
Smart Identification Frameworks for Ubiquitous Computing Applications

Kay Römer, Thomas Schoch, Friedemann Mattern, Thomas Dübendorfer
Institute for Pervasive Computing, Department of Computer Science, ETH Zurich

{roemer|schoch|mattern }@inf.ethz.ch, duebendorfer@tik.ee.ethz.ch

Abstract

We present our results in the conceptual design and the
implementation of ubiquitous computing applications using
smart identification technologies. First, we describe such
technologies and their potential application areas, followed
by an overview of some applications we have developed.
Based on the experiences we gained from the development
of these systems, we point out design concepts that we find
useful for structuring and implementing such applications.
Building upon these concepts, we have created two frame-
works based on Jini (i.e., distributed Java objects) and Web
Services to support the development of ubiquitous comput-
ing applications that make use of smart identification tech-
nology. We describe our prototype frameworks, discuss the
underlying concepts and present some lessons learned.

1 Introduction

Object tagging is an enabling concept for many inter-
esting ubiquitous computing (“ubicomp”) applications [17].
By attaching small electronic tags to physical objects, these
objects can be automatically identified and located when
brought into the vicinity of a tag detection system. Our goal
is to support the development of applications that make use
of smart identification technologies by providing suitable
abstractions and concepts and by incorporating these con-
cepts into a middleware framework. Since identification of
real-world objects is the prerequisite for ”smart” behavior,
the framework should also support basic functionality for
smart objects such as associating specific information and
functionality to objects and providing an artifact memory.
Furthermore, it should support event propagation, location
management and some other basic services for smart ob-
jects.

One example of a promising object tagging technology
is passive radio frequency identification (RFID), where tags
do not need their own power source and cost a few tens
of cents only. State-of-the-art RFID systems such as the
Phillips Icode system [18] allow the simultaneous detection
of a few hundreds tags within a space of up to one cubic me-

ter. Typically, such tags not only hold a unique ID, but also
provide a small amount of non-volatile read/write memory
up to about 100 bytes.

Besides passive RFID systems, there exist other identifi-
cation systems. Barcodes are a classical technology to tag
physical objects, but they need line-of-sight to the reader
and have some other drawbacks which make them less at-
tractive for ubicomp applications. In contrast to passive
RFID systems, active RFID systems have built-in batter-
ies enabling them to send their data up to a distance of
100m. Disadvantages are the larger form factor and the
higher price compared to passive systems. In the future
we also envision small modules based on RF technologies
similar to Bluetooth, WLAN or UMTS to tag physical ob-
jects. Their main advantage is that they can cover a larger
space and provide additional functionality such as transmit-
ting sensor values. Currently, however, they have similar
disadvantages with respect to size, price, and energy con-
sumption as active RFID systems.

Despite their simplicity and current limitations, such
smart identification systems enable the implementation of
a wide range of novel ubicomp applications by bridging
the gap between the physical world (i.e., tagged real-world
objects) and the virtual world (i.e., application software).
One example are tagged products (“smart products”) which
make new services and new cost-saving business processes
possible. They bring benefits in the areas of source verifica-
tion, counterfeit protection, one-to-one marketing, mainte-
nance and repair, theft and shrinkage, recall actions, safety
and liability, disposal and recycling as well as mass cus-
tomizing. Smart objects thus lead to new supply chain
management systems, product life cycle management pro-
cesses, and customer relationship management processes in
the consumer goods industry. However, the use of novel
identification technologies is not limited to these processes,
but many new applications are possible when real-world ob-
jects become “smart” by attaching information to them and
linking them directly to backend IT systems or services on
the Internet.

During the last two years we have developed a number
of smart identification-based applications in areas like smart
games, home automation and office automation. These ap-

plications are often based on non-trivial interactions be-
tween multiple tagged objects. We found that existing
ubicomp infrastructures such as Savant [10], Cooltown
[6], one.world [4], Gaia OS [11], or Stanford Interactive
Workspaces [5] do not provide appropriate application level
frameworks to substantially support the implementation of
our applications. Although these infrastructures provide
useful programming primitives, there is quite a large gap
between these primitives and the necessary functionality
of ubicomp applications based on smart identification tech-
nologies that we have in mind.

In order to better understand the requirements of smart
identification-based ubicomp applications and to proceed
towards an application model, we first implemented a set
of different prototype applications as presented in Section 2
from scratch. The only piece of software they had in com-
mon was the driver software for the RFID system. Based on
our experience with these applications, we identified a num-
ber of tasks common to this type of application, which led
to an application model and the design of concepts that we
found useful for structuring and implementing applications
using tagged physical objects. Based on those mechanisms,
we have then designed and implemented two application
level frameworks to support the development of tag-based
ubicomp applications. The realization of two different ap-
plication level frameworks enables us to evaluate slightly
different design decisions, and to compare implementations
based on different programming platforms like Sun’s Jini
on the one hand and Microsoft’s .Net Web Services on the
other hand.

In the next section we first present a short overview of
some of the applications we developed. They will serve as a
basis for identifying general design concepts that we present
in Section 3. These concepts should be incorporated by a
generic ubicomp framework. After a description of our two
prototype frameworks in Section 4, we compare and evalu-
ate some of the underlying ideas and draw conclusions for
a more elaborate implementation of our concepts in Section
5. We conclude by mentioning related work and giving a
short outlook. The focus of the paper lies on concepts and
suitable application frameworks, since this should serve as
a basis for future systems of cooperating smart real-world
objects.

2 Selected Ubicomp Applications

In the sequel we outline the type of applications we in-
tend to support with our framework by sketching some of
the prototypical smart identification-based ubicomp appli-
cations we have developed over the recent years. Note that
all applications are based on multiple interacting tagged
physical objects.

Smart Tool Box Tools are equipped with RFID tags, and
the tool box contains a mobile RFID system (including a

tag reader antenna integrated into the tool box) [3]. The tool
box issues a warning for safety reasons if a worker attempts
to leave the building site (or a sensitive maintenance area
such as an airplane) while any tools are missing from his
or her box. The box also monitors how often and for how
long tools have been in use. Based on this information, tools
can be replaced before they wear out. Additionally, the tool
owner can charge for tool rental based on actual tool usage.

Smart Medicine This application helps to avoid trouble
with medication by monitoring medicine from production
to use [14]. For this, medicine bottles are equipped with
RFID tags. The environmental temperature of the medicine
is constantly monitored in order to avoid it going bad.
Within the medicine cabinet, the bottle checks for other
pharmaceuticals which are not compliant if taken together.
A warning is issued upon detection of such dangerous situ-
ations.

Smart Agenda Agendas are equipped with RFID tags. If
two or more people want to make an appointment, they
place their agendas on the “appointment table”, which is
equipped with an RFID antenna. A nearby display shows
possible dates that are compatible with the schedules of all
the participants.

RFID Chef Grocery items are equipped with RFID tags
(instead of the barcodes that are commonly used today).
When placed on the kitchen counter with an integrated
RFID reader, a nearby display suggests dishes that can be
prepared with the grocery items available, or shows miss-
ing ingredients. The suggested dishes not only depend on
the available ingredients, but also on the preferences of the
cook, who might for example prefer vegetarian or Asian
dishes. To implement this functionality, the cook is iden-
tified by an RFID tag with a form factor of a credit card,
which he or she carries in his or her wallet. [8] contains a
detailed description of the system.

Smart Playing CardsOrdinary playing cards are equipped
with RFID tags. An RFID antenna mounted beneath a table
monitors the game moves of the players. A nearby display
shows the score, the winner, and a cheat alarm if one of the
players does not follow suit, and gives hints to beginners
by assessing the players’ moves. This is implemented by
having each card remember the context in which it has been
used and whether the trick in question was won or lost. [12]
contains a detailed description of the system.

3 Design Concepts

The above-mentioned applications were first developed
from scratch. From these first practical experiences, we
identified common issues of the applications and came up
with some general design concepts. In the following we in-
troduce the abstractions and design concepts we found. The

subsequent section then shows for some of these abstrac-
tions and design concepts how they were incorporated into
our application level frameworks.

Location The notion of location is a central concept for
most of the applications. In general, location can be based
on geographic information, such as coordinates, or on more
abstract symbolic information, such as room numbers. A
tagging system can provide both kinds of information. If
the geographic position of the tag reader is known, the lo-
cation of the tagged objects can be estimated. This infor-
mation is useful in the Smart Medicine example, where the
distance between two distribution centers is relevant for the
transportation of the medicine. The symbolic location in-
formation is normally determined by the tag reader and its
detection range. In the Smart Tool Box application, all the
tools in the range of the tool box antenna are supposed to
belong to the same tool box.

Neighborhood We use the symbolic location information
to introduce the concept of neighborhood. As in the Smart
Tool Box example, “cooperating” physical objects are often
collocated. Thus, the neighborhood concept is a relation
between objects that are close to each other, what makes
them potential candidates for a collaboration. Note that we
use a symbolic meaning of closeness that might differ from
the Euclidian distance – two objects in different corners of a
room might be closer to each other in a symbolic sense than
two objects in two different rooms separated by a wall.

Location Management The management of locations
refers to two similar but different issues. On the one hand,
physical objects can contain other physical objects (e.g. the
medicine cabinet contains some medicine bottles). On the
other hand, symbolic locations are normally ordered in a
hierarchical way (e.g. a room is part of a building). Both
concepts can be combined (e.g. the medicine bottle is in a
case, the case is stored in shelf row Y, shelf row Y is located
in warehouse A).

Location management should also consider two other as-
pects. One refers to the dynamic behavior of the contain-
ment relationship as in the Smart Tool Box example where
tools are frequently put in and out of the tool box. The
other aspect refers to the evolution of location hierarchies
over time. The warehouse in the Smart Medicine example
may be reorganized so that the location hierarchy needs to
be adapted.

Time Some of the applications require a notion of time. The
Smart Tool Box, for example, has to determine the amount
of real time that has elapsed between removing a tool from
the box and replacing it. The Smart Playing Cards appli-
cation knows which player played which card by means of
the temporal order of the played cards. In general, there is a
need to time-stamp such events. In the case of multiple tag
readers, the time stamps of events originating from different
readers should be comparable, even if some of the readers

have been offline during event generation.

Composition Often physical objects are an aggregation
of other physical objects, e.g. a truck which transports
medicine bottles consists of thousands of different parts,
which might all be tagged. Many applications are only in-
terested in manipulating composite objects in order to per-
form a certain manipulation on all the objects contained in
a composite object (e.g. it is highly inefficient to commu-
nicate with all tagged parts of a truck if the new location
of the whole truck should be set). In order to support such
situations, it is necessary to explicitly model “part of” rela-
tionships among objects. This relationship can also be used
to inherit properties. For example, it is not necessary that
each part of a truck stores the same location information. In
case a part needs to know its location, it can ask its parent
node in the hierarchy.

Note that composition is different from the neighbor-
hood concept since neighboring objects do not necessarily
belong to the same composite object. This concept also dif-
fers from the containment relationship. The containment
relationship has to consider dynamic aspects in terms of
insertion and removal of objects, whereas the composition
concept is more static. Objects in such a relationship de-
pend on each other and cannot easily inserted or removed
without changing the nature or functionality of the objects
(e.g., we can take out objects of a cupboard without chang-
ing the properties of the cupboard, if we demount the door
of the cupboard, the cupboard becomes a shelf).

Linkage of the Physical and Virtual World In order to en-
able an application to react to actions in the physical world,
a link has to be established between tagged physical objects
in the real world and the application. Since RFID systems
detect presence and absence of tags in a certain physical
space, this link can be established by notifying the applica-
tions about tags entering and leaving this space. A natural
way to model these notifications is by means of an event
notification system. The system has to support at least two
basic events,enter(X) andleave(X) , which are sent to
the application when a tag with ID X enters and leaves the
detection range of the detection system, respectively. Addi-
tionally, applications need a way of expressing their interest
in a subset of all possible tags, since a single RFID reader
might be used by multiple applications at the same time.

Note that the tag detection system and the application
may run on different systems and platforms, as for example
in the Smart Tool Box application, which consists of a mo-
bile tag detection system in the tool box cooperating with a
stationary system at the workshop.

Although from an abstract point of view the tag detection
system detects entering and leaving tags, matters are com-
plicated by the actual low-level interface provided by the tag
detection system and certain application requirements. The
Icode RFID system [18], for example, periodically scans
(typically at sub-second intervals) for present tags by send-

ing a short RF pulse and waiting for answers from the tags.
When receiving the pulse, a tag waits a random number of
discrete time slots before answering, in order to avoid time-
consuming collisions with other tags sending concurrently.
The maximum number of time slotsN which a tag may wait
before answering, influences both the time needed for a sin-
gle scan and the expected number of collisions. A smallN
value results in fast scans (down to 60ms according to [16])
but many collisions, whereas a largeN value results in slow
scans (more than one second) but few collisions.

This kind of low-level interface has several implications.
First, applications are typically only interested in changes
of the detected set of tags, i.e., they want to receive enter
and leave event notifications. So an appropriate software
component has to convert scan results to event notifications.
However, the task of this component is non-trivial, since
the scan results are typically imperfect due to tag collisions,
i.e., not all tags are detected in every scan. The latter can
result in event flickering: the fast generation of alternating
leave and enter events for a tag that is in fact present all the
time. Filters which cancel out spurious leave/enter events
are required in case of such imperfect tag detection.

Secondly, many applications require that objects be de-
tected as fast as possible. This is necessary if tags stay
in the detection range only for a rather short time. Even
if the tags stay long enough, long delays in tag detection
can cause problems with human computer interaction. The
Smart Playing Cards application exemplifies the latter, be-
cause the user expects an immediate reaction from the sys-
tem on placing a card on the table. The optimum detec-
tion performance can be achieved by selecting the number
of time-slotsN to be slightly greater than the actual num-
berM of tags in the range of the reader. However,M is
typically unknown. Therefore, nontrivial algorithms are re-
quired for selectingN in order to read all present tags in a
minimal amount of time [16].

History Some applications do not only react immediately
to tagged objects entering and leaving the reading range,
but objects are also queried about their history later on.
Consider the Smart Tool Box example, where tools can be
queried regarding how long they were used in which tool
box on which building site. Therefore, a generic mecha-
nism for logging and querying the history of physical ob-
jects seems appropriate.

The minimal interface to access history information
should contain the following methods:

• find(TAG, TIME): location of TAG at TIME

• with(TAG, TIME): returns the set of tags at the same
location as TAG at TIME

• look(LOC, TIME): set of tags at location LOC at
TIME

• history(TAG): list of recent locations visited by TAG

Context Typically the application’s action when a tag en-
ters or leaves the reader’s range not only depends on the
identity of the tag, but also on the context such as the earlier
presence or absence of other tags. Consider for example the
RFID Chef application: the dishes that have to be displayed
when a new grocery item is placed on the kitchen counter
not only depend on the grocery item itself, but also on the
cook. In the Smart Playing Cards application, the action
taken when a playing card enters or leaves the antenna’s
range depends on the other playing cards currently lying on
the table.

Often applications are only interested in events with a
certain context. Consider the Smart Playing Cards exam-
ple, where the application only wants to be informed when
the last of four players has played his or her card in the trick.
Such a selection of events can be performed at several lev-
els, for example in the application. However, scalability
and performance of a system can be increased by perform-
ing this selection as close as possible to the source of events.
This, however, requires a way of expressing the event con-
texts applications are interested in.

State and BehaviorApplications typically assign state and
behavior to physical objects. In the Smart Tool Box appli-
cation the state of a physical object (i.e. a tool) consists of
its usage pattern. In the Smart Agenda application, the state
of an agenda consists of a schedule.

The applications also differ in the way they assign behav-
ior to physical objects. In the RFID Chef application, for ex-
ample, all the grocery items and the cook have a “common”
behavior – the display of a list of dishes. In the Smart Tool
Box application, physical objects have a more “individual”
behavior – calculating tool usage, for example. Moreover,
a single physical object can contribute to the behavior of
more than one other physical object. In the Smart Playing
Cards application, for example, a single card contributes to
the “usage context” of all the other playing cards on the ta-
ble. A flexible mechanism is therefore needed for assigning
state and behavior to physical objects.

Virtual Counterparts Due to resource limitations, neither
the physical object nor the tag are able to implement all of
the above concepts. Therefore, one needs a digital represen-
tation – the virtual counterpart – that can take over this role.
An application does not directly interact with the tagged ob-
jects themselves, but with their virtual counterparts. In the
Smart Agenda example, the actual agenda is stored in the
virtual counterpart. The tag is only used as a link to its
virtual counterpart. As depicted in Figure 1, virtual coun-
terparts come in various flavors. A counterpart can be as-
sociated with a single (1) or a set of (2) physical objects.
Moreover, it can represent a single (3) or multiple (4) phys-
ical locations.

Name and AddressAs pointed out above, we use the tag
on the object as a pointer to its virtual counterpart. That

virtual counterparts

physical objects

(1) (2) (3) (4)

Figure 1. Virtual Counterparts

means that the tag must provide some information how an
application can access the virtual counterpart. To identify
the corresponding counterpart, a unique name is necessary
for each counterpart. An application also has to locate the
virtual counterpart that may reside somewhere on the Inter-
net. For this purpose, a structured addressing scheme and
an underlying directory service is necessary.

The name or the address of a counterpart can be stored
on the tag. The minimum information that is needed is a
unique tag ID, which can then be mapped to the name or the
address of the counterpart by a service in the infrastructure.

Life Cycle Management Life-cycle management deals
with the instantiation, migration, and destruction of virtual
counterparts. After a tag has been attached to the physi-
cal object, the virtual counterpart has to be created. After
a tagged object has been destroyed, the virtual counterpart
might also be destroyed to save resources. However, de-
struction is optional, since the virtual counterpart may ex-
ist forever. For performance reasons, a virtual counterpart
might migrate to a place where the communication with its
tagged object is more efficient.

Communication Infrastructure All the applications we
have developed so far make use of a communication infras-
tructure to access background services, such as the virtual
counterpart of an object or an object history storage service.
In environments or in scenarios where a wired Internet in-
frastructure is not present, we assume a wireless connec-
tion, e.g. IP over Bluetooth, WLAN or UMTS. However,
there may not always be global connectivity, as in the case
of the Smart Tool Box application. The tool box contains
a mobile RFID system and an associated computing sys-
tem, which are able to operate offline. The tool box is only
connected to the background communication infrastructure
when it is returned to the workshop. Such disconnected op-
erations should also be supported by a general application
framework.

VC

VL

ED

ED

store

leave

VCM

context

store

AM

VCR LUS

lookup

queryenter, enter,
leave,

store,

register,

VCES
RFID system

RFID system

map

code
download

Figure 2. Infrastructure Overview of the Jini Ap-
proach

4 Framework Prototype Implementations

In order to evaluate the concepts described in Section
3, we implemented two prototype systems that build on
these concepts. One is based on Jini (i.e., distributed Java
objects), the other uses Web Services as the underlying
platform. By using these prototype systems to (re-)im-
plement tag-based ubicomp applications, we want to gain
experiences that should be useful for a future and more
elaborate implementation of a general platform for smart
identification-based applications.

4.1 Jini Approach

For our first framework, we have implemented the con-
cepts outlined in Section 3 in a Jini-based infrastructure for
virtual counterparts. Figure 2 shows an overview of the
system architecture. RFID systems are connected to event
drivers (EDs), which generate enter and leave events from
periodical tag scans. The EDs act as producers for the coun-
terpart event service (VCES). The VCES delivers events to
the counterpart manager (VCM), and specific counterparts.
The VCM acts as an execution environment for counter-
parts. Upon the first sighting of a tagged object or loca-
tion, it consults the counterpart repository (VCR) to obtain
counterpart executables for the tag or location. Counterparts
register with the look-up service (LUS), so that cooperating
counterparts can find each other. The artifact memory (AM)
acts as a place for persistently storing and retrieving coun-
terpart state and event histories. Small amounts of state can
also be stored in the tag memory by sending appropriate
store events to the VCES.

Event Driver Using the RFID driver software, the ED pe-
riodically executes tag detection rounds. Each detection
round consists of multiple tag scans with a carefully se-
lected maximum time-slots parameterN , which is obtained
by using a mechanism we developed in [16]. The latter pro-
vides a technique for estimating the actual number of tags
present from a scan result, which consists of a list of de-
tected tags as well as the number and type of collisions.

Thus, we start with a small value forN , estimate the num-
ber of tagsN ′ from the scan result, and re-scan withN ′.
This process is repeated until all tags have been detected
with a probabilityp. Note that even ifp is very close to 1,
due to the probabilistic nature of the anti-collision scheme
there is a slight chance of one or more tags not being de-
tected.

By calculating the difference between successive detec-
tion rounds, a listE of entering and a listL of leaving tags
is determined. In order to avoid event flickering as men-
tioned in Section 3, we do not post events for tags inE and
L to the VCES immediately. Instead, we keep a history of
the scan resultsEi andLi at timeti of the last second. In
this window, we look for tagsT contained both inLi and in
Ej with j > i. SuchT are removed from bothLi andEj .
Now for each remaining tag inLi (Ei) a leave (enter) event
is posted to the VCES as soon asti is more than one second
in the past.

Both enter and leave events contain a tag ID, location
ID, and a time stamp. Enter events can carry additional
data from the tag memory. The ED also subscribes to
store events from the VCES, which contain a tag ID and
data that is to be written to the memory of specific tags.
Thus the combination of store/enter events can be used to
store/retrieve state to/from the tag memory.

Virtual Counterpart Event Service Producers and con-
sumers advertise and subscribe to the VCES by specifying
the types of events they want to generate or receive. Based
on this information, the VCES forwards events to interested
subscribers only. The VCES can tell producers not to pro-
duce events if nobody is interested in them.

Subscriptions can optionally contain a rule for specify-
ing context events. Such a rule consists of event decla-
rations and a program. The program consists of a list of
condition–action specifications. Each condition specifies an
event pattern using a composite event language similar to
the Cambridge Composite Event Language [9]. The action
part emits one or more events based on the parameters of
the matched event pattern.

Virtual Counterpart Manager A VCM acts as an execu-
tion environment for the various types of virtual counter-
parts. It is also responsible for counterpart instantiation, mi-
gration, and destruction. For this purpose, the VCM moni-
tors tagged objects by subscribing to enter and leave events.

If the VCM receives an enter event, it first consults the
look-up service for matching counterpart instances. If no
counterpart exists, the VCM consults the counterpart repos-
itory, which maps tag and location IDs to URLs. The URLs
point to Java archive (JAR) files which contain code, re-
sources, and arbitrary additional data for the respective vir-
tual counterparts. The VCM downloads this code, executes
it in a separate thread, and registers the counterpart with the
look-up service. If on the other hand the look-up service
already contains matching counterpart instances executing

in a different VCM instance, the VCM asks the counterpart
to migrate to the new location. However, the counterpart
may choose to disregard this request. If the VCM receives
a leave event, it asks the respective counterpart to clean up
and exit. As with migration, the counterpart may choose to
disregard this request.

Once a counterpart is up and running, it can subscribe to
events, program the VCES for context events, use the LUS
to look-up cooperating counterparts, or store and retrieve
state using the artifact memory. Counterparts are Java ob-
jects that provide an event API and a set of interface meth-
ods to the VCM. Counterparts cooperate by using events or
Java RMI.

Note that it is possible to implement abstract virtual
counterparts which have no physical equivalent by selecting
an unused tag ID and manually sending enter/leave events
with this ID to the VCM.

Virtual Counterpart Repository The VCR consists of two
components, a mapping facility that maps tag and loca-
tion IDs to URLs, and an HTTP server for downloading
the counterpart executables. By mapping multiple IDs to
the same URL, we can implement a meta-counterpart (or
meta-location), which corresponds to multiple physical ob-
jects (or locations). Managing a whole set of similar ob-
jects (such as playing cards) by a single meta-counterpart
is more efficient than having a distributed implementation
with many communicating counterparts.

Look-up ServiceThe LUS is somewhat similar to the VCR
in that it maps location and tag IDs to virtual counterparts.
However, in contrast to the VCR it returns pointers to ex-
ecuting counterpart objects. Again, meta-counterparts (lo-
cations) are implemented by mapping multiple IDs to the
same counterpart (location).

Artifact Memory The AM stores state information in the
form of attribute/value pairs and event histories. It is im-
plemented as an abstract virtual counterpart. Other virtual
counterparts can send predefined events (store state, retrieve
state, store event, query events) to the AM. The query event
can be used to issue queries to the AM regarding multiple
events, such as “which objects were at location X at time
T”. The AM internally uses JDBC to open a connection
to an SQL relational database. The AM creates one table
for persistent state and one table for each event type in the
database. The persistent state table has two columns, an
attribute column and a value column. The table for a partic-
ular event type has one column for each parameter of this
event type. The enter event table, for example, has four
columns, since enter events have four attributes (tag ID,
location ID, time stamp, tag memory contents). The AM
query language is plain SQL, which is passed through to
the database unmodified. However, to simplify often used
requests, some powerful new query commands were added
(such as “Where is object X?” or “Who is at location L?”).

Virtual Counterpart
(Hierarchy optional)

Web Services

3) set new location

Location Manager
Hierarchy

Web Services

Tagged Object
RFID Tags1) detects &

reads URI

UDDI Hierarchy
UDDI Servers

Tag Detection System
RFID System

A) registers once 4) registers repeated

2) resolves URI

Figure 3. Infrastructure Overview of the Web Ser-
vice Approach

More information on the concepts and implementation of
the Jini approach can be found in [2].

4.2 Web Services Approach

Another approach to implement the concepts of Sec-
tion 3 is the use of Web Services. Web Services seem to
be appropriate for several reasons. First, the client/server
paradigm is useful to model virtual counterparts – on the
one hand, the virtual counterpart can provide its function-
ality as a service, and on the other hand tag-based applica-
tions can act as client. Second, Web Services also provide
a service description and discovery framework, which can
be used to describe and locate virtual counterparts. Third,
Web Services build on open standards like the Simple Ob-
ject Access Protocol (SOAP) which makes them universally
applicable. Fourth, the framework can then easily commu-
nicate with other third parties’ Web Services on the Internet.

Figure 3 shows the main components of the infrastruc-
ture. The tag detection system scans for tagged objects in
its read range. If a tagged object is detected, the system
reads out an URI from the memory of the tag. The URI
consists of the name and the DNS-like address of the virtual
counterpart. This URI is used by the tag detection system
to contact a hierarchy of Universal Service Discovery and
Description Interface (UDDI) servers. These UDDI servers
use the DNS-like address to retrieve the Web server where
the virtual counterpart is running as a regular Web Service.
In the next step, the tag detection system sets the new lo-
cation of the tagged object (i.e., the location determined by
the tag reader) on its virtual counterpart. The virtual coun-
terpart uses this location information to register itself at a
hierarchy of location managers. Since all virtual counter-

parts have to register themselves at this hierarchy, a virtual
counterpart can ask the hierarchy for its neighbors.

In the following, each system component mentioned
above will be explained in more detail with a focus on
those issues that are different from our Jini-based applica-
tion framework described in Section 4.1.

Tagged ObjectThe framework is designed to support var-
ious tagging technologies. Up to now, however, we have
only implemented the support for passive RFID technology.
A tag only needs to store a Universal Resource Identifier
(URI), which is used as a pointer to the virtual counterpart.

Tag Detection SystemThe tag detection system is the ac-
tual component that bridges the gap between the physical
and the digital world. On the one hand, the system commu-
nicates with the tag which resides on a real-world object.
On the other hand, it also contacts the virtual counterpart of
the tagged object to report the new location of the tagged
object. A tag detection system is initialized with its phys-
ical or symbolic location and uses this information as the
new location for all the tagged objects in its range. More
sophisticated tag detection systems may calculate the po-
sition of a tagged object within the detection range more
precisely (e.g., by measuring signal strengths).

After a tagged object has come into the read range of an
antenna, the tag detection system reads out the memory of
the tag, which contains the URI of the virtual counterpart.
In order to set the new location of the tagged object on its
virtual counterpart, the tag detection system first has to con-
tact the UDDI hierarchy to resolve the URI. The UDDI hier-
archy returns the Web server where the virtual counterpart
resides. Using this information, the tag detection system
can set the new location on the virtual counterpart.

UDDI Hierarchy Within the Web Services framework, the
UDDI defines how information about services can be stored
and retrieved. A UDDI server acts as a database for service
information and implements the UDDI. The most impor-
tant information that a UDDI server stores are the service
description and the location of the service. The Web Ser-
vice Description Language (WSDL) is used to describe the
service interface, so that a client can access the service. A
Web Service that is up and running has to register itself at
a UDDI server with its Web server address, so that a client
can locate the service.

Originally, the UDDI servers were intended to establish
a service cloud. That means that all UDDI server that be-
long to a service cloud have to store the information about
all services worldwide, i.e., a change at one UDDI server
is propagated to all others within the cloud. We think that
this does not scale well if every object is tagged. There-
fore we extended the UDDI service cloud structure with a
DNS-like partitioning which distributes all service informa-
tion over the UDDI servers without redundancies (except
some backup servers for reliability reasons).

The UDDI server generates a universal and unique iden-
tifier (UUID) if a service is registered the first time. We use
this UUID also as the unique name for a virtual counterpart.
This UUID is a random number and provides no structure.
A structured identifier is necessary if we structure UDDI
servers in a DNS-like style. Thus, we introduce addresses
for the UDDI servers also in a DNS-like style. The URI of
a virtual counterpart consists of this DNS-like address and
the UUID, e.g. uri:pharma.pervartis:40a96d21-ee00-0000-
0080-e698e3243f5a. In this example “pharma.pervartis”
denominates the UDDI server where the virtual counterpart
is registered. The DNS-like structure is used to find the
UDDI server within the UDDI hierarchy. “40a96d21-ee00-
0000-0080-e698e3243f5a” denominates the virtual coun-
terpart. It is unique for each tagged object and independent
of the UDDI server, which allows the virtual counterpart to
migrate within the UDDI hierarchy. Each tag detection sys-
tem possesses a UDDI client. This client uses the DNS-like
address to find the appropriate UDDI server to retrieve the
Web server where the service (i.e. the virtual counterpart)
is running.

Virtual Counterpart As mentioned above, every virtual
counterpart is implemented as a Web Service that is running
on a Web server somewhere on the Internet. The interface
of such a virtual counterpart is different for different types
of tagged objects. A minimal set of functions is common to
all virtual counterparts and therefore supported by all coun-
terpart implementations. Besides some auxiliary methods,
a virtual counterpart provides methods to set and get the
current location, to retrieve the location history, and some
methods to add and remove parent and child nodes depend-
ing on its position in a composition tree. All other methods
that are specific for a tagged object have to extend this min-
imal interface.

Location Manager While the UDDI hierarchy tracks the
whereabouts of virtual counterparts, the location manager
hierarchy tracks the whereabouts of the tagged objects.
Since every virtual counterpart has to register itself at the
appropriate location manager for its tagged object, the loca-
tion manager is able to determine the neighbors of a tagged
object. Hence a virtual counterpart can ask the location
manager for all other virtual counterparts of tagged objects
that are close to its own tagged object.

Location information is modeled as coordinates. Be-
sides the geographic information, the location information
also contains hierarchically classified symbolic names. The
location managers are arranged as a tree. The root loca-
tion manager is responsible for the whole world. The child
nodes build a partition of the world. When a virtual coun-
terpart has to register itself at the root location manager, the
root location manager delegates this registration to the node
that covers the smallest space in which the tagged object is
contained.

Besides implementing the neighborhood concept, the lo-

cation manager also implements the containment concept.
When an object may contain other objects, such as the cab-
inet that contains the medicine bottles, a location manager,
which is responsible for the space of the cabinet, has a link
to a so-called host service. This host service is the vir-
tual counterpart of the tagged object that can contain other
tagged objects.

5 Experiences with the Frameworks

We used the prototype frameworks described in Section
4 to realize a number of applications. Based on the expe-
riences we evaluate the prototype frameworks by pointing
out some of their their strengths and weaknesses.

In particular, we re-implemented several of the earlier
applications using our frameworks. In general the devel-
opment time dropped significantly since much fewer code
had to be written. Applications written from scratch were
hard to understand and maintain since they tended to mix up
different functionalities (e.g., reading tags, program logic,
user interface) in a monolithic program. The framework-
based re-implementations gave a much better separation of
concerns, which typically resulted in fewer errors and better
maintenance capabilities. Understanding and using a frame-
work, on the other hand, may present a significant initial
overhead to a developer.

According to [7], the boundary of a ubicomp application
supported by our frameworks is defined by a room-scale in-
stallation of some tag detection systems, which we call a
cell. The size of such a cell and the scalability of a frame-
work required to support a cell is quite limited. Larger sys-
tems can be built using multiple cooperating cells, which
support a hand-over procedure when a tagged mobile ob-
ject crosses the boundary between two cells. However, the
frequency of such hand-overs is expected to be small. One
example would be a tool moving from the workshop cell to
the tool box cell in the Smart Tool Box application. Nev-
ertheless, the framework must scale to a large number of
interacting virtual counterparts (e.g., a whole truck filled up
with medicine bottles as in the Smart Medicine application).

Besides the conceptual issues, we also considered perfor-
mance aspects such as the memory usage per service, and
the time a service lookup and service invocation takes. Both
criteria are critical, the memory use determines how many
virtual counterparts can be hosted on a server, and the time
for a service lookup and invocation determines whether an
application can react in real-time to changes in the real-
world.

We conducted performance measurements for two plat-
forms: Sun’s Jini implementation and Microsoft’s .NET
Web Services, which is used in the second framework. The
tests were performed on 451 MHz Intel Pentium III PCs
with 256 MB of RAM running Windows XP. The comput-
ers were connected by a 100 Mbps Ethernet network. For

the tests we used a simple application which implements
counterparts as described in Section 4 using Jini and .NET,
respectively. We examined the memory footprint of the
Jini/.NET runtime environments and the memory footprint
of each virtual counterpart in the test application. Addition-
ally, we measured the amount of time required for perform-
ing a counterpart lookup followed by the invocation of a
simple method on the counterpart. We performed 20 runs
and calculated averages.

The tests have shown that Jini is currently much more
performant than .NET Web Services. The memory foot-
print of the Jini runtime environment is 9564 kB, the .NET
runtime consumes 17332 kB. Each additional virtual coun-
terpart consumes at least 1.84 kB with Jini, and at least
1640.97 kB with the .NET implementation. Jini also shows
a better performance with respect to time measurements. A
service lookup and an invocation of a simple method takes
on average 198.8 ms with a deviation of 7.2 ms for Jini. The
.NET Web Services needs 814.8 ms on average with a de-
viation of 121.8 ms. Note that this refers to a best case sce-
nario, where the first UDDI server contains the registered
service and only a single simple method is called.

In the approach based on computational objects de-
scribed in Section 4.1, scalability to large numbers of coun-
terparts highly depends on the actual implementation of
virtual counterparts. We examined three implementations:
spawn a new process for each virtual counterpart, spawn
a new thread for each virtual counterpart, and execute all
counterparts in the same thread. While the first two ap-
proaches offer more flexibility due to decoupling the control
flows of the counterparts, they are both too heavy-weight for
large numbers of counterparts.

Both frameworks differ with respect to some architec-
tural concepts. One difference is the usage of the tag ID.
In the first framework, the tag ID is used by several back-
ground entities, whereas in the second framework, the tag is
only used to establish the link between the physical and vir-
tual world. The latter allows to decouple infrastructure ser-
vices by hiding low-level details. The frameworks also dif-
fer in how they manage the addressing hierarchy, the struc-
turing hierarchy of tagged objects, and the location hierar-
chy. The second framework makes these hierarchies and
their underlying models explicit, whereas the first frame-
work does not explicitly consider them, which makes it
more difficult to make use of the concepts in an applica-
tion. Another difference is the support of migration and his-
tory – the first framework provides dedicated entities, which
incorporate these concepts, whereas the second framework
does not possess such entities. Also, the first framework
introduces meta-counterparts and meta-location that are not
part of the second framework. On the one hand, these con-
cepts render the first framework somewhat more complex,
but on the other hand enables more efficient applications.
The challenge now consists in combining the proven con-
cepts of both prototypes into an encompassing framework.

6 Related Work

There exist several other efforts to provide support for
applications based on smart objects. The work of the MIT
Auto-ID Center [13] comes closest to our intention to pro-
vide a framework for smart objects. The goal of the Auto-
ID center and its sponsoring companies is to replace the
traditional barcode with passive RFID tags. For this, they
investigate the whole spectrum of components for such a
solution, ranging from low-level protocols for the commu-
nication between tag and reader to an XML-based language
to exchange information about products. The middleware
that controls the readers and processes the tag IDs is called
Savant [10]. The Savants form a tree. The edge Savants
directly control the RFID readers and store the tags IDs. In-
ternal savants aggregate the data received from their child
nodes. Savants also provide means to notify external pro-
grams with tag information or they run tasks that have to be
registered at a Savant. One issue we miss in this approach is
the virtual counterpart that actively reacts to changes in the
real-world, in contrast to Savants that only manage passive
database entries.

Cooltown [6] and the associated CoolBase infrastructure
aim to give people, places, and things a Web presence. This
Web presence has a similar function like our virtual coun-
terparts. The use of well-known Web technology is both an
advantage and a disadvantage. On the one hand, this tech-
nology is proven and widely available, but on the other hand
we think there is an important difference between Web ap-
plications and ubicomp applications. Due to its origin, the
Web is document-centric. Although it has been augmented
with ways to include dynamic distributed applications (e.g.
SOAP), it still retains its inherent hypertext nature. On the
other hand, ubicomp applications are more akin to dynamic
distributed applications. The emerging XML-based Web in-
frastructure (i.e., Web Services) might support the needs of
tag-based ubicomp applications in the future. However, our
experience indicates that the performance of current Web
Services implementations is not sufficient to support large-
scale applications.

The Stanford Interactive Workspaces project [5] aims
to provide a support infrastructure for interactive rooms
equipped with large displays and other wireless devices for
interaction. The main focus of the project, however, is
to support user interaction and group work in augmented
rooms. The i-Land and Roomware [15] projects have a sim-
ilar focus.

Projects such as Gaia [11], One.World [4], and Microsoft
Easy Living [1] aim to provide an infrastructure to support
augmented environments in a rather broad sense. They pro-
vide basic abstractions and mechanisms for coping with the
dynamics and device heterogeneity of pervasive computing
environments. On top of these mechanisms they provide
application models, which are still rather generic. There is
quite a large gap between the abstractions provided by these

projects and frameworks like ours, which support a rather
specific application model (that of multi-object, tag-based
applications in our case).

7 Conclusion and Outlook

Based on our experiences with several prototype appli-
cations, we came up with a set of basic functionalities and
services, and an application model for smart identification-
based ubicomp applications. We built two prototype frame-
works based on different underlying platforms to support
the development of such applications. Initial experience
shows that application development and maintenance can
be significantly simplified by using such application-level
frameworks which are tailored to the specific needs of tag-
based applications. In the future we not only intend to sup-
port other tagging systems, but also sensing devices giving
rise to another class of interesting applications.

Our two prototypical frameworks have covered many as-
pects, but only to a certain depth. In the future we want to
investigate some concepts in more detail in order to come
up with a single framework that is based on well-suited
concepts and has the necessary performance to guarantee
real-time requirements. To achieve this, we have defined
three work packages. The first package focuses on differ-
ent tagging and sensing systems in order to come up with
an abstract interface for tag detection, independent of the
actual tagging system. Secondly, we want to provide a ser-
vice infrastructure for smart objects, including, for example,
security mechanisms. Thirdly, we want to extend the con-
cepts and implementations of virtual counterparts. All this
together should eventually lead to a general and performant
application framework for smart objects.

8 Acknowledgments

We would like to acknowledge Daniel Schädler for his
work on the Web Services framework, Tobias Schwägli for
his work on the performance test, Marc Langheinrich and
Harald Vogt for their work on RFID Chef, Matthias Lampe
for his work on Smart Tool Box, and Philip Graf, Martin
Hinz, Svetlana Domnitcheva, and Vlad Coroama for their
help with Smart Playing Cards.

References

[1] B. Brummit, B. Meyers, J. Krumm, A. Kern, and S. Shafer.
Easy Living: Technologies for Intelligent Environments. In
HUC 2000, Bristol, UK, Sept. 2000.

[2] T. Dübendorfer. An Extensible Infrastructure and a Rep-
resentation Scheme for Distributed Smart Proxies of Real
World Objects. Master’s thesis, ETH Zurich, 2001. Also
available as technical report TR-359.

[3] C. Floerkemeier, M. Lampe, and T. Schoch. The Smart Box
Concept for Ubiquitous Computing Environments. Submit-
ted for publication.

[4] R. Grimm et al. Programming for Pervasive Computing En-
vironments. Technical Report UW-CSE-01-06-01, Univer-
sity of Washington, Department of Computer Science and
Engineering, June 2001.

[5] B. Johanson, A. Fox, and T. Winograd. The Interactive
Workspaces Project: Experiences with Ubiquitous Comput-
ing Rooms. IEEE Pervasive Computing, 1(2):71–78, Apr.
2002.

[6] T. Kindberg et al. People, Places, Things: Web Presence
for the Real World. InWMCSA 2000, Monterey, USA, Dec.
2000.

[7] T. Kindberg and A. Fox. System Software for Ubiquitous
Computing. IEEE Pervasive Computing, 1(1):70–81, Jan.
2002.

[8] M. Langheinrich, F. Mattern, K. R̈omer, and H. Vogt. First
Steps Towards an Event–Based Infrastructure for Smart
Things. InUbiquitous Computing Workshop, PACT 2000,
Philadelphia, USA, Oct. 2000.

[9] G. J. Nelson. Context-Aware and Location Systems. PhD
thesis, University of Cambridge, 1998.

[10] Oat Systems and MIT Auto-ID Center. The Savant. Tech-
nical Report MIT-AUTOID-TM-003, MIT Auto-ID Center,
May 2002.

[11] M. Roman, C. Hess, R. Cerqueira, A. Raganat, R. Camp-
bell, and K. Nahrstedt. Gaia: A Middleware Infrastructure
to Enable Active Spaces. Submitted to IEEE Pervasive Com-
puting Magazine.

[12] K. Römer and S. Domnitcheva. Smart Playing Cards - A
Ubiquitous Computing Game.Journal for Personal and
Ubiquitous Computing, 6(6), Nov. 2002.

[13] D. B. S. Sarma and K. Ashton. The Networked Physical
World - Proposals for Engineering the Next Generation of
Computing, Commerce & Automatic Identification. Tech-
nical Report MIT-AUTOID-WH-001, MIT Auto-ID Center,
Oct. 2000.

[14] F. Siegemund and C. Floerkemeier. Interaction in Pervasive
Computing Settings using Bluetooth-enabled Active Tags
and Passive RFID Technology together with Mobile Phones.
In PerCom 2003, Fort Worth, USA, Mar. 2003.

[15] P. Tandler. Software Infrastructure for Ubiquitous Comput-
ing Environments: Supporting Synchronous Collaboration
with Heterogeneous Devices. InUbicomp 2001, Atlanta,
USA, Sept. 2001.

[16] H. Vogt. Efficient Object Identification with Passive RFID
Tags. InPervasive 2002, pages 98–113, Zurich, Switzerland,
Aug. 2002.

[17] R. Want, K. Fishkin, A. Gujar, and B. Harrison. Bridging
Physical and Virtual Worlds with Electronic Tags. InACM
Conference on Human Factors in Computing Systems (CHI
99), Pittsburgh, USA, May 1999.

[18] The Philips I–Code System. www-
us2.semiconductors.philips.com/identification/-
products/icode.

