
Passive Inspection of Sensor Networks

Matthias Ringwald, Kay Römer
Institute for Pervasive Computing

ETH Zurich, Switzerland
Email: {mringwal,roemer}@inf.ethz.ch

Andrea Vitaletti
Department of Informatics

University of Rome “La Sapienza”, Italy
Email: andrea.vitaletti@dis.uniroma1.it

Abstract— Deployment of sensor networks in real-world
settings is a labor-intensive and cumbersome task: en-
vironmental influences often trigger problems that are
difficult to track down due to limited visibility of the
network state. In this paper we present a framework
for passive inspection (i.e., no instrumentation of sensor
nodes required) of deployed sensor networks and show
how this framework can be used to inspect data gathering
applications. The basic approach is to temporarily install a
distributed network sniffer alongside the inspected sensor
network, with overheard messages being analyzed by a
data stream processor and network state being displayed in
a graphical user interface. Our tool can be flexibly applied
to different sensor network operating systems and protocol
stacks, and can deal well with incomplete information.1

I. INTRODUCTION

Deployment of sensor networks in real-world
settings is typically a labor-intensive and cumber-
some task [4], [10], [16], [17], [18], [19], [25],
[26], [28]. While simulation and lab testbeds are
helpful tools to test an application prior to deploy-
ment, they fail to provide realistic environmental
models (e.g., regarding radio signal propagation,
sensor stimuli, chemical/mechanical strain on sensor
nodes). Hence, environmental effects often trigger
bugs or degrade performance in a way that could
not be observed during pre-deployment testing. To
track down such problems, a developer needs to
inspect the state of network and nodes. While this
is easily possible during simulation and experiments
on lab testbeds (wired backchannel from every
node), access to network and node states is very
constrained after deployment.

Current practice to inspect a deployed sensor
network requires active instrumentation of sensor

1The work presented in this paper was partially supported by the
by the Swiss National Science Foundation under grant number 5005-
67322 (NCCR-MICS).

nodes with monitoring software and monitoring
traffic is sent in-band with the sensor network traffic
to the sink (e.g., [19], [22], [27]). Unfortunately, this
approach has several limitations. Firstly, problems
in the sensor network (e.g., partitions, message loss)
also affect the monitoring mechanism, thus reducing
the desired benefit. Secondly, scarce sensor network
resources (energy, cpu cycles, memory, network
bandwidth) are used for inspection. In Sympathy
[19], for example, up to 30% of the network
bandwith is used for monitoring traffic. Thirdly,
the monitoring infrastructure is tightly interwoven
with the application. Hence, adding/removing in-
strumentation may change the application behavior
in subtle ways, causing probe effects. Also, it is
nontrivial to adopt the instrumentation mechanism
to different applications. For example, [19], [22]
assume a certain tree routing protocol being used by
the application and reuse that protocol for delivering
monitoring traffic.

In contrast to the above, we propose a passive ap-
proach for sensor network inspection by overhearing
and analyzing sensor network traffic to infer the ex-
istence and location of typical problems encountered
during deployment. To overhear network traffic, a
so-called deployment support network (DSN) [3]
is used: a wireless network that is temporarily
installed alongside the actual sensor network during
the deployment process. Each DSN node provides
two different radio front-ends. The first radio is
used to overhear the traffic of the sensor network,
while the second radio is used to form a robust and
high-bandwidth network among the DSN nodes to
reliably collect overheard packets. A data stream
framework performs online analysis of the resulting
packet stream to infer and report any problems soon
after their occurrence.

This approach removes the above limitations
of active inspection: no instrumentation of sensor
nodes is required, sensor network resources are
not used. The inspection mechanism is completely
separated from the application, can thus be more
easily adopted to different applications, and can be
added and removed without altering sensor network
behavior. Online analysis (as opposed to long peri-
ods of data collection followed by offline analysis)
contributes to a more effective deployment process,
as it allows an engineer to go out and study af-
fected nodes while a problem is still present. Also,
problems can be fixed in an incremental fashion as
they occur, thus reucing the chance for complex
aftereffects. Besides these advantages, we need to
address a number of challenges:

Incomplete information: The DSN may fail to
overhear some packets and messages might not con-
tain all information that is needed to infer a problem.
To support robust problem detection nonetheless,
we provide appropriate loss-tolerant data stream
operators.

Flexibility: There is no established protocol
stack for sensor networks – a large variety of radio
configurations, MAC, routing, and application layer
protocols are in use. To support this open protocol
space, we provide a packet capturer that works
with a large variety of MAC protocols and radio
configurations, as well as a flexible packet parser.

Reliability: The DSN should provide reliable
wireless communication. We use Bluetooth for this
purpose, which has been designed as a cable re-
placement, employing frequency hopping and other
techniques to minimize loss.

In the first part of this paper we present a concrete
instance of the above approach called SNIF (Sensor
Network Inspection Framework) which is – as the
name suggests – intended as a widely applicable
framework for passive inspection. The second part
of the paper contains an extensive case study of
how SNIF can be applied to so-called data gathering
applications. In particular, our case study can detect
similar problems as approaches for active inspection
in [19], [22].

II. SNIF

SNIF is a general framework for passive in-
spection of multi-hop sensor networks to detect

problems related to individual nodes (e.g., reboot,
death), wireless links, paths (e.g., routing failures,
loops), or global problems (e.g., partitions). SNIF
consists of a deployment support network (DSN)
that acts as a distributed network sniffer. Each of
the DSN nodes implements the receiver part of the
sensor network protocol stack, namely receive-only
physical layer and media access, as well as a packet
decoder to extract the contents of overheard packets.
All overheard packets are routed to the DSN sink,
which executes a data stream processor to analyze
packet streams for problems. The results of this
analysis are displayed by a user frontend. Below we
give an overview of these components. More details
can be found in a technical report [21].

A. Deployment Support Network (DSN)

To overhear the traffic of multi-hop networks,
multiple radios are needed, forming a distributed
network sniffer. We use a so-called deployment
support network for this purpose, a wireless network
of DSN nodes, each of which provides two radios.
The first radio (DSN radio) is used to form a
wireless network among the deployment support
nodes, while the second radio (WSN radio) is used
to overhear the traffic of the sensor network. Both
radios should be free of interference (e.g., operate
in different frequency bands). Also, the DSN radio
should support the formation of a robust network
with negligible message loss and high bandwidth.
Since the data stream processor needs to examine
temporal relationships between packets overheard
by different DSN nodes, internal time synchro-
nization of DSN nodes is necessary. The DSN is
installed alongside the actual sensor network and
may be removed as soon as deployment is finished
and the sensor network works as expected. Thus,
the lifetime of the DSN is typically much shorter
than the lifetime of the sensor network and energy
efficiency is not that much of an issue.

Our current implementation of a DSN is based on
the BTnode [31], which provides two radio front-
ends: a Zeevo ZV 4002 Bluetooth 1.2 radio which
is used as the DSN radio, and a Chipcon CC 1000
(e.g., also used on MICA2) which is used as the
WSN radio. Using a scatternet formation algorithm,
the DSN nodes form a robust Bluetooth scatternet
(see [3] for details). A laptop computer with Blue-

tooth acts as the SNIF sink that connects to a nearby
DSN node. This DSN node thereupon forms the root
of an overlay tree spanning the whole DSN and the
SNIF sink can send data to DSN nodes down the
tree while DSN nodes send overheard packets up
the tree to the sink. Time synchronization exploits
the fact that Bluetooth uses a TDMA MAC protocol
and thus peforms clock synchronization internally,
providing an interface to read the Bluetooth clock
and its offset to the clocks of network neighbors.
We use this interface to compute the clock offset of
each DSN node to the DSN sink. Bluetooth provides
an accuracy of 1.25 milliseconds per hop.

One might argue that the deployment of the DSN
may be as difficult and error-prone as deploying the
sensor network itself. However, as the lifetime of
the DSN is short (in the order of days), energy and
resource constraints are not a primary issue here.
This enables us to use more reliable networking
technologies such as Bluetooth. In fact, Bluetooth
has been designed as a cable replacement and
employs techniques such as frequency hopping and
forward error correction to provide highly reliable
data transmission.

B. Physical Layer and Medium Access

DSN nodes need a receive-only implementation
of the physical (PHY) and MAC layers in order to
overhear sensor network traffic. Due to the lack of
a standard protocol stack, many variants of PHY
and MAC are in use in sensor networks. Hence, we
need a flexible implementation that can be easily
configured for the sensor network under inspection.

Our generic PHY implementation supports con-
figurable carrier frequency, baud rate, and check-
summing details. We assume that the sensor network
uses a single frequency for communication (which
is the case with current implementations) such that
a single-channel radio is sufficient to overhear WSN
traffic.

Regarding MAC, we expoit the fact that – regard-
less of the specific MAC protocol used – a radio
packet always has to be preceded by a preamble
and start-of-packet (SOP) delimiter to synchronize
sender and receiver. In our generic MAC implemen-
tation, every DSN node has its WSN radio turned
to receive mode all the time, looking for the SOP
delimiter in the received stream of bits. Once an

1 // PHY+MAC parameters
2 cc . freq = 868000000;
3 cc .baud =19200;
4 cc .sop = 0xcc33;
5 cc . crc = 0x1021;
6 // encoding: endianness + alignment
7 encoding. endianness = ” little ”;
8 encoding.alignment = 1;
9 // type definitions and constants

10 typedef uint16 t mote id t ;
11 typedef uint8 t quality t ;
12 struct link quality t {
13 mote id t id ;
14 quality t quality ;
15 };
16 const int LINKESTADV = 2;
17 default . packet = ”TOS Msg”; // default packet type
18 struct TOS Msg {
19 uint16 t addr;
20 uint8 t type , group, length ;
21 int8 t data [length]; // variable payload size
22 uint16 t crc ;
23 };
24 struct LinkAdv : TOS Msg.data (type == LINKESTADV) {
25 mote id t id ;
26 struct link quality t links []; // variable array size
27 };

Fig. 1. A SNIF configuration file.

SOP has been found, payload data and a CRC
follow. This way, DSN nodes can receive packets
independent of the actual MAC layer used.

Fig. 1 shows an excerpt of a sample configuration
file for inspecting a TinyOS application running on
MICA2 motes. The first five lines set the carrier
frequency of the WSN radio to 868.000 Mhz and
a data rate of 19200 baud, and instruct the packet
sniffer to check for a start-of-packet sequence of
0x33cc. The used CRC polynomial is 0x1021.

C. Packet Decoder

Again, since no standard protocols exist for sen-
sor networks, we need a flexible mechanism to
decode overheard packets. Since most programming
environments for sensor nodes are based on the
C programming language or a dialect of it (e.g.,
nesC for TinyOS), it is common to specify message
contents as (nested) C structs in the source code of
the sensor network application. Our packet decoder
uses an annotated version of such C structs as a
description of the packet contents. This way, the
user can copy and paste packet descriptions from
the source code.

The configuration of the packet decoder consists
of some global parameters (such as byte order and
alignment), type definitions, and one or more C

structs. One of these structs is indicated as the
default packet layout. Note that such a struct can
contain nested other structs, effectively implement-
ing a discriminated union.

Consider Fig. 1 for an example, which describes
link advertisement packets used by the Multihop
routing service implemented in ESS [11]. Line 17
defines the struct TOS Msg as the default packet
layout. The LinkAdv PDU used by ESS, is en-
capsulated in the field TOS Msg.data, but only
if the TOS Msg.type is equal to LINKESTADV.
Arrays of variable size are supported, where the
size is either contained in the packet (e.g., for
TOS Msg.data), or inferred from the packet size
(e.g., for LinkAdv.links).

At startup of SNIF, the configuration file is parsed
and the default packet type is investigated. If the
default packet type is of fixed size, the packet size
is computed. Otherwise, size and position of the
packet length indicator (e.g., TOS Msg.length
in the example) is computed. This information,
along with the parameters for the physical layer are
then broadcast to all DSN nodes, allowing them to
correctly receive WSN traffic. All overheard WSN
packets are then annotated with reception time and
routed to the SNIF sink.

D. Data Stream Processor

The DSN outputs a stream of overheard packets
that needs to be analyzed to detect any problems
in the WSN. To enable an efficient deployment
process, this analysis should be performed online,
allowing an engineer to go out and study and fix
affected nodes while the problem is still present.

Given these preconditions, we decided for a data
stream processor to perform online analysis of
packet streams. Here, a data stream is an unbounded
sequence of records. A data stream processor pro-
vides three basic abstractions: sources that produce
data streams, sinks that consume data streams, and
operators that modify data streams. Sinks and op-
erators can subscribe to sources and operators, such
that a data stream output by the subscribee acts as
input for the subscriber. That is, sources, operators,
and sinks form a directed operator graph with data
streams flowing from sources through operators to-
wards sinks. Mainly motivated by practical consid-
erations (Java as implementation language, stability,

open-source availability) we chose the PIPES data
stream processor [5] for use with SNIF.

In SNIF, we model the DSN as a data stream
source. An operator graph (being executed on the
DSN sink) processes this data stream to detect
indicators for problems, and sink nodes act as an
interface to the user. A data stream record in SNIF
is a list of attribute-value pairs with two special
attributes holding record type and time stamp. The
DSN produces records of type Packet with at-
tributes holding the contents of an overheard packet.
The syntax of the latter attribute names follows C
syntax for accessing a field of a structure (e.g.,
TOS Msg.addr to access the source adress of a
packet in Fig. 1).

The data stream processor provides a number of
basic operators to manipulate data streams, such
as Mapper to rename record attributes, Union to
merge multiple data streams into one where records
are sorted by increasing time stamps, or Filter to
drop records that do not match a given predicate.
TimeWindowAggregator groups records according
to a given attribute, removes duplicates, and com-
putes aggregates over a time window. ArrayIterator
provides access to array elements by creating N
copies of each input record holding an array, where
in the i-th output copy the array is replaced with
element i of the array with size N .

Besides these generic operators, SNIF pro-
vides several data stream sources. The output of
DSNSource consists of the packets overheard by
the DSN, with records being sorted by increasing
time stamp and duplicate packets (resulting from
two or more DSN nodes overhearing the same
sensor node) being removed. EmSource provides a
similar interface to the EmStar [9] sensor network
simulator, but is otherwise identical to DSNSource.

A typical application of SNIF is to infer the
current state of inspected sensor nodes (e.g., node
dead, node has no neighbors, etc.). To infer the
state of a node, typically multiple data streams must
be considered (e.g., a stream of periodic beacon
packets to decide if a node is dead, a stream of
neighborhood announcement packets to decide if a
node has any neighbors). To this end, SNIF provides
an operator StateDetector which groups records by
type and node and stores the last record in each
group. Whenever a group changes, an evaluation is

Fig. 2. An instance of SNIF’s user interface.

invoked to decide on the node state. We will refer
to the above operators in Sect. III-D.

E. User Interface

To display any problems in the sensor network
that have been detected by the data stream proces-
sor, SNIF provides a configurable user interface,
which allows to display a real-time view of the
network topology graph, where nodes and links can
be annotated with application-specific information
(e.g., state of a node, packet loss of a link) using a
simple API. Also, logging and later replay of exe-
cution traces is supported. Fig. 2 shows an instance
of this user interface for a typical data gathering
application as discussed in the next section.

III. CASE STUDY: DATA GATHERING
APPLICATIONS

Almost all existing non-trivial deployments are
data gathering applications (e.g., [25], [28], [13]),
where nodes send raw sensor readings at regular
intervals along a spanning tree across multiple hops
to a sink. In this case study we will therefore con-
sider how SNIF can be applied to this application
class. We first characterize the application in more
detail and define the problems we want to detect.
We then describe application-specific data stream
operators to detect these problems and how they are
used to form an operator graph. Finally, we evaluate
the resulting inspection tool.

A. Application Model

Two prominent implementations of data gather-
ing applications are the Extensible Sensing System
(ESS) [11] using beacon-based multi-hop routing
for data collection, and Surge using MintRoute [30]

for data collection. Both implement a similar multi-
hop tree routing scheme as described below. We will
use ESS as an example throghout the paper, but our
approach can be readily applied to other, similar
implementations.

In ESS, all nodes broadcast beacon messages
at regular intervals. To discover neighbors, nodes
overhear these messages and estimate the quality
of incoming links from neighbors based on mes-
sage loss. Nodes then broadcast link advertisement
messages at regular intervals, containing a list of
neighbors and link quality estimates. Overhearing
these messages, nodes compute the bidirectional
link quality to decide on a good set of neighbors.
To construct a spanning tree of the network with the
sink at the root, nodes broadcast path advertisement
messages, containing the quality of their current
path to the sink. Nodes overhearing these messages
can then select the neighbor with the best path as
their parent and broadcast an according path adver-
tisement message. All this is executed continuously
to adapt neighbors and paths to changing network
conditions. Finally, data messages are sent from
nodes to the sink along the edges of the spanning
tree across multiple hops.

In ESS, beacons are sent every 10 seconds,
path advertisements and link advertisements every
80 seconds, data message are generated every 30
seconds. All messages except data messages are
broadcast messages and contain per-hop source ad-
dress. Data messages contain the address of the
originator of the sensor data and the per-hop desti-
nation address, but not the per-hop source address.
In addition, beacon messages and data messages
contain a sequence number.

B. Problems and Indicators

In [21] we studied existing deployments to iden-
tify common problems and passive indicators that
allow to infer the existence of a problem from
overheard network traffic. Below we summarize the
problems that are considered in our case study and
give passive indicators for their detection. Note the
similarity to problems detected that can be detected
tools for active inspection [19], [22].

Node death (fail stop): an affected node will
not send any messages.

1 on receive beacon(src , seq , t):
2 if (exists n[src]) {
3 if (seq < n[src]. seq) {
4 if (n[src]. seq < maxSeq − C)
5 emit reboot (src , t);
6 else if (t − n[src]. t <
7 (seq − n[src]. seq) % maxSeq ∗ n[src]. ival)
8 emit reboot (src , t);
9 }

10 n[src]. ival ← min (n[src]. ival ,
11 (t − n[src]. t) / (seq − n[src]. seq));
12 } else
13 n[src]. ival ← ∞;
14 n[src]. seq ← seq;
15 n[src]. t ← t;

Fig. 3. SeqReset operator.

Node reboot: after reboot the sequence number
contained in beacon messages will be reset.

Isolated node: the node is not listed as a
neighbor in any link advertisement messages send
by other nodes.

Node has no parent: the node fails to send path
advertisement messages.

No path from node to sink: data messages sent
by the node are not forwarded to the sink.

Node’s path to sink loops: a data message
originating from the node is sent twice to the same
destination by different senders. Note that this is a
special case of “no path from node to sink”.

Node partitioned from sink: A node on the
path from the node to the sink died and there is no
alternate path available. Note that this is a special
case of “no path from node to sink”.

Although the above indicators are straighforward
from a conceptual point of view, incomplete infor-
mation makes their implementation less obvious as
dicussed in the following section.

C. Application-specific Operators

This section presents application-specific opera-
tors that assist in detecting the problems described
in Sect. III-B. The primary challenge here is to deal
with incomplete information due to i) the DSN fail-
ing to overhear packets, and due to ii) information
that would be needed to detect a problem not being
explicitely included in messages.

SeqReset: This operator detects node reboots
exploiting the fact that the sequence number con-
tainted in beacon messages will be reset after reboot.
The main challenge here is to tell apart a wrap-
around of the sequence number from reboot in

1 on receive data (dst , seq , orig , t):
2 if (exists p[seq| orig]) {
3 if (p[seq| orig]. dst = dst)
4 emit retransmission (dst , seq , orig , t);
5 src ← p[seq|orig]. dst ;
6 p[seq| orig]. dst ← dst;
7 } else {
8 src ← orig;
9 p[seq| orig]. dst ← dst;

10 }
11 emit data (src , dst , seq , orig , t);

Fig. 4. PacketTracer operator.

case of lost beacon messages. The algorithm in
Fig. 3 maintains a data structure n that holds for
each node i the last sequence number n[i].seq, last
time stamp n[i].t, and minimum interval n[i].ival
between successive beacons. Whenever a beacon
with source address src, sequence number seq, and
time stamp t is received, the algorithm checks if seq
is smaller than the last sequence number n[src].seq
seen for this node. If the last sequence number is
far apart from maximum sequence number maxSeq
(parameter C must be selected such that loss of C
consecutive beacon messages is highly unlikely),
then src has rebooted. Otherwise, we apply an
additional check to distinguish reboots from wrap-
arounds with lost messages. In case of a wrap-
around, the time between the last and current beacon
messages t - n[src].t must be greater than or equal
to the minimum beacon interval n[src].ival times
the number of beacon messages that were lost plus
one (seq - n[src].seq) % maxSeq.

PacketTracer: To reconstruct the multi-hop
path of a message through the network, we need
to know source and destinations addresses of each
message. Unfortunately, data messages do not con-
tain per-hop source addresses (as message receipt is
not acknowledged). Also, messages not overheard
by the DSN result in “gaps” in the multi-hop
path. PacketTracer infers a source address for each
packet, making sure that there are no gaps in the
multi-hop path. The algorithm in Fig. 4 exploits the
fact that each multi-hop message contains the ad-
dress of the originator orig, a sequence number seq,
and per-hop destination address dst. The operator
maintains a data structure p that contains the last
destination address p[seq|orig].dst for each multi-
hop message uniquely identified by the concate-
nation seq|orig of sequence number and originator

1 on receive data (src , dst , t):
2 if (dst ∈ n[src].desc) {
3 emit routingloop (src , dst , t);
4 remove dst from n[src]. desc;
5 }
6 desc ← (src, t) ∪ n[src].desc;
7 foreach (dn, dt) ∈ desc {
8 if (dst = sink) {
9 if (dn 6∈ n[sink].desc)

10 emit goodpath (dn, t);
11 else if (dt > n[sink]. desc[dn])
12 emit goodpath (dn, t);
13 }
14 n[dst]. desc ←
15 n[dst]. desc ∪ (dn, max (n[dst].desc[dn], nt));
16 }

Fig. 5. PathAnalyzer operator.

address. If an entry for packet seq|orig doesn’t exist
yet, then the sender is set to the originator of the
packet, otherwise the sender is set to the destination
of the previous packet. If no messages are lost, then
this approach obtains correct sender addresses. Oth-
erwise, packets may span multiple hops, resulting
in a multi-hop path without gaps. The following
operators rely on this property. PacketTracer uses a
timeout-based garbage collector to reclaim memory
for past multi-hop packets (not shown).

PathAnalyzer: This operator checks if a node
has a good path to the sink and also detects routing
loops. Here, a good path between a node and the
sink exists if a sequence of packets p1, ..., pn with
increasing time stamps has been observed, such
that the source address of p1 equals the address of
the node, the destination address of pn is the sink,
and the destination address of pi equals the source
address of pi+1. The algorithm in Fig. 5 maintains
a set n[i].desc of routing tree decendants for each
node i, where each descendent is a pair (j, tj) of
a node j and time stamp tj, meaning that j had a
good path to i at time tj according to the above
definition. When a data message with source address
src (obtained by PacketTracer), destination address
dst, and time stamp t is received, we first check
if dst is among src’s descendants, which indicates
a routing loop. Then we add src and all of src’s
descendants to dst’s descendants, updating the time
stamps accordingly. Whenever a new descendant is
added to the sink or the time stamp of an existing
descendent of the sink is incremented, this indicates
a good path from this descendent to the sink.

1 on receive data (src , dst):
2 n[dst]. nb ← n[dst].nb ∪ src;
3 reset timeout (dst , src);
4
5 on timeout (dst , src):
6 remove src from n[dst]. nb;
7
8 on receive nodestate (src , state):
9 if (state = ‘‘dead’’) n[src]. nb ← ∅;

10
11 periodically :
12 DFS (n, sink);
13 foreach unvisited node nn
14 emit partitioned (nn);

Fig. 6. TopologyAnalyzer operator.

TopologyAnalyzer: This operator detects net-
work partitions between a node and the sink caused
by dead nodes in cases where PathAnalyzer doesn’t
find a good path to sink for this node. The algorithm
in Fig. 6 maintains an approximate set of down-
stream neighbors n[i].nb for each node i. When a
data packet with source address src and destina-
tion address dst is received, src is added to dst’s
neighbors and a (user-defined) timeout is activated
to remove this neighbor unless another packet with
same src and dst is received before the timeout
expires. TopologyAnalyzer is also subscribed to a
data stream of records holding node states (see
Sect. III-D for details). Whenever such a node state
record is received indicating death of node src,
the neighbor set of src is emptied. Periodically,
TopologyAnalyzer performs a depth-first search on
the graph given by n[].nb starting at the sink and
marking all visited nodes. All nodes that have not
been visited are reported as partitioned.

D. Operator Graph
Our inspection tool will compute the state of

each node, which is either “node ok” or one of the
problems described in Sect. III-B. In this section we
outline the data stream operator graph that computes
these states. Eventually, this graph will generate a
record describing a node’s current state whenever
the state of the node changes.

The node state is derived using the binary deci-
sion tree depicted in Fig 7. The leaves of this tree
represent possible states of a node. The decision
tree is implemented using the StateDetector operator
described in Sect. II-D. Each decision in the tree
requires an operator graph that extracts the required
information from the stream of observed packets.

Covered ?

Is a neighbor ?

no

Heard any packets ?

yes

Has a route ?

yes

Node dead

no

Sequence number reset ?

yesno

Has neighbors ?

no

Node Rebooted

yes

Has a parent ?

yes

No neighbours

no

yes

Network partition ?

no

Network partition ?

no

Node OK

yes

Loops ?

Routing failure

no

Routing loop

yes

no

Network partition (no route)

yes

No parent

no

Network partition (no parent)

yes

Fig. 7. Node state decision tree.

Below we describe how each of these decisions is
implemented with an operator graph. Note that the
individual operator graphs described below partially
overlap. These common subgraphs are instantiated
only once.

Covered?: This test examines whether a sensor
node can be observed with sufficient quality by
the DSN by examining the percentage of beacon
messages that have been received from this node.
To implement this test, DSNSource is filtered for
beacon messages. The stream of beacon messages
is then fed to a TimeWindowAggregator to compute
the fraction of beacon messages that have been
received. The test succeeds for a node if the fraction
for this node is above a given threshold.

Heard any packets?: This test succeeds if any
packet from a sensor node could be overheard. Since
data messages do not contain the per-hop source
address, DSNSource is filtered for data packets and
PacketTracer is applied to reconstruct the source ad-
dress. Also, DSNSource is filtered for the remaining
packet types (beacon, link and path advertisements)
that do already contain the per-hop source address.
The resulting data streams are merged with the
Union operator to obtain a stream of all packets

containing source addresses. This stream is then fed
to a TimeWindowAggregator to count the number
of packets per node using the count aggregation
function. The test succeeds for a node if at least
one packet was heard from this node.

Sequence number reset?: This test succeeds
is the node rebooted. To implement this test,
DSNSource is filtered for beacon packets and Se-
qReset is applied to the resulting data stream.

Is a neighbor?: This test checks whether a
sensor node is listed as a neighbor of any other node
in the network. DSNSource is filtered for link ad-
vertisement packets. Since each link advertisement
contains an array of neighbors, the ArrayIterator
operator is used to create one record for each node
being listed as a neighbor. Using TimeWindowAg-
gregator with the count aggregation function we
obtain the number of times a node is listed as a
neighbor. The test succeeds for a node, it it was
listed as a neighbor at least once.

Has any neighbors?: This test examines
whether a node has any neighbors. DSNSource is
filtered for link advertisement packets containing at
least one neighbor. Using TimeWindowAggregator,
the number of such advertisements per node is
computed. The test succeeds for a node if at least
one non-empty link advertisement was heard from
this node.

Has a parent?: This test examines whether a
node has a parent in the tree. DSNSource is filtered
for path advertisement packets. Using TimeWin-
dowAggregator, the number of such advertisements
per node is computed. The test succeeds for a node
if at least one path advertisement was heard from
this node.

Has a route?: This test checks whether a node
recently had a routing path to the sink. DSNSource
is filtered for data messages. PacketTracer is applied
to reconstruct the source address. PathAnalyzer is
applied and its output filtered for good route reports.
Using TimeWindowAggregator, the number of good
route reports per node is counted. The test succeeds
for a node if a good route was reported at least once
for this node.

Loops?: This test checks whether the path
from a node to the sink recently had any loops.
DSNSource is filtered for data messages. Packet-
Tracer is applied to reconstruct the source address.

PathAnalyzer is applied and its output filtered for
routing loop reports. Using TimeWindowAggrega-
tor, the number of good route reports per node is
counted. The test succeeds for a node if a routing
loop was reported at least twice for this node.

Network partition?: This test checks if a bad
path from a node to the sink was caused by a
network partition. DSNSource is filtered for data
messages. PacketTracer is applied to reconstruct the
source address. TopologyAnalyzer is applied to de-
tect partitions. TopologyAnalyzer is also subscribed
to the output of StateDetector in order to obtain
node death events. The test succeeds for a node
if the last record received from TopologyAnalyzer
says that this node is partitioned.

In the above operator graphs, the time windows
for TimeWindowAggregator are set to W times
the interval between the packets they consider. For
example, the time window in Has a parent? is set to
W× 80 seconds, since path advertisement messages
are considered which are sent every 80 seconds.
That is, W is a global parameter and we will study
its performance impact in Sect. III-E.

The structure of the decision tree is motivated by
the desire to find and report the root cause of a
failure. For example, a dead node (root cause) also
has a routing problem (consecutive fault). Here, we
want node death to be reported, but not the routing
problem. Hence, in the decision three the checks to
detect node death are located above the checks to
detect a routing problem.

In addition to the above operator graph, we in-
troduce several data stream sinks (not shown) to
display relevant information in the graphical user
interface as shown in Fig. 2. For example, node
color indicates state (green: ok, gray: not covered
by DSN, yellow: warning, red: severe problem),
detailed node state can displayed by selecting nodes.
Thin arcs indicate what a node believes are its
neighbors, thick arcs indicate the paths of multi-hop
data messages.

E. Evaluation

To evaluate our case study, we used the same
experimental setup as described in [19], where the
Extensible Sensing System (ESS) [11] is executed
in the EmStar emulator [9]. The reason for chosing
EmStar instead of the real DSN as a data source

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

meter

m
et

er

2
4
5
6

7
8
9

10
11

12
13
14

15
16

1718

21

2425

27

31
33

35

Sink

Network partition

Fig. 8. Experiment setup: WSN (2-27) and DSN (31-35).

for evaluation is the ease of injecting failures in a
reproducible way with EmStar.

As depicted in Fig. 8, we consider a network
of 21 nodes forming a multi-hop topology with
a diameter of 7 hops. Node 2 acts as the sink.
We added three DSN nodes (nodes 31, 33, and 35
marked with squares in Fig. 8). The link dump files
of the DSN nodes generated by EmStar were used
as input to the inspection tool. Since some sensor
nodes could be overheard by more than one DSN
node, the DSN received 1.3 ± 0.5 copies of each
sensor network message during the experiments,
while 4% of the beacon messages were lost (i.e.,
not overheard by any DSN node).

1) Accuracy and Latency: We study the accuracy
(number and type of false error reports) and latency
(time between failure injection and report) of our
inspection tool. These metrics mainly depend on
two parameters: the size of time windows used
in the operator graph (i.e., the value of the time
window factor W) and the amount of packet loss
(i.e., fraction of sensor network messages that were
not overheard by DSN nodes).

As most decisions regarding node state are based
on packets received during a fixed time window,
increasing W should improve accuracy (as opera-
tors then have more packets to base their decision
on) and increase latency linearly (as more packets
need to be collected before a decision is made).
Increasing packet loss should degrade accuracy (as
operators with fixed time windows then have less
packets to base their decision on) and decrease
latency (e.g., since node death is reported when no

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

109876543

60
50

40
30

20
10

0

 0

 2

 4

 6

 8

 10

Time Window Factor W
Packet loss [in %]

Fig. 9. Number of false reports as a function of packet loss and
time window factor W .

packets are received from a node during a time
window, loss of the last packets sent by a node
before death will decrease latency).

In general, the latency to detect a problem is
determined by the path of decisions leading to this
problem in the binary decision tree depicted in
Fig. 7. For example, the decision Network partiton?
leading to state Network partition (no parent) can
only be made when the previos decision Has a
parent? has been made with a result of no. That
is, the latency for detecting a given problem is a
function of the maximum latency of the decisions
in the decision tree on the path from the root to the
leaf denoting this problem. In turn, the latency of a
decision is determined by the size of time window(s)
of the associated operator graph.

In order to assess the impact of W and packet loss
on accuracy and latency, we ran a set of experiments
injecting three types of faults into the network: node
failure, network partition, and no data. The duration
of each experiment was 30 minutes with faults being
injected randomly between 10 and 15 minutes after
experiment begin. In addition to the (small) packet
loss of the DSN, we introduced additional packet
loss by uniformly dropping a given fraction of the
overheard packets. We report averages and standard
deviation over multiple runs.

To guide the selection of W for a given amount
of packet loss, we ran a first experiment without
injecting any faults, varying both W and packet loss,
counting the number of (false) error reports for each
parameter choice. The averaged results over 10 runs

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60

La
te

nc
y

[in
 s

ec
on

ds
]

Packet Loss [in %]

No Data
Network Partition

Single Node Crash

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60
F

al
se

 E
rr

or
 R

ep
or

ts

Packet Loss [in %]

No Data
Network Partition

Single Node Crash

Fig. 10. Reporting latency and number of false reports as a function
of packet loss for W=8.

are depicted in Fig. 9. The flat area of the graph
shows feasible values for W given a certain packet
loss. For a packet loss of 30% (a common value
in single-hop sensor networks [25]), no errors were
reported for W ≥ 7, motivating our choice of W =
8 to study the impact of message loss in more detail
as depicted in Fig. 10. Similarly, we chose a packet
loss of 30% for a more detailed study of the impact
of W as depicted in Fig. 11.

In the first experiment, we performed 40 runs
and injected a single node failure per run, such
that all nodes but the sink failed twice. All node
crashes were correctly detected and no false errors
were reported. The latency of the reports is mainly
determined by the size of the time window used
to implement the Heard any packets? test which
is W× 10s with W = 8. As the beacons are
sent every 10 seconds, we expect the latency to
be between 70 and 80 seconds, which is confirmed
by the experiments. Increasing packet loss does not
have a significant impact on latency. The number
of false positives is neglectable until 30% of packet
loss and and raises significantly with more than

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 3 4 5 6 7 8 9 10 11

La
te

nc
y

[in
 s

ec
on

ds
]

Time Window Factor W

No Data
Network Partition

Single Node Crash

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 3 4 5 6 7 8 9 10 11

F
al

se
 E

rr
or

 R
ep

or
ts

Time Window Factor W

No Data
Network Partition

Single Node Crash

Fig. 11. Reporting latency and number of false reports as a function
of time window factor W for 30% packet loss.

50% as depicted in Fig. 10 (bottom). We analyzed
the generated error reports and observed that for
up to 70% of packet loss, we only observed no
neighbor and no parent reports. These reports are
caused by missing link and path advertisements,
respectively, which are rarely sent (every 80s). For
higher packet loss, we found node dead reports
for working nodes. We never observed any false
negatives. When varying W , we find (as expected)
a linear increase of latency and an improvement of
accuracy as depicted in Fig. 11.

In the second experiment we made nodes 4-
16 fail at random times to partition nodes 17-
27 from the remainder of the network. We would
expect a network partition error for nodes 17-27. We
report the latency until the first node was classified
as partitioned. As explained above, the latency of
partition detection is bounded by the latencies of
preceding decisions in the decision tree, namely
Has a parent? and Has a route?, which both use
a time window of W× 80 seconds. As Has a
route? basically tracks multi-hop data packets which
are sent often (every 30s), it reacts with shortly

before 640 seconds. The Has a parent? fails, if no
path announcements were observed during the time
window. As explained above, increasing packet loss
results in reduced detection latency.

In the third experiment, we injected faults into the
Multihop routing component of single nodes such
that an affected node stops sending data messages,
while still broadcasting beacons and advertisements.
We would expect a no route error for the affected
node and all other nodes whose paths contain the
former. We report the time until the affected node
is marked with no route. In this experiment, the
latency is determined by the window size of the
Has a route? test which is set to W× 80 seconds.
As most nodes in the network forward packets for
other nodes and data packets are sent every 30
seconds, the DSN should observe data packets until
the fault is injected and the average latency should
be close to the window size. The average of 633 ±
24 seconds for W = 0 and no packet loss confirms
this. Again, in Fig. 11, the accuracy improves and
latency increases linearly with W as expected.

2) SNIF Performance: We also studied the per-
formance overhead of SNIF itself. During one 30
minute experiment run without any fault injections,
the DSN collected 261 kB of data, resulting in an
average data rate of 1.2 kbps including duplicate
packets. Note that this equals about 0.3% of the
effective Bluetooth 1.2 bandwidth of 400 kbps.
SNIF was executing on a 2 GHz PC using Java 1.5.
The total cpu time for processing the above amount
of data was about 13 seconds, which equals about
0.7% of the experiment duration of 30 minutes.

3) A Bug in ESS: In the course of our exper-
iments, we encountered a bug in ESS Multihop.
At one point we decided to upgrade to a new
version of EmStar that fixed a bug with collision
handling. After the upgrade, we suddenly observed
a large number of no parent error reports without
injecting any faults. By examining the source code
of Multihop, we learned that nodes react to receipt
of a path advertisement message by updating their
parent selection and broadcasting their updated path
advertisement immediately without any delay. Here,
the original path advertisement broadcast results in
an implicit synchronization of all receivers, such
that the secondary path advertisements collide with
high probability without being retransmitted. By

adding a random jitter, we were able to fix this
problem.

IV. RELATED WORK

Complementary to SNIF is work on active de-
bugging of sensor networks, notably Sympathy [19]
and Memento [22]. Both systems require active
instrumentation of sensor nodes and introduce mon-
itoring protocols in-band with the actual sensor
network traffic. Also, both tools support a fixed
set of problems, while SNIF provides an extensible
framework. Tools for sensor network management
such as NUCLEUS [27] provide read/write access
to various parameters of a sensor node that may be
helpful to detect problems. However, this approach
also requires active instrumentation of the sensor
network.

Also complementary to SNIF is work on simu-
lators (e.g., SENS [24]), emulators (e.g., TOSSIM
[14]), and testbeds (e.g., MoteLab [29]) as they
support development and test of sensor networks
before deployment in the field. In particular, testbeds
typically provide a wired backchannel from each
node, such that sensor nodes can be instrumented to
send status information to an observer. EmStar [9]
integrates simulation, emulation, and testbed con-
cepts into a common framework where some nodes
physically exist in a testbed or in the real world,
while the majority of nodes is being emulated or
simulated. Physical nodes need instrumentation and
a wired backchannel. In [8], a deployment support
network is used to provide a wireless backchannel to
deployed sensor nodes. However, sensor nodes need
to be physically wired to DSN nodes (requiring as
many DSN nodes as there are sensor nodes) and
sensor node software must be instrumented.

Passive observation by means of packet sniffing
has also been applied to wireless (and wired) LANs
[12]. However, sensor networks differ substantially
from wireless LANs. While typical wireless LANs
are single-hop networks that can be observed with
one or few sniffers, sensor networks are typically
multi-hop networks. Also, many of the problems
encountered during deployment of sensor networks
are not present in WLANs. Very recently, two
systems for passive analysis of WLANs have been
proposed that use an approach similar to ours,
namely WIT [15] and JIGSAW [6]. WIT follows

an offline approach, merging redudant traces of net-
work traffic collected by distributed sniffers. Using
a detailed model of the 802.11 MAC, WIT then
infers which packets have actually been received by
the respective destination nodes and derives differ-
ent network performance metrics. JIGSAW uses a
similar approach to collect and merge traces, but
then focuses on online inference of link-layer and
transport-layer connections and their characteristics,
also using a detailed model of the 802.11 MAC. In
contrast, our approach is largely independet of the
actual MAC used. Also, we focus on detecting a
different set of problems as dicussed in Sect. III-B.

In the more general context of management and
debugging of distributed systems, a large body of
related work exists. Due to space constraints, we
limit our discussion to very closely rated work. One
such class of closely related work is performance
debugging of distributed systems (e.g., [1], [2])
where message traces are used to reconstruct causal-
ity paths and their latencies. While in principle
applicable to sensor networks, these approaches are
narrowly focused on a very specific problem and
analysis is performed offline. In contrast, we provide
a framework for online traffic analysis. A number
of data stream management systems have been
specifically developed for network traffic analysis
(e.g., [7], [23]). However, we found it difficult if
not impossible to express stateful SNIF operators
using the SQL variants of these systems.

V. CONCLUSIONS

We presented a framework for passive inspection
of deployed sensor networks, consisting of a dis-
tributed network sniffer, data stream processor, and
user interface. The key advantage of this framework
is that sensor networks need not be instrumented
for inspection. The framework has been specifically
designed to support different protocol stacks and
operating systems. We showed how this frame-
work can be applied to data gathering applications,
demonstrating the our approach can detect typical
problems encountered during deployment timely
and accurately even in case of incomplete informa-
tion. Using this tool, we found a bug in the ESS
application. SNIF has been fully implemented and
demonstrated at EWSN 2007 [20].

REFERENCES

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. In SOSP 2003.

[2] P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
magpie for request extraction and workload modelling. In ODSI
2004.

[3] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable topology
control for deployment-sensor networks. In IPSN ’05.

[4] P. Buonadonna, D. Gay, J. M. Hellerstein, W. Hong, and
S. Madden. Task: Sensor network in a box. In EWSN 2005.

[5] M. Cammert, C. Heinz, J. Krämer, A. Markowetz, and
B. Seeger. Pipes: A multi-threaded publish-subscribe archi-
tecture for continuous queries over streaming data sources.
Technical report, University of Marburg, 2003.

[6] Yu-Chung Cheng, John Bellardo, Péter Benkö, Alex C. Sno-
eren, Geoffrey M. Voelker, and Stefan Savage. Jigsaw: Solving
the puzzle of enterprise 802.11 analysis. In SIGCOMM 06,
Pisa, Italy, September 2006. ACM SIGCOMM.

[7] C. Cranor, T. Johnson, O. Spatcheck, and V. Shkapenyuk.
Gigascope: A Stream Database for Network Applications. In
SIGMOD 2003.

[8] Matthias Dyer, Jan Beutel, Thomas Kalt, Patrice Oehen, Lothar
Thiele, Kevin Martin, and Philipp Blum. Deployment support
network - a toolkit for the development of wsns. In Koen Lan-
gendoen and Thiemo Voigt, editors, 4th European Conference
on Wireless Sensor Networks (EWSN 2007). Springer, January
2007.

[9] L. Girod, J. Elson, A. Cerpa, T. Stathapopoulos, N. Ramanan-
than, and D. Estrin. EmStar: A software environment for
developing and deploying wireless sensor networks. In USENIX
2004.

[10] B. Greenstein, E. Kohler, and D. Estrin. A sensor network
application construction kit (snack). In Sensys 2004.

[11] R. Guy, B. Greenstein, J. Hicks, R. Kapur, N. Ramanathan,
T. Schoellhammer, T. Stathopoulos, K. Weeks, K. Chang,
L. Girod, and D. Estrin. Experiences with the extensible sensing
system ess. Technical Report 61, CENS, 2006.

[12] T. Henderson and D. Kotz. Measuring wireless LANs. In
R. Shorey, A. L. Ananda, M. C. Chan, and W. T. Ooi, editors,
Mobile, Wireless, and Sensor Networks. Wiley, 2006.

[13] O. Visser K. Langendoen, A. Baggio. Murphy loves potatoes:
Experiences from a pilot sensor network deployment in preci-
sion agriculture. In WPDRTS 2006.

[14] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications. In
Sensys 2003.

[15] R. Mahajan, Maya Rodrig, David Wetherall, and John Zahorjan.
Analyzing the mac-level behavior of wireless networks. In
SIGCOMM 06, Pisa, Italy, September 2006. ACM SIGCOMM.

[16] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. An-
derson. Wireless sensor networks for habitat monitoring. In
WSNA ’02.

[17] P. Padhy, K. Martinez, A. Riddoch, H. L. R. Ong, and J. K.
Hart. Glacial environment monitoring using sensor networks,
2005.

[18] J. Polastre, R. Szewczyk, A. Mainwaring, D. Culler, and
J. Anderson. Analysis of wireless sensor networks for habitat
monitoring. In Cauligi S. Raghavendra, Krishna M. Sivalingam,
and Taieb Znati, editors, Wireless Sensor Networks, chapter 18.
Kluwer Academic Publishers, 2004.

[19] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and
D. Estrin. Sympathy for the sensor network debugger. In SenSys
’05.

[20] M. Ringwald, M. Cortesi, K. Römer, and A. Vialetti. Demo
abstract: Passive inspection of deployed sensor networks with
snif. In Koen Langendoen and Thiemo Voigt, editors, 4th
European Conference on Wireless Sensor Networks (EWSN
2007), 2007.

[21] M. Ringwald, K. Römer, and A. Vialetti. Snif: Sensor network
inspection framework. Technical Report 535, ETH Zurich,
Zurich, Switzerland, 2006.

[22] S. Rost and H. Balakrishnan. Memento: A Health Monitoring
System for Wireless Sensor Networks. In SECON 2006.

[23] M. Sullivan and A. Heybey. Tribeca: A System for Managing
Large Databases of Network Traffic. In USENIX 1998.

[24] S. Sundresh, W. Kim, and G. Agha. SENS: A Sensor, Environ-
ment and Network Simulator. In Annual Simulation Symposium
2004.

[25] R. Szewcyk, A. Mainwaring, J. Polastre, J. Anderson, and
D. Culler. An analysis of a large scale habitat monitoring
application. In Sensys 2004.

[26] J. Tateson, C. Roadknight, A. Gonzalez, S. Fitz, N. Boyd,
C. Vincent, and I. Marshall. Real world issues in deploying
a wireless sensor network for oceanography. In REALWSN’05.

[27] G. Tolle and D. Culler. Design of an application-cooperative
management system for wireless sensor networks. In EWSN
2005.

[28] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong.
A macroscope in the redwoods. In SenSys ’05.

[29] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: a
wireless sensor network testbed. In IPSN 2005.

[30] A. Woo, T. Tong, and D. Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks. In
Sensys 2003.

[31] BTnodes. www.btnode.ethz.ch.

