way when accessing Web data, except that

for Web agents additional access rights exist to control network access or rights such as realm

de�nitions. For every realm there is an owner who can de�ne access rights for the realm (read,

write, execute).

Data protection by realms is common for most of the existing Web servers, but we extended

this concept by allowing any user and not just the server administrator, to specify realms. Our

realm con�guration facility allows easy set operations on existing realms to specify �les and users

of new realms. Furthermore we integrated the realm concept in our SAE to have a uniform way of

specifying access to the server, access to the SAE, and access to Web data.

7 An successful installation of a Web agent does not grant any access rights to local web data.
8 Nevertheless this cannot completely prevent denial of service by overloading attacks. But this is a well-
known problem in every client server environment, where a server has to accept a request before it can
then react on the request origin.

9 Java's UrlConnection class which hides di�erent protocols from the user can be seen as a �rst step in
this direction. However, it always includes a http request to a server. Our goal is to hide the way, Web
data is stored or generated.



In addition to specify access rights, it is important to have a Web agent identifying scheme. For

Web agents it is natural to have a manufacturer, who signs the Web agent with its manufacturer id10

when releasing it. Additionally, there is an agent id which in combination with the manufacturer's

id is unique. When installed on some Web server, the server can assign a server id to the agent.

When started, an agent also gets assigned an incarnation id. An agent's server id together whith

the incarnation id, can be used to identify Web agents that were started at a server, migrated and

returned. We are currently examining which cryptographic technique and algorithms we will use to

achieve this11. A Web agent's ids will be stored by prede�ned methods of the Web agent template,

which will not allow a Web agent to change that data by itself12.

When an agent wants to enter the system, it sends a http post request to the Web server it

wants to migrate to. The URL of the post request points into the server's SAE. To allow only

well known Web agents access to the SAE, the site administrator can con�gure a realm consisting

of the SAE entry URL and add the allowed Web agents to that realm. In contrast to users, the

password of Web agents is deduced from the Web agent's ids. In this way, the site administrator

can grant access to all Web agents of a certain manufacturer by using the manufacturer id, speci�c

Web agents of a manufacturer by using the manufacturer id and the agents id, or only to those

Web agents that are installed and started locally by additionally using the agent's server and

incarnation id.

Once the system is entered, access to any Web data may be restricted by realms. There is no

di�erence between a user or a Web agent accessing local data. When an agent accesses restricted

data, the Web data interface checks for the agent's presence in the list of allowed users (and agents)

for that data and authenticates the agent by requesting its ids13. In case of a human user, he is

asked for its user id and password by his Web browser on behalf of the Web server.

Every agent system o�ers critical system resources like CPU cycles, main memory, disk space,

and network access to foreign agents. Because of this, agent systems have to take care about system

resources and monitor their usage to avoid misuse. Because there is no way to distinguish an evil

agent which tries to overload the system by spawning many threads that write huge amounts of

data to the system's data storage, from one doing excessive parallel computation and writing many

trace data, any agent system has to limit the usage of system resources for all agents. This can

be done by negotiation with an agent when it enters the system, or by generally limiting those

resources by some kind of quota.

In our system, all Web agents are granted a certain amount of each system resource. When

trying to use more units than granted, the agent will receive an exception and is terminated when

ignoring that. We are also working on a resource negotiation scheme which will ask each Web agent

about its planned resource usage before running.

In addition to our agent system's inner security scheme, we secure all network communication,

which occur in our architecture when an agent migrates or when a Web agent receives its con�gu-

ration data by its GUI. In the �rst case, we encrypt the agent before transmitting it to the target

SAE by using a session key. In the second case, we encrypt the data transferred. By doing this, we

avoid that an agent in transfer is recorded, modi�ed and then resubmitted to the target system,

or is fooled by someone trying to submit changed or illegal con�guration data to the agent.

10 One can use a public key technique to achieve this.
11 Because a Web agent's data changes during execution, one cannot use a signed message digest approach.
12 One open problem of agent systems is that any server executing an agent has full control over the agent

code and could easily extract and modify security related data stored in the agent. By building a net of
trusted systems this danger could be reduced although not completely avoided.

13 Since this requires the user to know an agent's ids and then adding this to the allowed users of a realm,
we are currently developing a cookie mechanism which allows an agent to present the cookie it got from
the data owner to the Web data interface in order to gain access permissions.



4 State of Implementation and Future Work

Our current implementation consists of the Web server with its SAE, which currently provides

agent and script14 submission and execution. At this time we are using a simple user/agent name

and password protection scheme for specifying realms which can grant read, write, and execute

rights to human users and additionally rights to access the network for agents. Con�guration of the

server and its SAE is done by reading a con�guration �le; this will be soon replaced by an online

utility. The Web data interface gets currently extended to support writing database generated

HTML pages. The resource control mechanisms, and the cryptographic support including the

cookie mechanism will be fully available in two month.

After implementing the proposed infrastructure, our future work will concentrate on Web ser-

vices. We will investigate how we can support a Web service manufacturer by tools that ease the

implementation and organization of those services. This will also include investigations about suit-

able electronic payment systems for such services which we consider important for any commercial

usage. Interfaces to emerging electronic cash systems will be provided through Java's electronic

commerce API, which will be available soon.

5 Related Work

There are several research projects that deal with the implementation of general purpose agent

systems [Pei95] [Joh95] [Lin95] [Gra96], some of them are using Java as an implementation language

[Hoh95] [Lan96] [Mil96]. All these systems have a di�erent focus: they aim at a platform supporting

agents in general, which includes agent communication and agent control. So far, this is of minor

interest to us, although it represents a general concern in our project. Our goal for the WASP

project is to implement Web centric services, for which we developed the infrastructure that uses

the server module SAE and a uniform access method to Web data. We are currently investigating

what type of agents that come from other Java based agent systems could be integrated in our

system.

Concerning our Web server implementation, there exist several other Web servers based on

Java. The Jeeves [Jee96] project currently aims at the development of a server-side-include interface

called `serveletts' which enables servers to load and execute CGI-like Java programs directly into

the Java virtual machine executing the server code. These serveletts must be loaded from the local

�le system of the server or can be downloaded from some other server on demand the local server.

Our web server supports the servelett interface as well. Additionally, serveletts can also be sent

to the server over the network. Compared to Jigsaw [Bai96], our server has a more �ne granular

access restriction scheme which originates from the needs for web-services and is enhanced by the

Web agent server module.

In our e�orts to o�er our server module as a plug-in for other Java-based Web servers, we

investigate whether it is possible to provide it as servelett and Jigsaw-Filter. For servers which are

not Java-based, we plan to o�er a CGI version of our SAE.

Summarizing, one can say that there is ongoing research which uses similar approaches but

focuses on di�erent aims. As far as we know, WASP is the �rst project that proposes services on

Web data implemented by Web agents.

6 Conclusion

In this paper we presented the WASP project, which aims at the development of World Wide Web

speci�c service applications. The proposed services are brought to users through a special kind of

mobile agents which we call Web agents. While for traditional services there is a known service

provider, this is not true for web services. Web services are provided by the means of Web agents,

14 Scripts di�er from agents by the submission format and provide no agent functionality at all. They can
be seen as serveletts submitted through the network, and do not need but may conform to the servelett
API.



which are the sole communication partner for any service user. The agent is the service, although

the service provided by the agent may involve interaction with the manufacturer of the agent. This,

however, is hidden from the user.

For the WASP project, we realised a Java-based Web server, a plug in server execution environ-

ment for Web agents, and a uniform access method to Web data. These components are the basis

for our proposed infrastructure for Web agents. This infrastructure provides a general platform

for service providers to implement all kind of services that deal with Web data. These services are

brought to any service user by means of Web agents in a `standard' way. By using as GUI the

user's Web browser, to which one is familiar to, and the widespread network of web servers as a

basis, we hope that there will be a good chance for a widespread dissemination of our platform,

which provides easy but secure access to services and Web data.

Further extensions will provide tools that help service providers to generate and manage Web

agents and prototypes for standard Web agents which can be con�gured in an easy way to a service

provider's needs.

References

[Arn96] Arnold K., Gosling J., The Java Programming Language, Addison-Wesley, 1996 (ISBN 0-201-
63455-4)

[Bai96] Baird-Smith A., Jigsaw Java HTTP Server, by World Wide Web Consortium,
http://www.w3.org/pub/WWW/Jigsaw/

[Bor93] Borenstein N., Freed N., MIME (Multipurpose Internet Mail Extensions), Network Working
Group, RFC1521, 1993

[Bor93] Borenstein, N., EMail with a Mind of Its Own: The Safe-Tcl Language for Enabled Mail,
ftp://ftp.fv.com/pub/code/other/safe-tc.tar

[Gen92] Gensereth M.R, Ketchpel S.P., Software Agents, Communications of the ACM, Vol.37, No.7, pp
48|53, July 1994

[Gra96] Gray R.S., Agent Tcl: A 
exible and secure mobile-agent system, Proceedings of the Fourth
Annual Tcl/Tk Workshop, Monteray CA, 1996,
http://www.cs.dartmouth.edu/agent/papers.html

[Hoh95] Hohl F., Konzeption eines einfachen Agentensystems und Implementation eines Prototyps,
Diploma Thesis, Universit�at Stuttgart, Fakult�at Informatik, Diplomarbeit Nr. 1267 (1995)

[Jee96] Jeeves Team, Overview of the Java Http Server Architecture, Part of the Jeeves Alpha2 distri-
bution, Sun Microsystems, 1996

[Joh95] Johanson D., van Renesse R., Schneider F., An Introduction to the TACOMA Distributed

System, University of Tromso, Institute of Mathematical and Physical Science, Department of
Computer Science, CS Technical Report 95-23, June 1995

[Lan96] Lange D., Chang D.T., IBM Aglets Workbench { Programming Mobile Agents in Java, White
Paper, IBM Corporation, Japan, August 1996, http://www.trl.ibm.co.jp/aglets/

[Lin95] Lingnau A., Drobnik O., D�omel P., An HTTP-based Infrastructure for Mobile Agents, World
Wide Web Journal - Fourth International World Wide Web Conference Proceedings, Boston,
MA, Dec 11-14, 1995

[Maj96] Majewski S.D., Distributed Programming: Agentware, Componentware, Distributed Ob-

jects, Notes for the discussion on Safe-Python at the NIST Python Workshop, 1994,
http://minsky.med.virginia.edu/sdm7g/Projects/Python/SafePython.html

[Mil96] Milojicic D., Condict M., Reynolds, F., Bolinger D., Dale P., Mobile Objects and Agents (MOA)

Project, OSF, position paper, "Distributed Object Computing on the Internet" { Advanced
Topics Workshop, Second USENIX Conference on Object Oriented Technologies and Systems
(COOTS), http://www.osf.org/RI/DMO/dmo.htm

[Net96] Network Wizards,
Internet Domaine Survey

http://www.nw.com/zone/WWW/report.html

[Pei95] Peine H., The Ara Projekt, University of Kaiserslautern,
http://www.uni-kl.de/AG-Nehmer/Ara/ara.html

[Sch94] Schneier B., Applied Cryptograhpy, Wiley & Sons, 1994
[Wei96] Weiyi L., Messerschmitt D., Java-To-Go, Itinerative Computing Using Java, University

of California at Berkeley, Department of Electrical Engineering and Computer Sciences,
http://ptolemy.eecs.berkeley.edu/dgm/javatools/java-to-go/



[Whi94] White J.E., Telescript Technology: The Foundation for the Electronic Marketplace, Whitepaper
by General Magic, Inc, Sunnyvale, CA, USA


