Tuplespace-Based Collaboration for Bluetooth-Enabled
Devices in Smart Environments

Frank Siegemund and Pascal Keller

Institute for Pervasive Computing
Department of Computer Science
ETH Zurich, Switzerland

Abstract: Smart environments are often populated by resource-restricted devices that
need to cooperate with each other in order to access remote sensors and benefit from
other devices’ resources. This paper presents and evaluates a software platform that fa-
cilitates dynamic cooperation between resource-restricted Bluetooth-enabled devices.
In order to cooperate, nodes actively participate in a distributed tuplespace that serves
as a shared data structure and a medium to access remote resources. The paper moti-
vates the communication related design decisions that led to a concrete implementa-
tion on an embedded device platform, the BTnodes. We evaluate this implementation
on single- as well as multi-hop topologies and show how efficient inter-device coop-
eration must consider Bluetooth’s communication properties as well as the resource
restrictions of participating devices.

1 Introduction

Recently, Bluetooth has received considerable attention in building resource-restricted de-
vice platforms designed for smart environments and wireless sensor networks. Among
others, the Intel Motes [Int04], the BTnodes [Beu04], and the sensor node platform built

at the University of Karlsruhe [Bla03] all use Bluetooth for communication. However, be-
cause of the severe resource-restrictions of such embedded platforms and the consequential
restricted functionality provided by isolated nodes, it is difficult to build sophisticated ap-
plications on single devices. Especially in smart environments where smart objects need
to interact with each other to fuse sensory data and share resources, cooperation between
multiple devices becomes increasingly important.

This paper addresses the problem of dynamic cooperation among Bluetooth-enabled de-
vices in smart environments. Thereby, we enable nodes to form dynamic groups of coop-
erating entities and support collaboration by means of a distributed tuplespace spanning
cooperating devices. We also present a concrete implementation on the BTnodes, eval-
uate its performance, and report on the major design decisions that influence the under-
lying communication protocols. Our experiences with the platform on single- as well as
multi-hop topologies show that efficient collaboration among multiple nodes can only be
achieved when the specific properties of the underlying communication technology (i.e.,



Bluetooth) are taken into consideration.

The paper is structured as follows: Section 2 presents a platform facilitating tight cooper-
ation between devices in smart environments, which is based on a distributed tuplespace.
Section 3 reports on the design decisions influencing the underlying communication pro-
tocols and evaluates their performance. Section 4 concludes the paper.

2 Tuplespace-Based Collaboration

Because of their resource restrictions, smart objects often need to cooperate with other
devices in order to benefit from remote resources such as sensors, memory, or other de-
vices’ processing capabilities. In our approach, resource-restricted nodes dynamically
form groups of cooperating entities by participating in a distributed tuplespace. The latter
serves as a shared data medium for participating entities and hides low level communica-
tion issues from an application. In the following, we describe how a distributed tuplespace
can facilitate close cooperation in smart environments and present a concrete implementa-
tion on the BTnode device platfofm

A tuplespace [CG89] is an associative, content-addressable memory where data is stored
in form of tuples. Because the underlying concept focusses on content, tuples are accessed
by their form or type rather than by memory addresses. As a content-addressable memory,
a tuplespace simplifies ad hoc cooperation since access to shared data is possible without
knowledge of specific memory locations or service interfaces of particular nodes. A dis-
tributed tuplespace also hides low-level communication issues because the corresponding
API encapsulates the distribution of tuples among different nodes.

In our implementation, each node has its own local tuplespace, i.e., a subset of its local
memory where local processes can store and retrieve tuples. When a set of nodes want
to cooperate with each other, they establish a distributed tuplespace. Such a shared data
medium then consists of the interconnected local spaces of all participating entities, and
operations that consider tuples on all nodes. For example, a distribeiddoperation

does not only search for a tuple on a single node but on all entities cooperating with each
other.

The distributed tuplespace for the BTnodes does not only support the standard tuplespace
operations-ead, write andtake, but does also provide more sophisticated functions that
operate on sets of tuplesountN (templ) returns the number of tuples that match the
given template;scan(templ) returns all matching tuplesionsumingScan(templ) be-

haves likescan but removes all tuples found. There are always three versions of these
functions: one that operates on the local tuplespace, one that operates on a distinct remote
tuplespace, and one that operates on a whole set of cooperating objects.

As the distributed tuplespace implementation is tailored towards the needs of embedded
devices, it provides its owmemory managemefdr tuples because some embedded plat-

1please refer to www.inf.ethz.ch/"siegemun/software/ClusterTuplespace.pdf for a more detailed description
of our implementation.



forms do not provide a reliable dynamic memory allocation mechanism. To enable pro-
cessing of continuously generated data (e.g., from sensors), the implementation maintains
an age structurewhich allows automatic deletion of the oldest tuples when the space is
full and new tuples are generated. The concept of protected tuples, however, prevents the
implementation from automatically deleting explicitly marked tuples. In addition to the
basic tuplespace operatiortgllbacksare supported as an event mechanism. Thereby, a
callback function can be registered that is executed when a tuple of a specified form is
written into the shared data space.

3 Communication Protocols for Effective Inter-Device Cooperation

This section focuses on the design of communication protocols that facilitate effective col-
laboration between Bluetooth-enabled devices. We argue that a platform for inter-device
cooperation must consider the properties of the underlying communication technology,
and show how the properties of Bluetooth effect the performance of such a platform.

When a distributed tuplespace is used to share data and access remote resources, the per-
formance overhead introduced by cooperation largely depends on an efficient means to
multicast data. This is because every tuplespace function that operates on a set of cooper-
ating devices must be able to efficiently send a request to all nodes it cooperates with. To
enable efficient multicasts, we suggest to adapt the network topology of the underlying ad
hoc network such that cooperating nodes share a single broadcast channel. A request can
then be sent to other nodes by broadcast. Thereby, it is advantageous that Bluetooth is a
multi-channel communication technology. A broadcast channel in Bluetooth corresponds
to a single Piconet, and multiple Piconets can operate in range of each other with only little
interference. When there are many nodes in range of each other, we therefore try to group
cooperating nodes into a single Piconet in order to enable efficient collaboration [Sie04].

A tuplespace function operating on a set of cooperating objects first tries to respond to
a request by querying its local tuplespacer#ud operation for example searches for a
single matching tuple. When such a tuple is found in the local space, no communication
with other nodes is necessary. Otherwise, when the issuing node is not a master, it forwards
the tuplespace request to its master node, which in turn evaluates the query and transmits
the request to all of its slaves. Then, the slaves send their results back to the master which
then forwards them to the slave that issued the request.

For evaluation purposes, we have implemented several variants of distributed tuplespace
operations on the BTnode device platform. Some of the corresponding results are depicted
in Fig. 1, considering acan operation as an example. Fig. 1 a) compares different means

for sending requests to cooperating nodes. Thereby, we distinguish between a broadcast-
basedparallel strategy and a unicast-basegquentiaktrategy. In the parallel strategy,

the master sends a tuplespace request to all slaves concurrently via broadcast. The slaves
execute the corresponding method on their local tuplespaces and immediately send back
the result tuples via unicast. The master receives the results from the slaves in a parallel
manner, reassembling the unicast packets that arrive from different slaves in no specific



1100 T T T
worst-case distribution
650 L optimal distribution ------- i

T
sequential scheme
1000 parallel scheme -------

600 B
550 B
500 B
450 - B

40 7 B

Time per scan operation in ms (average)
|
Time per scan operation in ms (average)

350 |- P 4

300 L L L L L L L L

Number of cooperating devices Number of result tuples

(a) (b)

Figure 1: (a) The effect of the sequential and parallel scheme on the performangenaf apera-
tion returning 10 result tuples considering all possible distributions; (b) the effect of different tuple
distributions on the performance okaan operation using the parallel scheme.

order. In the sequential strategy, the master queries one slave at a time, sending the tu-
plespace command and the template to each slave via unicast. The next slave is queried
only after the answer of the current slave has been received.

As can be seen in Fig. 1 a) the parallel strategy clearly outperforms the sequential strategy
with an increasing number of cooperating nodes. This is mainly because of two reasons.
Firstly, broadcasting data to all nodes concurrently is faster than sending a request to every
node separately. Secondly, Bluetooth’s Time Division Duplex (TDD) scheme for handling
master-slave-transmissions significantly reduces the efficiency of the sequential approach.
This can be seen in Fig. 1 b) where we measured the time neededdon aperation on

seven cooperating nodes with respect to the distribution of matching tuples. When match-
ing tuples are equally distributed, a master almost never polls a slave without receiving a
tuple as result. Consequently, it makes almost no difference receiving 1-6, 7-12, or 13-18
tuples when they are equally distributed. Because the Bluetooth modules on the BTnodes
seem to poll nodes in a simple round-robin fashion, a master node accesses sequentially
one node after the other and therefore needsinds to receivé * (i — 1) + 1t06 = ¢

results when the results are equally distributed. In contrast, when all matching tuples are
on a single node, rounds are required to retrieveesults.

Unfortunately, grouping nodes on a single broadcast channel in Bluetooth is only possible
when nodes can be assigned to a single Piconet. When nodes are too far away from each
other, they must be grouped into a scatternet. Fig. 2 shows the performancewf a
operation on a distributed tuple space with respect to the number of devices cooperating
with each other. The results have been measured using our tuplespace implementation on
the BTnodes. Fig. 2 also shows how the BTnodes where organized into scatternets; the
read operation was always issued on the black node in the illustration. It can be seen that
as long as acad operation finds a result on a node participating in its piconetrthé
operation scales well. But as soon as it must access nodes over multiple hops in different
piconets, the performance decreases significantly.



700 T T T T T
read operation involving both piconets

600 read operation successful on piconet
containing issuing node

500

400 -

00
el
o»-c<f
-

200 o

Time per read operation in ms (average)

2 3 4 5 6 7 8 9 10
Number of nodes

Figure 2: The effect of multihop topologies on the efficiency of distributed tuplespace operations.

4 Conclusions

In this paper, we presented a tuplespace-based approach facilitating tight collaboration
among Bluetooth-enabled devices in smart environments. Thereby, a concrete implemen-
tation of a distributed tuplespace on an embedded device platform, the BTnodes, enabled
us to evaluate the performance of the underlying communication protocols on single as
well as multihop topologies. The main lessons learnt can be summarized as follows. (1)
A distributed tuplespace supports efficient cooperation among devices when they can be
grouped on a single broadcast channel. (2) The underlying communication protocols must
consider Bluetooth’s mechanism for scheduling master-slave communications. A parallel
scheme for receiving tuples from multiple slaves is necessary to take advantage of this
Bluetooth feature. (3) In contrast to implementations on fixed networks, communication
is by far the most time-consuming factor while executing tuplespace operations. This is a
result of the severe memory restrictions of embedded device platforms, which makes the
time needed for local operations almost negligible.

References

[Beu04] J. Beutel, O. Kasten, F. Mattern, KoRer, F. Siegemund, and L. Thiele. Prototyping
Sensor Network Applications with BTnodes. iEEE European Workshop on Wireless
Sensor Networks (EWSNBerlin, Germany, January 2004.

[Bla03] E.-O. Blass, H.-J. Hof, B. Hurler, and M. Zitterbart. Erste Erfahrungen mit der Karl-
sruher Sensornetz-Plattfor®)/ITG KuVS Fachgesjgich Sensornetz2003.

[CG89] N. Carriero and D. Gelernter. Linda in ConteRommunications of the ACMB2(4),
April 1989.

[Int04] Intel motes, http://www.intel.com/research/exploratory/motes.htm, 2004.

[Sie04] F. Siegemund. A Context-Aware Communication Platform for Smart Object2nih:
Intl. Conference on Pervasive Computing (PERVASIVE 2Qs1)69-86, Linz/Vienna,
Austria, April 2004.



