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Abstract. So-called sensor nodes combine sensors, processors, wireless communication capabilities,
and autonomous power supply in a tiny device. Large-scale networks of these untethered devices can
be deployed unobtrusively in the physical environment in order to monitor a wide variety of real-
world phenomena with unprecedented quality and scale. A fundamental service in sensor networks is
the determination of time and location of events in the real world. This task is complicated by various
challenging characteristics of sensor networks, such as their large scale, high network dynamics,
restricted resources, and restricted energy. We develop new approaches for determination of time and
location under these constraints, and devise design principles based on our experience. We illustrate
the practical feasibility of our approaches by a concrete application.

1. Introduction

So-called sensor nodes combine means for sensing environmental parameters, processors, wireless
communication capabilities, and autonomous power supply in a single tiny device. Large-scale net-
works of these untethered devices can be deployed unobtrusively in the physical environment in order
to monitor a wide variety of real-world phenomena with unprecedented quality and scale while only
marginally disturbing the observed physical processes.

It is anticipated that a number of application domains can substantially benefit from the use of sensor
networks. Biologists, for example, want to monitor the behavior of sensitive animals in their natural
habitats; environmental research needs better means for monitoring environmental pollutions; agri-
culture can profit from better means for observing soil quality and other parameters that influence
plant growth; geologists need better support for monitoring seismic activity and its influences on the
structural integrity of buildings; and of course the military is interested in monitoring activities in
unaccessible areas.

Due to the close integration of sensor networks with the real world, the categories time and location
are fundamental for many applications of sensor networks, for example to identify physical events
(i.e., infer time and location of occurrence of a physical event), to separate physical events (i.e., tell
apart different physical events based on their distance in time and space), or to collaboratively monitor
physical events (i.e., fuse sensory data from various sensor nodes). We will discuss these uses of time
and location in Section 1.2..

On the other hand, sensor networks are subject to severe resource and energy limitations (due to the
small size of sensor nodes), to network dynamics (due to node failures, node mobility, and environ-



mental obstructions), and to scalability issues (due to the anticipated large number of sensor nodes
participating in a network). We will discuss these issues in Section 1.1..

Our thesis is thatsensor networks require new approaches to determine time and location and it
is actually possible to provide appropriate mechanisms in large-scale and highly dynamic sensor
networks.We support this thesis by describing what exactly makes determination of time and location
different and difficult to achieve in the sensor network domain, by developing concrete algorithms,
protocols, and prototype implementations for determination of time and location in sensor networks.
The practical feasibility of our approaches is demonstrated by means of a typical sensor network
application. We also formulate design principles that capture our experience with the development of
mechanisms for the determination of time and location in sensor networks.

1.1. Sensor Network Challenges

Currently available sensor node prototypes are mainly built of commercially available components,
resulting in matchbox-sized devices containing sensors, an embedded processor with few MIPS, few
kilo bytes of RAM, and a radio transceiver with a communication range of some tens of meters and a
shared bandwidth of some tens of kilobits per second. These devices run for weeks or few months on
a set of batteries and cost about 100 Euros each [14].

However, these prototypical devices are often too large, too costly, or too short-lived for many antic-
ipated applications of sensor networks. For example, applications may require sensor nodes that are
light enough to stay suspended in air, to be small enough to be unobtrusively placed in the environ-
ment (e.g., mixed into paint and other coatings), to be cheap enough to deploy thousands of nodes,
or to be energy-efficient enough to remain operational for years without changing batteries. Un-
fortunately, it is not easily possible to adopt the above mentioned prototypes to these requirements.
First “Smart Dust” prototypes [12] implement sensor node functionality within few cubic millimeters
and demonstrate that the tremendous volume reduction may require radical changes in the employed
technologies (e.g., use of optical instead of radio communication).

Below we outline major challenges in the design of systems based on networks of such sensor nodes.

Restricted Size, Cost, Energy, and Resources.Application requirements often imply that sensor
nodes be as small and as cheap as possible. This has a number of important implications. First of all,
the amount of energy that can be stored in or harvested by devices with a small volume is very limited
due to the low energy density of available and foreseeable technology. To ensure longevity despite
this limited energy budget, energy-efficient design both in hardware and software becomes a dom-
inating goal in sensor networks. Additionally, computing, storage, and communication capabilities
of individual sensor nodes are very limited due to size and energy constraints. The use of common
technologies such as GPS or even radios on sensor nodes may be precluded due to their prohibitively
large size (e.g., of radio antennas), due to high cost (e.g., of GPS receivers), or due to high energy
requirements (e.g., GPS receiver). Note that future technological advancements will likely be used to
reduce size and energy consumption rather than to improve the capabilities of sensor nodes.

Network Dynamics. Due to the deployment in the physical environment, sensor networks are subject
to a high degree of network dynamics. Sensor nodes can be mobile, sensor nodes die due to depleted
batteries or due to environmental influences (e.g., stepping on the device; excessive pressure, humid-
ity, heat; destructive chemicals), new sensor nodes are added to compensate for failed ones. This
results in frequent changes in the network topology, in temporary network partitions, but also in long
and unpredictable network latency. Dealing with a constantly changing network environment is thus



another important design goal in sensor networks.

Scale of Deployments.Traditional remote sensing approaches used few high-resolution, long-range
sensors to observe a large geographical area. The improved quality and detail of monitoring results
obtained by sensor networks is mainly based on the fact that many “simple” sensors are located
very close to the observed physical phenomenon. The small effective range of these sensors and
a typically large geographical area of interest imply that sensor networks contain large numbers of
densely deployed sensor nodes. Hence, scalability to large and dense networks is a further important
design goal in sensor networks.

Unattended, Untethered Operation.In many applications, sensor networks have to be deployed in
remote, unexploited, or hostile regions. Sensor networks therefore cannot rely on well-engineered
or excessive hardware infrastructure (e.g., regular grids of beacons devices or base stations, wired
power supply, wired communication). After initial deployment, it is often infeasible to physically
access individual sensor nodes for hardware or software maintenance. The large number of nodes
also precludes manual configuration of individual nodes (e.g., calibration of individual nodes). Ad
hoc operation and self-configuration are therefore important design goals.

1.2. The Need for Determination of Time and Location

Due to the close integration of sensor networks with the real world, the real-world categories time and
space play a crucial role for many sensor network applications. While many traditional uses of time
and location also apply to sensor networks, we will focus here on areas of particular importance for
sensor networks. These applications require common reference systems for time and location among
sensor nodes.

Data Evaluation. For many applications, certain well-defined state changes in the real world – so-
called physical events – are of interest (e.g., some object of interest appears or disappears). In order
to identifythe real-world cause of an event reported by the sensor network, it is often crucial to know
time and location of occurrence of the reported event. Sensor networks should also be able toseparate
distinct physical events. For this, it must be possible to decide whether or not two sensor readings
belong to the same physical event. This decision process is often based on time and location of a
sensor node at sensor readout. Additionally, the observation of many phenomena in the physical
world requires that sensory data from various nodes isfused. The velocity of a moving object can, for
example, be estimated by correlating time and location of two or more object sightings by different
sensor nodes. As this example illustrates, time and location can be fundamental for the fusion of
sensory data.

Addressing.Since sensor networks are embedded into the real world, it is often convenient to address
parts of the network by characteristics of the real world such as time and location, rather than using
unique identifiers (e.g., “www.sensor500.net”) as in traditional distributed systems. As one example,
applications are often only interested in physical events occurring in certain regions in space and time
(e.g., only during the night in a certain geographical area; a geographical area which is a function
of time and vice versa). Nodes which are currently not contained in such a region of interest can be
switched into a power-saving idle mode. Hence, time and location are important tools to assign tasks
to sensor networks in energy-efficient ways.

Distributed Coordination. Collaboration among sensor nodes may require to trigger actions on a set
of sensor nodes in a coordinated way. Consider for example the power-efficient use of wireless radios.



Since radios are one of the most power-consuming components of sensor nodes even in idle mode, a
convenient solution is to regularly switch off the radio completely. However, radios must be switched
on and off in a coordinated way, such that communication is still possible. Common solutions such
as duty-cycling the radio or selectively switching off nodes in areas of high node density require a
common understanding of time and location among sensor nodes. Distributed coordination may also
be required for the control of sensors (e.g., on/off, alignment, sampling rate) or actuators.

2. Time Determination

The Problem. Energy, size, and cost constraints typically preclude equipping sensor nodes with
receivers for time infrastructure such as GPS [4]. Also, logical time [5] is not sufficient, since it only
captures causal relationships between “in system” events, defined by message exchanges between
event-generating processes. In contrast, phenomena sensed by sensor nodes are triggered by external
physical events which are not defined by in-system message exchanges; physical time must be used
to relate events in the physical world.

Time synchronization services for traditional distributed systems like NTP [6] are typically based
upon a manually configured hierarchy of network nodes. At the top of the hierarchy are one or more
so-called master nodes – canonical sources of time which are synchronized to each other via some
out-of-band mechanism such as GPS. Nodes further down in the hierarchy are synchronized to this
global time scale by evaluating “time beacons” received from their immediate parent(s). Such beacon
messages are frequently sent by a network node to its child nodes, containing the current time of the
parent at the time of message generation.

There are various problems with such an approach in the context of sensor networks. As noted above,
equipping master nodes with infrastructure such as GPS receivers is typically not an option. In the
case of one master (where no external infrastructure for out-of-band synchronization is required),
synchronization paths tend to be very long due to the expected scale of sensor networks. This may
lead to poor synchronization of nodes far away from the master node. Even worse, nodes which
are close to each other, but are far away from the synchronization master, may experience a large
synchronization error with respect to each other due to using different synchronization paths to the
master with different synchronization quality. This can be a major problem, since co-located nodes
tend to require accurate synchronization in order to correlate local sensor events.

Moreover, synchronization schemes like NTP are not optimized for energy efficiency. For example,
the CPU is used continuously to perform frequency disciplining of the oscillator by adding small
increments to the system clock. In addition, synchronization beacons are frequently exchanged, which
also requires constantly “listening” to the network for such beacons. However, with low-power radios
used in sensor networks, listening to, sending to, and receiving from the network all require significant
amounts of energy. Also, the CPU may not be available if the processor is powered down to save
energy.

The manually and statically configured synchronization topology used by NTP is not compatible
with the network dynamics in sensor networks. The frequently changing network topology precludes
static configuration, the unattended operation of sensor networks precludes manual configuration of
individual nodes. Moreover, sensor networks are likely to be temporary partitioned due to node
failures or environmental obstructions. Clocks in different partitions are poorly synchronized, which
may lead to difficulties when trying to temporally correlate sensor events originating from different
partitions after a rejoin of the partitions. Also, accurate estimation of message delay – a base function
for many synchronization approaches – is complicated by highly variable and indeterministic network



delays.

On-Demand Timestamp Synchronization. In contrast to most traditional approaches, with our
approach sensor node clocks run unsynchronized, defining a local time scale each. Reading this clock
results in a timestamp, a data structure that represents present time on the local time scale. Note
that any point in time in the past and the future can be expressed by a timestamp (i.e., present time)
and an offset relative to this timestamp. When a node sends a timestamp to a neighbor as part of
a network message, the timestamp is transformed to the local time scale of the receiver in order to
establish a common understanding of time among sender and receiver. By extending this approach
to multiple hops, timestamps received from any node in the network can be reconciled with the local
time scale of the receiver. This way, a sensor node establishes (on demand) a common time scale
among timestamps received from nodes throughout the network.

Timestamp transformation is achieved by determining the age of each timestamp from its generation
to arrival at a sensor node. On a multi-hop path, the age is updated at each hop. The timestamp can
then be transformed to the receivers local time scale by subtracting the age from time of arrival.

The age of a timestamp consists of two components: (1) the amount of time the timestamp resides
in nodes on the path, and (2) the amount of time needed to transfer the timestamp from hop to hop.
The first component is easy to measure since only a single clock is involved. The second component
can be bounded by the round trip time of the message and its acknowledgment. This can be often be
achieved without additional message exchanges by piggybacking on existing messages and acks. By
taking into account the drift of the local clocks, we can determine upper and lower bounds of the age.
Hence, the transformation of a timestamp results in upper and lower bounds for the timestamp on the
local time scale of the receiver.

This approach has several advantages over traditional clock synchronization schemes. It is energy-
efficient, since it is demand-driven and piggybacks on existing message exchanges. It is scalable,
since there is only local interaction among network neighbors. The algorithm can deal with network
dynamics, since it does not rely on global structures or topologies that could be destroyed. It even
works in the presence of temporary network partitions.

Due to the limited space, we can only sketch the basic ideas here. Details, implementation, evaluation,
and related work of this approach are described in [7].

3. Location Determination

The Problem. As with time synchronization, energy, size, and cost constraints typically preclude
equipping sensor nodes with receivers for location infrastructures such as GPS. In extreme cases such
as Smart Dust [12], it might not even be possible to equip sensor nodes with transceivers for radio
waves or ultra sound due to the tiny size and energy budget of Smart Dust nodes. For example,
a radio antenna would be many times larger than a complete Smart Dust node. Hence, traditional
ranging approaches such as ones based on time of flight of ultrasound signals or received radio signal
strength might render unusable in the context of sensor networks.

Many location systems such as [11] depend on an extensive hardware infrastructure. Location systems
based on trilateration, for example, require many spatially distributed and well-placed infrastructure
components in order to achieve high accuracy, which is not an adequate solution for ad hoc sensor
networks. Location approaches that require centralized computation or other central software com-
ponents such as [2] do not scale well to large networks.
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Figure 1. (a) Lighthouse with parallel beam (b) Lighthouse implementation with two rotating laser beams (c)
2D location system using two lighthouses.

To overcome the limitations of infrastructure-based approaches, various schemes for ad hoc location
determination have been devised (e.g., [10]). They are typically based on the assumption that few
nodes of the network – so-called anchor nodes – know their exact location via some out-of-band
mechanism such as GPS. Other nodes derive their location by, for example, multilateration based on
the distances to three or more neighbors with known locations. By iterating this process, all nodes
of the network should eventually end up with three or more neighbors with known locations in order
to be able to estimate their own location. To avoid accumulating errors inherent to such iterative
approaches, many schemes calculate initial location estimates in a first round and iteratively improve
these estimates in a number of additional rounds. However, there are several problems with such an
approach. Firstly, good location estimates are only obtained if each node has many neighbors, i.e.,
if the network is dense. But even then, nodes at the edges of the network tend to end up with poor
estimates since they have fewer neighbors. Secondly, the iterative nature of many of the algorithms
typically implies a high message overhead, leading to poor energy efficiency. Thirdly, the iterative
nature of these approaches and high network latency imply significant convergence times, which may
lead to problems in dynamic and mobile networks.

An important overhead involved in setting up a location system is node calibration in order to enforce
a correct mapping of sensor readings to location estimates [13]. In systems based on radio signal
strength, for example, the received signal strength is mapped to a range estimate. Variations in trans-
mit power and frequency among the nodes can cause significant inaccuracies in the range estimates
when used without calibration. Since the cheap low-power hardware used in sensor nodes typically
introduces a high variability between nodes, sensor nodes have to be individually calibrated. This,
however, may not be feasible in large sensor networks.

The Lighthouse Location System.Our approach is specifically tailored to Smart Dust – tiny sensor
nodes using optical communication with a volume of only few cubic millimeters. The basic element
of the location system is a device similar to a lighthouse, but which emits a parallel beam (i.e., a beam
with constant width) as depicted in Figure 1 (a). The sweep time (i.e., amount of time during which
an observer sees the lighthouse flash) then is a function of the observer’s distance from the lighthouse
rotation axis. Knowing the width of the beam and the lighthouse rotation speed, we can calculate the
distance of an observer (i.e., sensor node) from the lighthouse rotation axis.

A parallel beam can be implemented as depicted in Figure 1 (b): two rotating laser beams (at high
speeds) define the outline of a wide “virtual” parallel beam, which in turn is rotating around a central
axis (at much lower speeds) to create a rotating lighthouse effect. An observer looking at such a
lighthouse sees two sequences of short laser flashes as the two “laser light planes” rotate by.



Using two such lighthouses, a 2D location system can be constructed as depicted in Figure 1 (c). The
two lighthouses are assembled such that their rotation axes are mutually perpendicular. The distances
d1 andd2 to the lighthouse rotation axes then equal they andx coordinates of the observer in the
2-dimensional coordinate system defined by the lighthouse rotation axes. Accordingly, a 3D location
system can be built out of 3 lighthouses with mutually perpendicular rotation axes.

This approach has a number of advantages. Only a single additional device is needed. Sensor nodes
consume only few energy, since they do not actively emit any signals. Smart Dust prototypes demon-
strate that an optical receiver requires few energy and size. The system is scalable and insensible
to network dynamics, since sensor nodes autonomously determine their location without interacting
with other sensor nodes. Also, sensor nodes need not be calibrated, since constant delays in the signal
path cancel out due to differential measurements (i.e., we are only interested in the sweep time, which
is the difference between two measured points in time).

Due to the limited space, we can only sketch the basic ideas here. Details, implementation, evaluation,
and related work of this approach are described in [8].

4. Application Experience

In order to demonstrate the practical feasibility and to gain experience with our approaches for deter-
mination of time and location, we developed a prototypical application to track the movements of a
mobile object with a sensor network, using a remote-controlled toy car as a sample target. Note that
tracking is a commonly required function in many sensor network applications (e.g., tracking animals
in their habitats, tracking an oil stain on the ocean, tracking a cloud of toxic gas).

Our application is tailored to tiny sensor nodes known as “Smart Dust” [12]. However, since Smart
Dust hardware is not yet available, we used BTnodes [1] for the implementation of our prototype
system. A number of these sensor nodes are randomly deployed in the area of interest. When they
detect the presence of the car using attached sensors, they send notifications to a base station (a laptop
computer). The base station fuses these notifications in order to estimate the current location of the
car. A graphical user interface displays the track and allows to control various aspects of the system.
The data fusion process requires that nodes share a common reference system in time and space. We
apply the mechanisms described in the previous sections to establish such reference systems. Details,
implementation, and evaluation of this approach are described in [9].

5. Design Principles

Based on our work on the design of approaches for determination of time and location in sensor
networks, we tried to capture our experience in a number of general design principles. These could
be helpful for future research in this domain. Due to limited space, we can only sketch these here,
details can be found in [3].

Local Interaction. Avoiding or limiting interaction among sensor nodes to the immediate network
neighborhood is a key for dealing with network dynamics, since network dynamics likely disturb non-
local interaction. Timestamp synchronization, for example, only “knows” about immediate network
neighbors and does not try to establish global time scales. The lighthouse location system avoids
interaction among nodes.

Exploitation of Application Characteristics. Exploiting characteristics of the application is a key
to resource-efficient and energy-efficient systems by providing services only where, when, and with
the quality actually required by the application. This is not only true for static characteristics that



don’t change significantly over the lifetime of the application, but also for more dynamic character-
istics. Timestamp synchronization, for example, only synchronizes where and when required by the
application.

Exploitation of Platform Characteristics. Another key to resource efficiency and energy efficiency
is to exploit characteristics of the hardware environment instead of designing one-size-fits-all solu-
tions. The lighthouse location system, for example, is particularly tailored to Smart Dust, which does
already contain the necessary hardware components such as an optical receiver.

6. Summary

We identified determination of time and location in large-scale dynamic sensor networks as an impor-
tant research topic. We developed solutions for special instances of these problems and demonstrated
their feasibility by means of a prototype sensor network application for tracking the location of mobile
targets. We captured our experience in a number of design principles.
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