
Next-Generation Deployment Support
for Sensor Networks

Jan Beutel, Matthias Dyer, Lennart Meier, Matthias Ringwald, Lothar Thiele
TIK-Report No: 207

Computer Engineering and Networks Lab
Swiss Federal Institute of Technology (ETH) Zurich

8092 Zurich, Switzerland

Abstract— We present a new methodology for the de-
velopment, test, deployment, and validation of wireless
sensor networks. Our approach is a robust, wireless cable
replacement offering reliable and transparent connections
to arbitrary WSN target devices. Compared to traditional
serial-cable approaches, this results in enhanced scalability
and flexibility with respect to node location, density, and
mobility. This makes the coordinated deployment of WSNs
possible. We describe the operation of this novel tool
and discuss an exemplary implementation on the BTnode
platform.

I. INTRODUCTION

A sensor network is a collection of small, low-resource
devices that are distributed in the physical environment.
Due to cost and flexibility issues, it is often assumed to
be a wireless sensor network (WSN) consisting of a large
number of sensor nodes. Each of these nodes collects
sensor data, and the network collaboratively provides
high-level sensing results.

The recent increase in research interest has led to
many new developments and proposals for WSNs. While
algorithms, system models, device architectures, and
programming abstractions have been investigated for
quite some time now, not much has been achieved
regarding the support for development, test, deployment,
and validation, which we refer to as “deployment” in
the remainder of this paper. Coordinated methods and
tools for this area are largely missing today. As a result,
few implementations using real devices in meaningful
scenarios exist.

Two key challenges in the deployment of WSNs are
the large number of devices involved and the necessity to
embed them in a realistic physical environment. Today,
development and debugging are typically done with
serial cables connecting the sensor nodes to a control
terminal. These serial connections are used for stepwise
testing, controlling, monitoring, and (re-)programming

of the nodes. This method has become widely accepted
for constructing small testbeds. For larger numbers of
nodes or deployment in the field, it is unrealistic to
connect a cable to each node. A result is, that few people
implement and the standard approach for most WSN
research is simulation. It is highly scalable and provides
information about very specific system properties [1].
But when wireless communication is involved, the cho-
sen simulation models are often too simplistic [2], [3].
For a full understanding of the WSN, it is thus necessary
to not only model and simulate, but also to implement
and test on real-world systems [4].

The coordinated deployment of a large-scale WSN
is only possible if all cabling is replaced by wireless
links. Using the WSN radio itself for this purpose is not
feasible: In early development stages, it is too unreliable,
and in the final validation phase, additional traffic would
consume energy and bandwidth, and hence modify the
results.

In this paper, we propose a deployment-support net-
work (DSN) as a tool for the deployment of large WSNs.
A DSN is a multi-hop wireless network of DSN nodes,
which are small enough to be temporarily attached to
a target sensor node. This network offers cable replace-
ment by providing reliable virtual connections from a
host PC to the target sensor nodes (see Fig. 1). From a
networking perspective, this is an overlay network oper-
ating independently from the target WSN. This approach
is transparent and highly scalable, and does not disturb
the target WSN any more than the traditional, cable-
based approach. For the engineer, everything actually
looks as if the usual cables were in place; he can thus
use the same tools. With our approach, we push the limit
for large-scale prototyping from virtualization [5], [1] to
coordinated real-world deployment.

In Section II, we identify cabling as the key obstacle
to a coordinated design flow for WSN deployment, and



target sensor
node

host controller DSN node

Fig. 1. Deployment-support network. Some or all nodes of the sensor
network are attached to a DSN node. The DSN provides wireless
virtual connections from one or more host controllers to the target
nodes, allowing remote debugging, monitoring, and control.

introduce the deployment-support network as a cable-
replacement tool. We have implemented a DSN on the
BTnode prototyping platform. The details of our exem-
plary implementation are presented in Section III, and
the experimental results in Section IV. The characteris-
tics of and the experience with our DSN implementation
are discussed in Section V. In Section VI, we give an
overview of related work.

II. NEXT-GENERATION PROTOTYPING OF WSNS

The classic approach to developing and deploying
WSNs starts with a design specification and initial sim-
ulation runs leading to lab setups with only few devices.
Here, serial cables are used for program download,
control, and monitoring. When moving away from the
engineer’s desktop and beyond numbers of 10–20 nodes,
deployment and testing become increasingly hard. This
is because wired connections to every node become
infeasible. The loss of these connections reduces the pos-
sibilities for control and monitoring considerably, often
resulting in trial-and-error procedures. Success and exact
results then rely on sufficient manpower [6], individual
skill [7], many iterations [8], and also a certain amount
of luck [9].

In a coordinated design flow with stepwise refinement
and validation (see Fig. 2), it is vital to be able to monitor
and control the target systems at all times. It is therefore
desirable to be able to connect to any target device as
if it were located on an engineer’s desktop, ideally with
minimal influence on the device’s operation.

A step in the right direction are techniques that use
the WSN itself to provide a connection to the WSN

devices [10], [11]. However, this implies altering the
system and thus its behavior. Furthermore, it requires
a relatively stable WSN. On failures, which occur fre-
quently in early prototyping phases, a manual recovery
is required.

A deployment-support network is useful throughout
the entire development cycle: in an early phase, where
the focus is on getting the first functions operational and
distributing new code to all devices; during system test-
ing in the final stages of development; in a production-
like deployment phase where monitoring, validation and
measurement with minimal interference are the primary
focus. with the DSN approach, operation and testing in
the field is made possible, significantly decreasing the
amount of necessary cycles in the development process
and achieving correct implementations in a timely man-
ner.

Design

Simulation
Design

Review

Prototype 

Development

Test & Debug

Deployment

Prototype 
Review

Design 

Validation
Test & Debug

Deployment-Support Network 

Application Domains

Fig. 2. A deployment-support network enables stepwise refinement.
The amount of cycles necessary in the development and deployment
process are reduced. Any WSN system can be tested and debugged
live and embedded in the physical environment.

A. Basic Principle of a Deployment-Support Network

The ability to reliably connect to a WSN target device
without altering it can be achieved by simply attaching
a DSN device to every WSN target device, and letting
the DSN devices construct and maintain an autonomous
multihop network. A host, e.g. a PC, can tap into this
network by attaching to one of the DSN devices, and
open a virtual connection to an arbitrary DSN node. The
host is then able to communicate both with this node and

2



virtual connections
host controller

targetsDSN nodes

Fig. 3. The deployment-support network with three virtual connections opened from a host to DSN nodes with an attached WSN target:
Here, Berkeley Motes are shown as exemplary targets, but arbitrary target devices that can be controlled, monitored and programmed through
a serial port are possible.

with its attached target. Multiple virtual connections are
possible, either originating at the same host, or at hosts
attached to different DSN nodes.

There are different possibilities to interact with the
target, such as serial-port connections for target moni-
toring and control, and remote target programming and
resetting. In the case of serial-port tunneling, the target’s
serial port is replicated on the host system. The tunneled
data can be used as if the target device was directly
attached to the host. Standard tools like an in-system
programmer or an in-circuit debugger can be used with-
out modification, although the target may be multiple
hops away. For operations requiring access to specific
I/O pins of the target device (e.g. remote programming
or resetting), additional general-purpose I/O pins of the
DSN node have to be used. A general overview of
the DSN components and some exemplary host–target
virtual connections are shown in Fig. 3.

III. IMPLEMENTATION OF A SELF-HEALING DSN

In this section, we discuss our exemplary implemen-
tation of a DSN. We first motivate our choice of a
hardware platform and then discuss the details of the
implementation. The main challenges lie in efficient and
robust distributed algorithms, as well as in the formation
of a multihop network.

A. Selecting a Hardware Platform

To implement the proposed deployment-support net-
work, we have to use devices that can construct and
maintain multihop networks, support efficient packet
data transport, and offer a generic target interface.

We chose Bluetooth as the wireless transport layer
due to its reliable link-layer, multiplexing, and QoS
capabilities, and the rather high bandwidth which al-
lows to tunnel the aggregate traffic of multiple virtual
connections. When selecting an appropriate Bluetooth
platform, choices range from PC-class systems to tiny
embedded devices. Since a large number of DSN nodes
are to operate under similar constraints as the WSN
target devices, they should be rather cheap, lightweight,
and mobile. Power efficiency is not as critical, because
the required lifetime of the DSN nodes is much shorter
than that of the WSN. Versatility and easy applicability
to different kinds of target devices are more important.

The BTnode [12] is an autonomous wireless commu-
nication and computing platform based on a Bluetooth
radio module and an Atmel ATmega128L microcon-
troller, similar in performance to a Berkeley Mote. The
BTnode is sufficiently small and yet powerful enough to
support the intended DSN operation. It has not primarly
been designed for ultra-low-power operation and mass
production, but rather as a platform suited for fast pro-
totyping and early deployment and experimentation [13].

B. BTnode Multihop Networking

Networking in Bluetooth is organized in master–
slave configurations called Piconets. Every Piconet has
one master to which up to seven active slaves can be
connected at any time. Multiple Piconets can be inter-
connected by nodes with double roles (slave–slave or
master–slave); the resulting network is called a Scatternet
(see Fig. 4).

While the interconnection of nodes is part of the Blue-
tooth standard, the formation and control of multihop

3



topologies is not. Also, only single-hop data transport
is defined (from master to slave or vice versa). This
means that an additional functional layer must take care
of topology control and maintenance, and of all multihop
packet forwarding.

Master

Slave

Master-Slave

Fig. 4. Several Bluetooth Piconets are connected into a Scatternet
using double master–slave roles on 3 nodes.

To ease the adaptation of our system to future devices,
we chose a modular structure of the software running
on each DSN node. We will now describe the two main
modules, first specifying the required functionality, and
then illustrating our implementation.

C. Topology Control and Maintenance

The connection manager constructs and maintains a
multihop network of the DSN nodes. It shall be a simple,
robust, and completely local algorithm that automatically
takes care of link failures and joining and leaving nodes.
The basic principle of a simple, distributed connection
manager algorithm is as follows: Every DSN node peri-
odically searches for other nodes, and subsequently tries
to connect to all nodes found.

For this exemplary implementation we chose to restrict
the connection manager to form tree topologies only.
Since in a tree there is only one path between any two
nodes, we are relieved from explicit route calculation;
this reduces the system complexity considerably for first
experiments and evaluation.

The BTnode devices available for experimentation are
capable of forming Scatternets via one single master–
slave double role, but not using the slave–slave double
role or multiple double roles (see Fig. 4). There are some
other constraints on the possible connectivity that need to
be taken into account: (i) While performing an inquiry()
or a connect(), a node is not visible to other nodes, (ii)
while in the slave or master–slave state, a node is not
visible, and (iii) while in the slave or master–slave state,
a node cannot perform an inquiry() or connect().

Treebuilding along the proposed scheme involves the
detection of possible cycles before a potential connect().
This can be achieved by assigning a unique tree ID to

each subtree formed (see Alg. 1). Upon detection of a
node, the remote and local ID’s are compared, and if
they are not equal, a connect() is performed. The larger
ID is then broadcast to the respective subtree.

Algorithm 1 Tree construction and maintenance
loop

while my slaves < max degree do
found nodes = inquiry();
for all node in found nodes do

remote id = get id(node);
if remote id �= my id then

connect(node);
if remote id > my id then

my id = remote id ;
broadcast (remote id);

else
broadcast (my id);

end if
end if

end for
end while

end loop

Upon a successful connection between two nodes,
the slave node stops inquiring and connecting (since it
cannot inquire and connect anymore), while the master
node continues if it has not yet acquired max degree 1

slaves. This means that new connections are opened only
between nodes that are not in a slave role. Starting with
disconnected Piconets, the network topology evolves by
connecting more and more Piconets to each other and
forming Scatternet trees until, after multiple iterations,
only one master node is left at the root of the final tree
(see Fig. 5). If a link fails, the root of the disconnected
subtree is not a slave anymore and will thus start inquir-
ing and connecting again. To speed up the connection
process, the information obtained during inquiries (node
addresses and clock offsets) is stored locally.

This simple algorithm allows the formation of large
topologies in a robust and completely distributed fashion.
It does not need central control, or exhaustive computa-
tion or communication between nodes. Therefore, it can
be expected to scale well to a large number of nodes.
Despite its simplicity, our algorithm builds and maintains
a self-healing network that tries to reconnect subtrees
separated upon disconnects.

1This parameter is used to control the degree and hence depth of
the final tree.

4



(a) (b) (c) (d) (e)

Fig. 5. A schematic view of the connection manager’s operation: (a) Initially disconnected, (b) first Piconets form, (c) they interconnect
to first Scatternets, until (d) larger Scatternets are forming and the tree structure becomes visible, and (e) finally, a single tree has been
constructed.

D. Multihop Packet Forwarding

The transport manager takes care of multihop packet
forwarding. It receives information about the available
connections from the connection manager and uses these
connections to route packets. This packet switching at
every BTnode is based on ATM virtual-circuit switching
and automatically forwards traffic to the appropriate
connection based on a virtual-circuit identifier.

Communication is always initiated by a host, typically
by opening a virtual connection to a DSN node. This is
done by simply flooding the network with a route-request
message. Each DSN node memorizes the connection ID
a message arrived on; this is the route to the host to
be used on the return path. When the destination node
for a virtual connection sends its reply along the return
path, the intermediate nodes assign a local virtual-circuit
identifier to the connection ID the reply arrived on; this
is the route to the destination node. After the setup is
completed, packets can be transported over this virtual
connection, with only minimal header processing at the
intermediate nodes.

In case of link failures, the host and all endpoints of
broken virtual connections are notified, and all virtual-
circuit identifiers are removed from the local tables. The
retransmission of lost packets in case of link failures has
to be handled by the host application.

IV. EXPERIMENTAL RESULTS

The results in this section are measured with the fol-
lowing experimental setup: 15–30 BTnodes are scattered
randomly on a large desk. All nodes are programmed
with the same software. A host PC is connected over
a 115kbps serial link to one of the BTnodes. The
host PC configures the BTnode to be a host node in
order to receive topology information. Each node stores
connection-specific events such as new connections and
link losses to a local log. The topology information and

the logged events are remotely collected by a monitoring
and control application running on the host PC (see
Fig.6).

We will now discuss two aspects of the implemented
DSN: network-topology construction and the per-hop
transmission delay.

Fig. 6. A monitoring tool running on a host allows to monitor the
network topology and control the deployment-support network.

a) Network-Topology Construction: – The topol-
ogy construction depends on the ability to discover
other nodes and to successfully connect to them. These
are highly non-deterministic operations since no a-priori
assumptions about the state of remote nodes can be
made. They may be inquiring, connecting, or in a slave
role, which means that they are not visible to others at
that time. Previous measurements have shown that the
time for inquiring is a time-consuming process and in the
order of tens of seconds [14], [15] for a reliable discovery
of all nodes. Experimentation has shown that for our
continuous and iterative connection manager, a short
inquiry that is repeated often accelerates the formation of
large clusters. Our experiments were conducted with the
following values: inquiries last 3 s and pauses between

5



inquiries are chosen randomly between 5 and 20 s.

0 20 40 60 80 100 120
0

5

10

15

20

time [s]

ne
tw

or
k 

co
ne

ct
iv

ity

Fig. 7. Initial network-topology construction: Three different exper-
iments are shown here with 19 nodes. The connectivity is the total
amount of connections in the network cluster.

Figure 7 illustrates the evaluation of the initial con-
nection events of 19 BTnodes. It shows three test runs
of the initial topology construction with the total number
of connections in the network2. The nodes start to form
large clusters within approximately 60 s. The self-healing
property can also be seen here: connections that are
dropped are subsequently repaired.

Bluetooth connections take time to be set up. Pending
connection requests and lost connections that have not
been detected by both endpoints are visible as steps of
a half in Figure 7. Here, the behavior of connection
requests and successful connects can be seen in the quick
steps in the left region. Disconnects that rely on the
Bluetooth link supervision timeout that is typically set
to multiple seconds have much longer half steps as can
be seen on the right.

In contrast, in a tree structure without redundant con-
nections, a failure of an arbitrary link may result in the
disconnection of a large portion of the network. Figure 8
shows two experiments with a view of the local tree size
of two independent nodes connected to a host PC. Since
this is the local view from a specific node, local tree
sizes can vary over a large range. On subsequent connect
and disconnect events, whole subtrees can be affected.
Using the self-healing property of the topology control
and maintenance algorithm, a recovery to a similar tree
size can be accomplished within a rather short time.

b) Per-Hop Transmission Delay: – On a virtual
connection spanning multiple hops, the data has to be

2The connections are identical to the edges in the global topology
graph of the network.

0 200 400 600 800 1000 1200
0

5

10

15

20

time [s]

lo
ca

l t
re

e 
si

ze

Fig. 8. Network-topology maintenance: Upon link losses the self-
healing maintenance reestablishes a connected tree topology. Two
different experiments are shown here with the local tree size.

forwarded hop by hop. The transmission and processing
delays add up along the path. We measured the delay
by sending time-stamped packets to an endpoint. The
packets are looped back to the sender, which measures
the round-trip delay. Figure 9 shows the average round-
trip delay divided by 2. For different packet sizes we
have measured and averaged the delay of 40 packets.

Fig. 9. Per-hop transmission delay: Average multihop transmission
delay and standard deviation for different packet lengths.

The per-hop delay was measured to be 35–65 ms
for the first hop and 45–90 ms for subsequent hops,
depending on the packet size (see Fig. 9). For small
packets, this results in approximately 50 ms per hop and
per packet.

For serial-port tunneling, the end-to-end delay is of
importance. The maximum tolerable delay for a serial
connection depends on the application. Typically, a ter-
minal session tolerates minutes before disconnecting, in-

6



system programming can cope with a few seconds, and
typing on an interactive user interface requires a maximal
delay of 100–500 ms. Our measurements show that for
the time being, we have to limit ourselves to tasks that
do not require low-delay transmissions from the host
to a DSN node many hops away. The local connection
between DSN node and its attached WSN node can
however meet any delay demands of the target WSN
node. Delay sensitive applications like reprogramming
a WSN node can thus be done by first downloading all
the data to the DSN node, and from there with negligible
delay to the WSN node.

V. EVALUATION

Looking at the overall experimental results, we can
see that the concept of a deployment-support network
is working out. We have successfully formed connected
tree topologies spanning 20–30 BTnodes and operat-
ing multiple virtual connections with data rates up to
57.6 kbit/s. Self-healing tree topologies spanning 10–12
hops are autonomously constructed in tens of seconds to
a few minutes. The experience from our experiments has
shown that the initial tree formation is sufficiently fast
and produces large network topologies. In the following
discussion, we will focus on the characteristics of the
DSN itself and not so much on its interaction with a
target WSN.

A major restriction rooted in the device constraints
outlined in Section III-B is that all nodes have to be
within each other’s transmission range. Even when this
is the case, it can happen that the root nodes of two or
more disconnected trees all have max degree slaves. In
this case, they will not form new connections and thus
not form a single final tree. A remedy here would be
to introduce auxiliary algorithms to handle such lockup
situations.

Due to the properties of our devices and the simplicity
of the distributed algorithm, it is impossible to guarantee
the formation of a single tree spanning all nodes in
a given region. While giving a connectivity guarantee
is very hard in a random wireless environment, an
optimized topology could be achieved by breaking up
trees at specific connections to optimize the topology
after an initial construction phase.

The tree topology was a reasonable choice for the ini-
tial implementation and the proof of concept. However,
the experiments show link losses which result in the
disconnection of potentially large subtrees, prohibiting
long-term operation of virtual tunnels over larger hop
distances.

Some of the problems encountered can be directly
attributed to the rather old and sometimes unreliable
Bluetooth modules we have used in these initial ex-
periments. Devices making use of a next-generation
Bluetooth subsystem, such as the upcoming BTnode
rev3, will allow greater flexibility, enhanced stability,
and an increased performance. These new devices do
not exhibit the limitations documented in Section III-C
and can handle arbitrary connections in Scatternets3.

To achieve greater stability in case of link losses and
reliable virtual-connection operation for days, network
topologies with redundant links are clearly favorable.
This would eliminate many of the limitations discussed
earlier, but would require additional functionality to run
on the DSN nodes. While redundancy is favorable in
respect to robustness and network performance, it comes
at a significant price: It will require advanced topology-
shaping algorithms and of course more complex routing,
which is presently reduced to simple packet forwarding.

The connection and transport manager are already
designed to accommodate such functionality and many
proposed algorithms for topology control and routing
exist. But again success here depends on the implemen-
tation details and the concerted behavior of the nodes.
Since a wireless network is not static, given that links
can break and nodes can fail all components have to be
able to operate in a dynamic environment with joining
and leaving nodes.

Even in a simple algorithm as presented, several pa-
rameters have to be determined through practical experi-
mentation. In our work, a major increase in performance
was achieved with the selection of the correct duty-cycle
parameters for the inquiry duration and period.

VI. RELATED WORK

Much care has been taken to appropriately design
component-based system architectures [16]. TinyOS [17]
pursues a network-centric approach to embedded soft-
ware systems. An easy jump start for fast prototyping
was the focus in the design of the BTnode system
software [13], where applications can be run in an em-
ulation mode, without download to the target hardware.
However, all these approaches are mainly concerned
with the single device and its architecture, and not
with networks of many devices. Without the appropriate
external tools and methodologies, these systems will not
be able to cope with more complex applications.

3This can be attributed to the recently revised Bluetooth standard
and implementation details on Bluetooth chipset and firmware.

7



Distributed simulation, e.g. TOSSIM [1], is a valuable
tool in the development process; it allows to study
system-design alternatives in a controlled environment.
The problem with simulation is that assumptions have
to be made [2], [18], and simplifications have to take
place [19]; this inevitably leads to a gap between reality
and the simulated, virtual world. In addition, simulation
results are known to not always be consistent across
different scenarios or tool chains [3].

A significant approach to bridge the gap between
simulated and real world is the concept of virtualization
pursued by the Emstar architecture [5]. Here, a flow from
specification via simulation and emulation to testing on
a Linux platform is described. Unique to this approach is
the rather tight integration of real and virtual components
in one framework, but the capability to capture all prop-
erties of the environment and of the devices themselves
in the respective virtual counterparts is limited.

Lessons from experimentation, such as outdoor sensor
network expeditions [8], [9], university class projects [6],
or large-scale testbed deployments [20], have required
direct and reliable access to the WSN devices involved.
Out of this necessity, many different techniques have
been developed to attach temporarily or permanently
to WSN devices: Layered architectures with different
scales of devices and hierarchical networks [21], [22],
serial multiplexing units mounted onto a table, as a semi-
mobile laptop unit, or mounted into a ceiling array [23],
[5], [20], direct Ethernet attachments such as the MIB600
programming board for the Berkeley Motes [24], used
in the moteLab and sMote testbeds. All of these have in
common that they require wired connections, although
it is common to replace the direct serial cabling by
another medium to allow multiplexing. In the case of
large mobile or outdoor applications, it is very hard if not
impossible to connect a significant amount of devices,
whereas setups like a fixed ceiling array can only offer
a very synthetic environment for experimentation. This
limits the applicability of these approaches to cumber-
some testing scenarios where fixed infrastructure is put in
place for the duration of testing and removed afterwards.

Tools for remote in-network programming can be
operated as a self-regulating code-propagation service
inside a sensor network [10], and it has been shown that
this technique scales to large populations [11]. However,
it requires alterations of the WSN target devices, and
offers only remote programming. The lack of dedicated
feedback becomes even more important when monitoring
data-centric systems without dedicated node identifica-
tion [25].

Wireless cable replacement is also proposed for mon-
itoring and diagnosing computer systems [26]. The main
goal in this work is to reduce cost and system complex-
ity of the testing infrastructure only temporarily used.
Here, the wired daisy-chained boundary-scan circuit is
replaced by a more robust and flexible wireless network
that uses the broadcast medium for direct point-to-
multipoint connections to system components.

The Bluetooth standard also offers the RFcomm pro-
file for serial-port communication, and various vendors
are offering products based either on RFcomm or on
proprietary extensions. The drawback of these solutions
is that they offer point-to-point connections between two
endpoints only.

The solutions proposed for the automatic formation
of Bluetooth Scatternets can be classified according to
the preconditions of the algorithms and the properties of
the resulting Scatternet. One such precondition is that
all nodes must be in each other’s transmission range
(single-hop). Algorithms of this kind, such as the one
presented in [27], are not an adequate choice for a DSN,
since a sensor network is usually significantly larger
than the transmission range of Bluetooth devices. The
BlueMesh [28] algorithm is one solution for the more
general multihop case, and guarantees that a connected
mesh topology is achieved (if it is achievable). Unfortu-
nately, the authors of BlueMesh assume that the topology
of the network does not change. This algorithm can
therefore not deal with link failures and leaving and
joining nodes.

There are many other proposed solutions referring to
the problem of setting up a static Scatternet [29], [30].
However, to the best of our knowledge, implementation
reports of a large-scale multihop-Scatternet-formation
algorithm are missing so far. Even theoretical analysis
has just begun to address the problem of maintaining
a connected Scatternet for multihop topologies in a
dynamic environment. Recent evaluations of Scatternet-
formation algorithms [31], [32] have also referred to the
lack of such algorithms.

The properties and performance of the above-
mentioned algorithms are determined by simulation. But
the parameters chosen for the evaluation are often not
realistic. For instance, the performance evaluation in [32]
used a variable time for the inquiry operation, randomly
selected in the interval from 0.01 s to 0.5 s. This is not
realistic on real devices where the duration is specified
to be in the range of 1.28 s to 61.44 s by the Bluetooth
standard.

8



VII. CONCLUSION AND OUTLOOK

With the concept of a deployment-support network,
we have introduced a valuable tool for the coordinated
deployment of distributed sensor networks. In contrast
to existing test setups in laboratories, the DSN approach
allows large-scale deployment without losing the ability
to observe and control all nodes and without the burden
of fixed, wired infrastructure or changes to the target
system. Scalable communication to large populations of
WSN target devices embedded in their designated physi-
cal environment will allow to investigate the performance
of live sensor systems to enable detailed comparisons and
validation. Moreover, a DSN can be used for arbitrary
cable replacements in industrial instrumentation and au-
tomation control.

We have presented promising experimental results
based on the BTnode platform that have given us first
insights into the feasibility and performance of the
deployment-support network proposed.

The design and implementation has been challenging
and stimulated new research issues to be pursued. Apply-
ing the extensive experience gained through implemen-
tation and experimentation we can identify the following
areas for future work: (i) Appropriate control and anal-
ysis tools running on the host controller to manage the
data delivered by the DSN and (ii) redundant network
topologies and robust multihop data transport. This will
necessitate new developments and the application of well
established techniques from the database and distributed
systems community to create appropriate solutions.

In this paper, we propose a new methodology for the
design, development, test, deployment, and validation
of a large, distributed sensor-network application. The
key challenges for achieving functional and manageable
systems of many embedded devices will remain to be
efficient, robust, and lean implementations.

ACKNOWLEDGEMENTS

We would like to thank Martin Hinz and the BTnode
community for tireless implementation and debugging
support.

The work presented in this paper was supported (in
part) by the National Competence Center in Research
on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National
Science Foundation under grant number 5005-67322.

REFERENCES

[1] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate
and scalable simulation of entire TinyOS applications,” in Proc.

1st ACM Conf. Embedded Networked Sensor Systems (SenSys
2003). ACM Press, New York, Nov. 2003, pp. 126–137.

[2] D. Kotz, C. Newport, R. Gray, J. Liu, Y. Yuan, and C. Elliott,
“Experimental evaluation of wireless simulation assumptions,”
in Int’l Workshop Modeling Analysis and Simulation of Wireless
and Mobile Systems (MSWiM 04). ACM Press, New York, Oct.
2004, p. to appear.

[3] D. Cavin and Y. Sasson, “On the accuracy of MANET sim-
ulators,” in ACM Workshop Principles Of Mobile Computing
(POMC 02). ACM Press, New York, Oct. 2002, pp. 38–43.

[4] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler,
“Lessons from a sensor network expedition,” in Proc. 1st
European Workshop on Sensor Networks (EWSN 2004), ser.
Lecture Notes in Computer Science, vol. 2920. Springer,
Berlin, Jan. 2004, pp. 307–322.

[5] L. Girod, J. Elson, A. Cerpa, T. Stathapopoulos, N. Ramanan-
than, and D. Estrin, “EmStar: A software environment for
developing and deploying wireless sensor networks,” in Proc.
USENIX 2004 Annual Tech. Conf., June 2004, pp. 283–296.

[6] B. Hemingway, W. Brunette, T. Anderl, and G. Borriello, “The
Flock: Mote sensors sing in undergraduate curriculum,” IEEE
Computer, vol. 37, no. 8, pp. 72–78, Aug. 2004.

[7] A. Cerpa, J. Elson, M. Hamilton, J. Zhao, D. Estrin, and
L. Girod, “Habitat monitoring: application driver for wireless
communications technology,” ACM SIGCOMM Computer Com-
munication Review, vol. 31, no. 2, pp. 20–41, Apr. 2001.

[8] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. An-
derson, “Wireless sensor networks for habitat monitoring,” in
Proc. 1st ACM Int’l Workshop Wireless Sensor Networks and
Applications (WSNA 2002). ACM Press, New York, Sept. 2002,
pp. 88–97.

[9] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Main-
waring, and D. Estrin, “Habitat monitoring with sensor net-
works,” Communications of the ACM, vol. 47, no. 6, pp. 34–40,
June 2004.

[10] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A
self-regulating algorithm for code propagation and maintenance
in wireless sensor networks,” in Proc. First Symp. Networked
Systems Design and Implementation (NSDI ’04). ACM Press,
New York, Mar. 2004, pp. 15–28.

[11] J. Hui and D. Culler, “The dynamic behavior of a data dissem-
ination protocol for network programming at scale,” in Proc.
2nd ACM Conf. Embedded Networked Sensor Systems (SenSys
2004). ACM Press, New York, Nov. 2004, p. to appear.

[12] J. Beutel, O. Kasten, and M. Ringwald, “BTnodes - a distributed
platform for sensor nodes,” in Proc. 1st ACM Conf. Embedded
Networked Sensor Systems (SenSys 2003). ACM Press, New
York, Nov. 2003, pp. 292–293.

[13] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund, and
L. Thiele, “Prototyping wireless sensor network applications
with BTnodes,” in Proc. 1st European Workshop on Sensor Net-
works (EWSN 2004), ser. Lecture Notes in Computer Science,
vol. 2920. Springer, Berlin, Jan. 2004, pp. 323–338.

[14] O. Kasten and M. Langheinrich, “First experiences with Blue-
tooth in the Smart-It’s distributed sensor network,” in Workshop
on Ubiquitous Computing and Communication, Int’l Conf. Par-
allel Architectures and Compilation Techniques (PACT 2001),
Sept. 2001.

[15] E. Welsh, P. Murphy, and J. Frantz, “Improving connection
times for Bluetooth devices in mobile environments,” in Proc.
Int’l Conf. Fundamentals of Electronics Communications and
Computer Sciences (ICFS 2002), March 2002.

[16] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,

9



“System architecture directions for networked sensors,” in Proc.
9th Int’l Conf. Architectural Support Programming Languages
and Operating Systems (ASPLOS-IX). ACM Press, New York,
Nov. 2000, pp. 93–104.

[17] D. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo,
“A network-centric approach to embedded software for tiny
devices,” in First Int’l Workshop on Embedded Software (EM-
SOFT 2001), ser. Lecture Notes in Computer Science, vol. 2211.
Springer, Berlin, Oct. 2001, pp. 114–130.

[18] R. Min and A. Chandrakasan, “Top five myths about the energy
consumption of wireless communication,” Mobile Computing
and Communications Review, vol. 7, no. 1, pp. 65–67, Jan.
2003.

[19] D. Kotz, C. Newport, and C. Elliott, “The mistaken axioms
of wireless-network research,” Dartmouth College Computer
Science, Tech. Rep. TR2003-467, July 2003.

[20] A. Cerpa and D. Estrin, “ASCENT: Adaptive self-configuring
sensor networks topologies,” IEEE Transactions on Mobile
Computing, vol. 3, no. 3, pp. 272–285, July 2004.

[21] G. Pottie and W. Kaiser, “Wireless integrated network sensors,”
Communications of the ACM, vol. 43, no. 5, pp. 51–58, May
2000.

[22] J. Hill, M. Horton, R. Kling, and L. Krishnamurthy, “Wireless
sensor networks: The platforms enabling wireless sensor net-
works,” Communications of the ACM, vol. 47, no. 6, pp. 41–46,
June 2004.

[23] A. Cerpa, N. Busek, and D. Estrin, “SCALE: A tool for
simple connectivity assessment in lossy environments,” Center
for Embedded Networked Sensing, Univ. of California, Los
Angeles, CA, Tech. Rep. 21, Sept. 2003.

[24] J. Hill and D. Culler, “Mica: A wireless platform for deeply
embedded networks,” IEEE Micro, vol. 22, no. 6, pp. 12–24,
Nov. 2002.

[25] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG:
A tiny aggregation service for ad-hoc sensor networks,” in
Proc. 5th Symp. Operating Systems Design and Implementation
(OSDI 2002). ACM Press, New York, Dec. 2002, pp. 131–146.

[26] H. Eberle, “A radio network for monitoring and diagnosing
computer systems,” IEEE Micro, vol. 23, no. 1, pp. 60–65, Jan.
2003.

[27] C. Law, A. Mehta, and K. Siu, “A new Bluetooth scatternet
formation protocol,” ACM/Kluwer Mobile Networks and Appli-
cations, vol. 8, no. 5, pp. 485–498, October 2003.

[28] C. Petrioli, S. Basagni, and I. Chlamtac, “BlueMesh: Degree-
constrained multihop scatternet formation for Bluetooth net-
works,” ACM/Kluwer Mobile Networks and Applications, vol. 9,
no. 1, pp. 33–47, Feb. 2002.

[29] ——, “Configuring BlueStars: Multi-hop scatternet formation in
Bluetooth networks,” IEEE Transactions on Computers, vol. 52,
no. 6, pp. 779–790, Jun. 2003.

[30] G. Záruba, S. Basagni, and I. Chlamtac, “BlueTrees – Scatternet
formation to enable Bluetooth-based personal area networks,” in
Proc. IEEE Int’l Conf. on Communications (ICC 2001), vol. 1.
IEEE, Piscataway, NJ, June 2001, pp. 273–277.

[31] S. Basagni, R. Bruno, and C. Petrioli, “A performance compari-
son of scatternet formation protocols for networks of Bluetooth
devices,” in Proc. 1st IEEE Int’l Conf. Pervasive Computing
and Communications (PerCom 2003). IEEE CS Press, Los
Alamitos, CA, Mar. 2003, pp. 341–350.

[32] S. Basagni, R. Bruno, G. Mambrini, and C. Petrioli, “Compar-
ative performance evaluation of scatternet formation protocols
for networks of Bluetooth devices,” Wireless Networks, vol. 10,
no. 2, pp. 197–213, March 2004.

10


