
A Non{Blocking Lightweight Implementation of
Causal Order Message Delivery

Friedemann Mattern and Stefan F�unfrocken

Technical Report No. TR-VS-95-01

March 1995

Department of Computer Science, Technical University of Darmstadt,
Alexanderstr. 10, D 64283 Darmstadt, Germany

Email: fmattern, fuenfg@isa.informatik.th-darmstadt.de



A Non{Blocking Lightweight Implementation of

Causal Order Message Delivery

Friedemann Mattern and Stefan F�unfrocken

Department of Computer Science, Technical University of Darmstadt,

Alexanderstr. 10, D 64283 Darmstadt, Germany

Email: fmattern, fuenfg@isa.informatik.th-darmstadt.de

Abstract. This paper presents an algorithm to implement point{to{

point causal order message delivery in distributed systems which does

not force the sender to wait and which does not piggyback control in-
formation (such as timestamps) on messages. The algorithm is based on

a message transmission protocol using low{level acknowledgements be-

tween FIFO bu�ers. We show that on the one hand causal order can
easily and e�ciently be realized in that way, but that on the other hand

the loss of knowledge|induced by not using dependency matrices as in

previously known protocols|leads to a slight restriction with respect
to the applicability of the new protocol. The advantages of our scheme,

however, are obvious because it is non{blocking and the piggybacking

of huge control information on messages is avoided. Furthermore, the
new algorithm is easily implementable since many distributed systems

and low{level transmission protocols already provide message bu�ers and

explicit or implicit message acknowledgements.

1 Causal Order

In distributed systems, e�cient message passing with appropriate semantics is
of prime importance, since sending and receiving messages is the only way for
processes to cooperate, to exchange data, and to gain knowledge about the
state of other system components. For many applications and operating sys-
tem tasks it is mandatory that messages respect the potential causality relation
among events. Operationally, this means that direct communication between two
processes should always be faster than indirect communication where messages
are routed via intermediate processes. A computation exhibiting this \triangle
inequation", which is a stronger property than the more local FIFO property
along single communication channels, is called a causally ordered computation
[CMT94]. Protocols which guarantee this behavior are implementations of the
so-called causal order message delivery property. The use of causal order in
message delivery was introduced in [BJ87], where also protocols for broadcasts
are presented. Speci�c algorithms for point{to{point communications were later
given in [SES89] and [RST91].

The causal order property is useful, among other things1, for the following

1 Applications of causal broadcastsmay be found in the collection of papers on the Isis
System [BR94].



purposes:

{ Consistent snapshot generation: compute the global state of a distributed
system in such a way that it does not show an \e�ect" (i.e., the receipt of a
message) without showing its \cause" (i.e., its sending) [AB92, AV94].

{ Observing distributed systems: display a sequence of events of a distributed
computationwhich respects their causal dependencies (e.g., where the receipt
of a message is never observed before its sending) [SM94].

{ Fair distributed resource allocation management: requests for a resource should
be satis�ed in the (causal) order they were issued by the processes [KK89].

{ Garbage collection in distributed systems: Here, reference counters must be
updated in a causally consistent way, otherwise non-garbage objects may be
identi�ed as being garbage [TM93].

In order to precisely de�ne the causal order property and to be able to prove
the correctness of the algorithm described in later sections, we need a more
abstract notion of a distributed computation. Such a computation is formed by a
set of processes, each generating a sequence of events (i.e., abstractions of actions
performed by the processes). To depict a computation, one may use space-time
diagrams consisting of lines and dots (each line representing a process and each
dot standing for an event), where messages with their pairwise corresponding
send-receive events are represented by arrows (see, e.g., Fig. 4).

In a canonical way, the events of a process are totally ordered since processes
do sequentially execute one event at a time. We denote this order by �i for each
process i. If a �i b, then event b happens later than event a on the same process.
Messages (i.e., send events and their corresponding receive events) introduce
additional dependencies between the sender and the receiver since the sending
of a message must always precede its receipt. Furthermore, indirect dependen-
cies among events are caused by transitivity (e.g., by chains of messages). This
gives rise to the following de�nition of a general causality relation, denoted by
'�', among all events of a distributed computation (originally called \happened
before" by Lamport [Lam78]):

De�nition: The causality relation � is the smallest transitive relation that
satis�es the following two properties for any two events a; b:

{ If a �i b, then a � b.

{ If a, b are corresponding send and receive events, then a � b. 2

If a � b, then event b causally depends on a in the sense that b is not executed
if the computation blocks at a. Note that � is a partial order: there may exist
events not ordered by �, which are said to be concurrent. To specify that two
events a; b happen at the same process, we write a � b.

With the help of � we can now exactly de�ne causal order message delivery
(i.e., what it means that no message between two processes is overtaken by a
chain of other messages).



De�nition: A distributed computation is called a causally ordered compu-
tation, if for all pairs (s,r) and (s',r') of corresponding send-receive events

(r � r0) ^ (s � s0) ) r � r0: 2

Intuitively, this means that all messages delivered to a process respect the
causality relation �. Note that the causal order property trivially implies the
FIFO property (s � s0) ^ (r � r0) ^ (s � s0) ) r � r0 as a special case. In
[CMT94] it is shown that causally ordered computations fall between synchro-
nous computations (i.e., computations where communication is always synchro-
nous) and FIFO computations (i.e., computations where communication between
two processes respects the FIFO property). They preserve the inherent causal
order property of synchronous computations, but exhibit enough properties of
general asynchronous computations to overcome the phenomenon of communica-
tion deadlocks often found in synchronous computations. In fact, non{blocking
implementations of causal order are possible as will be shown in the following
sections.

2 Earlier Realizations of Causal Order

To implement causal order, one has to consider the communication characteris-
tics of the underlying message transport system. Upon this system, a suitable
protocol is then superimposed to ensure that messages are always delivered in
accordance to causal order. A related, although much simpler problem is the
realization of the FIFO property. One way to implement FIFO on asynchro-
nous systems is to resort to synchronous communication and block the sender
until an acknowledgement from the destination process is received. This works
because computations with synchronous communications are always causally or-
dered [CMT94]. A better and also well-known solution to guarantee FIFO mes-
sage delivery consists in using sequence numbers on each communication channel.
The delivery of messages with higher sequence numbers, which arrive too early
at the destination process, can be delayed until all messages with lower sequence
numbers have arrived. The causal order delivery protocols described in this and
the next section can, in some sense, be viewed as generalizations of these two
principles.

A �rst implementation of causal broadcasts was described by Birman and
Joseph [BJ87] in the context of the Isis system [BR94]. Isis originally realized
causal broadcasts by conceptually piggybacking all causally preceding broadcast
messages on each message [BJ87], but then applying some optimizations which
trim the piggybacked causal history in an e�ective way. More recent versions
of Isis are based on vector time, which represents a substantial improvement
because of the reduced overhead [BSS91]. For causal order delivery of point{to{
point messages, one could of course also piggyback the whole causal history on
each message. However, in that case a so{called conservative solution is used in
the Isis system, where the sender is blocked until reception of the message is



acknowledged [BSS91]. (The same \synchronous" implementation is also used
for broadcasts in situations where piggybacking is too costly.)

Kearns et al. [KK89] presented a protocol to ensure point{to{point causal
order message delivery in a distributed system with a single server, to which
messages from all other processes (so-called clients) are delivered in causal order.
The protocol uses message-count-vectors which are located at each process and
which are piggybacked on each message. A client j receiving a message with
attached vector Vk from another client k updates its vector Vj by setting it to
the componentwise maximum of Vk and Vj . Before a client i issues a message
to the server, it increments its component Vi[i] of its message-count-vector Vi
and attaches the vector to the message. When the server receives a message m
from process i, it �rst compares its own message-count-vector Vs with Vm, the
vector accompanying message m. If Vs[j] < Vm[j] for some j 6= i, then there is a
message still missing from another client (on which messagem causally depends),
and message m is delayed until the missing message has arrived. Otherwise the
server consumes the message after updating its own message-count-vector to the
componentwise maximum of the vector attached to the message and its own
vector.

Note that Vi[j] represents the \knowledge" process i has about the number
of messages sent by process j to the server so far. Taking the componentwise
maximumwhen receiving a message from another client thus incorporates indi-
rect knowledge, re
ecting the fact that causality is transitive. This is the same
principle the so-called vector timestamps are based on [Fid88, Mat88], and in fact
message-count-vectors are only a slight variant of vector timestamps. Delaying
the receipt of a message until all causally preceding messages have arrived is a
canonical extension of the sequence number method to guarantee FIFO delivery.

If not only messages towards a single server, but all messages at all processes
should be delivered in causal order, then the scheme just mentioned can be
generalized by considering each process to be such a server. Such a general
point{to{point causal order delivery protocol would use n vectors of length n

(where n is the total number of processes) at each process and in each message.

In fact, the implementationof causal order presented by Schiper at al. [SES89],
which was found independently of Kearn's more restrictive solution, is based on
this idea. A slight variant which uses integer matrices of size n � n (instead
of at most n vectors of length n in each message) was later given by Raynal,
Schiper, and Toueg [RST91]. In this protocol, each process i has such a matrix
Mi. When a process i sends a message to process j, it increments Mi[i; j] and
attaches Mi to the message. Whenever a process j receives a message together
with its attached matrix M , Mj is updated to the componentwise maximum
of M and Mj. By that, the matrix of a message encodes the knowledge of all
send events (i.e., other messages) it causally depends on. Therefore, a message
from process i with matrix M that arrives \out of causal order" can easily be
detected by the receiving process j: The message is simply not delivered until
8k 6= i : M [k; j] � Mj [k; j] ^ M [i; j] = Mj [i; j] + 1, which is guaranteed to
happen eventually if messages are not lost. Messages which have to be delayed



according to this condition remain in a bu�er at the receiver's site until they
can be delivered.

The solutions for point{to{point causal order message delivery presented so
far need O(n2) space in all messages and processes. Although some optimizations
are possible (e.g., sending only delta-increments or omitting certain matrix com-
ponents if the communication topology has some known properties), the space
overhead seems to be prohibitive for most large systems. Our aim was therefore
to �nd a solution which is more space-e�cient. The idea is that since the class
of causally ordered computations lies between the class of synchronous compu-
tations and the class of FIFO computations, it should be possible to arrive at
causal order delivery protocols by weakening protocols that guarantee synchro-
nous message passing in contrast to the classical approach sketched above of
strengthening protocols that guarantee the FIFO property.

In fact, protocols which implement synchronous message transmission on top
of asynchronous systems (such as the above mentioned \wait and acknowledge"
scheme) do guarantee causal order message delivery in a natural way because
messages which are \virtually instantaneous" cannot be overtaken by a chain of
other messages [CMT94]. In general, however, one would probably not be happy
with such a protocol since an application which executes without problems us-
ing a traditional non{blocking causal order delivery protocol might deadlock
when running on such a simulated synchronous system. Hence, we tried to make
the usual synchronous message passing protocol more e�cient and less prone to
blocking situations by introducing bu�ers, but limiting the degree of asynchrony
by using acknowledgements in an appropriate way. Since many distributed sys-
tems use message bu�ers anyway and message transport layers often use some
low-level acknowledgement scheme to guarantee reliable transmissions, such a
protocol should be easy to implement.

3 A Non{Blocking Low Overhead Protocol

In this section we �rst give an informal view of our protocol. Then we describe
it in detail and provide a proof that it guarantees causal order.

P

P

block

send

send
2

1
block

Fig. 1. Deadlock in a Synchronous System



3.1 Informal Description

In synchronous systems, deadlocks occur in situations like the one depicted in
Fig. 1, where each process is waiting for the delivery of its own message before
accepting the other message. Hence both processes cannot proceed in their com-
putation. If, however, we equip each process with an input bu�er and an output
bu�er, the bu�ers might synchronize their actions on behalf of the processes
and the processes are free to proceed with their computation. Since we want to
guarantee at least the FIFO property (in fact, we have to guarantee a stronger
property in order to realize causal order message delivery), we require all message
bu�ers to be implemented as FIFO queues. Communication between a sender's
output bu�er and the receiver's input bu�er should remain synchronous. On top
of an asynchronous system, this can be realized as usually with a handshake
protocol using acknowledgement messages.

OB

P

IB

OB

P

IB

j

j

j

i

i

i

post acknowledge

insert

send

deliver

get

receive

Fig. 2. A Single Message-Passing Operation

The causal order delivery protocol now works as follows (see Fig. 2): To send
a message, the sender process Pi hands the message to its dedicated output
bu�er OBi and continues with its computation (i.e., the send is non{blocking).
If the output bu�er is empty, the message is immediately transmitted to the
unique input bu�er IBj of the receiver Pj, then the output bu�er waits for
an acknowledgement from the receiver's input bu�er. If, however, the output
bu�er is not empty, the message is enqueued at the output bu�er. The crucial
point is that an output bu�er may transmit its next pending message only if
it has received an acknowledgement for its previously sent message. Hence, the
transmission of a message (by an output bu�er) is sometimes delayed for a short



time, but (assuming large enough input bu�ers) no deadlock is possible. Figure 3
shows this for a situation where a purely synchronous system would deadlock
(see Fig.1).

OB

P

IB

OB

P

j

j

j

i

i

IB i

send

acknowledge

send

get

receive

deliver

insert

insert post acknowledge

receive

post

get

deliver

Fig. 3. No Deadlock with the Bu�er Protocol

When a message arrives at the receiver's input bu�er, the bu�er immedi-
ately sends back an acknowledgement to the sender's output bu�er. (Note that
such acknowledgements are implicit if communication between bu�ers is syn-
chronous.) When the receiver process encounters a receive operation, it retrieves
the �rst message from its input bu�er (which is the oldest message) if the bu�er
is not empty, otherwise it waits for a message to arrive. Since we use FIFO
bu�ers, messages are received by the process in exactly the same order they are
inserted into the input bu�er.

At �rst sight it might be surprising that \non{blocking synchronous commu-
nication" (i.e., synchronous communication with input/output bu�ers) yields
causal order. (Recall that only \pure" synchronous communication trivially im-
plements causal order, and that such pure schemes are occasionally used for
causal message delivery in the Isis system, as mentioned above.) Informally,
however, it is easy to see that causal order is guaranteed by our protocol: First
note that a message m0 sent after a message m by some process cannot overtake
m since it is inserted into the output bu�er after m and therefore transmitted
only after the insertion of m into the receiver's input bu�er has been acknowl-
edged. Then observe that this is also true for a chain of messages of which m0

is the �rst message|m0 is only released when m already \safely" arrived at the



receiver's FIFO bu�er. Hence, there are also no indirect overtakings of messages,
a property which is characteristic for causally ordered computations. We will
give a formal proof at the end of this section; the next subsection prepares this
by describing the \bu�er protocol" more precisely.

3.2 The Protocol

We consider a system of n processes P1; : : : ; Pn which communicate by reliable
messages. Each process Pi has its own unique input bu�er IBi and output bu�er
OBi, both realized as FIFO queues. Process and bu�er behavior is speci�ed in
the following operational way:

Process Pi:
send message m to Pj:

call OBi to insert m and resume computation
receive a message:

call IBi to deliver its next message (and wait for it)

Input Buffer IBi:
deliver request by Pi:

wait until bu�er is not empty;
dequeue the next message from the bu�er and deliver it to Pi

getting a message from OBj:

send an acknowledgement to OBj;
enqueue message in bu�er

Output Buffer OBi:
insert-request for message m by Pi:

enqueue m in bu�er
posting messages:

loop forever
wait until bu�er is not empty;
dequeue the next message and transmit it to IBj ;
wait for an acknowledgement from IBj

Enqueues to a bu�er by a get or insert operation should always be possible, even
when a deliver or post operation is delayed by an empty bu�er2. Note that we do
not stipulate that the input bu�ers or output bu�ers are separate control threads
or autonomous active objects|depending on the implementation, their actions
might be carried out by the processes themselves (e.g., using an interrupt-driven
control scheme).

Consider a single message-passing operation from process Pi to process Pj,
as shown in Fig. 2. To transmit a message from one process to another, two

2 Hence we assume unlimited bu�er capacity. Clearly, too small bu�ers in a concrete
implementation may cause enqueues to block and thus give rise to deadlocks.



application-level operations are executed: a send operation by the sender and a
receive operation by the receiver. In our protocol, these two operations induce
certain events which are used to describe its behavior and to prove its correctness:

send: process Pi initiates the sending of message m by calling its output bu�er.
insert: message m is inserted into the output bu�er, now waiting to be trans-

mitted to the input bu�er of destination process Pj.
post: message m is now actually transmitted to Pj . Further sending from this

output bu�er (to any input bu�er) is inhibited until an acknowledgement
arrives.

get: m is inserted into the input bu�er of Pj, which sends back an acknowledge-
ment to the output bu�er of Pi.

deliver: the message is delivered to Pj.
receive: Pj receives message m and processes it.
acknowledge: the acknowledgement, sent by the input bu�er of Pj, arrives at

Pi's output bu�er.

Each message transmission therefore generates a send, insert, post, and acknowl-
edge event at the sender's site, and a get, receive, and deliver event at the re-
ceiver's site. Often, send and insert (as well as deliver and receive) can be consid-
ered to be a single event, since the two operations are executed in a synchronous
way on the same site. Note that after send/insert the sender is free to continue
with its execution, in particular it may send other messages before the previous
message is received (or even posted).

3.3 Proof of the Causal Order Property

For ease of notation we establish:3

Pi process i (i = 1; : : : ; n)
OBi output bu�er of Pi
IBi input bu�er of Pi
si send event at Pi (i.e., start of Pi's send operation)
ii insert event at OBi

pi post event at OBi

ai acknowledge event at OBi

gi get event at IBi

di deliver event at IBi

ri receive event at Pi (i.e., completion of Pi's receive operation)

xmi x 2 fs; i; p; a; g; d; rg, event related to
message m at location i (i.e., at Pi, OBi, or IBi).

To prove that our protocol is safe, we have to show that all possible computations
generated by the protocol are causally ordered.

3 We omit the index from an event if its location is not relevant or if it is clear from
the context.



Proposition1. For all send events sm, sm
0

and corresponding receive events
rm, rm

0

of any computation driven by the protocol, one has

sm � sm
0

^ rm � rm
0

) rm � rm
0

:

We �rst show three lemmas which hold for all such computations. With their
help we then prove the proposition.

Lemma2. pxi � p
y
i ) gx � gy.

Proof. Output bu�er OBi can only post a later message y when the insertion of
the earlier message x into the appropriate input bu�er is acknowledged. Hence,
pxi � gx � axi � p

y
i . From p

y
i � gy , it follows by transitivity that gx � gy. 2

Lemma3. sxi � s
y
i ) gx � gy.

Proof. Because message x is inserted into the output bu�er OBi before message
y, we have ixi � i

y
i . Because OBi is a FIFO bu�er, pxi � p

y
i follows. Lemma 2

then yields gx � gy. 2

Lemma4. gxj � g
y
j ) rxj � r

y
j .

Proof. Input bu�er IBj is a FIFO bu�er, hence messages are delivered (and
received) in the same order they are inserted. 2

The proof of Proposition 1 is now divided into two cases.

case (a) :(sm � sm
0

):

Proof. Because sm � sm
0

by hypothesis, there must exist a causal chain
of events smi � : : : � szi � gz � : : : � sm

0

with a �rst message z. From

Lemma 3, gm � gz � : : : � sm
0

follows. Because sm
0

� gm
0

, we have gm �
: : : � gm

0

by transitivity. Because messages m and m0 are received by the
same process (i.e., rm � rm

0

), Lemma 4 applies, yielding rm � rm
0

.

case (b) (sm � sm
0

):

Proof. Because the sender and the receiver of the two messages are identical,
Lemma 3 and Lemma 4 directly apply. By transitivity we get the desired
result rm � rm

0

. Note that this is the FIFO property, a degenerated case of
the general causal order property. 2

Informally, the liveness property (i.e., the fact that each message handed to the
output bu�er by a send operation is eventually inserted into the input bu�er
at the receiver's site by the protocol) is also easy to see: Recall that we assume
reliable message transmission and unlimited bu�er capacity. Furthermore, we
assume that the scheduling of events is fair. (This means that whenever a post is
possible because the bu�er is not empty and the acknowledgement of the previous
message has arrived, it will eventually be carried out.) The only situation where
the protocol might block is the waiting for an acknowledgement. However, the
�rst post does not have to wait for an acknowledgement and since each post
induces the receipt of an acknowledgement, it follows by induction that no post
will be delayed forever.



4 Discussion

As we have seen, it is possible to implement causal order without piggybacking
any additional informationon the messages and without blocking the sender until
remote delivery occurs. The driving idea was that it should be possible to realize
causal order by weakening the conditions for synchronous computations. The
intuition behind this was that since the class of causally ordered computations is
located between the synchronous and FIFO computations, causal order should be
\reachable" from both sides | instead of generalizing the piggybacking of FIFO
sequence numbers to matrices, we added input/output bu�ers to the synchronous
acknowledgement scheme. In this section we compare our protocol to the matrix
protocol, discuss some limitations, and comment on performance issues.

4.1 Comparison to the Matrix Protocol

P

P

P

1

2

3

y

x

z

Fig. 4. A Non-Causally Ordered Execution of the First Program

In order to compare our \bu�er protocol" to the classical point{to{point
causal order delivery protocol based on dependency matrices [SES89, RST91],
consider the following distributed program with three processes:

P1: send x to P3; ... send y to P2;...

P2: receive; ... send z to P3;...

P3: receive; ... receive;...

Figure 4 shows a possible computation if this program is executed on a general
asynchronous system. Since the computation is not causally ordered, a causal
order delivery protocol must avoid this particular execution. The matrix pro-
tocol does this by not immediately delivering message z when it arrives at P3

(because the matrix attached to z would show that z depends on x which has
not yet arrived). Instead of delivering message z, it would keep it in a bu�er
until message x has arrived. Thus, the computation depicted in Fig. 5 would be
generated. The bu�er protocol yields the same causally ordered computation, but
as Fig. 6 indicates this is achieved by delaying message y (i.e., the �rst message



P

P1

P

2

3

x

z

y

Fig. 5. An Execution Generated by the Matrix Protocol

of the message chain potentially overtaking message x), and not the last mes-
sage z. Hence, the matrix protocol potentially delays a message at the receiver's
site, whereas the bu�er protocol does this at the sender's site. The bu�er pro-
tocol therefore behaves conservatively compared to the more optimistic matrix
protocol. The latter, however, must label the messages with causal dependency
information so that it can be checked at the receiver's site whether the optimism
was justi�ed.

P

P

P

1

2

3

y
x ack

z

Fig. 6. An Execution Generated by the Bu�er Protocol

Note that the receive statements of the program shown above are non-
selective|they do not specify the sender's name (or select the message to be
received according to some other criterion). If we allow selective (sometimes
also called conditional) receive statements, process P3 could be programmed as
follows:

P3: receive from P2; ... receive from P1;...

Here, process P3 would specify that it �rst wants to receive message z, and only
then message x. Clearly, this is in contradiction to the causal order property!
How would the two protocols behave? The matrix protocol would not deliver



message z before message x is received. However, message x is not a message
from P2 as requested by the �rst (blocking) receive statement of P3. Hence, the
computation would block at this point. The bu�er protocol would put message
x into P3's input bu�er, message z will be inserted after x. Since messages in
the FIFO queue cannot be reordered and P3 is not willing to accept the �rst
message (because it comes from the wrong sender), the computation will also
block at the �rst receive statement of P3.

P

P

P

1

2

3

d

ca

e

f

b

Fig. 7. An Execution of the Second Program with Overlapping Crowns

4.2 The Problem of Selective Receive Statements

The example of the previous subsection shows that it is dangerous to make use
of selective receive statements when at the same time requiring causal order mes-
saged delivery|the delivery order conditions imposed by the two mechanisms
might contradict each other, thus allowing no execution of the program. If the
conditions of selective receive statements happen to be in accordance with the
causal order property, we would expect no problems. Interestingly, however, the
next example shows that when using selective receive statements there are subtle
cases where the two protocols di�er in an essential way. Consider the following
distributed program:

P1: send e to P2; send d to P3; receive; receive;

P2: send c to P3; send b to P1; receive; receive;

P3: send a to P1; send f to P2; receive; receive;

Note that all possible computations generated by the program are causally
ordered|no message can be overtaken in an indirect way since for each process
there are no sends after the �rst receive. Figure 7 and Fig. 8 show two possible
computations, both contain so-called crowns (i.e., substructures of k correspond-
ing send-receive events si; ri such that s1 � r2; s2 � r3; � � � ; sk�1 � rk; sk � r1,
see [CMT94]). Figure 7 can be generated by the bu�er protocol in the following
way: First, the initial sends of each process are executed and messages e, c, a are



inserted into the receivers' input bu�ers. Then the next three sends are executed
and messages d, b, f are inserted into the input bu�ers behind the �rst messages.
The messages are now ordered in such a way that they can be correctly delivered
with the subsequent receives.

P

P

P

1

2

3

b

f c

ae
d

Fig. 8. An Execution with Nested Crowns

On the other hand, the computation depicted in Fig. 8 cannot be generated
by the bu�er protocol. We prove this by showing that there is a cyclic dependency
among the get events:

gb � ga (from rb
1
� ra

1
and the FIFO property of IB1)

gc � gb (from sc
2
� sb

2
and Lemma 3)

gd � gc (from rd
3
� rc

3
and the FIFO property of IB3)

ge � gd (from se
1
� sd

1
and Lemma 3)

gf � ge (from r
f
2
� re

2
and the FIFO property of IB2)

ga � gf (from sa
3
� s

f
3
and Lemma 3)

By transitivity, the contradiction ga � ga follows.
If selective receive statements are used to enforce the computation depicted

in Fig. 8, the bu�er protocol would therefore block, whereas it is easy to see that
the computation can be executed with the matrix protocol. Hence there exist
causally ordered computations which cannot be generated by the bu�er protocol.
However, this fact should only be relevant when selective receive statements are
used which specify the sender of a message to be received. As we have shown
above, such selective receive statements are problematic anyhow when used in
connection with the causal order property. If no selective receive statements are
used, the bu�er protocol will always yield a causally ordered execution of the
program.

Selective receive statements do also cause problems to the bu�er protocol in
other situations. Consider the following distributed program:

P1: send x to P2;

P2: receive from P1; receive from P3;

P3: send y to P2;



Messages x and y are concurrent|depending on various \nondeterministic" cir-
cumstances (e.g., message transmission times, processor speed, system load), x
may arrive at P2's input bu�er IB2 before y or vice-versa. In the �rst case, the
bu�er protocol will successfully execute the program, in the second case process
P2 blocks at its �rst receive statement. Although the send events of the two mes-
sages do not causally depend on each other, the bu�er protocol cannot reorder
the messages in the input bu�er. The reason is that IB2 has no knowledge about
causal dependencies (or independencies) of its messages. This is in contrast to
the matrix protocol where (with the help of the dependency matrix attached
to each message) this knowledge is conveyed to the input bu�ers and processes.
Hence, the matrix protocol can deliver the message sent by P1 in the program
above even if it is not the �rst message inserted into the bu�er.

4.3 Performance Issues

The discussion of the previous subsection shows that the bu�er protocol can-
not reasonably be used with selective receive statements. This, together with
the additional acknowledgement messages, is the price one has to pay for not
piggybacking matrices of size O(n2) on the messages. The acknowledgement mes-
sage, however, is not that expensive as it seems at �rst sight. Acknowledgements
are short, and they are transmitted between bu�er instances only, not between
the processes themselves. Often, acknowledgements are used in any case by the
underlying transmission protocol and therefore impose little or no additional
overhead.

Since in our protocol an output bu�er does not transmit any further mes-
sages until the acknowledgement for the previous message has been received4,
communication may incur extra delays. However, this should only be relevant
when send events directly follow each other or when communication bandwidth
is almost saturated. The maximumbene�t of our approach would be achieved in
a system with very low{latency round{trip acknowledgements, such as may be
possible over ATM network hardware. In these settings one would expect that
the acknowledgement already arrived before the next message is handed to the
output bu�er. Recall that an input bu�er sends an acknowledgement directly af-
ter getting a message, that bu�ers are almost always ready to insert a message,
and that even if the transmission of a message by an output bu�er is delayed
for some time, the corresponding process can proceed with its computation and
perform further send and receive actions. Hence, the extra communication de-
lay should be barely noticeable, and with respect to e�ciency the new protocol
should compare favorably to the matrix protocol5. However, we must admit that
we currently lack experimental demonstrations which would support that claim.

4 If the transport layer does not reorder messages, subsequent messages to the same re-

ceiver can be transmitted by an output bu�er without waiting for acknowledgements.
Hence, the protocol imposes a possible delay only when two successive messages are

sent to di�erent receivers.
5 Note that the matrix protocol does also need bu�ers and that the piggybacking of
matrices also requires time and communication bandwidth.



5 Conclusions

In this paper we proposed a non{blocking low overhead algorithm to implement
point{to{point causal order message delivery. Since synchronous communication
trivially implements the causal order property, we adopted this principle at the
\transport layer" using an acknowledgement-based handshake protocol, but de-
coupled the processes with the help of bu�ers. As we have shown, the resulting
scheme is usually not applicable to programs with selective receive statements,
but otherwise it compares favorably with the earlier matrix protocol and it scales
much better: Instead of piggybacking huge matrices on each message, a low-level
acknowledgement between bu�ers at the transportation layer is used. We expect
the extra delay caused by messages waiting in an output bu�er not to be a major
problem. Furthermore, the protocol is simple and easily implementable.

Future work should consider whether the matrix protocol and the bu�er
protocol can be combined in a reasonable way, how the protocols di�er with
respect to fault tolerance, and in which way the bu�er protocol can possibly be
adapted to causal broadcasts.

Acknowledgements. We would like to thank Uli Lemberg for providing us with the

nested crowns example, and Ken Birman and Andr�e Schiper for general comments on

earlier versions of this paper.

References

[AB92] Acharya A., Badrinath B., Recording Distributed Snapshots Based on

Causal Order of Message Delivery. Information Processing Letters 44, 1992,

pp. 317-321

[AV94] Alagar S., Venkatesan S., An Optimal Algorithm for Distributed Snapshots

with Causal Message Ordering. Information Processing Letters 50, 1994,
pp. 311-316

[BJ87] Birman K., Joseph T., Reliable Communication in the Presence of Failures,

ACM Trans. on Computer Systems 5, 1987, pp. 47{76

[BR94] Birman K., van Renesse R. (eds.), Reliable Distributed Computing with the

Isis Toolkit, IEEE Computer Society Press, 1994

[BSS91] Birman K., Schiper A., Stephenson P., Lightweight Causal and Atomic

Group Multicast, ACM Trans. on Computer Systems, 9(3) (August 1991),

272-314

[CMT94] Charron-Bost B., Mattern F., Tel G., Synchronous, Asynchronous, and

Causally Ordered Communication. Submitted to Distributed Computing,

1994

[Fid88] Fidge C., Timestamps in Message-Passing Systems that Preserve the Par-

tial Ordering. Proc. 11th Autralian Computer Science Conf., University of

Queensland, 1988, pp. 55-66

[KK89] Kearns P., Koodalattupuram B., Immediate Ordered Service in Distributed

Systems. Proc. 9th International Conference on Distributed Computing Sys-
tems, Newport Beach, California, June 5-9, 1989, pp. 611-618



[Lam78] Lamport L., Time, Clocks, and the Ordering of Events in a Distributed

System. Comm. of the ACM 21 (7), 1978, pp. 558-565

[Mat88] Mattern F., Virtual Time and Global States of Distributed Systems. In:
Cosnard M. et al. (eds.): Proc. Workshop on Parallel and Distributed Al-

gorithms, Bonas, France, 1988, pp. 215-226. (Reprinted in: Z. Yang, T.A.

Marsland (eds.),Global States and Time in Distributed Systems, IEEE, 1994,
pp. 123-133)

[RST91] Raynal M., Schiper A., Toueg S., The Causal Ordering Abstraction and

a Simple Way to Implement it. Information Processing Letters 39, 1991,
pp. 343-350

[SES89] Schiper A., Eggli J., Sandoz A., A New Algorithm to Implement Causal

Ordering. In: J.-C. Bermond, M. Raynal (eds.), Distributed Algorithms, Vol.
392 of Lecture Notes in Computer Science, Springer-Verlag, 1989, pp. 219{

232

[SM94] Schwarz R., Mattern F.,Detecting Causal Relationships in Distributed Com-

putations: In Search of the Holy Grail. Distributed Computing 7 (3), 1994,

pp. 149-174

[TM93] Tel G., Mattern F., The Derivation of Distributed Termination Detection

Algorithms from Garbage Collection Schemes, ACM Trans. on Prog. Lang.

Sys. 15 (1), 1993, pp. 1-35


