
Diss. ETH No. 15908

Concepts and System Structures to
Support Collaborating Everyday

Items

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich (ETH Zurich)

for the Degree of
Doctor of Sciences

presented by
Thomas Marcus Schoch

Diplom-Informatiker, Darmstadt University of Technology
born June 13, 1977
citizen of Germany

Prof. Dr. Friedemann Mattern, examiner
Prof. Dr. Thomas Gross, co-examiner

2005

Acknowledgments

First of all, I would like to thank my adviser Prof. Friedemann Mattern. He always took
the time to discuss the different aspects of my work and provided me with constructive
feedback when I asked for it. Besides that, he left enough room for me to work on my
own ideas.

I am very grateful to my co-advisor Prof. Thomas Gross. Although he had a large
workload, he took the time to provide me with valuable feedback in order to improve this
dissertation.

I would also like to thank all the students I worked with in order to implement and
extend the concepts that are presented in this dissertation. These students are Daniel
Schädler, Tobias Schwägli, Reto Vögeli, Andreas Westhoff, Marco Steiner and Thomas
Eicher.

Next, I would like to thank all my colleagues at the ETH Zurich and at the Univer-
sity of St. Gallen for the positive and motivating working atmosphere they helped create:
Heidi Gülgün, Jürgen Bohn, Oliver Christ, Vlad Coroama, Svetlana Domnitcheva, Chris-
tian Frank, Sandra Gross, Marc Langheinrich, Marie-Luise Moschgath, Matthias Ring-
wald, Michael Rohs, Frank Siegemund, Christian Tellkamp, Frederic Thiesse and Harald
Vogt. Special thanks to Kay Römer, Martin Strassner, Christian Flörkemeier, Matthias
Lampe and Thomas Dübendorfer, with whom I wrote my publications, and special thanks
to Oliver Kasten who supported me with the programming of the BTNodes.

I am also grateful to Prof. Elgar Fleisch, who is the initiator of the M-Lab project,
in which I was the first research assistant. Besides its scientific approach, this project
taught me a great deal about practical issues.

Last, but not least, I want to thank Nick Bell and Keno Albrecht for their ’read after
write verification’.

II

Contents

1 Introduction 1

1.1 Vision . 2

1.2 Contribution . 4

1.3 Limitations . 5

1.4 Outline . 5

2 Motivation and Requirements 6

2.1 M-Lab . 6

2.2 Applications . 7

2.3 Smart supply chain application . 8

2.3.1 Overview . 9

2.3.2 Smart things . 10

2.3.3 Locations . 10

2.3.4 Procedure . 11

2.4 Requirements . 12

2.5 Summary . 14

3 Technology 15

3.1 Middleware platforms . 15

3.1.1 Jini . 16

3.1.2 Web Services . 19

3.2 Auto-ID systems . 20

3.2.1 Overview . 21

3.2.2 Bar code . 22

3.2.3 RFID and infrared beacons . 22

3.3 Wireless networks . 23

3.3.1 Cellular . 23

3.3.2 Wireless local area networks . 24

3.3.3 Personal area networks . 25

3.4 Sensors and actuators . 27

3.5 Localization . 29

3.5.1 Location Models . 29

3.5.2 Localization Methods . 30

3.5.3 Localization Systems . 32

3.6 Summary . 33

III

4 Modeling of Collaborating Everyday Items 35
4.1 High level concepts . 35

4.1.1 Smart thing . 36
4.1.2 Tag detection system . 37
4.1.3 Managing services . 40

4.2 Concepts for basic abilities . 41
4.2.1 Identifier . 41
4.2.2 Locations . 42
4.2.3 Location model . 44
4.2.4 Sensor and actuator data . 52

4.3 Concepts for smart thing entities . 53
4.3.1 Representation . 53
4.3.2 Smart thing . 54

4.4 Concepts for infrastructure entities . 57
4.4.1 Tag . 57
4.4.2 Tag reader . 58
4.4.3 Tag detection service . 59
4.4.4 Home service . 60
4.4.5 Hosting service . 61
4.4.6 Location manager services . 62

4.5 Procedure of registering a smart thing 66
4.5.1 Communication channels . 66
4.5.2 Identification process . 67
4.5.3 Localization process . 68
4.5.4 Update of the location managers 68
4.5.5 Sensor and actuator communication 70

4.6 Extensions . 72
4.6.1 Containedness . 73
4.6.2 Simultaneous detection of the same tag 73
4.6.3 Smart things with multiple tags 74

4.7 Application logic . 74
4.8 Lifecycle . 75
4.9 Summary . 75

5 Architecture of the Smart Thing Systems 77
5.1 Previous work . 77
5.2 Voxi . 78

5.2.1 Overview . 78
5.2.2 Components . 79
5.2.3 Comparison with the smart things model 83

5.3 Wsst . 83
5.3.1 Overview . 84
5.3.2 Components . 84
5.3.3 Comparison with the smart things model 88

5.4 Iceo . 88
5.4.1 Overview . 89
5.4.2 Components . 90
5.4.3 Comparison with the smart thing model 94

IV

6 Evaluation of the Smart Thing Systems 95
6.1 Qualitative evaluation . 95

6.1.1 General deployment scheme . 95
6.1.2 Implementation of the business logic 97
6.1.3 RFID framework . 102
6.1.4 Voxi . 104
6.1.5 Wsst . 107
6.1.6 Iceo . 110

6.2 Quantitative evaluation . 115
6.2.1 Test application scenario . 116
6.2.2 Test environment . 116
6.2.3 Measurement of the relevant values 117
6.2.4 Results . 118

6.3 Conclusions . 123

7 Related Work 125
7.1 Adjacent domains . 125

7.1.1 Naming and addressing . 125
7.1.2 Location models . 126
7.1.3 Cellular IP . 127
7.1.4 Artificial intelligence . 127

7.2 Smart thing systems . 128
7.2.1 Cooperating Smart Everyday Objects 128
7.2.2 Auto-ID Center . 129
7.2.3 Smart Items Infrastructure . 130
7.2.4 VisuM . 130
7.2.5 RAUM . 131

7.3 Ubiquitous computing systems . 132
7.3.1 Overview . 132
7.3.2 Common functions . 133
7.3.3 Nexus . 134
7.3.4 Cooltown . 135
7.3.5 Hive . 136
7.3.6 Sylph . 136
7.3.7 ParcTab . 137

7.4 Summary . 137

8 Conclusions 139
8.1 Summary . 139
8.2 Contributions . 141
8.3 Prospects . 144

A Curriculum Vitae 154

V

Abstract

The goal of this dissertation is to contribute towards the realization of the vision of a
world with ”smart” everyday items. Smart everyday items differ from regular everyday
items insofar as they know their whereabouts, perceive their environment, and are able to
communicate with other smart things. For example, a bottle that contains temperature
sensitive chemicals can monitor the temperature and if a certain limit is exceeded, the
bottle can send an alarm message; and if its own temperature sensor is broken, it simply
asks a bottle in its vicinity. Another task that a bottle might take over is less complex
and more cost efficient: it signs in and off at the warehouse management systems of
supply chain participants, so that they know exactly what inventory is currently stored.

In the introductory first chapter of this work, this vision will be extended and it will
be shown how it can be embedded in the more general vision of ubiquitous computing,
which was first formulated by its pioneer Marc Weiser. Starting from these visions,
economically practicable applications will be introduced in the following second chapter.
One generic application, which will be referenced throughout this work, will be discussed
more deeply. It consists of a supply chain application with several participants that
exchange products. At first, these economic applications serve, especially the supply
chain application, to enumerate the requirements that need to be fulfilled by systems
that aim at realizing a world of smart everyday items. By this, we understand a software
system that comprises, on the one hand, a software framework that provides application
developers with the required abstractions in terms of a generic class library and, on the
other hand, middleware services that extract and execute application-independent tasks.
It is the assumption of this dissertation that the concepts and systems presented here
describe and support a world of collaborating everyday items in a substantially better
way than would be possible with current means.

In the third chapter, the technologies are presented on which the smart thing systems
considered in this work are based. It is about software systems, on the one hand, that
support dynamic client/server applications, such as Jini or Web Services, and hardware
systems, on the other hand, that serve to identify objects automatically, such as bar code
or RFID systems.

After these preparations, the fourth chapter introduces a model that describes a world
of collaborating everyday items. On the highest level, the model differentiates between
four concepts: a thing, the tag attached to it for identification, a representation of that
thing in IT systems, and a service infrastructure that allows for the coupling of the tag and
its representation. These four concepts and their relative dependencies will be expanded
and presented. Besides the definition of the vocabulary that is used throughout this work,
the model serves to formulate the problems and challenges of an implementation of such
systems precisely, so that the model can be used as a template for future implementation.
During the work with the model, the following problem areas and questions arose that

VI

are also addressed by the model: ”How can we abstract from the implementation details
of the underlying identification technology such as bar codes or RFID?”, ”How must an
identifier be structured?”, ”Which kind of location model is appropriate?”, ”How does
the service infrastructure realize the coupling between a thing and its representation?”,
”Which other services can be provided by the service infrastructure?”, ”What is the
minimum functionality that has to be provided by a representation?”, ”What are the
possible options for migrating a representation?” and ”How is the interaction between
applications and representations realized?”.

The implementation of the model in three different smart thing systems as well as the
corresponding insights, are the topics of the fifth chapter. Both topics can be regarded as
a solution to the above mentioned problem areas. First, the question of how to structure
applications that use one of the three systems will be addressed. A similar issue is how
such systems and the applications based on them can communicate with already existing
applications. Building on this basis, a description is given of the three systems that
cover different aspects of the model, so that a subsequent system extends a previous one,
as well as trying out different technologies. Some features that distinguish the systems
are the usage of Jini or Web Services as an underlying client/server platform, various
location models, and the option of a representation either migrating from one host to
another in order to be executed as near as possible to the location of the thing, or of the
representation being permanently located at a host where it is reachable from a client
application at all times.

The deployment of the smart thing systems, i.e. the execution of the application
and the middleware service on computers, as well as the application development, are
evaluated in the sixth chapter. This evaluation relies, on the one hand, on the supply
chain application introduced in the second chapter as a generic example and, on the
other hand, on the measurement of the relevant system parameters of the underlying
technology. Finally, the results will point out whether the systems actually support
application developers and whether they scale well enough to be deployed on a larger
scale.

The seventh chapter shows to what extent links or overlaps to related work exist,
thereby suggesting the broader value of the concepts and implementations presented here.
Mainly those projects are presented that also aim to realize a world of smart things, as
well as work that is intended for a different goal but has similar subordinate problems to
solve.

In the last eighth chapter, building on the evaluation of the sixth chapter, the pros and
cons of the model and the smart thing systems are discussed, and potential extensions of
the model and the systems are sketched. In addition, adjacent research areas and their
challenges are addressed.

VII

Zusammenfassung

Die Realisierung der Vision von einer Welt mit ”smarten” Alltagsgegenständen ist
Gegenstand dieser Dissertation. Smarte Alltagsgegenstände unterscheiden sich insofern
von bisherigen Gegenständen, als dass sie ihren Aufenthaltsort kennen, ihre Umwelt
wahrnehmen sowie mit anderen smarten Alltagsgegenständen kommunizieren können.
So kann beispielsweise eine Flasche, in der sich temperaturempfindliche Chemikalien
befinden, die Temperatur überwachen und im Falle des Überschreitens eines Grenzwertes
eine Alarmmeldung absetzen; und falls ihr eigener Temperatursensor defekt ist, so fragt
sie einfach eine andere Flasche in ihrer näheren Umgebung. Oder sie übernimmt nur eine
weniger komplexe Aufgabe, indem sie sich automatisch in die Warenwirtschaftssysteme
der Lieferkettenteilnehmer ein- und ausbucht, so dass diese immer genau wissen, was sich
tatsächlich in ihrem Lager befindet.

Im einleitenden ersten Kapitel dieser Arbeit wird diese Vision ausgebaut und
konkretisiert, wie sie sich in die generelle Vision des Ubiquitous Computing, welche
erstmalig von ihrem Pionier Marc Weiser formuliert wurde, einbettet. Daneben
wird aufgezeigt, worin genau der Beitrag dieser Dissertation besteht und wo sie sich
ihre Schranken setzt. Ausgehend davon werden im darauf folgenden zweiten Kapitel
konkrete Anwendungen mit smarten Alltagsgegenständen vorgestellt, die aus betriebs-
wirtschaftlicher Sicht sinnvoll, d.h. rentabel sind. Detaillierter besprochen wird eine
generische Anwendung, die im Verlauf der Arbeit des Öfteren referenziert wird. Es han-
delt sich dabei um eine Lieferkette mit mehreren Teilnehmern, die smarte Produkte aus-
tauschen. Zunächst dienen solche Anwendungen dazu, die Anforderungen aufzustellen,
die Systeme erfüllen müssen, welche sich zum Ziel setzen, eine Welt smarter Alltagsge-
genstände zu ermöglichen. Unter System verstehen wir ein Software-System, das sich
zum einen aus einem Software-Framework, das Entwicklern die nötigen Abstraktionen
in Form einer generischen Klassenbibliothek zur Verfügung stellt, und zum anderen
aus Middleware-Diensten, die applikationsunabhängige Aufgaben kapseln und ausführen,
zusammensetzt. Die Arbeit geht von der These aus, dass die hier vorgestellten Konzepte
und Systeme eine Welt kooperierender Alltagsgegenstände wesentlich besser beschreiben
und unterstützen als es mit momentan verfügbaren Mitteln möglich ist.

Im dritten Kapitel werden die Technologien vorgestellt, auf denen die in dieser Ar-
beit betrachteten Systeme aufsetzen. Dabei handelt es sich zum einen um bereits exi-
stierende Software-Systeme, die dynamische Client-Server-Anwendungen ermöglichen,
wie Jini oder Web Services, und zum anderen um Hardware-Systeme, die der automa-
tischen Identifikation von Objekten dienen, wie beispielsweise Barcode- oder Transpon-
dersysteme.

Auf den vorausgegangenen Kapiteln aufbauend, wird im vierten Kapitel ein Mo-
dell vorgestellt, das eine Welt kooperierender Alltagsgegenstände beschreibt. Auf ober-
ster Ebene unterscheidet das Modell zwischen den vier Konzepten Gegenstand, das

VIII

an ihm befestigte Tag zur Identifikation, eine Repräsentation des Gegenstands in IT-
Systemen sowie einer Dienstinfrastruktur, die die Kopplung zwischen dem Tag und der
Repräsentation ermöglicht. Diese vier Konzepte sowie ihre Abhängigkeiten untereinan-
der werden dargestellt und noch feiner unterteilt. Das Modell dient dazu, die Probleme
und Herausforderungen, die es bei der Umsetzung von Systemen, die kooperierende
Alltagsgegenstände ermöglichen, präzise zu formulieren, so dass das Modell auch als
Vorlage der späteren Umsetzung dienen kann. Bei der Ausarbeitung des Modells er-
gaben sich u.a. die folgenden Problembereiche und Fragestellungen, die in dieser Arbeit
ebenfalls betrachtet werden: ”Wie kann von der zugrunde liegenden Erkennungstech-
nologie, wie Barcode oder Transpondersysteme, abstrahiert werden?” ”Wie müssen
Bezeichner der Gegenstände aufgebaut sein?”, ”Welche Art von Lokationsmodell ist
zweckmässig?”, ”Wie ermöglicht die Dienstinfrastruktur die Kopplung zwischen Gegen-
stand und Repräsentation?”, ”Welche anderen Dienste kann die Dienstinfrastruktur an-
bieten?”, ”Was ist die minimale Funktionalität, die eine Repräsentation bieten muss?”,
”Welche Möglichkeiten bestehen, um eine Repräsentation zu migrieren?”, ”Wie sieht die
Interaktion zwischen Anwendungen und Repräsentationen aus?”.

Die Umsetzung des Modells in drei verschiedene Systeme sowie die daraus gewon-
nen Erkenntnisse sind Gegenstand des fünften Kapitels. Beides stellt gleichzeitig den
Beitrag der Arbeit zur Lösung der oben aufgezählten Problemebereiche dar. Zunächst
wird erläutert, wie überhaupt Applikationen strukturiert werden müssen, die eines der
drei Systeme nutzen. Ähnlich gelagert ist die Frage, wie solche Systeme und die da-
rauf entwickelten Applikationen mit bereits existierenden Systemen gekoppelt werden
können. Darauf aufbauend werden die drei Systeme, welche verschiedene Bereiche des
Modells abdecken und diverse Technologien erproben, beschrieben. Einige Merkmale,
in denen sich die Systeme voneinander unterscheiden, bestehen u.a. in der Nutzung von
Jini oder Web Services als zugrunde liegende Client-Server-Plattform, unterschiedlichen
Lokationsmodellen, und der Möglichkeit von Repräsentationen, von einem Rechner zu
einem anderen Rechner migrieren zu können, um möglichst nahe am Aufenthaltsort des
Gegenstands ausgeführt zu werden oder sich fix auf einem Rechner zu befinden, wo sie
für eine Client-Applikation immer zu erreichen sind.

Sowohl der Einsatz der Systeme, d.h. die Ausführung der Applikationen und der
Middleware-Dienste auf Rechnern, als auch die Anwendungsentwicklung, werden im sech-
sten Kapitel bezüglich qualitativen und quantitativen Kriterien evaluiert. Diese Be-
wertung beruht zum einen auf der Lieferkettenapplikation, die im zweiten Kapitel als
generisches Beispiel vorgestellt wurde, und zum anderen in der Messung der relevanten
Systemparameter der zugrunde liegenden Technologien. Die Ergebnisse zeigen schliesslich
auf, ob die Systeme tatsächlich Anwendungsentwickler unterstützen und ob sie gut genug
skalieren, um im grösseren Massstab Anwendung zu finden.

Das vorletzte siebte Kapitel zeigt auf, inwieweit sich Anknüpfungspunkte oder
Überschneidungen zu verwandten Arbeiten ergeben, bzw. worin relativ dazu der Wert der
hier vorgestellten Konzepte und Implementierungen liegt. Es werden hier hauptsächlich
die Projekte vorgestellt, die ebenfalls eine Welt smarter Gegenstände ermöglichen wollen,
als auch die Arbeiten, die zwar ein anderes Ziel verfolgen, aber ähnliche Teilproblemstel-
lungen zu lösen haben.

Im letzten achten Kapitel wird nochmals das Für und Wider des Modells und der
Systeme diskutiert. Des Weiteren werden potentielle Erweiterungen des Modells und
der Systeme skizziert sowie angrenzende Forschungsgebiete und deren Fragestellungen
angesprochen.

IX

Chapter 1

Introduction

The first ideas concerning collaborating everyday items are already some fifteen years old
and were mainly triggered by academia [120, 122]. A broader interest from industry first
arose within the last few years. One reason for the interest from industry might be that
the former Auto-ID Center1, an organization with over 100 major companies, and its
successors, EPCglobal and the Auto-ID labs, are trying to establish industry standards
for an ”Internet of Things”2. Another reason is that the hardware technology necessary
to enable collaborating everyday items became cheaper which in turn caused industry to
find new applications for collaborating everyday items.

Under the term collaborating everyday items we understand regular everyday items
like bottles or umbrellas that possess additional capabilities, actually provided by an
electronic background infrastructure that is able to detect the everyday items. Figure
1.1 shows an everyday item that has a connection to a background infrastructure which
provides it with additional capabilities. Such augmented everyday items, which we also
call smart things, have an identity, can be localized, are able to communicate with other
everyday items or can sense their environment.

Figure 1.1: An everyday item with additional capabilities

The underlying vision and how it can be derived from the more general ubiquitous
computing vision will be explained in Section 1.1. The contribution of this dissertation,
which will be described in more detail in Section 1.2, lies, as the title indicates, in
providing the necessary concepts and system structures that enable a world of myriads
of smart things to be realized. To achieve this goal, the dissertation has to set itself some
limitations (see Section 1.3) in order to be able to focus on the core aspects. The outline
of the remainder of this dissertation will be presented in Section 1.4.

1www.autoidcenter.org
2www.autoidlabs.org/aboutthelabs.html

1

2 CHAPTER 1. INTRODUCTION

1.1 Vision

The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable
from it. (Mark Weiser, 1991)

This quotation describes what the term and the vision ubiquitous computing (ubi-
comp) means. Mark Weiser, the pioneer who invented this term, already started work
on this topic in 1988 at Xerox PARC [120, 122]. From his point of view, the idea of a
”personal” computer is misplaced, since human users have to put too much attention on
how to handle the personal computer instead of concentrating on their actual task, such
as writing a letter. Thus, Weiser proposes designing new computer systems that take
into account the natural human environment which allows the computers to vanish into
the background. In that sense, ubicomp is the opposite of virtual reality which tries to
create or simulate another world than the real world in existing traditional computers.
Ubicomp, on the other hand tries to integrate new computers invisibly into the real world
with the intention of facilitating our usual tasks.

Weiser started his experiments with computers in three different sizes: the ParcTab
is a palm-sized computer, the ParcPad is an electronic notepad and the Liveboard is an
electronic blackboard. These were distributed throughout an office environment and used
to facilitate the common tasks there. Since these kind of devices are not truly invisible,
Weiser called this phase, in which small electronic devices interact with each other and
with users, phase I of ubicomp and later phases are yet to be determined. He stated
that when almost every object contains a computer, then obtaining information about
the real world will be trivial. Questions such as: ”Who made this dress? Are there any
more in the store?” are easy to answer then.

Neil Gershenfeld, a professor at the MIT Media Labs, went a step further. In 1995
he was involved in the foundation of the Things That Think (TTT) research consortium,
which comprised over forty companies that looked at how the physical world meets the
logical world [41]. The pieces these two worlds consist of can be described as bits, people
and atoms, i.e. computers, users and everyday items. Among other things, Gershenfeld
worked on so-called electronic paper, which is a sheet of paper that can change its content
depending on what it should display, or he looked at Personal Area Networks (PAN). The
latter could consist of a computer that is integrated into a shoe that powers itself by the
energy generated through walking and communicates with other devices like a watch or
eyeglasses by using the human body as a conductor for small amounts of current.

Besides these technical aspects, Gershenfeld also considered the basic requirements
for things to be able to think by issuing a proclamation of the Bill of Things’ Rights :
things have the right to have an identity, access other objects, and detect the nature of
their environment. These basic requirements or rights come close to our understanding
of smart things. Gershenfeld sees Radio Frequency Identification (RFID) systems –
attaching small chips with antennas to objects which can transmit a unique identifier to
a backend system – as one enabling and cheap technology to realize this vision. And
when such smart things now start to communicate among themselves, he comes to the
following conclusion: ”In retrospect it looks like the rapid growth of the World Wide Web
may have been just the trigger charge that is now setting off the real explosion, as things
start to use the Net so that people don’t need to.”

While Weiser’s ubicomp and Gershenfeld’s TTT describe the vision in a top-down ap-
proach, the term pervasive computing, which is frequently used in industry, describes the

1.1. VISION 3

vision from the bottom-up, i.e. what can be achieved with the technology that is available
right now or in the near future. For example, [16] subsumes issues like batteries, displays,
human computer interfaces (HCI), operating systems for small devices, wireless commu-
nication protocols, the wireless application protocol (WAP), speech recognition, personal
digital assistants (PDAs), web services and more important the integration of all these
under the term pervasive computing. Looking from the perspective of industry, IBM’s
chairman Lou Gerstner described pervasive computing as: ”A billion people interacting
with a million e-businesses through a trillion interconnected intelligent devices...”.

Another explanation of this vision is given by Friedemann Mattern, a professor at
ETH Zurich, who argues from a technical point of view that the achievement of this
vision is a consequence of five trends in the IT domain [76]. The first trend is given
by Moore’s law, which states that the number of transistors per chip area doubles every
eighteen months with the consequence that, on the one hand, chips of the same size
become more and more powerful, and on the other hand, if the functionality remains
constant, the chips get smaller and smaller, so that they can be integrated into everyday
items. The second trend refers to the development of new materials like the electronic
paper mentioned before that allows natural interaction schemes with the logical world.
A third trend can be seen in the progress of communication technologies : besides the
increase in bandwidth, new wireless near distance technologies like Bluetooth and PANs
give rise to new applications. Wireless sensor networks, as the fourth trend, provide the
means to autonomously monitor the environment for changes, e.g. the temperature in a
certain area. The last trend refers to new concepts that model the infrastructure for such
smart things. This last trend is also dealt with by this dissertation since little research
has yet been carried out in this field.

The vision of ubicomp, TTT and pervasive computing as well as its technological
drivers build the foundation for our concepts of collaborating everyday items, but one
main difference is that in our concepts, we focus on the communication and collaboration
of smart things among themselves, and in contrast to the ubicomp vision, we do not pay so
much attention to the user. We look at smart things as consisting of the traditional thing
and some kind of a virtual representation that is responsible for the thing as shown in
Figure 1.1. Just as the spirit has control over the body, the virtual representation should
have control over the thing. Similar to Gershenfeld’s Bill of Things’ Rights, we demand
that a smart thing has an identity, knows its own location and all the other smart things
in its proximity, is able to communicate with other smart things, and is able to monitor
its environment and its own state. Although users do not normally pay attention to the
additional capabilities of smart things, since they are used in their traditional way, the
users benefit indirectly from them, e.g. in a supply chain application where the products
know that they have arrived at a distribution center and therefore automatically register
themselves at the warehouse management system of this distribution center. If these
smart things are perishable goods, they can be equipped with thermometers which allow
them to verify whether they are still okay, and if the thermometer of one smart thing
breaks, it can ask the other smart things in its proximity for their temperature, which
should be similar to its own. This example shows that although these smart things
are handled by a human like ordinary things, the collaboration among them provides
additional benefits without annoying the human user with any computer interaction.

4 CHAPTER 1. INTRODUCTION

1.2 Contribution

The overall goal of this dissertation is to present concepts that model a world of collab-
orating everyday items and a smart thing system that implements this model. Such a
system consists of two parts: first, a middleware layer that provides general infrastruc-
tural services that can be used by any application, and second, a software framework
that facilitates the development of applications. In this dissertation we discuss three
systems that were built iteratively. Subsequent systems extend the model or implement
other architectural design decisions. The work with the systems and the adaptation of
the model revealed the relevant aspects and challenges in this area.

Some of the challenges, which can be roughly subdivided into four classes, and which
are discussed in this dissertation, are:

• What are the high-level concepts that appropriately model a world of collaborating
smart things?

• Technological issues:

– How can we abstract general requirements from the underlying identification
and localization technology?

– How does the identification take place and how is it related to localization?

– How are sensors and actuators on a smart thing controlled?

– What is the appropriate location model for our purposes?

– How is an identifier structured?

• Infrastructural issues:

– How is a connection between a smart thing and its virtual representation
established?

– Where and how can a smart thing store and retrieve its data?

– How is the functionality between the smart thing and the background infras-
tructure distributed?

– Where do we put the application logic?

– What middleware services are mandatory, and which are optional?

• Issues regarding the virtual representation:

– What is the minimum functionality of a virtual representation?

– What relations among smart things are useful?

– How does the communication between two smart things take place?

The results of the discussion of the above questions, on the one hand, should be the
basis for further research, and on the other hand, should support developers in designing
such systems and applications.

Unless otherwise noted, the personal pronoun ”we” refers solely to the author of the
dissertation in order to avoid using the personal pronoun ”I”.

1.3. LIMITATIONS 5

1.3 Limitations

Since the scope of this dissertation covers a broad domain, some limitations have to be
made to be able to focus on the core challenges. To avoid confusion about the term
smart: we neither use this term in the sense of ”intelligent” nor do we address problems
of artificial intelligence research. Smart in ”smart things” only means that such things
have additional capabilities that need to be explicitly programmed if the infrastructure
does not provide them.

Security and privacy issues play a crucial role in this domain and both issues are sub-
ject to current research. Instead of providing a whole security and privacy architecture,
we only propose methods of integrating the results of the ongoing research.

The three smart thing systems we developed are only prototypical implementations
that enable the verification of the model and the implementation of some example appli-
cations. That means they cannot be deployed in real scenarios, but the systems can be
easily extended for that purpose. None of the three systems implement the whole model
that we propose but parts of it, since we had to minimize the development efforts. Since
the three systems are mainly complementary, it would be conceptually easy to build one
system based on the others that implements the whole model.

Due to the limited availability of appropriate hardware that provides sensors and
actuators, the evaluation of this part of the systems could not be conducted as extensively
as the identification and localization part.

1.4 Outline

The outline of the remainder is structured as follows. Building on the vision described
in Section 1.1, Chapter 2 is becoming more concrete and presents some applications
which make use of smart things and which are profitable in an economical sense. One
application, a supply chain, is described in more detail, since it is used as a generic
example application throughout this work. Derived from the applications presented, the
requirements will also be defined. Chapter 3 describes the technologies, i.e. software
systems like Jini or Web Services and hardware systems used to identify objects, like
bar codes or RFID, that are used by our smart thing systems. After these preparations,
Chapter 4 introduces the model with its high-level concepts, comprising the thing itself, a
tag attached to the thing to be able to identify the thing, the virtual representation which
provides the additional capabilities and the infrastructure which has to identify the smart
thing and contact the virtual representation among other things. Building on these high-
level concepts, a solution to the challenges of Section 1.2 will be presented. Chapter 5
presents the architecture of our three systems. A quantitative and qualitative evaluation
of the systems is given in Chapter 6, whereby the quantitative part mainly evaluates
the underlying software systems that are utilized and the quantitative part compares
our system based on the implementation of the supply chain application. Chapter 7
gives an overview of the related work in the field of middleware for ubiquitous computing
and smart things, showing the similarities and the value of this work. The last chapter
concludes with a resume of the essential contributions of this work, a valuation of the
concepts, and discusses the future prospects for this research direction.

Chapter 2

Motivation and Requirements

Keeping the vision from Section 1.1 in mind, this chapter considers a world populated with
smart things from a business point of view with concrete deployment scenarios. First,
the M-Lab project, where the business and technical aspects of ubiquitous computing
solutions are investigated, will be briefly introduced. Then some business applications
which have been studied by the M-Lab will be described: these cover a broad range of
potential deployment scenarios. One generic example, a supply chain application, will
be described in more detail, since the general requirements for our smart thing systems,
which are presented next, can be easily derived from it.

2.1 M-Lab

The M-Lab, short hand for ”The Mobile and Ubiquitous Computing Lab”1, is an applied
research project, founded in 2001, that – together with several partners from industry
– investigates the technical and the business aspects of ubiquitous computing in general
with a strong focus on smart things and how they can help companies to make their
business processes more efficient, and to provide new value-added services.

Our work at the M-Lab revealed that the vision of smart things is not only a nice
idea but can help to solve real business problems, which in turn provides motivation to
intensify the research on smart things. One of the M-Lab findings [36] is that the media
break between the real world and the virtual world is a source of errors and inefficiencies
and that the usage of smart things can help to prevent the media break. Figure 2.1 shows
how the media break arises: data that describe the real world have to be transmitted into
the virtual world. Traditionally, human users are responsible for data entry, e.g. they
use a keyboard to tell the warehouse management system that a delivery has arrived.
In general, manual labor is error-prone and in comparison with an automated solution
less efficient. Using smart things that are able to transmit their data automatically into
the virtual world bridges the gap between the real world and virtual world, and provides
better performance and less errors. A delivery that is equipped with RFID labels, for
example, can automatically register itself at a warehouse management system when it
arrives at the warehouse. The more a smart thing can observe of its environment, the
smaller is the gap between both worlds, as the figure shows. For a company this means
that it can save money on data entry, the mapping is less error-prone, and it is able to
process larger quantities of data.

1www.m-lab.ch

6

2.2. APPLICATIONS 7

Figure 2.1: Media break (Source: M-Lab, [36])

2.2 Applications

Besides the general consideration of the media break, the M-Lab also investigates in [35]
how smart things address internal and external benefit potentials in different business do-
mains and gives an example in each case. A benefit potential is an attractive combination
of factors in a company itself, its environment or in the market. Such a benefit potential
can be made available by a company for its advantage, as the following examples show.
A summary of the examples can also be found in Table 2.1.

Organizational potential This potential refers to the opportunity to increase added
value through the reorganization of internal processes and structures. One example of
that is a smart inventory : Pacific Century Systems, a telecommunication company from
Hongkong, equips its assets with electronic tags to be able to locate them [31]. The staff
can use their PCs or their mobile phone to get the position of a certain object. Thus,
a real-time inventory is possible at any time and additionally, the company can analyze
the data in order to monitor and optimize the degree of utilization.

Potential to reduce cost The opportunity to reduce internal costs is realized through
technical rationalization. Smart cross members2 at Ford are able to store all data be-
longing to a certain engine in the engine assembly process. This data is transmitted in
real-time to the production planning system, which uses this data to control the main
production line where the engines are assembled, in order to prevent bottle necks in the
production process. Additionally, Ford is able to record all the production steps for each
engine.

2A cross member is a frame on which several parts are mounted.

8 CHAPTER 2. MOTIVATION AND REQUIREMENTS

Know-how potential Smart garbage cans are an example of the opportunity to utilize
internal knowledge. Ten percent of all Swedish garbage cans store a customer number
and transmit it wirelessly – together with the actual weight of the garbage can when it is
emptied by the garbage truck – to a central computer, which in turn uses this information
for weight-based accounting and to optimize the routes of the garbage trucks.

IT potential The IT potential is realized by the added value of the deployment of new
technologies and software. One example is smart groceries : Campofrio equips its ham
with a small chip at the start of production that can record data like weight, temperature
or the amount of water and fat in the ham. With this technical support, Campofrio is
now able to guarantee the quality of its products.

Financial potential This potential can mainly be utilized by insurance companies.
New insurance models provide lower insurance contributions if the covered asset can be
tracked or monitored, so that insurance companies are able to detect possible risks earlier
and can use this knowledge to prevent loss events.

Procurement potential The last potential refers to the opportunity to increase the
added value through the adoption of new and innovative procurement concepts and sys-
tems. In particular the apparel industry has to struggle with a complex check-in process
for incoming apparel: this arrives in containers with bar codes. The process of scan-
ning the bar codes could be replaced by the adoption of new smart containers which
automatically check themselves in at the warehouse management system.

The six examples show how smart things which have an identity and which can observe
themselves and their environment are able to bridge the gap between the real world
and the virtual world. Thus, they help companies which use them to reduce costs and
to provide new value-added services. Although these six examples only show a small
fraction of situations where smart things can be deployed, and their full potential has yet
to be tapped, they show that the vision of smart things has concrete applications.

Potential Example application
Organizational potential Smart inventory
Potential to reduce cost Smart cross members
Know-how potential Smart garbage cans
IT potential Smart groceries
Financial potential New insurance models
Procurement potential Smart containers

Table 2.1: Summary of potentials and example applications

2.3 Smart supply chain application

In the previous section, we presented different classes of applications. Now we shall focus
on a concrete application: the smart supply chain application is a generic application

2.3. SMART SUPPLY CHAIN APPLICATION 9

which shows different aspects where the use of smart things can bring benefits. This ex-
ample application is used to derive the requirements of smart thing systems that support
a world of smart things and is used later to evaluate our smart thing systems. These
systems are presented in Chapter 5. The concrete benefit of making a supply chain smart
has been investigated several times in the literature [5, 62, 113].

2.3.1 Overview

The goal of the following example application is to make a supply chain more efficient
and to provide new services by using smart things. In this example, we have two bottlers
of mineral water (LidWaters and OpenWaters), one wholesaler for mineral water (Dis-
tributeAll), one retail store that sells the mineral water (MigrosCity), and two forwarders
(OnTimeDelivery and FastDelivery). All participants and their connections are depicted
in Figure 2.2: the names of the six participants are not necessarily real company names
but should give a hint regarding the task of each participant, as do the icons.

In comparison to regular supply chains, this one should provide several benefits from
the utilization of smart things:

Figure 2.2: A supply chain with six participants

• total stock visibility (since smart things have to check in and check out),

• quality assurance (since smart things record data such as their temperature),

• additional statistical functions (since smart things store their data history),

• process automation (since smart things decide on their actions).

10 CHAPTER 2. MOTIVATION AND REQUIREMENTS

2.3.2 Smart things

First, we have to define which things in the supply chain should become smart. Since
we want to cover a broad range of application types in this example, every thing that is
relevant in this example supply chain will become a smart thing.

• Every bottle of mineral water

• Six bottles are packed into a box.

• Two boxes are packed into a container.

• A container possesses two handles.

These smart things and their relationships, which have been mentioned in the above
enumeration, are illustrated in Figure 2.3. This example shows a container with two
boxes, twelve bottles, and two handles.

Figure 2.3: A smart container with content

2.3.3 Locations

Second, we have to define the locations which the smart things pass through and where
they can interact with the environment (see Figure 2.2).

• LidWaters is a bottler with a storage and a check-out area.

• OpenWaters is another bottler with a storage and a check-out area.

• DistributeAll is a wholesaler with two storage areas, one check-in area and one
check-out area.

• MigrosCity is a retailer with a storage area and a check-in area.

• OnTimeDelivery is a forwarder with a truck.

• FastDelivery is another forwarder with a truck.

Since we are only interested in the actual supply chain, we do not have to consider aspects
such as how the bottles come into a bottler’s storage area and what happens to the bottles
after they have been stored in the retailer’s storage area.

2.3. SMART SUPPLY CHAIN APPLICATION 11

2.3.4 Procedure

Next, we show how the flow of information and the flow of goods takes place, as well as
how the smart things interact to provide benefits. The numbers in parentheses refer to
Figure 2.4.

• Every location provides access to a warehouse management system (WMS).

• The retailer can send an order with the number of bottles (OpenWaters or LidWa-
ters) to the wholesaler. (1)

• The wholesaler can send an order with the number of bottles to each bottler.

• The receiver of an order checks the availability of the goods and appoints a for-
warder. (4)

• The receiver of an order adds the appropriate packaging (boxes and containers) to
the order.

• The receiver of an order sends an advance shipping note (ASN) to the forwarder
and the sender of the order. (7, 8)

• If an order arrives, then internal orders are sent to the storage areas, and the ordered
goods are moved from the storage areas to the check-out area. (2, 3, 5, 6, 9, 10)

• If a truck arrives at a check-out area, then the goods are moved from the check-out
area to the truck. (11, 12)

• If a truck arrives at a check-in area, then the goods are moved from the truck to
the check-in area. (13, 14)

• If goods arrive at a check-in area, then internal ASNs are sent to the storage areas
and the goods are moved from the check-in area to the storage areas. (15, 16)

• Every location checks, by means of the ASN or the order, whether the right number
and the right instances of goods are passing through it.

• Every smart thing registers itself with the WMS when it enters or leaves a location.

• Every bottle should be able to record its temperature, since mineral water should
be protected from direct sunlight and should not be frozen.

• If a bottle is no longer able to monitor its temperature, then it contacts nearby
bottles.

• If the temperature of a bottle exceeds a defined interval, then an alarm is sent to
the WMS.

• The WMS is able to contact every smart thing for its history.

• Every smart thing knows which other smart things it contains.

Figure 2.4 shows all the steps described above when the retailer sends an order to the
wholesaler. The orders from the wholesaler to the bottlers are similar to this example.

12 CHAPTER 2. MOTIVATION AND REQUIREMENTS

Figure 2.4: Processing of an order

2.4 Requirements

Building on the supply chain application and the other applications from Section 2.2, the
requirements of a system that supports smart things can be derived.

Localization of smart things Every smart thing in the example has to be localized,
at least when it comes into the range of one of the locations mentioned in Section 2.3.3,
in order to be able to register itself with the warehouse management system that is
responsible for that location. That means that at least symbolic location information,
like ”checkin.migroscity”, is required, but an exact physical position would be preferable,
since this information can be used for more efficient access to smart things. A physical
position might be necessary when a smart thing has to be searched for within a symbolic
location.

Identification of smart things Normally, the localization of a smart thing only makes
sense in combination with its identity, since we need to know which smart thing is at
a certain position instead of only knowing that there is an arbitrary smart thing at a
certain position. This information is even more important when an instance of a smart
thing out of a class of the same smart things has to be identified, e.g. although all bottles
in a box are the same, each bottle has to record the temperature individually. On the
other hand, sometimes only the class and not the instance information of a smart thing
is crucial, e.g. if an order for six bottles of LidWaters comes in, six arbitrary bottles of
LidWaters can be taken out of the storage area.

Usage of different identification and localization technologies To be universally
applicable, a smart thing system must not rely on a specific identification or localization
technology, since different technologies have different advantages and disadvantages, so
that it makes sense to use different technologies in different scenarios. The producer
of bottles, for example, uses a cheap localization technology which adequately localizes
smart things on a symbolic level, while the producer of the containers equips its goods

2.4. REQUIREMENTS 13

with a costly localization technology that localizes the containers using physical positions
worldwide. In another case, different companies or industries agree on the usage of
different technologies, e.g. LidWaters uses another technology than OpenWaters. The use
of different technologies can also occur during a transition period when one technology
replaces another, e.g. RFID tags replace bar codes.

Programmatic access On the one hand, a virtual representation – the part that en-
capsulates the additional functionality of a smart thing – needs access to virtual resources
like the warehouse management system (WMS), and on the other hand, the WMS needs
to contact a virtual representation for its statistics.

Support of sensors and actuators If each bottle must be able to record the tem-
perature for itself then each bottle must be equipped with a sensor. In a future scenario,
a product could also be equipped with a small motor, so that the virtual representation
could activate it in order to manipulate the product or its position. Although within the
next few years sensors and especially actuators will not be as important as the identifi-
cation and localization of a smart thing, they must also be supported, as this example
shows.

Real-time requirements The real-time requirements refer to all processes which allow
such a system to react quickly to changes in the environment or to the smart thing, e.g.
a virtual representation asks the sensors for the temperature, looks at the temperature
history of a product and decides to activate the cooling unit. If the command to activate
the cooling unit comes too late, the smart thing could go bad, so that the system has to
give some guarantees concerning real-time requirements.

Composition A smart thing can consist of other smart things, e.g. the handles are part
of the container. After the production of the container, we are normally not interested in
individual handles, but in the container. If we have a whole composition tree of a smart
thing, i.e. a smart thing that consists of other smart things which in turn consist of other
smart things, then it is possible to inherit much of the information, such as location or
sensor information. In this example, only the container, as the root of a composition
tree, has to make sure that it gets the location information, so that it can hand down
this information to both its handles in order to provide a location history for all parts of
a product.

Containedness In a similar way to the composition of a smart thing – what it consists
of – a smart thing can also contain other smart things: for example, the box contains six
bottles. The difference to composition is that this relation frequently changes: bottles
are taken out or put in all the time, while the handles of the container are mounted
once during production. Sometimes it is not clear whether a smart thing is contained in
another smart thing or in a location, e.g. a bottle is in a truck, whereby the truck can be
modeled as a smart thing or as a location. It is up to the model in Chapter 4 to handle
such ambiguous aspects consistently.

Structure of location Besides the structure of smart things, which is realized through
composition and containedness, the structuring of locations is also useful if aggregated

14 CHAPTER 2. MOTIVATION AND REQUIREMENTS

information is required, e.g. both storage areas of the wholesaler can be combined into
one location AllStorages which can answer queries concerning both storage areas, such
as: ”How many smart items are in all the storage areas?”.

Neighborhood Neighborhood is an important relation between smart things that
make use of a common location. Two smart things that are at the same symbolic location
are in a sense neighbors since they are close to each other and share similar environmen-
tal influences like the temperature, so that a bottle whose temperature sensor has been
broken could ask one of its neighbors for its temperature.

History The history of a smart thing refers to all the data that have changed during
its lifetime and that can be useful to decide on actions. In principle, all kinds of data
belonging to a smart thing can be part of its history, including location, composition,
containedness and neighborhood information as well as sensor values and actuator com-
mands. In the supply chain example, a bottle can use its history information to calculate
the average time it stays at a location within the supply chain.

Data storage While the history is in principle independent from the way a smart
thing stores its data, a smart thing should have the option to store its data locally at the
location where it currently resides and to store it at a central place. The differentiation
is important due to efficiency and privacy reasons. On the one hand, local data storage
is more quickly accessible and only locally accessible, so that local data storage enables
to data to be kept private and efficiently accessible, and on the other hand, central data
storage enables the data to be used along the whole supply chain. The wholesaler in the
example might not want the bottle to share its temperature data, which it sensed, with
other peers in the supply chain.

Other aspects Every smart product possesses a life cycle in the physical world that
roughly consists of three phases: production, use and disposal. This must be mapped into
the virtual world where the virtual representation also has to go through these phases.
One main task of a smart thing system is the management of virtual representations and
the handling of the dynamic aspects that mainly come from entering and leaving smart
things. Other aspects involve the integration with existing and new applications, i.e. the
virtual representation itself has some business logic but also has to collaborate with other
applications.

2.5 Summary

Based on the vision of Chapter 1.1, this chapter first introduced the M-Lab project, which
enumerates potential applications where smart things can have an impact. One of these,
the smart supply chain, was then described, to provide a generic example from which to
derive the requirements of systems that support smart things. The requirements are used
in later chapters to define a structured model of this domain and to evaluate the smart
thing systems that implement this model. The model and the systems have been devel-
oped iteratively, so that an earlier system only implements some aspects of the model,
and the subsequent systems mainly implement those aspects that are complementary to
the previous aspects.

Chapter 3

Technology

The purpose of this chapter is to introduce the technologies, which are currently used
or intended to be used with our smart thing systems. As the previous chapters already
pointed out, for a thing to become smart, it must be identified, localized and it should
have access to sensor data and actuators. For each of these four requirements, there are
many solutions available that can contribute to their realization, so that these solutions
can be integrated into our systems. There is no special need to develop our own hardware
solution, since the existing solutions satisfy our requirements. Also, it is more likely that
companies might deploy our systems if they can still use the technologies they have
already installed in order to save money and to avoid the complexity of introducing a
new system, but we also expect new technologies, or extensions of these with sensors and
actuators to emerge. Thus, we will present below technologies that can be used for the
identification and localization of smart things, as well as for the retrieval of sensor data
and the control of actuators.

Although our focus is on providing a suitable software system, we can make use of
already existing software systems. Since our smart thing systems are highly distributed
and dynamic, it makes sense to build on platforms that support such scenarios, so that
these platforms are also presented in this chapter.

All the systems that are discussed below are already available and because of this,
there is plenty of literature available about them, so that we do not need to give a
comprehensive introduction. For that purpose we refer readers to the literature references.
Instead, we concentrate on those aspects that are relevant to our focus, i.e. how can the
technology be integrated with our systems, and in general, where can we use the same
or similar concepts of the technology for the design of our systems.

3.1 Middleware platforms

The purpose of a middleware platform is to provide tools and services that facilitate the
development and the operation of distributed applications [39, 68, 116]. In Chapter 7,
the middleware aspects of other ongoing research projects in the field of ubicomp will be
discussed in more detail. Jini and Web Services are two already existing service discovery
platforms that provide the means to describe services, discover them dynamically and
invoke them, as well as providing some general ideas on how to cope with the dynamic
aspects in distributed systems, which our systems are also confronted with. While Jini,
with its focus on new concepts, has attracted more attention in the scientific domain, Web
Services with the focus on application, have done the same in the business domain. Jini

15

16 CHAPTER 3. TECHNOLOGY

and Web Services, which are described next, have both been used as underlying service
platforms for our systems. In a nutshell, deploying these systems provides us with the
means for service discovery and service invocation as well as with concepts for handling
the dynamic aspects of our systems.

3.1.1 Jini

Jini [29], pronounced as in genie in a bottle postulates the vision: ”Network anything,
anytime, anywhere”. The current Jini system, which has been provided by Sun Mi-
crosystems since January 1999, only consists of a set of Java interfaces that ”describe”
the vision, but Sun itself also provides a reference implementation of the interfaces. Fol-
lowing the vision, Jini wants to provide the necessary concepts to allow mobile devices
to connect to a network which allows the spontaneous interaction of all mobile devices
and services that are part of the network. A well-known example of such an interaction
is a scenario where a user with a presentation on his or her PDA enters a meeting room
and the PDA automatically contacts the projection service of this room to display the
presentation.

The Jini model

Jini extends the client/server concept, which is already known from classical distributed
systems, with two new entities: a service proxy, also referred to as proxy, and a lookup-
service (LUS). The description of the Jini model is also visualized in Figure 3.1. On the
on hand, a service in Jini can be a traditional pure virtual service like a time service, or
a device can provide its functionality as a service to the network, as does the projector in
the example above. On the other hand, a client can be any program that uses a service,
which in turn implies that a service can also act as a client for another service. To handle
the dynamic aspect of spontaneously appearing and disappearing services, Jini uses the
LUS, where each service has to sign in and to sign off, and if the service is not able to sign
off, the LUS does so automatically after a defined interval. This mechanism guarantees
that the LUS knows all the services in the subnet where it runs, so that a client can
ask the LUS anytime for the services that are currently available in this subnet. To
operate independently of the communication protocol between the client and the service,
Jini uses the proxy concept. The service API is given by a Java interface that must be
implemented by the proxy of that service. A service has to use such a proxy for the
registration at the LUS so that a client that asks for that service at the LUS receives
the corresponding proxy, which implements the service API. From the perspective of the
client, it just locally calls a method on the proxy object that has already been downloaded
from the LUS. A proxy has three options for reacting to a method call from the client.
First, it can compute the result locally and return it. Second, it contacts the actual
service on the Internet with a proprietary communication protocol and returns the result
from the service. Third, it contacts a device, if the service represents a device, with a
proprietary communication protocol and returns the result from the device.

Key concepts

To support this model and to handle the dynamic aspects in such a network, Jini proposes
five key concepts that are new in comparison to traditional rather static distributed
systems.

3.1. MIDDLEWARE PLATFORMS 17

Discovery This issue refers to the bootstrapping process in Jini, since the LUS is
a priori neither known by a client nor by a service. To overcome this problem, Jini
introduces three discovery protocols that rely on IP multicast or the actual address of
the LUS to enable clients and services to find nearby LUSs and vice versa. Closely related
to the discovery protocols are the join protocols which ensure that a service joins one or
more LUSs in a well-defined manner.

Lookup The process of a service lookup is handled by the LUS, which returns a proxy
for a service as response to a lookup request from a client. To specify the service for
a lookup request, a client has to use at least one of three pieces of information: the
unique service identifier, the interfaces the proxy should implement or a set of Attributes
which can represent any kind of information describing a service. Thus, the lookup
process described here covers two essential parts in service discovery platforms: the service
description with identifiers, interfaces and attributes and the actual service discovery with
the LUS as manager for service discovery.

Leasing Especially in dynamic systems, a situation can occur where an entity does not
release resources which are no longer used. In the long run, the system resources can
be exhausted due to this fact. Leasing is one option to prevent such situations. Every
resource in a Jini community has to be leased, i.e. the resource can only be used until the
lease expires, and if the lease has not been renewed, the resource will be released. The
LUS, for example, uses this concept to prevent advertising proxies of no longer available
services.

Remote Events The proxy concept allows for synchronous communication between
the client and the service through local method calls of the client on the proxy, whereas
Remote Events allow a service to asynchronously notify a client about changes that the
client is interested in.

Transactions For our purposes, this concept is not that important. Jini provides a
two-phase commit protocol that allows for distributed transactions.

Figure 3.1: The three phases in Jini

18 CHAPTER 3. TECHNOLOGY

Java Remote Method Invocation

As pointed out, Jini builds on Java as programming language, and although Jini oper-
ates independently of the underlying communication protocol, the natural choice is to
use Remote Method Invocation (RMI) [58], since it is fully integrated into the Java pro-
gramming language and the Java development tools. As the name indicates, RMI is used
to call methods on Java objects over a network, which also means that Java’s garbage
collection has to be carried out in a distributed way. Thus, RMI provides the means for
service invocation that was the third requirement of a service discovery platform, besides
the service description and discovery of the current service.

Stub compiler The Java stub compiler tool generates the necessary stubs that are
used by Java programs to call the methods of a remote object as if it were a local object
since the stubs transparently marshal the parameter, contact the remote host, call the
method and unmarshal the result.

RMI registry The RMI registry runs on the host of the remote object that has to
register itself at the RMI registry. A Java program that wants to call the remote object
first has to contact the RMI registry to retrieve a stub object. Since this functionality
is part of the LUS, in a Jini environment, the RMI registry is no longer needed, but the
stub classes are still needed if RMI is required to be the communication protocol. In such
a case, the proxy uses the stub classes to contact the current service. Thus, the registry
and the LUS solve the bootstrapping problem to obtain a first remote reference to an
object.

Semantic of parameters RMI supports two semantics: call-by-reference and call-
by-value. Both concepts are also depicted in Figures 3.2 and 3.3. If a parameter or
a return value of a remote method call itself is a remote object, then RMI uses the
call-by-reference semantic. This means that a stub class of that other remote object is
taken. If a parameter or a return value of a remote method call is itself a normal object,
i.e. not a remote object, then RMI uses the call-by-value semantic. In such a case, the
object and all the objects the object itself is transitively referencing have to implement
the Serializable interface, which indicates that RMI can use the serialization process
to write the whole object structure into an object stream. This object stream can be
transmitted to the host of the remote object, where the object stream in turn can be
deserialized. Thus, the other side uses a clone of the original object.

Figure 3.2: RMI: A remote method returns a remote reference

3.1. MIDDLEWARE PLATFORMS 19

Figure 3.3: RMI: A remote method returns a serialized object

3.1.2 Web Services

The Web Services1 approach [21] also provides the means for service invocation, service
description and service discovery, but the deployment scenarios differ slightly: while Jini
is mainly intended to support scenarios where different hardware devices spontaneously
appear and disappear, the focus of Web Services is rather on connecting business ap-
plications over the Internet, e.g. a supplier can provide a web service, which enables a
procurement application of its customer to order the required goods automatically. To
fulfil the three tasks, the Web Services framework makes use of different standards: the
message invocation uses the Simple Object Access Protocol (SOAP), the service descrip-
tion builds on the Web Service Definition Language (WSDL) and the service discovery
uses the Universal Description, Discovery, and Integration (UDDI) standard. In contrast
to Jini, the Web Services approach does not provide any additional concepts, but concen-
trates its efforts on creating general standards for the mentioned tasks to be interoperable,
so that Web Services can operate independently of the underlying hardware, operating
system and programming language. In contrast, Jini cannot operate independently of its
programming language, Java.

The Web Services model As in typical client/server systems, we have a client that
remotely calls methods on the service. The whole interaction scheme that is explained
next can also be seen in Figure 3.4. For a client to find an appropriate service, it has to
contact a UDDI server whose address it has to know in advance. The UDDI servers build
a service cloud so that a modification of one of the UDDI servers will be forwarded to all
the other UDDI servers that make up the cloud. A UDDI server stores information about
a business, the services it provides, and the address of the service. A client can specify
its service request with attributes that characterize the service itself or the business;
the answer of the UDDI server contains the addresses of matching services. Having the
address of a service, the client is able to ask the service for a WSDL document that, on the
one hand, describes the method signatures, and on the other hand, defines the protocol
binding. Although Web Services regularly use SOAP as a protocol, it is also possible to
specify other protocols. SOAP defines how a method invocation can be encoded as an
Extended Markup Language (XML) document, a model for exchanging SOAP messages,
and how a remote procedure call takes place. Since SOAP does not specify a transport
protocol, it also needs to be bound to another protocol, normally the Hypertext Transfer
Protocol (HTTP), which itself relies on TCP/IP. Web Services, in fact, build on well-
known web protocols (see Figure 3.5), but such a stack of protocols also means a loss of

1The term ”Web Services” refers to the Web Services framework and the term ”web service” refers
to an actual service.

20 CHAPTER 3. TECHNOLOGY

performance.

Figure 3.4: Web Services’ interaction scheme

Figure 3.5: Web Services’ protocol stack

3.2 Auto-ID systems

The goal of automatic identification (Auto-ID) [3, 56, 92] is to determine the identity of
an entity that can either be a person or an object, so that Auto-ID systems are ideal
candidates concerning the requirement that a smart thing needs to be identified. To
perform the Auto-ID process, two steps have to be considered: capturing an external
stimulus or signal and recognizing that signal by a computer analysis.

To classify Auto-ID systems, they can be divided into cooperative and non-cooperative
systems. The former systems have additional appliances attached to the entity to facil-
itate the identification process, whereas non-cooperative systems have to identify the
entity without any support from the entity itself. It is important to note that the term
cooperative does not refer to the cooperative behavior of a person, which should be identi-
fied. Most systems that work reliably are cooperative systems. Although non-cooperative
systems are improving, they are still too error-prone in the majority of cases. Besides
this classification, another distinction can be made, depending on whether the system
recognizes people, objects or both. In our case, only those systems need to be considered
that are able to identify objects. All systems rely on the entity having a unique identifier
– roughly speaking a name or a number – or unique physical characteristics. The use of a
specific system mainly depends on the requirements of the physical environment and on

3.2. AUTO-ID SYSTEMS 21

requirements concerning accuracy and reliability. Since for various reasons a reliability of
100 percent cannot generally be achieved, the system design should make arrangements
as to how errors are handled.

3.2.1 Overview

Many different Auto-ID technologies exist today. This overview summarizes the most
commonly used ones:

• Bar code

– 1-dimensional

– 2-dimensional (see Figure 3.6)

• Radio frequency identification (RFID)

– Active

– Passive

• Biometrics

– Static

∗ Fingerprint recognition

∗ Retinal scan

∗ Face verification

∗ Hand geometry recognition

– Dynamic

∗ Speaker recognition

∗ Gait recognition

∗ Signature recognition

• Cards

– Magnetic

– Smart

• Machine vision

• Contact memory

• Infrared beacons

• Data collection systems

– Optical character recognition (OCR)

– Optical mark recognition (OMR)

– Magnetic ink character recognition (MICR)

Since we use the Auto-ID technology to identify smart things, we only consider Auto-ID
technologies that fulfil three criteria: they must be able to identify objects, they must
be reliable and they must be able to be deployed wirelessly. Only bar code, RFID and
infrared beacon systems meet these requirements, which are described next.

22 CHAPTER 3. TECHNOLOGY

3.2.2 Bar code

Bar code systems, as cooperative systems, [8, 106] are used throughout all industries
in the world. They identify objects or classes of objects which have unique identifiers.
Classical bar codes consist of one row of alternating black and white bars with the same
height but with different widths. An identity string is encoded in the spacing between the
bars and the actual width of the bars. Different coding standards define the maximum
width of a bar and the number of bars that form a character, and they also provide the
mapping between the bars and the characters. In terms of the number of characters,
some codes are extensible and some are fixed in size. A bar code reader – normally a
laser scanner or a CCD camera – performs the mapping into characters which make up
the identifier, and provides the data to other systems. Since classical one-dimensional
bar codes have a low information density, two-dimensional bar code systems have been
proposed to encode additional information besides the identifier. Bar codes of the typical
size found on products can store data in the order of magnitude of some 10 bytes, whereas
two-dimensional bar codes (see Figure 3.6) can store data in the order of magnitude of
some 1000 bytes on the same surface. The reliability of a bar code system mainly depends
on the print quality of the bar code and on the bar code being intact. In scenarios in which
line of sight is present these systems are a reliable, cheap, and well-known solution for
the purpose of automatic identification. There are several bar code standards for many
deployment scenarios, e.g. in industry, which facilitate the utilization of these systems.

Figure 3.6: Example of two-dimensional bar code

3.2.3 RFID and infrared beacons

Radio frequency systems for identification [28, 34] are also cooperative systems, which
are used to identify objects and people. A complete RFID system can be seen in Figure
3.7. The unique identifiers – which are stored among additional data on a small chip that
is attached to an object – are communicated over the radio frequency spectrum. A small
antenna needs to be connected to the chip to handle the reception and the transmission
of the radio signal. One criterion to distinguish RFID solutions is the power mode: an
active tag has its own power supply integrated, which enables it to transmit the data up
to 100 meters to a reader, whereas passive tags are powered by an electromagnetic or
magnetic field generated by the antenna of a reader that allows them to transmit their
data up to 5 meters. The readers are normally connected to a host system, which runs the
applications, but networked-enabled readers are emerging. Infrared beacon systems are
similar to active RFID solutions, but they differ in the spectrum and the limited radiation
angle. In contrast to RFID systems, bar code and infrared systems require line of sight
between the reader and the bar code or the beacon. The latter systems are becoming
more common and the cost of the tags and readers is decreasing. It is important to note
that metal and fluids in the environment or as parts of tagged objects as well as legal
restrictions concerning frequency and power can restrict the usage of RFID systems.

3.3. WIRELESS NETWORKS 23

Figure 3.7: RFID system

3.3 Wireless networks

Besides the actual Auto-ID systems, wireless networks [92] can also be deployed as Auto-
ID systems since they meet the requirements we used to select the appropriate Auto-ID
system for our purposes: they must be able to identify objects, they have to be reliable
and they must be able to be deployed wirelessly. The distinction whether a technology
is an Auto-ID technology or a wireless network technology is rather vague and mostly
determined by the intended purpose. The mobile unit in a wireless network can be used
to tag an item and since such a mobile unit has to be identified within the wireless
network in order to receive communication streams, this identification process can also
be used by our smart thing systems to implicitly identify the tagged item. Depending
on their coverage area, wireless networks can be roughly subdivided into cellular, which
covers whole countries, wireless local area networks (WLAN), which cover buildings, and
PANs, which cover rooms. Due to their widespread use and the fulfilment of our criteria
for identification, it makes sense to utilize such technologies as Auto-ID systems. Since
these systems only specify the communication protocol and the communication hardware,
they do not necessarily provide the ability to store an identifier. In such a case, the
communication module must be integrated into a larger module that participates in the
identification process that we call ID module. Such an ID module has to be attached to
a smart thing, and it must be able to contact a background infrastructure to perform the
identification process.

3.3.1 Cellular

Cellular, also referred to as wireless wide area networks, enables people to place phone
calls practically everywhere using a small handset. In some countries, e.g. Luxembourg,
the number of registered mobile phones is larger than the actual population figure2, so
that this technology really has become ubiquitous. This means for our purposes that the
whole background infrastructure is already available, and the technology has proven to
be reliable. Independently from our approach, there are already some projects underway
that attach communication modules to goods to track them3.

In Europe, for example, the Global System for Mobile Communication standard
(GSM) is currently utilized; it should gradually be replaced within the next few years by
the Universal Mobile Telecommunications System standard (UMTS). In fact, the newer
UMTS standard from the year 2000 is more powerful than the first GSM standard from
the year 1982, but the differences are not that important for our purposes. More im-
portant is the General Packet Radio System extension to the GSM standard that allows
for package-switched access to the network for data exchange instead of the connection-

2www.welt.de/data/2003/10/08/179343.html?s=2
3http://www.rfidjournal.com/article/view/100

24 CHAPTER 3. TECHNOLOGY

oriented access for speech services. A connection establishment for every identification
process would take too long and would be too costly, so that a package-switched usage
of the GPRS standard is preferable.

GSM overview As mentioned above, we only describe those characteristics of the
GSM standard that are needed to understand how we intend to integrate the technology
with our systems. Figure 3.8 provides an overview of the GSM system. As the name
cellular indicates, the GSM system is composed of cells whose dimensions are determined
by the range of the antenna in the cell. Such an antenna is operated by exactly one
Base Transceiver Station (BTS) which has to handle the aspects concerning the data
transmission to the Mobile Station (MS). One BTS can handle as many MSs as the
bandwidth allows. To keep the BTS cheap, most of the work is handled by a Base Station
Controller (BSC) which can control several BTSs and which is also responsible for the
handover procedure, i.e. if a user moves to another cell, the BTS of the other cell has to
take over the connection. On the next level, the Mobile Switching Center (MSC), which
the BSCs are connected to, is responsible for establishing a connection. To establish a
connection, the MSC has to contact two databases: the Home Location Register (HLR)
and the Visitors Location Register (VLR). Every telecommunication provider has exactly
one HLR that stores data about the customers, including the current cell of the network
where the mobile phone has been identified. Every MSC possesses exactly one VLR that
stores temporary connection data. There are a few other units in the GSM architecture
that enable authentication of users and roaming with other telecommunication providers,
among other things which are not described here, since these aspects are not relevant to
our systems.

Figure 3.8: GSM overview

3.3.2 Wireless local area networks

The term WLAN is ambiguous since it denominates the whole class of wireless local area
network protocols as well as the specific IEEE 802.11 standard. Since the latter is the
most successful standard in this field at the moment, we use the term WLAN below to
denote this standard. WLAN as ”wireless Ethernet” has become quite successful since
it allows a computer to be connected to the local network without wiring. It is available
at many public places, so-called hotspots, where people with their laptops can access the

3.3. WIRELESS NETWORKS 25

Internet, e.g. at airports or at Starbucks stores4. The Texan city Cerritos, with fifteen-
thousand inhabitants, recently made a deal with a local Internet provider to equip the
whole city with WLAN access points5. These examples show, similarly to the GSM case,
that WLAN is a wireless network technology that is becoming ubiquitous and that fulfils
our requirements, so that it can be used as Auto-ID technology. For this purpose, a smart
thing has to be equipped with a WLAN module that is able to transmit its identifier to
the network.

Besides WLAN, there are similar technologies such as HIPERLAN or HomeRF which
we do not discuss, since they do not contribute to our systems.

WLAN overview Again, the explanations concerning WLAN only consider those as-
pects that are relevant to integrating it into our systems. The IEEE 802.11 standard
is one of several IEEE 802 standards, and from the OSI reference model perspective, it
only defines the lowest layers: the media access control (MAC) and the physical layer.
Since IEEE 802.11 supports two radio and one infrared modes, the physical layer is split
into the physical layer convergence protocol (PLCP) and the three transmission specific
protocols, whereas the infrared mode is used very rarely. There are two other modes in
which a WLAN module can interact: the ad-hoc mode allows for spontaneous interaction
with other WLAN modules, and the infrastructure mode allows for connection to access
points (AP) that are connected to the local network. Like a BTS, an AP can handle
connections to several WLAN modules. A federation of several APs enables a handover
scheme – which is called roaming in this domain for historical reasons – when a user
moves from the coverage zone of one AP to the coverage zone of another AP. Figure 3.9
shows a local network with two APs.

Figure 3.9: WLAN overview

3.3.3 Personal area networks

PANs represent the last category of wireless networks, possessing two important candi-
dates: the Bluetooth standard [82] which uses short range radio and the Infrared Data As-
sociation standard (IrDA) which uses infrared. Although both technologies have slightly
different application scenarios, the newer Bluetooth standard from 1999 might replace
the older IrDA standard, whose first version is from 1994. Laptops, for example, were

4www.starbucks.com/retail/wireless.asp
5www.pcwelt.de/news/internet/36016/

26 CHAPTER 3. TECHNOLOGY

equipped with an infrared interface in the past to exchange data with other laptops, while
nowadays they are additionally equipped with a Bluetooth module. Besides laptops and
handheld computers, Bluetooth modules are integrated into many new mobile phone,
which enables the mobile phone to connect to a headset for speech transmission or to a
laptop to allow it to connect to the Internet. One property of IrDA systems that can be
advantageous, and also disadvantageous, is the limited dispersion of the signal that forms
a cone of 1 meter in length with an off-axis angle of 15 degrees. On the one hand, this
property limits the deployment since the IrDA modules need to be aligned; on the other
hand, this property allows secure data exchange that cannot easily be eavesdropped, but
the latter could also be achieved using cryptographic software solutions.

Both systems can be deployed as Auto-ID technology by attaching such a module to
a smart thing that transmits its identifier using radio, or infrared to an AP that has a
connection to the backend infrastructure. Due to its increasing importance over IrDA,
we focus on Bluetooth, describing it in a little bit more detail.

Bluetooth overview The motivation behind Bluetooth is to replace cumbersome
wiring with a PAN standard. The ability of a Bluetooth device to connect to another
Bluetooth device is limited by the master/slave concept: a Bluetooth device that success-
fully has initiated a connection with another Bluetooth device becomes the master of the
connection and correspondingly, the other becomes the slave. Within a so-called piconet,
a Bluetooth device must either be a slave or a master, and there is exactly one master per
piconet, which can connect to at most seven slaves. A scatternet is an extension where
a node is part of two piconets, with the restriction that the node can be a master in at
most one piconet. Figure 3.10b shows a scatternet consisting of two piconets in which
one node is the master within one piconet and a slave within the other piconet.

Bluetooth builds on a protocol stack (see Figure 3.10a) where the master/slave con-
cept is also realized. We only describe those layers that are needed for our purposes. On
the lowest level is the Bluetooth radio layer that uses Frequency Hopping Spread Spec-
trum (FHSS) and which is responsible to synchronize different Bluetooth devices. The
Baseband, one level above, provides two physical connections: an asynchronous one for
data traffic and a synchronous one for audio only or audio and video in combination.
The Link Manager Protocol (LMP) on the next level is responsible for establishing the
connection and some further management tasks concerning the connection. These three
protocols are part of the Bluetooth hardware unit and they can be accessed through the
Host Controller Interface (HCI). Thus, the following layers must be implemented by an
additional hardware unit, i.e. in our case by an ID module. The next protocol, the Logical
Link Control and Adaption Protocol (L2CAP), supports multiplexing as well as segmen-
tation and assembly of network packets. The last layer we mention here is RFCOMM
that emulates a serial RS232 interface.

As mentioned above, a Bluetooth module that initiates a connection becomes the
master. This initialization process consists of several states and transitions (see Figure
3.11). After a Bluetooth module has been turned on, it is in the Standby mode. The next
state is the Inquiry state that enables the Bluetooth module to listen for other device
addresses. The actual establishing of a connection takes place in the Page and the Page
Scan modes: while one Bluetooth device is in the page mode and sends out messages
with the address of the device it wants to connect to, the other device must be in page
scan mode to receive such messages and if it receives its own address then a connection
will be established with the Bluetooth device as master in the page mode. Devices must

3.4. SENSORS AND ACTUATORS 27

Figure 3.10: Bluetooth overview

periodically change between the two modes to enable a rendez-vous. After the connection
establishment, both devices become Active. To save power they can change into three
other modes, or if the connection should be closed, they go back to the standby mode.

Figure 3.11: Bluetooth connection states

It is important to mention that Bluetooth provides a name request function in the
LMP layer: this returns a user definable name that can be used as identifier in our
systems. For such an identifier request, a connection does not need to be set up, so that
the whole procedure is highly efficient.

3.4 Sensors and actuators

Since we can regard sensors and actuators as black boxes, the following description can
be kept short. While sensors are used to perceive the environment, actuators are designed
to manipulate the environment. In mechanical engineering, the combination of both is
known as a control loop (see Figure 3.12): a system uses the sensor values to control
the actuators, which in turn affects the sensors, since it changes the world the sensors
perceive, e.g. a thermostat on a heater has a temperature sensor, and depending on its
sensor values the thermostat decides whether to turn the heater on or off, which in fact
changes the temperature in the room which the sensors perceive.

Figure 3.12: Control loop

28 CHAPTER 3. TECHNOLOGY

In our systems, we do not interact directly with sensors or actuators, but indirectly,
since they have to be connected to an ID module. There are already RFID modules
that possess an integrated temperature sensor, but this represents the minority of cases,
since most RFID tags provide only an identifier and some additional amount of writable
memory. Actuators mounted on Auto-ID modules are not known. Due to their cost and
the effort to save energy, it is not likely that they will be integrated into such modules
in huge amounts in the near future. In general, actuators can be used to adapt the
environment as a smart thing requires it, e.g. a smart thing might turn on a lamp when
the environment is too dark to enable its small built-in camera to take a photo. LEDs and
loudspeakers (beepers) can also be regarded as actuators although they are mainly used
as a means of HCI. In a nutshell, smart things use sensors to perceive their environment,
and they may use actuators to affect their environment. From the point of view of a
smart thing, the actual functioning of sensors and actuators can be disregarded, since
they are used as black boxes.

Sensors From an abstract point of view, a sensor transforms a non-electrical value into
an electrical value. This means that a sensor relies on physical effects that change or
generate a current or a voltage that can be measured, for example. In the following, we
only give a brief overview about the most important sensor types and briefly sketch one
of several active principles6, since for our purposes, we can ignore the details of their
actual mode of operation7:

Path and angle: the physical movement controls a voltage divider.

Humidity and electrical conductivity: liquids that contain ions can be regarded as
resistance.

Light: light-dependent resistance (photo resistance).

Temperature: temperature-dependent resistance.

Pressure and force: foils with several layers of semiconductors with a changing tran-
sition resistance.

Sound: electrical microphones work capacitively, using a charged membrane.

Streaming: relies on the same principle as blower turbines.

Infrared: uses foils that rely on the piezoelectric effect in the infrared spectrum.

Actuators An actuator can be regarded as the opposite of a sensor: it transforms an
electrical value into in a non-electrical value. An electric motor is a familiar example of
an actuator: it transforms current into movement. In our case, we could imagine the
following actuators being integrated into smart things:

• motors,

• LED,

6Active principle denotes the physical effect a sensor relies on.
7http://www.as-workshop.de/grundlag/snstypen.htm

3.5. LOCALIZATION 29

• loudspeakers,

• cooling units,

• heating units or

• lamps.

The list of sensors as well as the list of actuators is not complete and only serves to
give a first impression of what kind of sensors and actuators can principally be integrated
into and controlled by smart things. We explicitly do not mention displays as simple
actuators, but as a complex means of HCI that has to be modelled separately.

3.5 Localization

In contrast to sensors and actuators, we cannot easily ignore the details of the localization
function. Localization contributes to one of the core abilities of a smart thing: that it
should know where it is currently residing, and since there are no complete localization
solutions available that can be integrated into our systems, we have to consider all aspects
belonging to localization. These are described below.

Localization refers to the process of identifying the location where an entity resides.
This information is needed by applications that provide location-based services, i.e. in
our case this information is needed by the smart things themselves and the location-
dependent applications. As mentioned earlier, this issue is closely related to automatic
identification, since in the majority of cases, the location information is only requested
in conjunction with the identity of the entity that should be localized.

3.5.1 Location Models

Location models describe the representation of location and the locatable entities [26].
Such a formal description is necessary in order for a computer to process location infor-
mation. In general, the models can roughly be split into two groups, which are described
next.

Symbolic location One advantage of symbolic location models is that they are easy
to understand for humans. Geographic models that belong to this group rely on hier-
archical geographic structures like postal addresses, e.g. Haldeneggsteig 4, 8006 Zurich,
Switzerland denotes our building in Zurich. Generalizations are symbolic models that
refer to locations by means of abstract symbols, such as warehouse.floorA.caseI.bottle1,
which denotes the location of a bottle within a warehouse. As these examples show, loca-
tions are modeled as sets, and the members of these sets are the locatable entities. One
disadvantage of these models is the manual construction and management of hierarchical
symbols.

Physical positions Unlike symbolic models, these models can be efficiently processed
by computers. Physical location models, which belong to this group, have a global and
unique coordinate system. The position of an object is given as a tuple of latitude,
longitude and if necessary altitude, e.g. 47.5◦ North, 8.5◦ East refers to Zurich. Geometric

30 CHAPTER 3. TECHNOLOGY

models, as an extension of physical location models, are also models of the second group:
they represent the location and the locatable entities as a set of coordinate tuples. If
they possess a single reference coordinate system, then they are called simple, whereas
unified geometric models have several reference coordinate systems. The raw location
information can be enriched using a mapping function that assigns additional information
to a location.

Semi-symbolic models Models that use coordinates and symbolic names are called
semi-symbolic. A function can map a physical position to a symbolic location and vice
versa: a symbolic location can be mapped to a set of physical positions, e.g. a postal
address can be mapped to set of coordinates. Most of the applications need semi-symbolic
models: for efficient calculations, they use geometric models, whereas they use symbolic
models for HCI purposes. Research [75, 59] currently focuses on this topic, since these
kinds of models are needed most, and they are also part of our solution for smart things.

Further aspects The association of a locatable entity with a location can be realized
in the following two ways. Containment is one possibility, i.e. to identify the region which
contains the entity. The size of the container determines the resolution. Another possi-
bility is positioning that relies on reporting the coordinates of an underlying coordinate
system. In this case, the resolution is given by the granularity of the reference coordinate
system. A relationship between the locations of two entities can be established by cal-
culating the distance between two entities. Physical models normally use the Euclidean
distance, which can be totally ordered, whereas in symbolic models objects are only par-
tially ordered. A question concerning the distance of two objects can be answered in a
physical model, for example, with ”10m”, in a symbolic model, however, the answer could
be: ”2 floors and three rooms”. Relative versus absolute localization refers to the refer-
ence point: absolute localization uses a shared reference point for all locatable entities,
whereas relative localization permits every entity to have its own reference point.

3.5.2 Localization Methods

After an appropriate location model has been chosen, it still needs to be fed with actual
location data, i.e. some data describing the location has to be retrieved in order to
determine the location within a location model. This task builds on methods that roughly
can be classified into three groups [50].

Lateration and angulation Lateration computes the position of an entity by using
several distance measurements from known points, i.e. for an n-dimensional determina-
tion of the position of an entity, n + 1 points are necessary, whereby restraints of the
environment can reduce the necessary amount of known points, e.g. the knowledge that
an object to be localized is beneath a satellite allows the opposite possibility to be ex-
cluded and therefore the amount of points to be reduced by one. Three methods for
distance measurements can be identified. The first and conceptually simplest possibility
is direct measurement by physical actions or movements, which is in general hard to per-
form automatically, for example, a motor controls a measuring stick that has to touch
the object that should be localized. Time-of-flight information is another solution that
measures the time a signal travels at a constant speed from a known point to the locat-
able entity, vice versa or in both directions. Ultrasonic and radio signals are commonly

3.5. LOCALIZATION 31

used for this purpose, but filtering out the reflections of the signals is a challenge. An-
other challenge is the synchronization of clocks if more than one clock is involved in the
measurement. The third solution for distance measurement is attenuation, which utilizes
the decrease of signal strength depending on distance.

Angulation is similar to lateration except for the fact that angles instead of distances
are measured. An n-dimensional determination requires n angles and one distance to be
measured. Both procedures are depicted in Figure 3.13.

Figure 3.13: Lateration and angulation

Scene analysis This is the second general localization method. Features of a scene
– not necessarily images – from a particular vantage point are extracted to determine
the location of the observer, or the entity. A static analysis looks up the features in
a database to determine the location, whereas a differential analysis tracks differences
which correspond to movements of the observer. If features are recognized at known
points, the location can be determined. One advantage of this solution is passive observa-
tion, whereas one disadvantage is the management of frequently changing environments.
Image data and signal strengths are commonly used for scene analysis, but experience
shows that systems that make use of this method are not very reliable, since the impact
of changes in the environment is too big to be handled by these systems.

Proximity Proximity is the third general localization method. It determines whether
an entity is near a known reference point by using physical phenomena that are range-
limited (see Figure 3.14). One solution, i.e. physical contact, uses detectors or sensors
such as pressure or touch sensors to determine the location of an entity. These solutions
require that the entity is in contact with the system. The second group monitors wire-
less cellular access points to detect entities within the cells and therefore to determine
their approximate location. This group of solutions can be used in conjunction with the
wireless networks from Section 3.3. Automatic identification systems can also be used
to determine the location of an entity if the position of the automatic identification sys-
tem is known and if the identified entity is in the proximity of the system. Auto-ID
systems have also been presented in Section 3.2. Lateration with time-of-flight informa-
tion, as well as proximity with monitoring of wireless cellular access points, are the most
promising methods to determine the position of entities. Thus, we can use proximity as
a default localization method, since we either use an Auto-ID technology or a wireless
network technology for identification.

32 CHAPTER 3. TECHNOLOGY

Figure 3.14: Proximity

3.5.3 Localization Systems

Localization systems [51] are systems that allow the actual localization of objects and
people. They differ from the underlying phenomena used to localize the entities, the form
factor of the mobile units that should be localized, which support the localization process,
the energy consumption of the mobile units, whether the computations are performed
by the infrastructure (remote vs. self positioning) and the resolution in time and space.
The computations to localize an entity can be performed in the infrastructure, which
in general is not limited by the power consumption but has the disadvantage of not
guaranteeing privacy with respect to the location of an entity at a given time. A policy
can specify how the infrastructure should handle privacy aspects. In such a case, the
system with privacy policies needs to be trusted to actually provide the privacy that is
specified in the privacy policy.

Quality To compare the quality of different localization systems, some characteristics
of the systems have to be taken into consideration. Accuracy specifies the granularity of
the system’s resolution, whereas reliability refers to how often this resolution is achieved.
Another characteristic is the statement of an error distribution that describes the con-
nection between accuracy and precision. Precision refers to the difference between the
real and the measured position, so that high precision represents a small difference. Fi-
nally, the infrastructure density has to be considered in order to compare two systems.
Infrastructure density means the number of infrastructural entities, such as antennae per
area which are required to achieve the specified quality.

Sensor fusion This aspect refers to the aggregation of sensor data that can improve
accuracy and reliability through hierarchies and overlapping domains. Wireless sensor
networks try to dynamically adapt accuracy and reliability in the effort to save power.
Most applications do not need accuracy to the nearest centimeter, as often a rough
determination of location is sufficient, e.g. in some cases the information that a smart
thing is in a certain warehouse can be enough.

Scalability One aspect of this issue is the dimension of localization that ranges from
worldwide localization of entities down to localization within single rooms. Another
aspect refers to the number of objects that can be localized at any one time and/or per
unit of the infrastructure, since scaling up systems is often possible by extending the
infrastructure. Obstacles for scaling up are infrastructure costs, middleware complexity
that might increase, and physical limitations. Cost can refer to time cost for installation,

3.6. SUMMARY 33

space cost for the infrastructure and the form factor, and also capital cost for maintenance
and equipment.

Outdoor systems Positioning systems may be limited to outdoor or indoor usage. The
Global Positioning System (GPS) [7], for example, utilizes satellites for three-dimensional
localization, whose signals cannot be received within buildings. A possible solution could
be to install repeaters in the buildings. The system consists of 27 synchronized satellites.
Four satellites and therefore four distances at a time and one GPS receiver are needed
to localize the receiver’s position via lateration. Since entities have to be beneath the
satellites, three distances should be sufficient for lateration, but a fourth variable has to
be introduced to express the time difference between the receiver and the synchronized
satellites.

Indoor systems The Active Badge system, which was developed at the Olivetti Re-
search Laboratory, uses infrared senders built into a badge that sends out a signal with an
identifier every ten seconds, which is received by the indoor infrastructure to determine
the location via proximity. Active Bat, which was developed at AT&T Cambridge, uses
ultrasonic flight-of-time and radio signals to determine the location via lateration. The
radio signal is used to synchronize the infrastructure and to recognize reflected ultrasonic
signals. The reverse is done in the Cricket system, which complements the Active Bat
system. The infrastructure sends out ultrasonic signals that are received by the entities
that compute the location locally, so that privacy can be achieved. The RADAR system
from Microsoft Research uses the existing wireless LAN technology, i.e. base stations and
mobile units to determine the mobile unit’s two-dimensional position by scene analysis
of the signal strength or by lateration. Very accurate and precise measurements can be
performed by utilizing axial DC magnetic field pulses from devices in the infrastructure
that are received by mobile units equipped with three orthogonal antennae under the
constant influence of the magnetic field of the earth.

Commercial systems Currently, GPS is most frequently used to perform localization
in commercial systems. Localization with mobile phones exists in emerging applications,
e.g. worried parents can obtain the location of their child’s mobile phone [57], or rescue
organizations can obtain the location of people that need their help [97]. All the other
systems we have described here are mainly research projects or their practical usage is
limited.

3.6 Summary

The aim of this chapter was to present the technologies that can be integrated into our
smart thing systems which, on the one hand provide the means to manage the dynamic
aspects of these systems, and on the other hand provide the necessary hardware means
for a smart thing to be able to be identified and localized, to retrieve sensor values, and
to control actuators.

First, Jini and Web Services were introduced: these provide the means for service
description, service discovery and service invocation. Jini, additionally, provides five key
concepts to handle the dynamic aspects in distributed systems: discovery, lookup, leasing,
remote events and transactions. Second, Auto-ID systems were introduced: these provide

34 CHAPTER 3. TECHNOLOGY

the means to identify a smart thing, in particular bar code, RFID and infrared beacons
are appropriate systems. Third, wireless networks were introduced as another means for
Auto-ID, since these systems also fulfil the requirements for a smart thing to be identified.
Wireless networks were classified into three groups and one system for each group was
proposed to be used as a means of identification: GSM modules in the cellular domain,
WLAN modules in the wireless local area networks domain and Bluetooth modules in
the PAN domain. Fourth, sensors and actuators were introduced as a black box that
enables smart things to perceive and to affect their environment. Finally, localization
was introduced to show how a smart thing can be localized. Location models, location
methods and location systems have been identified as the building blocks for a localization
solution. Proximity can be used as a default localization method, since it is supported
by the identification technologies we have presented previously.

Chapter 4

Modeling of Collaborating Everyday
Items

The aim of this chapter is to introduce a model of collaborating everyday items that serves
two purposes: it is used as a template for implementation, and more generally, it defines
the relevant aspects in this domain and their interdependencies. Another interpretation
of the model is that it breaks down the high-level vision from Chapter 1 into concrete
concepts, and it enables future research to focus on concrete domains that are denoted
in this model.

We use a top-down approach to develop the model: we start with the basic high
level concepts that contain the definition for a smart thing, followed by the concepts that
model the basic abilities, including a location model. Next, we refine the concepts of
the smart thing entities and introduce the concepts of the infrastructure in more detail.
Building on these concepts, we describe the procedure by which these parts of our model
have to collaborate. At the end of this chapter, we describe how the application logic can
be distributed, describe some extensions of the model, then we explain how the lifecycle
of a smart thing is modeled and conclude with a summary.

Besides the actual definition of the concepts, the decision process for a definition and
the other options for our definition are also discussed. Although we do not discuss the
requirements of Chapter 2 in the same order, they will nevertheless all be addressed. Our
model, which implements these requirements, is introduced with four means: first, we
define or describe each concept in a compact and numbered paragraph. If possible we
try to use a rather formal definition of a concept, i.e. the preconditions also need to be
well defined. In some circumstances, such a formal approach would be too complex, so
that we use a rather informal description for better understanding. Second, we describe
these compact paragraphs in the continuous text in more detail, third, we give examples
for the concepts and fourth, we summarize the most important aspects of a concept in a
figure.

4.1 High level concepts

The high level concepts presented in this section roughly illustrate how we model our do-
main in order to build the foundation for the rest of our model, i.e. subsequent definitions
of the concepts directly make use of the following concepts.

35

36 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

4.1.1 Smart thing

Already in Chapter 1, we introduced a smart thing as an everyday item that possesses
additional functions that are provided by a virtual representation in the infrastructure.
The exact definition for a smart thing, which is illustrated in Figure 4.1, is as follows:

Concept 1 (Thing and representation) A thing denotes an arbitrary object of the
real world and a representation represents the additional functionality of a smart thing.

Concept 2 (Smart thing) A smart thing consists of a thing and a representation.
A thing possesses exactly one representation and a representation possesses exactly one
thing.

Figure 4.1: Composition of smart things

While the first half of the definition does not provide any additional information in
comparison to the first introduction of the smart thing concept in Chapter 1, the second
half of the definition states the unique association of a thing and its representation, which
both make up a smart thing. We use the term ’thing’ synonymously for an everyday
item and the term ’representation’ synonymously for a virtual representation. Neither
can a representation provide the additional functionality for two things, nor can a thing
be represented by two different representations, so that a thing and a representation
build a unit that we call smart thing. The name smart thing has been chosen since
a regular and ”dumb” thing becomes smarter through the functions provided by the
representation. As stated previously, with the term smart we neither mean intelligent,
nor do we address issues of artificial intelligence (AI) research. In contrast to AI research,
the additional functionality of a smart thing needs to be explicitly programmed or is part
of the infrastructure, as will be shown in the following.

Things and their representations do not exist uncoupled in time and space but are
rather entities of an environment: things are part of a physical environment that we also
call the real world, and representations are part of a virtual environment that we also
call the virtual world. As Figure 4.1 shows, both worlds divide a smart thing into its two
parts.

Concept 3 (Environments I) Every thing is an entity of the physical environment.
Every representation is an entity of the virtual environment. Both environments are
complementary concerning these entities.

Later on, both environments will be enriched with additional entities, so that the
purpose of the concept will become clear. Until now, we only said that a smart thing is

4.1. HIGH LEVEL CONCEPTS 37

the combination of a thing and a representation but did not mention how they are actually
connected to each other. Therefore, we introduce the concept of a coupling : coupling
means that the thing needs to be connected with its representation, which is indicated by
the bar in Figure 4.1. This general concept can be split into two more specific ones: an
implicit coupling refers to the situation where the representation is directly located on the
thing itself, whereas an explicit coupling demands that the representation is somewhere
in the infrastructure.

Concept 4 (Coupling) The concept coupling is equal to the concept smart thing. A
coupling can either be an implicit coupling or it can be an explicit coupling.

The equality in the first half of the definition only says that both concepts can be
used synonymously. We use both synonymous terms to look at the same concept from
two different views: smart thing describes the concept coming from the vision and cou-
pling describes the concept from a technical point of view. The implicit coupling is more
complex than an explicit coupling, since every smart thing must provide the same func-
tionality of the infrastructure directly on the thing. For this purpose, a more powerful
hardware solution is required on the thing, which makes the implicit coupling more ex-
pensive, so that we see the explicit coupling at first, followed by the implicit coupling
shortly afterwards.

4.1.2 Tag detection system

Conceptually, a tag represents the additional functionality of a smart thing that is at-
tached to a thing and thus, directly located on the thing itself. In that sense, one compo-
nent of an explicit coupling is the tag detection hardware which consists of the tag that
is attached to the thing and a tag reader that is installed somewhere in the environment
that is able to wirelessly detect the tags and therewith the thing. Tag detection hardware
is hardware-specific, which means that bar code or RFID detection hardware consists
of bar codes or RFID tags attached to the things and a bar code or RFID reader that
wirelessly detects these bar codes or RFID tags. The main purpose of the tag detection
hardware is the identification of a thing that is indirectly identified by the tag that is
attached to the thing.

Concept 5 (Tag) A tag is a means to mark a thing. Tags are partitioned into hardware-
specific classes. Every tag is attached to a thing and every thing possesses at least one
tag but not more than one tag from any hardware-specific class.

Concept 6 (Tag reader) Tag readers are partitioned into hardware-specific classes
analogously to the tags. A hardware-specific class of tag readers can wirelessly detect the
tags of the corresponding hardware-specific class of tags. For every class of a hardware-
specific tag reader there is at least one hardware-specific tag and vice versa.

Concept 7 (Tag detection hardware) The tag detection hardware consists of tags
and tag readers. Tag detection hardware is hardware-specific. Every class of hardware-
specific tag detection hardware covers the corresponding classes of tags and tag readers.
The tag detection hardware is part of the infrastructure.

38 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

One of the restrictions of the definitions allows that one thing can have several tags
from different technologies, e.g. a thing can possess a bar code tag and an RFID tag at the
same time. Although the model, and therefore the implementing smart thing systems,
would be much simpler if we restrict a thing to possessing exactly one tag, we do not want
to restrict the model since it is possible that a thing can have, for example, a bar code and
an RFID tag during a transition period. In contrast to this example, we recommend using
only one technology in order to allow for a simpler development of applications, since the
existence of several tags with different capabilities results in separate handling of these
capabilities, which in turn means a greater development effort. At the moment, there are
several applications where an object is tagged with different bar codes, but in most cases,
the information in the additional bar codes is not intended to identify the object, but to
describe it. In our model, this information is encapsulated by the representation and the
bar code is only used to identify the object, so that one bar code is sufficient. We define
the tag detection hardware as part of an infrastructure that makes smart things possible.
With the introduction of the tag detection hardware, we can complete the definition of
the physical environment:

Concept 8 (Environments II) The tag detection hardware that comprises tags and
tag readers is part of the physical environment. An entity of the physical environment is
either part of the tag detection hardware or is a thing.

Figure 4.2: Composition of the physical and virtual environment

As Figure 4.2a shows, only things, tags and tag readers can be part of the real
world. We do not need to model any other entity of the real world for our model of
collaborating everyday items. Independently of whether a tag is a pure hardware solution,
e.g. a bar code or a hardware/software solution, e.g. a Bluetooth module, the whole tag
including the software is part of the physical environment, since we do not include the
implementation of the tag. The implementation issues are transparently covered by the
tag reader, which wirelessly detects the tag using a proprietary communication protocol.

Within the coupling mechanism, on the one hand, the tag builds the interface to the
thing it is attached to, which is indicated by the bar in Figure 4.2a. On the other hand,

4.1. HIGH LEVEL CONCEPTS 39

the tag reader as part of the hardware infrastructure builds the interface to the software
infrastructure, which is indicated by the bar in Figure 4.3. This software infrastructure
consists of several services which are used to manage smart things. One of these services
is the tag detection service which is responsible for controlling a tag detection reader.
Together with the tag reader, they build a bridge between the real and the virtual world,
as Figure 4.3 shows. The combination of the tag detection hardware and the tag detection
service is called tag detection system.

Concept 9 (Tag detection service and tag detection system) A service refers to
a software service in the IT domain. Every tag detection service is service- and hardware-
specific. Every tag detection service controls exactly one tag reader and every tag detection
reader is controlled by exactly one tag detection service. The combination of tag detection
hardware and tag detection services for specific hardware is called a tag detection system.

An RFID tag detection system, for example, comprises all RFID tags and all RFID
readers with their corresponding RFID detection services. Using the above introduced
concepts, we are now able to complete the definition of the virtual environment, which
is shown in Figure 4.2b:

Concept 10 (Environnments III) An entity of the virtual environment is either a
representation or a service. A tag detection service is a service among other services.
Every service is part of the infrastructure that enables smart things.

The definitions for a smart thing and the environments allow us to reason about the
infrastructure (see Figure 4.3):

Corollary 1 (Infrastructure) Either a service or a tag detection hardware entity is an
entity of the infrastructure. An arbitrary entity of the model is either part of a smart
thing or of the infrastructure.

Figure 4.3: Composition of the infrastructure

In a nutshell, on the highest level in the model, we have two orthogonal concepts: an
entity of the model either must be part of a smart thing or the infrastructure and an
entity either must be part of the physical environment or the virtual environment. Thus,
four combinations are possible:

• an entity that is part of a smart thing and of the physical environment is called
thing,

40 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

• an entity that is part of a smart thing and of the virtual environment is called
representation,

• an entity that is part of the infrastructure and of the physical environment is called
tag detection hardware entity, or

• an entity that is part of the infrastructure and of the virtual environment is called
service.

4.1.3 Managing services

Figure 4.4 shows that the four concepts in the big circles have four interfaces indicated by
the four bars. We already mentioned three of them: the interface between the thing and
the representation, between the thing and the tag detection hardware and between the
tag detection hardware and the services. The first interface between the representation
and the thing, which we also call coupling, can be regarded as a logical interface that has
to be realized through the other three interfaces, from which only the one between the
representation and the services is missing. Until now, we have a tag detection service in
the virtual environment that finds out about what tags are detected by its tag detection
reader in the physical environment and we have the representations of the tagged things
in the virtual environment, also. To bridge this last gap within the virtual environment
between the tag detection service and the representation, we introduce managing services
that, on the one hand, have to use the tag detection systems to find out about things
in the real world and, on the other hand, have to provide the necessary means for a
representation to be able to provide its functionality.

Concept 11 (Managing services) Managing services bridge the gap between the tag
detection services and the representations.

The actual managing services are described in Section 4.4. However, without the
actual introduction of the managing services and from a high level view, we now can
explain how the coupling between a thing and its representation takes place:

Corollary 2 (Coupling) A coupling between a thing and its representation is given by
the following combination of the previous concepts. Every thing has at least one tag. Every
tag can be at least wirelessly detected by one tag detection reader. Every tag detection
reader is controlled by exactly one tag detection service. Every tag detection service is
connected to every representation by the managing services.

The idea behind this corollary is to show that the connection between a thing and its
representation can be realized through the use of the infrastructure. The above concepts
and their combination make-up the high-level concepts in our model. Although these
concepts intuitively describe our world of smart things, this model is still far away being
easy to implement. However, the following sections will make use of these concepts to
extend and to refine the model, so that an implementation of the model will become
straightforward.

4.2. CONCEPTS FOR BASIC ABILITIES 41

Figure 4.4: High level concepts of the model

4.2 Concepts for basic abilities

Using the high-level concepts that roughly describe our world of smart things, we are now
able to introduce the concepts that model the basic abilities of a smart thing, comprising
its identification and its localization as well as the retrieval of sensor values and the
control of actuators.

4.2.1 Identifier

The overall goal of the utilization of an identifier is to uniquely identify a smart thing,
which comprises a tagged thing and its representation, so that the identifier refers to
three entities: the thing, its tag and its representation. Such a unique identifier is needed
for two purposes: first, it can be used by the managing services as a key to store and
to retrieve data for a certain smart thing, and second, it can be used by applications to
identify individual things, since applications normally depend on the identities of smart
things. In a nutshell, an identifier is the answer to the question: ”What is the identity of
a certain smart thing?”.

The identifier is partitioned into a name and home address analog to a Universal
Resource Identifier (URI) [12] that consists of a Universal Resource Name (URN) [81]
and a Universal Resource Locator (URL) [13]. The name is used to denote a smart
thing. It need only be unique within its namespace, which is the home address. Such
a home address is used to denote the name of the location in the virtual world where a
representation can be accessed. In our case, the whole identifier is unique in all contexts
and serves to distinguish two smart things. The structure of an identifier is shown in
Figure 4.5.

Concept 12 (Identifier) An identifier consists of two parts. One part, the home ad-
dress, denotes the location of a representation’s access point in the virtual world. The
name of every virtual location of a representation’s access point is unique within the vir-
tual world. It also represents the namespace for the other part of an identifier: the name.
A name only needs to be unique within its namespace.

42 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

Figure 4.5: Structure of an identifier

Although the description does not include the structure of a name, there is no re-
quirement to encode information into the name, except for at most a serial number and
type information. The structure of the home address is given by the underlying naming
scheme of the network technology deployed. The home address might indirectly also
denote the producer of a thing, if the producer provides the access point for a represen-
tation. One example that builds on Web Services and that refers to a bottle with a serial
number could be: ”bottle123@bottlemaker.com/home.asmx”. In this example, ”bottle”
refers to the type, ”123” is the serial number, ”@” is used as delimiter and ”bottle-
maker.com/home.asmx” is the URL of the virtual location of the representation’s access
point and indirectly also denotes the producer of the bottles: ”Bottlemaker”. Although
we referred to a type classification in the previous example, we explicitly do not demand
a certain type system nor do we need one. It is up to the participants of a supply chain
to agree on identifiers that contain type information. This also means that these partic-
ipants have to choose a suitable type system for their purposes. The following corollary
shows that with the previous definition, an identifier is unique in all contexts:

Corollary 3 (Uniqueness) An identifier is unique in all contexts, since the home ad-
dress as a namespace is unique for every virtual location of a representation’s access point
and the name is unique within such a namespace.

4.2.2 Locations

Although an identifier denotes both parts of a smart thing: the tagged thing in the
real world as well as the representation in the virtual world, the location information is
different for each. In our model, every entity of the real world and every entity of the
virtual world has an address in the real, or the virtual world (see Figure 4.6). In this case,
an address is the name of the location of the entity, so that the address is the answer to
the question: ”Where is a certain entity?”. Since we want to state the location of a smart
thing in the world or within another smart thing, a physical location can refer to the real
world or to a smart thing, e.g. a smart bottle can be in the smart fridge that in turn is
in the kitchen – the actual location model is defined in the next section. On the other
hand, we also have to state the location of a representation in the virtual world, i.e. its
virtual location. The home address is the name of the service, which knows the current
address of a representation. The current address itself is the name for another service
that is currently hosting a representation. A service name in turn might also contain an
address of the computer where the service is hosted. The general definition for a location
is as follows:

Concept 13 (Location) A location can either be a physical location or a virtual loca-
tion. Every entity of the real world has a physical address. Every entity of the virtual

4.2. CONCEPTS FOR BASIC ABILITIES 43

world has a virtual address. An address of an entity is the name of the location where
the entity resides.

Figure 4.6: Locations in the real and the virtual world

While a smart thing has exactly one identifier for its thing and its representations,
a thing and a representation have different addresses, since they are located in different
worlds: the real world and the virtual world. Building on the definition of a location in
general, we can also describe a virtual location.

Concept 14 (Virtual location) Every representation has exactly one home address
that refers to a ”home service”. Every representation has exactly one current address that
refers to a ”hosting service”. Every service has an address that refers to the computer
where the service is hosted. The addressing scheme depends on the network technology
deployed.

Figure 4.7: Structure of a virtual location statement

In the previous example: ”bottlemaker.com/home.asmx” is the name for the service
that knows the current address of a representation. This service is hosted on a computer
with the DNS name ”bottlemaker.com”. The structure of a virtual location statement
can also be seen in Figure 4.7.

Concept 15 (Physical location) A thing and its tags have the same address. The
address can refer to the location within the real world or to the location within another
smart thing. The address relies on a location model.

The description also states that a thing and a tag always have the same address,
i.e. that actually only the address of a tag can be determined and this information is
then associated with its thing. Figure 4.8 shows the structure of a real world location
statement that is used to describe the location of a tagged thing.

44 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

Figure 4.8: Structure of a real world statement

4.2.3 Location model

In comparison with the virtual world, where the ”location model” is given by the un-
derlying network technology, the location model for the real world needs to be defined.
We need such a location model to state the address of a tagged thing in the real world,
since most applications are location-dependent. An address refers to the name of the
location where the tagged thing or any other entity of the real world currently resides.
The address of a tag reader, which is an entity of the real world, can be sufficient if
proximity is used, which in general, has been introduced in Chapter 3. In such a case,
all tags in the coverage space receive the tag reader address as their address. For our
purposes, we develop a hybrid model, which has also been introduced in Chapter 3, for
two reasons: the first reason is that we want to support different localization technolo-
gies that are designed to work either with physical positions or with symbolic locations
and the second reason is that applications might depend on physical positions, symbolic
locations or both.

Generally, we distinguish two high-level concepts: static locations, (LOC), which
represent spaces in the real world, and mobile smart things (ST). By LOC we denote the
set of all modelled locations in the real world and by ST we denote the set of all modelled
smart things, as can be seen in Figure 4.9. A location can contain other locations and
smart things. A smart thing can contain other smart things.

We can describe a location in two ways. On the one hand, we can use symbolic names
to denote a location. These location names are elements of the world symbolic location
model (WSYM). On the other hand, we can describe a location by its physical positions.
These coordinates are part of the world physical position model (WPP).

Both models also exist for smart things, since smart things can contain other smart
things. In such a case, it is possible to state the location of a contained smart thing in
its containing smart thing. On the one hand, symbolic location names of smart things
are part of the smart thing symbolic location model (STSYM). On the other hand,
physical positions within a smart thing are part of the smart thing physical position
model (STPP).

A namespace of a location or smart thing is a subset of WSYM or STSYM that
contains all the symbolic location names that refer to that location or smart thing. A
coordinate system of a location or smart thing is a subset of WPP or STPP that contains
all the positions that refer to that location or smart thing.

which actual location models are used, depends on the particular implementation,
with only one restriction – all four models must be connected to each other, so that the
following conditions hold:

• The symbolic location name of a smart thing within another smart thing must be
appendable to the symbolic location name of the containing smart thing.

4.2. CONCEPTS FOR BASIC ABILITIES 45

• Every symbolic location name can be mapped to a set of physical positions and
every physical position can be mapped to a set of all containing symbolic location
names.

• A physical position within a smart thing can be mapped to a physical position in
the world physical position model,

• and vice versa: a physical position in the world physical position model can be
mapped to a physical position in the smart thing physical position model.

To prevent confusion about all the models, we call the meta location model that
consists of the four other location models the Smart Things Infrastructure Location Model
(STILM), which is shown in Figure 4.9. Later in this section, we will also give an
example showing the four location models of STILM, so that their meaning and their
interdependencies will become clear.

Concept 16 (STILM overview) STILM consists of four location models. One loca-
tion model (WSYM) describes the symbolic location of a physical entity within the real
world. Another symbolic location model describes the symbolic location of a physical en-
tity within a smart thing (STSYM). One physical position model (WPP) describes the
physical position of a physical entity within the real world. And finally, another physical
position model (STPP) describes the physical position of a physical entity within a smart
thing. A namespace of a location or a smart thing is a subset of WSYM or STSYM that
refers to the symbolic location name of that location or smart thing. A coordinate system
of a location or a smart thing is a subset of WPP or STPP that refers to the physical
positions of that location or smart thing.

Now, we know that a location has symbolic location names in WSYM and physical
positions in WPP. Analogously, a smart thing has symbolic location names in STYSM
and physical positions in STPP. In the following description, four functions describe the
dependencies of locations, smart things and the four models.

Concept 17 (Basic functions) We require four functions that associate symbolic lo-
cation names as well as physical positions with every smart thing and every location. For
every smart thing a there is a function pa that returns a set B of all symbolic location
names that represent the smart thing: B = pa with B ⊆ STSY M . Another function
qa returns a set B of all physical positions the smart thing a possesses: B = qa with
B ⊆ STPP . There are also two corresponding functions for every location. The first
function ra returns a set B of all symbolic location names that represent the location
a: B = ra with B ⊆ WSY M . The second function sa returns a set B of all physical
positions the location a possesses: B = sa with B ⊆ WPP .

A location or a smart thing can contain smart things. Since every smart thing has its
own namespace, we have to describe how symbolic location names can be transformed
from one namespace to another smart thing’ namespace or to a namespace of a location
and vice versa.

Concept 18 (Symbolic transformation functions) Second, we require three func-
tions with their reverse functions that describe how symbolic location names can be ap-
pended or removed from other symbolic location names. For every smart thing a that

46 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

contains another smart thing b there is a function fa that maps a name c of the con-
tained smart thing’s namespace into a name d of the containing smart thing’s names-
pace: d = fa(b, c). Thus, the reverse function f−1

a maps a name of the containing smart
thing’s namespace into a symbolic location name of the contained smart thing’s names-
pace: c = f−1

a (b, d). The function ga with its reverse function g−1
a does the same for

a location a and a contained smart thing b: ga maps a name c of the contained smart
thing’s namespace into a name d of the containing location’s namespace: d = ga(b, c).
Thus, the reverse function g−1

a maps a name of the containing location’s namespace into
a symbolic location name of the contained smart thing’s namespace: c = g−1

a (b, d).

Since a location can contain other locations and every location has its own namespace,
we also have to describe the transformation functions that transform the symbolic location
name of a location into the symbolic location name of another location.

Concept 19 (Symbolic location transformation functions) The function ha with
its reverse function h−1

a also does the same for a location a and a contained location b:
ha maps a name c of the contained location’s namespace into a name d of the containing
location’s namespace: d = ha(b, c). Thus, the reverse function h−1

a maps a name of the
containing location’s namespace into a symbolic location name of the contained location’s
namespace: c = h−1

a (b, d).

In the end, we also have to describe the transformations of physical positions between
the coordinate system of different smart things and the global coordinate system of the
world physical position model.

Concept 20 (Position transformation functions) Finally, we require two functions
with their reverse functions that describe how physical positions of a certain physical
position model can be transformed into physical positions of another physical position
model. For every smart thing a that contains another smart thing b there is a function
ma that transforms a physical position c of the contained smart thing’s coordinate system
into a physical position d of the containing smart thing’s coordinate system: d = ma(b, c).
Thus, the reverse function m−1

a transforms a physical position of the containing smart
thing’s coordinate system into a physical position of the contained smart thing’s coordinate
system: c = m−1

a (b, d). The function na with its reverse function n−1
a does the same for

a location a with the physical position d of its coordinate system, a contained smart thing
b and the physical position c of its coordinate system: d = na(b, c) and c = n−1

a (b, d). A
function that transforms physical positions within the world physical position model is not
necessary, since all locations share the same coordinate system.

The signatures of the functions are as follows:

• fST : ST × STSY M → STSY M

• f−1
ST : ST × STSY M → STSY M

• gLOC : ST × STSY M → WSY M

• g−1
LOC : ST ×WSY M → STSY M

• hLOC : ST ×WSY M → WSY M

4.2. CONCEPTS FOR BASIC ABILITIES 47

• h−1
LOC : ST ×WSY M → WSY M

• mST : ST × STPP → STPP

• m−1
ST : ST × STPP → STPP

• nLOC : ST × STPP → WPP

• n−1
LOC : ST ×WPP → STPP

• pST : → STSY M

• qST : → STPP

• rLOC : → WSY M

• sLOC : → WPP

Figure 4.9: Composition of STILM

With the support of the nine functions and their five reverse functions, which are also
shown in Figure 4.9, we can determine the following corollary:

48 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

Corollary 4 (Transfomations) Every physical position in every coordinate system can
be transformed into every symbolic location in every namespace and vice versa. The
application of the functions fa, ga, ha and their reverse functions allow us to express any
symbolic location name of a certain namespace in any other namespace. Analogously, the
application of the functions ma, na and their reverse functions allow us to express any
physical position of a certain coordinate system in any other coordinate system. Finally,
the four functions p, q, r and s allow us to switch between the physical positions and the
symbolic location names.

In a nutshell, a location always can be expressed as a combination of location names
and the containing physical positions. Independently of which location model is used, any
transformation between the four location models is possible. Coming from the definition
of STILM, which consists of four location models, we can now define the more detailed
properties of STILM:

Concept 21 (Further STILM properties) Every namespace has a reference point.
A location statement contains symbolic location names and the containing physical posi-
tions. An absolute location statement refers to the fact that the symbolic location names
and the physical positions are given relative to the absolute reference points. A relative
location statement refers to the fact that the absolute reference points are not used. A
location can contain other locations. A location can contain physical entities.

Although we do not denote the four actual location models for STILM, we propose
four models that seem to be appropriate to support most applications. First, we take a
look at the world location model. Since we have to model every point within, on and above
the earth, we use the WGS 84 standard that is commonly used, also by the widespread
GPS system, to describe the physical position of an entity on earth. In fact, we do not
support other physical position models, but they are normally easily convertible into the
WGS 84 standard. In the WGS 84 standard, positions are specified by latitude, longitude
and altitude, so that every point on, in and above the earth can be expressed.

The symbolic model consists of a graph, where every node of the graph represents
an arbitrary three-dimensional space and a descendant node is a true subset, concerning
the three-dimensional space, of its parent nodes. It is not necessary that all descendant
nodes of a node make-up a partition of the node. Every node possesses arbitrary ab-
stract names that are unique within its namespace, which consists of all the names of the
parent’s descendant nodes, except the root node that is referred to as ”.”. An absolute
statement of a node’s symbolic location is given by the path from the root to the node by
appending the node’s names separated by ”.”, except for the root node that is appended
without a separator, since its name equals the separator – examples would be: ”.eu-
rope.switzerland.zuerich.zuerich.kreis6.haldeneggsteig4” or ”.eth.zuerich.ifw”. Although
all locations start with a separator, it is not redundant, since it is used to distinguish abso-
lute and relative locations – an example for a relative location is ”kreis6.haldeneggsteig4”
that does not start with a separator and that could theoretically also be the part of the fol-
lowing absolute location: ”.europe.switzerland.zuerich.winterthur.kreis6.haldeneggsteig-
4”.

Concept 22 (World location model) The hybrid location model consists of the WGS
84 standard and a symbolic model. The symbolic model has one root node. Every node
has at least one name and covers a three-dimensional space. The root name is ”.”, and

4.2. CONCEPTS FOR BASIC ABILITIES 49

the other names are unique within the descendant’s names of the parent node and they do
not contain the root name. An edge states that the child’s coverage space is a real subset
of the parent’s coverage space. Location statements are created by appending subsequent
nodes with ”.” as a separator, except the root node that is appended without a separator.
A location that starts with the root name is called absolute; all other locations are called
relative.

Besides the world location model, we also propose a smart thing location model. The
usage of the WGS 84 standard is not appropriate for a smart thing itself, since it is not
a sphere. Here we use a standard Cartesian coordinate model with three standard axes
(x, y and z). The alignment of the Cartesian coordinate system is given by the standard
vector of the x axis at the reference point of the smart thing. The construction of the
symbolic location names is the same as with the symbolic world location model except the
fact that the root name is a colon followed by the identifier of the smart thing and that
after the root name a separator has to be used, since the root name is not the separator.

Concept 23 (Smart thing location model) The hybrid location model consists of a
standard Cartesian coordinate system and an adapted symbolic location model from the
last definition. The Cartesian coordinate consists of three axes: x, y and z. The x-axis
is given by the standard vector that starts at the reference point of a smart thing. The
symbolic location model is the same as above except the fact that the root name is the ”:”
sign followed by the identifier of the smart thing and that a separator is used after the
root name.

The nine functions and five reverse functions demanded for STILM are given by the
world location model and the smart thing location model. Two symbolic location names
can easily be appended with a separator, and the transformation between two physical
location coordinate systems, i.e. between two Cartesian coordinate systems or a Cartesian
coordinate system and the WGS 84 model, can also be easily made. Since a location name
always refers to a set of containing physical positions, the transformation between the
two world location models is also given. A complete location graph that contains our
building, office and fridge as well as two addressing schemes of our building can be seen
in Figure 4.10.

Besides the actual location model, we also need to define the format for measurement
of location data and its transmission between the entities in our model. The following
definition follows a pragmatic approach:

Concept 24 (Localization datum) Every localization module has a name and logs
values with a timestamp. A localization datum consists of three fields: the name of the
localization module, the localization value and a timestamp when it was recorded.

Since we want to support different localization technologies, we first have to mention
which localization module was used, followed by the actual localization value and the time
this measurement was recorded, which is shown in Figure 4.11. (GPS; (47.5,8.5,420),
2003-Dec-25-18:45:00) refers to a GPS measurement that was made at Christmas in
Zurich and that localizes an object exactly at 47.5◦ North, 8.5◦ East and 420m height.

50 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

Figure 4.10: Example location graph

Figure 4.11: Structure of a localization datum

4.2. CONCEPTS FOR BASIC ABILITIES 51

Summary We differentiate between static locations in the real world that can contain
other static locations and mobile smart things. Mobile smart things in turn can also
contain other mobile smart things. In order to describe the location of a smart thing, we
have to consider two cases:

• a mobile smart thing is within a static location, e.g. a smart fridge is located in
the kitchen

• a mobile smart thing is within another mobile smart thing, e.g. a smart milk bottle
is located in the smart fridge

Besides the distinction between mobile smart things and static locations, we also
differentiate between:

• symbolic location names, such as eth.zurich.ifw.d41 and

• physical positions, such as 47.5◦ North, 8.5◦ East and 420m height.

This differentiation is driven by two reasons: first, localization technologies return either
symbolic location names or physical positions, and second, applications depend on either
symbolic location names, physical positions or both.

Since both differentiations are orthogonal, we can describe the location or position of
a smart thing in four ways:

• a mobile smart thing is within a static location that is described by a symbolic
location name, e.g. the mobile smart thing ”fridge1@eth” is located in the static
location ”eth.zurich.ifw.d41”.

• a mobile smart thing is within a static location that is described by a physical
position, e.g. the mobile smart thing ”fridge1@eth.ch” is located at the physical
position ”47.5◦,8.5◦,420m”.

• a mobile smart thing is within another mobile smart thing that is described by
a symbolic location name, e.g. the mobile smart thing ”milkbottle1@eth.ch” is
located with the symbolic location name ”: ’fridge1@eth.ch’.door” of the mobile
smart thing ”fridge1@eth.ch”.

• a mobile smart thing is within another mobile smart thing that is described by a
physical position, e.g. the mobile smart thing ”milkbottle1@eth.ch” is located at
the physical position ”(2cm,4cm,6cm)” of the mobile smart thing ”fridge1@eth.ch”.

In a nutshell, STILM has the following requirements:

• location models for locations and mobile smart things

• location models that use symbolic location names and physical positions

• functions that can transform location statements and position statements between
the four location models

52 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

4.2.4 Sensor and actuator data

Besides the identification and localization of a smart thing, it also has to control sensors
and actuators. The data format for both can be kept very simple: we consider only simple
sensors and actuators that return, or accept only simple values, i.e. it is not intended to
encode complex information structures in a value. A sensor value, for example, could be
the temperature in Kelvin. A collection of the temperature values of the last hour with
a recording frequency of one minute that are all encoded into one sensor value instead is
not within the scope of this model. The same holds for an actuator. An actuator value,
for example, could be the brightness of a lamp in lux that an actuator has to adjust. A
plan when to turn the lights on and off within the next hour encoded into one actuator
value instead is also not within the scope of the model. The basic idea is to focus the
control logic in the representation to allow for simple sensor, actuator and tag modules.

Concept 25 (Sensor datum) Every sensor has a name and logs values with a times-
tamp. A sensor datum consists of three fields: the name of the sensor, the actual sensor
value and a timestamp when it was recorded.

Figure 4.12: Structure of a sensor datum

Concept 26 (Actuator datum) Every actuator has a name and accepts actuator val-
ues. A actuator datum consists of two fields: the name of the actuator module and the
current actuator value.

Figure 4.13: Structure of an actuator value

Both definitions are illustrated in Figure 4.12 and 4.13. Since an actuator value has
to be executed instantly, a timestamp for the execution is not necessary. We neither
define the naming scheme, nor do we define how the values are interpreted. With both
these definitions, we only want to provide the necessary infrastructural means to control
sensors and actuators, so we do not define a terminal list of names and how the actual
values have to interpreted here, since this task is better performed by a group of sensor
and actuator experts – the same approach has been chosen in Jini with the attribute
concept that describe a Jini service: Jini provides only the basic mechanisms to support
attributes, instead of defining the actual categories for describing a Jini service.

4.3. CONCEPTS FOR SMART THING ENTITIES 53

4.3 Concepts for smart thing entities

A smart thing consists of a thing and a representation. Since we do not manipulate
the actual thing, apart from attaching a tag to it, the concept ”thing” needs no further
consideration, so that we only need to refine the descriptions of the representation and
the smart thing in general in the following.

4.3.1 Representation

From the above definitions, we already know that a representation possesses an identi-
fier, which is the same for the tagged thing, and that a representation has two addresses.
One address, the home address, refers to the name of the service that knows the current
address of the representation. The current address in turn refers to the name of a service
that actually hosts the representation. The task of a representation is to encapsulate the
additional functionality of a smart thing within the virtual world, so that a representation
must be realized as some piece of software. We do not demand the actual implementation
of a representation, e.g. as a web service or as a CORBA object, but we do demand the
differentiation between static code and dynamic state data to efficiently support migra-
tion of representations within the virtual world. The efficiency gain results from the fact
that the same type of smart things typically but not necessarily possess the same static
code, so that the code only needs to be migrated once, when many representations of the
same type have to be migrated. However, the dynamic state data needs to be migrated
for each representation separately. Since we envision myriads of smart things with their
representations, the actual implementation has to be realized highly efficiently concern-
ing the usage of computer memory and the required time to instantiate and to execute a
representation. At the same time, the implementation should allow a range of represen-
tations to be realized, varying from a very passive behavior to a very active one. On the
one hand, a very simple representation, for example, may have no real dynamic state and
may only answer requests with static and pre-programmed responses. On the other hand,
a powerful representation may actively control its sensors and actuators, store its whole
history and cooperate with other smart things and applications. The actual description
of a representation can be kept short, since we have already given many implementation
hints above that are not part of the description. Figure 4.14 shows the structure of a
representation.

Concept 27 (Representation) A representation is a piece of software that encapsu-
lates the additional functionality of a smart thing. It consists of static code and dynamic
state data. The migration of a representation is achieved by migrating the code and the
state data separately. Representations of the same type of smart things may share the
same static code. A representation has two addresses: the home address refers to the
”home service” that returns the current address, where the representation is hosted by a
”hosting service”. A representation possesses two ”communication channels” that allow
for communication with the sensor and actuator modules on the tag. A representation is
able to communicate with other representations or with ”applications”. A representation
has the same identifier as its associated thing.

The home service, the hosting service, the communication channels and the applica-
tions will be introduced later. The representation itself provides a lean generic communi-
cation protocol, since its functionality is highly application-dependent, so that only those

54 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

Figure 4.14: Structure of a representation

functions are defined that are absolutely needed by the infrastructure. This approach is
comparable to the object concept in object oriented programming languages: since the
behavior of an object is highly application-specific, the object class itself provides only
methods of managing the object, e.g. providing a hash code for data storage, means for
synchronization, a human readable representation, information about the type and so on.
Here, a representation provides access to its identifier, its current symbolic locations and
its physical positions, among other data, and it provides information about which other
protocols it supports. With the last function, every smart thing or application is able to
check whether a smart thing provides a certain function by asking the smart thing for its
communication protocol.

We already mentioned the history concept, which is a rather general concept. Every
past state data can be part of a smart thing’s, i.e. of a representation’s history. That
means that the current state and the static code of a representation cannot be part of its
history.

Concept 28 (History) Only past state data can be part of a representation’s history.
The history of a smart thing refers to the history of its representation.

We explicitly do not demand that a smart thing must implement the history concept
to allow for simple representations.

4.3.2 Smart thing

Some concepts rather refer to the smart thing as whole instead of to the representation
only, although it is implemented by the representation. Three such concepts are binary
relations of smart things that are needed so frequently that they should be supported by
the infrastructure:

• Containedness

• Composition

• Neighborhood

The simplest concept is containedness, which refers to the fact that one smart thing,
i.e. a tagged thing, is physically fully contained by another smart thing, e.g. a supply
part is fully contained by a truck. One reason for this relation is that properties of
the containing smart thing can be handed down to the contained smart thing, such
as the location or sensor values – the temperature, for example. Another reason for

4.3. CONCEPTS FOR SMART THING ENTITIES 55

it is that some applications might depend on such structured information, e.g. that a
smart transport container contains certain smart supply parts. A last reason is that
containedness is the prerequisite for a location model for smart things, as required by the
general STILM.

Concept 29 (Containedness) Containedness is a binary relation between two smart
things. It is given when the dimensions of one smart thing are fully within the dimensions
of another smart thing. If one thing is only partly within another smart thing then a
third party, e.g. the producer of a smart thing, has to provide a logic that decides on that
relation. The relation is asymmetric and transitive and not reflexive.

Another relation that is similar to containedness is composition. If a smart thing is
composed of other smart things then the first also contains the others. The difference
is a logical: with composition we express that one thing structurally consists of other
smart things. If such a smart thing that is part of another smart thing is missing, then
the other smart thing changes its character. One example shows the difference between
composition and simple containedness: a cupboard contains cups and consists of a door.
If we take out some cups, the cupboard still remains a cupboard, but if we demount the
door, the cupboard becomes a shelf. Besides the pure logical differentiation between the
two concepts, it also has some practical aspects. While the containedness relation refers
mainly to the usage of a product and is highly dynamic, the composition relation, in con-
trast, is more static and refers to the production, disposal, and maintenance process that
occur rather rarely during a product’s lifecycle, e.g. it might be beneficial to check after
a truck has arrived at its destination whether smart things that should be contained by
the truck are still in the truck, but it is unlikely that one of its tires is missing. Another
aspect refers to the passive and active behavior of a smart thing: when an active smart
thing becomes part of another smart thing it makes sense that this smart thing becomes
passive to avoid too much communication between all the parts. A car, for example,
consists of several thousand parts and if all of these parts become smart and every part
wants to communicate with every other part at the same time, this might exhaust the re-
sources, such as communication bandwidth. Structures like containedness and especially
composition provide the means that can also be used for the communication between
smart things, i.e. the root of the containedness tree may coordinate the communication
within its tree.

Concept 30 (Composition) Composition is a specialization of containedness. Two
smart things or a third party have to decide whether two smart things are part of each
other.

Again, whether a smart thing is part of another smart thing or is contained by a
another smart thing is not obvious, but rather application-specific. Either an application
determines whether a smart thing is contained by or is part of another smart thing at all,
or the location determines it, if the location of one smart thing is within the dimensions of
another smart thing. Within an assembly process, for example, an assembly application
might decide on which smart thing is part of another smart thing and configures the
smart things accordingly.

Besides the two aspects that two smart things are in a relation if one contains an-
other, another relation makes use of the collocation of two smart things that we call the
neighborhood concept: such a relation postulates that two smart things are neighbors,

56 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

which means from a symbolic location’s point of view that they are close to each other.
It is more likely for two smart things to collaborate when they are collocated: if the tem-
perature sensor of a smart thing breaks, it can ask one of its neighbors for the current
temperature, since the temperature for two collocated smart things should be approx-
imately the same. The neighborhood relation can be absolute or relative: an absolute
neighborhood refers to all the smart things that are in the smallest location that con-
tains both smart things. A relative neighborhood means two smart things are neighbors
relative to a certain location. Figure 4.15 shows two sets of nodes that are neighbors. An
example for a neighborhood relative to the location kitchen is the following: a mug is a
neighbor of the chair, but the mug is not a neighbor of the cupboard, since it is contained
by the cupboard.

Concept 31 (Neighborhood) Neighborhood is a binary relation between two smart
things. It is symmetric and transitive but not reflexive. Neighborhood means that two
smart things share the same symbolic address. Absolute neighborhood means that both
smart things are located at the smallest symbolic location, whereas relative neighborhood
refers to a certain symbolic location where both smart things are located. Two smart things
of the composition or the containedness relation cannot be in the neighborhood relation.

While the containedness and neighborhood relation can be automatically determined
by the infrastructure, the composition relation needs to be explicitly stated by the pro-
grammer, since we do not rely on a global all-embracing ontology. However, with the
three definitions given above, we can draw some conclusions about each relation and the
connection of these relations.

Corollary 5 (Smart thing relations) Smart things that are in the composition rela-
tion are also in the containedness relation. Smart things that are in the neighborhood
relation cannot be in the containedness relation and vice versa. The containedness rela-
tion, and therefor the composition relation, make-up a rooted tree.

Figure 4.15: Example of smart things’ relations

At this point, we can use the above definitions to define more precisely what a smart
thing is – besides the previous definition that a smart thing consists of a thing and a
representation.

4.4. CONCEPTS FOR INFRASTRUCTURE ENTITIES 57

Concept 32 (Smart thing) A smart thing is mobile, it can contain other smart things,
it can be composed of other smart things, and it has its own location model.

It is important to note that a smart thing is mobile and possesses its own location
model, so that a truck also has to be modeled as a smart thing in our model, in contrast
to a static room in a building. Since the association of the room with an identifier and the
physical positions is static, it brings no benefit to dynamically identify and localize the
room since the static result is already known. Unlike a truck, a room would be modeled
as a location in the world location model. Thus, static objects such as buildings or streets
can only be described by a location from the world location model. Mobile smart things
are modeled as smart things that additionally have a smart things location model. While
a truck as a smart thing, which contains other smart things, can communicate with them,
a room modeled as a location cannot communicate with its containing smart things.

A question that might arise is, how are sensors and actuators modeled that are in-
stalled in a room? In such a case, each sensor and each actuator must be modeled as a
smart thing, since they are in principle mobile, i.e. they can be demounted and mounted
again in another room, which would not be possible with a ”logical” room. A tempera-
ture sensor, for example, must be modeled as a smart thermometer. It is not necessarily
a disadvantage that a room cannot communicate with its smart things, since we intend
to put the corresponding application logic for a static region into an application that is
responsible for that static region. Using this modeling scheme, we expect to cover almost
all reasonable real world scenarios. One might find a pathological real world scenario
that cannot be naturally modeled with our model, but the complexity of the real world
is too high to consider the pathological scenarios as well.

4.4 Concepts for infrastructure entities

As a complement to the previous section, we now introduce the concepts of the infras-
tructure, which consists of the tag detection system and the managing services.

4.4.1 Tag

The tag as part of the physical world builds the connection with a thing by attaching
the tag to the thing. To support the four basic abilities, i.e. identification, localization,
sensors and actuators, a tag defines four corresponding groups of modules that cover the
necessary communication for it. At minimum, a tag needs to define an identification
module that covers two tasks: first it has to store an identifier and second, the module
must be able to transmit the identifier to the service infrastructure. The other three
module groups are optional. One of them, the second module group, contains localization
modules, e.g. a GPS module that measures its own location through the support of
at least one localization technology, and that transmits such localization data to the
representation. The next module group, the sensor modules, e.g. light sensors, are similar
to the location modules: they must measure sensor values and transmit sensor data to the
representation. The last module group, the actuator modules, e.g. LEDs, must be able to
receive actuator data coming from the representation and to execute these ”commands”.
A direct connection between the tag and the representation is not necessary, so that
there might be other entities that intercept the communication between the tag and the
representation. A tag with its modules can be seen in Figure 4.16

58 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

Concept 33 (Tag II) A tag is a software/hardware unit that is attached to a thing and
consists of four modules. The software part is optional. The identification module is
obligatory and is able to transmit its stored identifier. The localization module is optional
and is able to transmit measured localization values as localization data. The sensor
module is optional and is able to transmit measured sensor values as sensor data. The
actuator module is optional and is able to execute received actuator commands. A tag
belongs to a hardware-specific class of tags.

Figure 4.16: Structure of a tag

The definition states that the software part is optional, since bar codes, for example,
are only available as visual signs that are unable to process software instructions.

4.4.2 Tag reader

The tag reader as part of the physical world and the infrastructure is also the entity in the
physical world that builds the connection to the virtual world. Its main task is to detect
the hardware-specific tags within its coverage space. It is recommended that the coverage
space is also represented as a location in the location model. The tag reader optionally
provides a localization module, e.g. one that uses lateration together with some other
nearby tag readers, that determines the physical position of the tags within its coverage
space and transmits a localization datum to the representation. As part of the path
between the tag and the representation, the tag reader has to forward the identification,
localization, sensor and actuator data. The structure of a tag reader is shown in Figure
4.17. A tag reader can be installed in the static world or in a dynamic smart thing. The
latter can be classified in real dynamic means of transport, such as trucks, freighters, or
airplanes, and more static containers, such as fridges or boxes.

Concept 34 (Tag reader II) A tag reader is a hardware/software unit that is installed
in the world or in a smart thing and that detects hardware-specific tags within its coverage
space. The coverage space is also represented as location in the location model. It option-
ally possesses localization modules that measure the physical positions of the tags and is
able to transmit the corresponding localization data in the direction of the representation.
It forwards the identification, localization, sensor, and actuator data between the tag and
the representation.

4.4. CONCEPTS FOR INFRASTRUCTURE ENTITIES 59

Figure 4.17: Structure of a tag reader

4.4.3 Tag detection service

The tag detection service is the last part of a hardware-specific tag detection system
that also consists of the tags and the tag readers. It is part of the virtual world and
the infrastructure. Together with the tag reader, it builds the bridge between the real
world and the virtual world. Its main task is to control a tag reader. Besides the
localization modules of the tag and the tag reader, the tag detection service might also
provide a localization module that can be regarded as a default localization module if
neither the tag nor the tag reader provide a localization module. This localization module
just provides the symbolic name of the covered space of the tag reader. As part of the
path between the tag and the representation, the tag detection service has to forward the
identification, localization, sensor and actuator data. Figure 4.18 shows the tag detection
service and the other entities related to it. The default location manager will be described
next.

Concept 35 (Tag detection service II) A tag detection service is a service that con-
trols a tag reader. It optionally possesses a localization module that returns the symbolic
location of the coverage space of the tag reader as a localization datum to the represen-
tation. It forwards the identification, localization, sensor, and actuator data between the
tag and the representation. The ”default location manager” is the next entity to the
representation.

Figure 4.18: Structure of a tag detection service

In a nutshell, depending on where the localization takes place and whether physical
positions or symbolic locations are used, four combinations are possible:

1. a tag detection service determines the symbolic location: an RFID reader with its
coverage space defines a symbolic location,

2. a tag reader determines the physical position: a GPRS reader with other GPRS
readers determines the physical position by lateration,

60 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

3. a tag determines the symbolic location: an infrared beacon receiver mounted on
the tag receives the symbolic location beacon,

4. a tag determines the physical position: a GPS module mounted on the tag computes
its physical position.

Figure 4.19: Structure of a tag detection system

Figure 4.19 summarizes the three entities of a tag detection system and shows their
dependencies as well as how they are connected through communication channels.

4.4.4 Home service

The home service can be regarded as an access point for a representation in the virtual
world, since it is referenced by the identifier of a smart thing. It is one of the managing
services that uses the name part of the identifier to look up the corresponding data of the
representation. Its virtual location is used for the home address part of the identifier, i.e.
the home address of the identifier references the home service where the necessary data
concerning the representation is stored. As already mentioned, a representation consists
of static code and dynamic state data. A home service uses a code storage service and
a data storage service to store both parts of a representation. The name part of an
identifier of a smart thing is used to look up the code or the state data in each case.
Additionally, a home service also stores the current address of the representation, i.e.
where the representation currently resides in the virtual world. The structure of a home
service is shown in Figure 4.20.

Concept 36 (Home service) A home service is a managing service. It uses a data
storage service and a code storage service to store the static code and the dynamic state
data of a representation. It uses the name part of an identifier to look up the current
address of a representation. The home address of an identifier references a home service.

Concept 37 (Data storage service) A data storage service is a service which uses an
identifier or its name part to look up and to store the corresponding dynamic state data.

Concept 38 (Code storage service) A code storage service is a service which uses an
identifier or its name part to look up and to store the corresponding static code.

4.4. CONCEPTS FOR INFRASTRUCTURE ENTITIES 61

Figure 4.20: Structure of a home service

4.4.5 Hosting service

A hosting service is another managing service that provides the actual execution envi-
ronment for the representations. If migration is supported, the hosting service that itself
is hosted on a computer should be physically close to the tagged thing to enable efficient
communication between the representation and the tag. Migration can be interpreted
as meaning that the representation tries to follow its thing through the world and tries
to be as close as possible to it. Since the home service indirectly knows the current
hosting service, it is able to return the current address of a representation that indirectly
references the hosting service. A representation can be executed by every hosting service
so that a representation, i.e. its code and its state, can be migrated from one hosting
service to another. A hosting service might use a code service to cache the static code
for future use again. A data storage instead is obligatory: a representation can use this
data storage to keep its data private at this hosting service. If a representation is asked
to shut down at a certain hosting service, the representation can write its state data to
the local data storage to keep it private or it can use the central data storage at the
home service where it can be accessed from every hosting service. Besides the data and
the code storage service, a hosting service also makes use of an event bus service. Such a
service provides a local event bus for the asynchronous communication with the represen-
tations. At minimum, a representation will be indirectly notified by the hosting service
after the representation has been instantiated with a start event and when a represen-
tation needs to be shut down with a stop event. Before a representation is finally shut
down, the representation receives a final grace period that is used for two purposes: first,
a representation can use the period to correctly shut down and second, during this grace
period it can be migrated to another hosting service. The event bus service can also be
used by the representations or other services for asynchronous communication. As part
of the path between the tag and the representation, the hosting service has to forward
sensor and actuator data. All entities are shown in Figure 4.21. The mentioned events
and states are shown in Figure 4.22

Concept 39 (Hosting service) A hosting service is a managing service. It is the ex-
ecution environment for representations. It provides a data storage service for represen-
tations. It also provides an event bus service. At minimum, this service is used to notify
the representation to start and to stop. It forwards the sensor and actuator data between
the tag and the representation. It has a reference to a default hub location manager to de-
termine the managing hub. The current address of a representation indirectly references
the hosting service where a representation is executed. The default hub location manager
is needed to update the home service.

62 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

Concept 40 (Representation states) A hosting service provides a state machine for
every representation: initially, a representation is in the not executing state. A manage
event triggers the transition to the instantiation state. After the instantiation has been
completed, the representation is in the executing state. The hosting service triggers the
representation with a start event. Triggered by an un-manage event, the representation
gets to the grace state. The hosting service triggers the representation with a stop event.
After a predefined grace period time, the representation is in the clean-up state or if a
re-manage event occurs the smart thing is again in the executing state and the represen-
tation is again notified by a start event. After the clean-up by the hosting service, the
representation is again in the not executing state.

Figure 4.21: Structure of a hosting service

Figure 4.22: State machine of a hosting service for a smart thing

The above definition showed the concrete state transition and the event communica-
tion between the hosting service and the representation (see Figure 4.22). For a hosting
service to be able to migrate a representation, a representation needs to provide the state
data that can be migrated after it has received the stop event.

Concept 41 (Event bus service) An event bus service is a service which provides the
means for asynchronous communication between services and representations by providing
the publish/subscribe pattern. Representations are addressed with their identifier and
services are addressed by their virtual address.

4.4.6 Location manager services

The location manager services, which are part of the managing services, are the last
piece that brings all other parts together. The location manager services consist of

4.4. CONCEPTS FOR INFRASTRUCTURE ENTITIES 63

several location services that we also call location managers. A location manager is
responsible for a certain location, i.e. for a set of physical positions with symbolic names,
and has to provide location-dependent services, e.g. determining the smart things in the
neighborhood of a certain smart thing. We differentiate between three kinds of location
services that are mainly driven by performance considerations: a base location service,
a hub location service, and a super location service. A base location service, which is on
the lowest level, is responsible for managing a smart thing. It knows whether itself or one
of its children manage a certain smart thing. A hub location service, one level above, is a
special base location service that is referenced by the current address of a representation.
A hub and its bases beneath build a location domain, which is illustrated in Figure
4.24. Thus, the current address of a representation only references the location domain
in which the representation is managed. A home service only knows the hub service,
which represents all bases beneath it, where the smart thing is handled, so that the
current address does not need to be updated every time a smart thing moves to another
base of that hub. Location services above hub location services are called super location
services; these are not able to manage smart things and do not even know whether a
smart thing is managed by one of its descendants, so that their only task is to provide
anonymous, but location-dependent services. In Figure 4.24, for example, the ETH node
can be asked for all the inventory of the ETH, which is a very complex query that should
not be executed too often. Since we allow different symbolic location trees that might
overlap, the corresponding location managers also overlap. The only restriction is that
a hub cannot be a descendant of another hub within one location model, and that a
hub cannot overlap with another hub. Figure 4.24 shows three hubs with their location
domain and two other important facts: first, one location manager, i.e. the Haldeneggsteig
4 / IFW hub is referenced by two different super location managers and second, the
fridge hub represents the location domain of a smart thing and it is referenced by a
base of the world location model. In general, we can distinguish three cases of how two
location services can be in relation with each other: first, a location service could be fully
part of the other, second, a location service could partly overlap with another location
service, and third, two location managers are disjunctive. This distinction is necessary
to determine the responsible base location service for a smart thing. In the first case, the
base location service is responsible for where the smart things are contained, in the third
case, the smallest base that contains the smart thing is responsible. Every base references
a hosting service where the representation is actually executed. If it is not possible to
find an unambiguous smallest base, all smallest bases that contain the smart thing have
to reference the same hosting service. Due to the overlapping character of the location
manager, more than one hub could be an ancestor of a managing base. In such a case,
when a smart thing moves from one base to another base, the managing hub only changes
if the old base is not one of the new base’s ancestors. If a smart thing was offline, i.e. it
was not detected by any tag detection reader, and a new hub needs to be selected, every
hosting service has a default hub that will be selected. Since applications for smart things
are mostly location-dependent, e.g. a warehouse management system is interested in the
check-in and check-out area as well as the actual storages, the application can register
with location managers, which provide an event bus service to notify the applications
about the entry and the exit at the monitored location. Applications can ask the location
manager for the hosting service of a smart thing to contact the smart thing.

Concept 42 (Location managers) Location managers are managing services. There

64 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

is a one-to-one mapping between locations and location managers. A location manager
can have child location managers. A location manager can ask its child nodes for the
smart things in its location. A base location manager knows whether itself or one of its
children manages a smart thing. It has a state machine for every smart thing: initially,
the state for a representation is unknown. When one of its children manages a smart
thing then the state is known. The state is managed when a location manager manages
a smart thing. In such a case, a reference to the corresponding managing hosting service
is stored. Every location manager has an event bus service. Applications can register at
a location manager. A location manager notifies applications about the entry and exit of
smart things.

Besides the functional aspects of location managers, they also build a hierarchy, which
is described in the following.

Concept 43 (Location manager hierarchy) A base location manager can only have
base location managers as children. The location manager graph selects the smallest
location managers as managing location managers. All base location managers up to the
next hub will be set to known. Every base location manager has a default hosting service
that is contacted if a base has to manage a new representation. Overlapping smallest
bases have the same default location manager. Every base location manager supports the
neighborhood concept. A hub location manager is a base location manager and can be
referenced by a current address. A super location manager can have other super location
managers or hubs as its children. A base location manager has to contact the home service
in case a representation is not already locally managed in order to obtain the previous
hub and possibly the code and the state data if no hub was managing the representation.

A location manager with its entities is illustrated in Figure 4.23, and the mentioned
states can be seen in Figure 4.25. The above definition states that all bases on the path
between the hub and the managing bases are set to known and the managing bases are
set to manage, and the hub is registered at the home service, so that an entity that is
interested in the current hosting service first asks the home service for the managing
hub. The managing hub knows all paths to the managing bases, which in turn know the
hosting service of a representation. One could ask why the path from the hub to the
managing base does not directly store a reference to the hosting service. The answer is
that this scheme allows for local migration of the representation without notifying the
above nodes.

Figure 4.23: Structure of a location manager

4.4. CONCEPTS FOR INFRASTRUCTURE ENTITIES 65

Figure 4.24: Example location manager graph

Figure 4.25: State machine of a base location manager for a smart thing

66 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

In a nutshell, location managers manage the locations of smart things in the real
world and they also reference the actual executing hosting service of that smart thing.
They support the neighborhood concept.

4.5 Procedure of registering a smart thing

After the presentation of each of the infrastructural entities, i.e. the tag, the tag reader,
the tag detection service, the location manager services, the home service and the hosting
service, that are needed to couple a smart thing, i.e. a thing with its representation, we
now can describe how these entities cooperate in detail.

4.5.1 Communication channels

We already mentioned that the identification, localization, sensor, and actuator data
need to be communicated coming from the tag in the direction of the representation. For
this purpose, we now introduce communication channels. We have two communication
channels between the tag and the location manager graph, which are used to transmit
the identifier and the localization data between the tag and the location manager graph.
We have another two communication channels between the tag and the representation to
transmit the sensor and actuator data, as can be seen in Figure 4.26. To support these
logical communication channels, the entities on the path need to store communication
handles that transparently handle these issues. To enable the communication from the
tag to the representation, the tag, the tag reader, the tag detection service, the contacted
location manager and the hosting service each associate a representation communication
channel handle with the identifier for that smart thing. Conversely, the representation,
the hosting service, the contacted location manager, the tag service, and the tag reader
each associate a tag communication channel handle with the identifier for that smart
thing. The situation is similar with the communication channel between the tag and
the location manager graph. A tag detection reader has a reference to a default location
manager, which is responsible for the location that is referenced by its localization module.
The tag reader as well as the tag have a communication channel handle that forwards
the identification and localization data to the location manager graph.

Concept 44 (Communication channel) A communication channel connects a tag
with the location manager graph or a tag with its representation. The entities in be-
tween have to make sure that such a communication channel can be established. The
communication channels between the tag and the location manager graph are used to
update the location manager graph with the current location of an identified entity. The
communication channel between the tag and the representation is used to exchange sensor
data and actuator commands. A communication channel is opened when a tag comes into
the coverage space of a tag reader and is closed when the tag leaves the coverage space.
If a communication channel is open, the smart thing is online, otherwise it is offline.

It is important to note that communication channels are only logical entities. They
allow the concrete communication details of all the involved entities to be disregarded.
A tag, for example, might directly contact a location manager and transmit its identifier
and its location. Nevertheless, the communication is still transparently handled by the
other entities in-between.

4.5. PROCEDURE OF REGISTERING A SMART THING 67

Figure 4.26: Interaction overview

4.5.2 Identification process

Every time a tagged thing comes into the coverage space of one of its technology specific
tag readers, the responsible tag detection service has to ensure that it gets to know the
identifier of the tagged object, which is used to identify the smart thing. This information
is required by the infrastructure to manage the smart thing and also for applications,
which in the majority of cases depend on the identity of a smart thing. This is done by
intercepting the identification communication channel between the tag and the location
manager graph by means of the tag detection service. It uses the identifier protocol to
retrieve the identifier from the tag:

• get identifier

– request: <no parameters>

– response: <identifier> or <exception>

This information is then put back into the identification communication channel and
sent to the location manager graph. A request refers to a message that is sent to the tag
and a response refers to a message that is sent from the tag back to the originator of the
request. If a tag directly contacts a location manager then this protocol is not used.

Concept 45 (Identification process) If a tag comes into the coverage space of one of
its tag readers, the tag detection service asks the tag detection reader for the identifier. It
uses the identification communication channel between the tag and the location manager
for that purpose. It uses this channel again to send the identifier to the location manager
graph.

The definition shows that reading out the identifier consists of two steps: the tag
detection service asks the tag detection reader, which in turn uses a proprietary commu-
nication protocol to wirelessly contact the tag to read out the identifier and to hand it
over to the tag detection service. We do not define in this scheme who plays the active
role although we require that the tag detection service asks the tag detection reader. On
the one hand, an active tag could trigger the tag detection reader, which in turn triggers
the tag detection service, and on the other hand, a tag detection service periodically

68 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

polls a tag detection reader, which in turn periodically scans its coverage space for new
tags. These two examples or combinations of both are covered by this process. Another
example is an ID module that consists of a WLAN module and a GPS module and the
WLAN module is only used as access to the Internet. In such a case, the ID module has
to contact the location manager graph directly with the GPS data. This also shows that
a communication channel is a purely logical concept.

4.5.3 Localization process

It is up to the tag detection service to find out which of the four localization types exist.
By definition, at least the localization module of the tag detection service can be used,
since the coverage space of a tag detection system has to represent a symbolic location,
and the tag detection service has to determine the location of a tagged thing with at
least one localization method. It is up to a localization policy for the tag detection
service to define which localization types and how many should be used, since it is a
trade-off between accuracy, time and power usage. If a tag detection service needs to
contact the tag to obtain its location data, it uses the location protocol via the localization
communication channel:

• get module names

– request: <no parameters>

– response: list of <module name> or <exception>

• get location value

– request: <module name>

– response: <location value>, <timestamp> or <exception>

This simple protocol defines one statement that returns a list of the module names
and another statement that returns the current location value for a certain localization
module. A localization module is mounted on the tag, whereby only one location module
of one localization technology is allowed. The result is sent to the location manager
graph, which uses this information to update its records, among other things.

4.5.4 Update of the location managers

We still need to explain how exactly the registration at the location manager graph works.
The whole process can be roughly divided into three phases:

1. Retrieval of old and new nodes of the graph

2. Migration or instantiation of a representation

3. Update of old and new nodes of the graph

In the first phase, we have to determine all the relevant nodes of the graph that are
currently involved in managing the representation and that are designated to manage a
smart thing, since all of these nodes have to be contacted and updated. These nodes

4.5. PROCEDURE OF REGISTERING A SMART THING 69

comprise the current hosting service, the designated hosting service, the current hub, the
designated hub, the current managing bases and the designated managing bases.

A tag or a tag detection service contacts the location manager graph with three data:
the identification data, the localization data and an event type, which either can be
an entry event when a tag first comes into a location, an exit event when a tag leaves a
location, an update event when the position within the location changes, or a detect event
when the location changes without explicitly using entry and exit events. First, we take a
look at an entry event and assume that an exit event for the former location has already
occurred so that the representation is in the grace state or has already been unloaded.
The processing of such an entry event can be roughly divided into three phases:

Phase 1 Independently which node in the location manager graph is contacted, the
request will be forwarded by means of the localization data to all bases that contain the
specified location and none of their children contain the location, so that all ”smallest”
bases are known. A designated hosting service can be found in the set of all designated
bases’ default hosting services. The designated hub can also be found in the set of all
designated bases’ default hubs. Next, the corresponding nodes of the current managing
graph needs to be determined. First, it will be checked whether the representation is
already locally managed by asking all designated bases for the state of the representation.
Every base has to store whether itself or one of its children manages a representation, and
if none of them manages a representation a base can ask its default parent node. If the
representation is managed locally then all managing bases can be retrieved, otherwise,
the home service will be contacted to ask for the current hub, which in turn will be
contacted to find all managing bases in its location domain. In both cases, all managing
bases are known and the hosting service as well as the managing hub can be determined.

Phase 2 In the second phase, the new hosting service has to be determined in order to
decide on a migration, an instantiation or a remaining of the representation. If the cur-
rent hosting service is element of the designated hosting services then the hosting service
remains. If no current hosting service exists, then the code and the state has to be down-
loaded from the home service. If the current hosting service is not part of the designated
hosting services a new hosting service has to be selected and the representation needs to
be migrated from the current hosting service to the selected. The hosting service with
the smallest load factor will be selected – the load factor is the quotient of the currently
managed representations and the maximum number of manageable representations at a
certain hosting service. Normally, a hosting service should be referenced by bases of the
same location domain, if not, every hosting service has a default hub, so that the new
hub can also be determined.

Phase 3 In the third phase, the nodes will be updated: the old hub has to be notified
that it is no longer managing the representation, which also forwards this message to all
of its children that have managed the representation. At the new location domain, every
managing base and all bases in the known state update their records and forward the
message to all parent nodes until the message reaches the hub. If the representation has
been newly instantiated, the procedure for the old location domain must be disregarded,
since in that case, no old location domain exists. However, in both cases, the home
service needs to be updated with the new hub. If the hub remains the same, only a local

70 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

migration has to take place, so that the home service does not need to be contacted and
only the local branch needs to be updated. After the update, every managing base stores
a reference to the new hosting service and stores the localization data it is responsible
for, and starting from the hub, all paths to all managing bases will be marked with a
reference to the child nodes that contain one of the managing nodes.

Update event In the case of an update event, only the localization data at the corre-
sponding managing bases will be updated.

Exit event In the case of an exit event, the hosting service will be notified so that it
will put the representation into the grace state. If within the grace period, a migration
request occurs, the code and the state data can be transmitted, or if a remain request
arrives, the representation will be put back into the manage state. If the grace period
elapses, the representation will be unloaded and the state data is written back to the home
service; in addition, the current hub will be unset and the state of the representation at
the location domain’s bases will be set to unknown.

Detect event A detect event is similar to the combination of an entry and exit event;
the old location will be handled as if an exit event had occurred and the new location will
be handled as if an entry event had occurred. In this case and all other cases above, the
implementation is expected to merge all the steps for performance reasons, e.g. a home
service can be asked for the old hub and updated with the new hub at the same time.

4.5.5 Sensor and actuator communication

Besides the actual management of the location, both channels between the tag and its
representation also have to be established to allow a representation to retrieve sensor
values and to control the actuators. As with the identification and localization channel
that is managed by the entities between the tag and the location manager graph, the
channel between the tag and the representation is also managed by these entities and the
hosting service. The location manager that has been contacted first by the tag detection
system stores the necessary handles for the adjective to identify this communication
channel to enable a communication channel from the representation to the tag and vice
versa. For these two channels the sensor protocol and the actuator protocol are used:

• direct access

– get module names

∗ request: <no parameters>

∗ response: list of <module name> or <exception>

– get sensor value

∗ request: <module name>

∗ response: <sensor value>, <timestamp> or <exception>

• subscription

– set subscription

4.5. PROCEDURE OF REGISTERING A SMART THING 71

∗ request: <module name>, <subscription policy>

∗ response: <ack> or <exception>

∗ callback: <module name>, list of <sensor value>,

list of <timestamp>

– get subscription

∗ request: <module name>

∗ response: <subscription policy> or <exception>

• offline callback

– set offline callback

∗ request: <module name>, <offline callback policy>

∗ response: <ack> or <exception>

∗ callback: <module name>, list of <sensor value>,

list of <timestamp>

– get offline callback

∗ request: <module name>

∗ response: <offline callback policy> or <exception>

The first group provides two methods to access the sensor modules directly: the first
one is used to determine the module names of each sensor module that is integrated into
the tag, and the second one returns the current sensor value for a certain sensor module.
Often, the sensor data is needed at a certain frequency, so that the sensor protocol
provides two methods to set and get a subscription policy that includes rules such as
the frequency or aggregation of data. A callback is used to notify the representation
about new sensor data. Since we cannot assume that the tag is online all the time, we
introduce two statements that allow for recording sensor data when the smart thing is
offline. When a smart thing is online, it can set and get an offline callback policy that
specifies the rules for a sensor module to record the sensor data when its tag is offline.
When a senor module is online again, it uses a callback to notify the representation about
the data that has been recorded while the tag was offline.

Concept 46 (Sensors) A tag can possess sensor modules. A tag can possess at most
one sensor module of a specific sensor name. The tag and the representation can commu-
nicate via the communication channel using the sensor protocol. The localization modules
are a subset of all sensor modules.

A tag can also directly access the localization modules of a tag. From a tag point of
view, there is no difference between a sensor module and a localization module, so that
the sensor types list also enumerates all available localization modules that are integrated
into the tag. A representation can access a localization module the same way it accesses
a sensor module.

Similarly to the handling of the sensors, the actuator protocol defines what kind of
data can be exchanged between both entities:

• direct access

72 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

– get module names

∗ request: <no parameters>

∗ response: list of <module name> or <exception>

– get state

∗ request: <module name>

∗ response: <actuator state>, <timestamp> or

<exception>

– set state

∗ request: <module name>, <actuator state>

∗ response: <ack> or <exception>

• offline state

– get offline state

∗ request: <module name>

∗ response: <actuator state>, <timestamp> or

<exception>

– set offline state

∗ request: <module name>, <actuator state>

∗ response: <ack> or <exception>

One of the two groups of statements refers to the direct access if the tag is online: the
get module names statement returns a list of all module names of the actuator modules
on the tag. The corresponding get and set statements allow for getting and setting the
current state of the actuator – the simplest actuator only provides two states: on and
off. Besides the online state that is used when the tag is online, we also provide an offline
state that is used when the tag goes offline. This function is mainly intended to turn
an actuator off, since the representation cannot turn an actuator module off, e.g. to save
energy, when its tag is in the offline state. We do not define a complete list of actuator
types either, for the same reasons that were given for the sensors above.

Concept 47 (Actuators) A tag can possess actuator modules. A tag can possess at
most one actuator module of a specific actuator name. The tag and the representation
can communicate via the communication channel using the actuator protocol.

In principle, we could define the interfaces of all introduced entities in the same way
as was done with the four protocols for the basic abilities, but we think that the interfaces
for the other entities and their interdependencies are straightforward, so that it would
unnecessarily overload the model, which is not the case with the basic abilities that have
been shown.

4.6 Extensions

In the previous section, we only considered the case in which a smart thing does not
contain any other smart things, its tag is only recognized by one tag reader at the same
time and, it possesses exactly one tag. In the following, we describe the differences to
the section above when these restrictions are canceled.

4.6. EXTENSIONS 73

4.6.1 Containedness

As described earlier, a smart thing can contain other smart things, which can be identified
in two ways: first, one localized object is within the range of another localized object,
and second, a smart thing has its own tag detection system that detects smart things
within it.

In both cases, the containing smart thing spans its own location domain with a hub
and optional bases, which have to be registered, or unregistered with the static world
location manager graph every time the containing smart thing enters or leaves a location.
A smart thing can do that after having received the start or stop event. The bases of the
smart thing have to point to the hosting service where the smart thing itself is executed.
Independently of where the containing smart thing currently resides, the location domain
of the contained smart things does not need to be adapted, since the hub of the smart
things remains the same. The whole situation is illustrated in Figure 4.27.

Figure 4.27: Simple containedness

In the second case, which we also refer to as implicit coupling, the smart thing pos-
sesses its own tag detection system as well as a home and at least one hosting service. The
advantage is that the representation is always and implicitly executed by its own hosting
service, so that the home service implicitly and statically points to its own hub. Every
containing smart thing is also executed by one of its own hosting services. If another
localization system than the internal tag detection systems detects a smart thing and an
external hosting service could be used, then one of the internal hosting services must be
used to support the mobility of the containing smart things, together with its contained
smart things. The more complex scenario is shown in Figure 4.28. We differentiate two
application types where implicit coupling is helpful and also possible in the near future:
first, a means of transportation as smart thing, e.g. a smart truck, smart plane or smart
freighter, and second, smart containers, e.g. a smart fridge or a smart tool box.

4.6.2 Simultaneous detection of the same tag

The principal problem that arises here is that we would have several communication
channels to a tag although physically only one tag exists, so that the management would
no longer be unambiguous. On the one hand, many tag detection system prevent such
situation by using handover schemes, e.g. WLAN or GPRS, or by demanding the whole
detection process, e.g. RFID where interferences of several antennae do not allow the

74 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

Figure 4.28: Complex containedness

RFID tag to be detected. On the other hand, some systems explicitly allow multiple de-
tection of the same tag, e.g. Bluetooth with a Scatternet or RFID with time-multiplexing
of the antennae. We assume that such a situation can only occur within the same location
domain. In such a case, the bases of the second tag reader also become managing bases
that point to the managing hosting service, and its localization data will be stored too.
If the first tag detection reader now generates an exit event, only the old bases need to
be unset and the representation can still be managed by the same host.

4.6.3 Smart things with multiple tags

A smart thing may posses several tags, e.g. a bar code and an RFID tag. In such a
case, both tags can be detected simultaneously, which can be handled in the same way as
described above with the simultaneous detection of the same tag, except that a separate
communication between the representation and the tag needs to be opened. If only one
tag of a smart thing now leaves the range of its tag reader, only that communication
channel needs to be closed, so that the other is still open.

Since all of these three extensions to the simple procedure are complementary, the exten-
sions can be combined, e.g. a smart thing with two tags is contained by another smart
thing whose tag is detected by tag readers.

4.7 Application logic

The last aspect we have to consider is the connection of the application logic with our
infrastructure. First, the application logic can be put in the representation itself, which is
able to communicate with other representations, or separate applications register them-
selves with the location managers, so that applications can communicate with repre-
sentations and vice versa. Both, representations and applications can ask the location

4.8. LIFECYCLE 75

manager for other representations or applications, which enables them to communicate
among themselves. Third party applications can also be used by connecting them via
an application that acts as a proxy at the location manager. Chapter 6 shows how an
application logic is distributed over the example application that has been mentioned in
Chapter 2 with several smart things.

4.8 Lifecycle

In general, we distinguish between the lifecycle of a thing and its representation. Roughly,
a thing’s lifecycle consists of not defined, active, and inactive where both transitions are
trigged by the end of its production and the final disposal of a product. The corresponding
states of a representation are: not defined, online, offline and inactive. The states online
and offline refer to the fact that the representation is not always hosted by a hosting
service. Since a representation is bound to an existing thing, the online and offline states
of a representation can only occur if the corresponding thing is in the active state. The
online and offline states change if a tag enters or leaves the coverage space of a tag
detection system, and the other state transitions are triggered by the activation and
deactivation of the tag. The whole state machine for the thing and the representation
is shown in Figure 4.29. Although a representation is not inevitably bound to the thing
and many pathological situations may occur – for example, the thing is inactive and the
representation is online, we do not support these situations, so that they are not defined
in the lifecycle model.

Figure 4.29: State machines of a smart thing for its lifecycle

4.9 Summary

We defined a smart thing as a combination of a thing and a representation. Both entities
need to be coupled if a representation wants to provide the additional functionality for its
thing. A tag detection system is used for this purpose: tags are attached to things and
detected by tag readers which are controlled by tag detection services. These services
read out an identifier from the tag and have to make sure that the tag is localized by

76 CHAPTER 4. MODELING OF COLLABORATING EVERYDAY ITEMS

at least one of four different methods. Both pieces of information, i.e. identifier and
location, are sent to a default location manager of the location manager graph. The
contacted location manager has to check whether the representation is already managed
in the local location domain. If not, it contacts the home service using the home address
part of the identifier, which returns the hub location manager of the location domain
where the smart thing is currently managed. A location domain starting from the hub
references the path to the managing base location managers. The managing base location
managers reference the current hosting service where the smart thing is executed. If the
smart thing is either locally or remotely managed, then the smart thing will be migrated
from the former hosting service to the new hosting service. The location manager graph
has to be correspondingly updated, so that the old location domain no longer references
the smart thing and the new location domain correctly references the smart thing. The
home service also needs to be updated with the new hub location manager. If the smart
thing was not managed before at any location domain, the static code and the dynamic
state data need to be downloaded from the home service. A smart thing can use local
data storage to keep its data private at this site or it can use the data storage at the home
service, so that the data is accessible from any hosting service. After a smart thing has
been migrated or newly instantiated, it opens two communication channels to its sensors
and actuators to retrieve sensor values or to control its actuators. Smart things as well
as applications are registered at location managers so that they can find each other and
are able to communicate among themselves. They also use the location managers to be
informed about the neighborhood relation. The containedness and composition relation,
on the other hand, is managed by the smart thing itself.

Chapter 5

Architecture of the Smart Thing
Systems

In this chapter, we show how the concepts of the previous chapter can be implemented
in real systems. The presentation of these smart thing systems mainly serves two pur-
poses: first, it can be regarded as proof-of-concept, since our model only makes sense if
it can be easily and efficiently implemented, and second, it analyzes different implemen-
tation strategies, so that their advantages and disadvantages can be stated. Overall, we
present three systems that have been developed iteratively in order to refine the model
and to explore new implementation strategies. The model that has been introduced in
the last chapter comprises the experiences we have gained with these three systems and
represents the ultimate refinement of these experiences. Initially, we briefly present the
work of our research group that has influenced the first smart thing system called Voxi.
From this system that has been developed bottom-up using Jini as the underlying mid-
dleware platform, we extracted some general concepts for our model. With these first
concepts, we started to complete the model of collaborating everyday items. Next, we
present two systems that implement our model. The main differences between the two
implementations are the usage of different middleware platforms, the design decision on
whether to support migration of representations, and the focus on different parts of the
model. First, we present the Wsst system that builds on Web Services and that does not
support migration. Second, the Iceo project is presented, which again builds on Jini due
to performance reasons and that supports migration. Besides the actual presentations of
the systems, we also look at how each system implements the concepts and we explain
the design decisions.

5.1 Previous work

The actual roots of smart things in general have already been discussed in Chapter 1,
but first ideas about systems that support smart things were first mentioned by our
research group in [70], and the usage of RFID tags as a bridge were first discussed
in [118]. The former demand a virtual counterpart that we call a representation for
everyday items that spans a fifth dimension besides the traditional four dimensions of
our reality that consists of three-dimensional space and one-dimensional time. This fifth
dimension allows for additional functionality for the everyday items which need to be
offered by an infrastructure that has to enable code mobility. In contrast to it, we see

77

78 CHAPTER 5. ARCHITECTURE OF THE SMART THING SYSTEMS

migration of representation only as optional, since migration of representations makes
the systems more complex and does not guarantee the availability of a representation
all the time. One focus is on an event-driven communication platform that is designed
to enable sensors and actuators to communicate with their virtual counterparts in the
fifth dimension. The event-communication can be interpreted as part of our concept of
communication channels. This position statement was followed by [73], which describes
a first application that builds on a simple event-based infrastructure. Depending on
the ingredients that are placed on a kitchen counter, the smart chef application suggests
dishes that can be prepared with these ingredients on a nearby display. An RFID antenna
is mounted beneath the kitchen counter and all items are equipped with RFID tags.
Depending on an RFID tag entering or leaving the range of the antenna, the lowest layer
of their infrastructure generates an entry or an exit event. To avoid flickering concerning
spurious and fast generated exit and entry events, an event filter at one level above uses a
threshold value to filter out such spurious event pairs. Finally, the events are delivered to
the application, which looks up what dishes can be prepared with the current ingredients.
In this first trial of an event-based infrastructure there is no real borderline between the
application and the virtual counterparts. In our model the clear separation between
representations and location-dependent services is one of our key assumptions, but it is
up to the application developer how to distribute the actual application logic between
the representation and location-dependent services. Besides the application and the event
infrastructure, they see that location information, the physical proximity of smart things,
and the need for a virtual counterpart to communicate with other virtual counterparts
or services are general challenges in research into smart thing infrastructures.

5.2 Voxi

Voxi, short hand for v irtual object ex tensible infrastructure, is the first system that has
been developed by our research group without the collaboration of this dissertation’s
author to facilitate the development of applications that make use of smart things. It
provides a software framework (FW) consisting of Java classes to facilitate the actual de-
velopment of applications and representations as well as middleware services (MW) that
can be regarded as the infrastructure that is needed by representations and applications.
In contrast to the event-based infrastructure the smart chef application uses, the border-
line between a virtual object, i.e. a representation, and an application is clearly defined.
This system partly uses the approach of our model to distribute the application logic
between representations and location-dependent services, but the location-dependent ser-
vices are rather like the representations, so that they do not use the full potential of a
clear separation as we will show later. [27] provides a more detailed description of the
system.

5.2.1 Overview

As Figure 5.1 shows, Voxi works independently from the actual tag detection systems
through the usage of an event source that transparently detects objects in the real world
and transmits their objectIDs as well as the locationID of the event source together with
a timestamp to a virtual object manager, which is the central element of the system. The
virtual object manager checks at the lookup service whether the corresponding virtual

5.2. VOXI 79

object and the corresponding virtual location have already been instantiated. If not,
it contacts the virtual object repository to download the code in order to instantiate
them and to register them at the lookup service. Finally, the virtual object manager
forwards the entry event to the virtual location, which in turn forwards the event to the
virtual object. If a virtual object repository receives an exit event with an objectID and
locationID, it tries to unload the corresponding virtual object as well as to unregister
it at the lookup service – a virtual location cannot be unloaded. The artefact memory
can be accessed by virtual objects to persistently store its state. Since this system is
built to be deployed locally and not worldwide, we had to extend the entities that Voxi
proposes to more general concepts, e.g. Voxi only uses non-hierarchic locationIDs to
manage locations, whereas STILM uses a hierarchic approach to support mobile smart
things and static locations as well as symbolic location names and physical positions.

Figure 5.1: Overview of the Voxi system

5.2.2 Components

In the following, we describe every entity that has been mentioned in the overview in
more detail.

Event source The event source can be roughly regarded as the tag detection service
that builds the connection between the real and the virtual world, so that the deployed
tag detection system needs to be coupled with the event source that delivers the generated
events from the tag detection system to the virtual object manager. The interface of an
event source as a Java object is quite simple: first, the event type has to be specified,
i.e. a tag detection system must specify an entry event if a tagged thing comes into the
range of a tag reader and an exit event if it leaves the range. Second, the objectID
must be stated, the intention of an objectID is the same as with the identifier except
that an objectID provides no internal structure, so it can be any Java string. Third, the
locationID must be stated. In this case, location only refers to the symbolic location of
a tag reader. There is no location hierarchy and there is no differentiation between a
tag reader in the static world or within a mobile smart thing as proposed by STILM. A
truck or a warehouse are modeled in Voxi as simple locations. Fourth, a timestamp when
the event occurred is necessary to enable a virtual object to record its history. Finally,
the virtual object manager that is supposed to receive this event needs to be specified.
Since the whole system relies on Jini, the event source asks the lookup service for a
proxy of the given virtual object manager, which then is used to notify the virtual object
manager about the event. The structure of an event source is shown in Figure 5.2. The
main differences to our more general concept of a tag detection service are that the event

80 CHAPTER 5. ARCHITECTURE OF THE SMART THING SYSTEMS

source only supports symbolic location names, does not allow a worldwide distribution
and has a strong focus on RFID as the underlying identification technology.

Figure 5.2: Structure of an event source

Virtual object manager The virtual object manager can be compared with the host-
ing service in the model, since the main task of the virtual object manager is to provide
an execution environment for the virtual objects and virtual locations. A virtual object
manager is realized as a Jini service that has to register itself at the lookup service, so
that other entities, such as the event source, can contact it. For every entry or exit
event that a virtual object manager receives from the event source, it creates a thread
to process the event. In the model, the processing of these events is handled by the con-
tacted location manager, but Voxi has no location hierarchy so that the processing can
be directly carried out by the virtual object manager. In the case of an entry event, the
entry thread first checks at the lookup service whether the virtual location and object of
the corresponding reported locationID and objectID have already been instantiated. On
the one hand, a virtual location might already been instantiated because another virtual
object has already been there, on the other hand, a virtual object might already been
instantiated since it might have been detected at another location before. If one of them
needs to be instantiated, the virtual object repository will be contacted first to download
the corresponding Java class file that is found by simply appending .class to the objectID,
or locationID. After the instantiation of the virtual location or the virtual object, they
can be registered as a Jini service at the lookup service. Finally, the entry thread for-
wards the entry event to the virtual location, so that the latter can update its records. If
a virtual object manager receives an exit event, it starts a new exit thread that processes
this event: first, it gets a proxy of the corresponding virtual location from the lookup
service to forward the exit event to the virtual location. After the corresponding virtual
object has been stopped, the virtual object manager will be notified and unregisters the
virtual object at the lookup service. The main difference to our hosting service is the
missing option to distribute the whole system. In our model, the location managers are
responsible for finding an appropriate hosting service. In this case, the hosting service
can be contacted directly by the tag detection system.

Virtual object repository The virtual object repository is similar to the code service
in the model. In the Voxi implementation, the virtual object repository is just a regular
HTTP server that stores the Java class files. The name resolution is implicitly done by
the entry thread of the virtual object manager, since it appends the .class to the objectID,
or locationID.

5.2. VOXI 81

Lookup service Since Voxi relies on Java, RMI and Jini, the lookup service is taken
from Sun’s Jini implementation. There is no direct match with a concept from our model,
since RMI and Jini are subsumed as underlying network technology and therefore only
an implementation detail. Every virtual object manager, virtual location and virtual
object is registered at one central lookup service. Due to this one central lookup service,
a system can only be deployed locally which does not fulfil our requirements.

Virtual location A virtual location in Voxi represents the coverage space of a tag
reader. Every location has an identifier: the locationID, which is used by entry and exit
events to state the virtual location. Dependent on the tag reader, a virtual location can
either be static, e.g. the tag reader is mounted in a room, or it can be mobile, e.g. the tag
reader is installed in a truck. In our model, only a truck as a smart thing can have its
own application logic, but in Voxi all virtual locations, including the static locations, can
have their own application logic. A virtual location that has its own execution thread is
instantiated by an entry thread the first time the virtual location is referenced. Two main
tasks have to be fulfilled by a virtual location: first, it stores the references of all smart
things that are currently within its corresponding coverage area. With these references,
a virtual location is able to provide the absolute neighborhood concept, so that smart
things can communicate with their neighbors at this location. The second main task is
the provision of an event bus for the smart things that are managed by this location.
A virtual location receives entry and exit events from the corresponding threads of the
virtual object manager to update its own records and to notify the virtual objects about
their own events. Besides forwarding the entry and exit events, virtual objects can publish
and subscribe for arbitrary events at a virtual location. A developer is free to extend
the standard virtual location class to implement a location-specific behavior. In Voxi, a
virtual location comes closer to our representation than it does to an actual location in
our model. In our model, where we can have several more complex and powerful services
that can register themselves at a location manager for a static location, Voxi allows only
for simple virtual location implementations that we only use for representations.

Virtual object Virtual objects, in our model referred to as representations, encapsu-
late the additional behavior of a smart thing. Every virtual object has its own execution
thread and is registered as a Jini service at the lookup service. It is instantiated by the
entry thread of a virtual object manager and it gets its entry and exit events through the
virtual locations, which it can also use to publish or to subscribe for application-specific
events. The Java interface of a virtual object is lean: it provides three methods to start
and to stop the virtual object as well as to get a timestamp when the virtual object was
used recently. The stop method is only a signal for a virtual object to shut down as soon
as possible, but there are no real restrictions as to whether or when a virtual object really
shuts down. After receiving the entry and the exit event, a virtual object can use the
artefact memory to retrieve or to store its state data. To learn about its environment,
a virtual object has a list of references to all virtual locations where it currently resides.
The references to the virtual locations can be used for event communication or to get
to know the neighbors at these locations. Besides its objectID, a virtual object has a
description that can be used to encode additional information about the type and the
instance of the virtual object. A developer has to extend the basic virtual object class
to implement a smart thing’s specific behavior. Figure 5.3 shows the relation of a virtual
location and a virtual object. From all entities in the Voxi system, the virtual object

82 CHAPTER 5. ARCHITECTURE OF THE SMART THING SYSTEMS

comes closest to one of our concepts: the representation. A representation has an identi-
fier, is able to communicate with other representations and locations, i.e. with registered
services. It gets a start and a stop signal from the hosting service. A smaller difference
here is that we propose a grace period after the stop signal, where representations get a
chance to save their state and to properly release used resources before they are definitely
shut down by the system. In the Voxi system, it is up to the representations whether
they shut down or not after the stop signal.

Figure 5.3: Relation of a virtual location and a virtual object

Artefact memory Although the artefact memory can be regarded as independent
service, it is modeled as a virtual object that resides at the ”pure” virtual location
”Virtopia”. Its main task is to implement the history concept, and since it is centrally
available, every virtual object can use it to store received events or its state data, so that
the artefact memory can also be regarded as data storage. Due to its central availability,
applications can query the artefact memory for past information, such as which smart
thing was at a certain location together with another smart thing. The artefact memory
uses a standard database management system that is contacted via JDBC, so that SQL
queries can be easily posted to the artefact memory. Another important difference to
our model is that we have two kinds of data storages: one at the home service, where a
representation can store public data, and another at the hosting service, where a repre-
sentation can store private data. Due to the central availability of the artefact memory,
it can only provide public data.

Communication The basic communication paradigm in Voxi is event communication,
which is supported by virtual objects, virtual locations and virtual object managers.
These entities provide a lean communication interface that consists of a request and a
notify method that both accept a Voxi specific event. The request method additionally
returns an event as an answer. An entity that needs to communicate with another entity
has two options: it can use a virtual location as event bus, it uses an event delivery
manager object that hides the lookup process at the lookup service and directly delivers
the event to the corresponding entity. An entity can also directly make use of RMI to
call methods on other entities – prior to this, the lookup service can be used to get a
reference to that entity if it is not already known. The actual event management also
relies on RMI. In our model, we also propose event bus services at hosting services for local
asynchronous event communication and the option to use synchronous communication
between representations themselves, and between representations and location-dependent
services.

5.3. WSST 83

Extensions Besides the actual virtual objects and locations, Voxi provides virtual meta
objects and virtual meta locations. A meta object is a regular virtual object that man-
ages several things in the real world, so that mapping between their objectIDs and the
responsible virtual meta object is required. This task is fulfilled by the virtual object
repository where static files with the objectID as filename denote the virtual object class
that needs to be instantiated. Thus, the implementation of a virtual object that acts as
a virtual meta object has to make sure that it can process several entry and exit events
for every thing it is responsible for in parallel. Analogously, the same also applies for
virtual locations. These meta-concepts are contradictory to our definition of a smart
thing that is a one-to-one mapping between things and representations, so we explicitly
do not support such concepts.

5.2.3 Comparison with the smart things model

In comparison with the smart things model, the Voxi system already implemented or
partly implemented some of the concepts of the smart things model, as has been shown
above, but some important aspects are missing in this first system: one of these concepts
is the support of sensors and actuators that are not generically supported by Voxi, or
the structural aspects of a smart thing concerning containedness and composition or of
the location management in general. Migrations of virtual objects, e.g. by serializing the
object state, is not supported, but virtual objects can use the artefact memory to store
state data when they receive the exit event and in turn, after having received the entry
event, can retrieve their state from the artefact memory. The main problem is that one
Voxi system can only work as stand-alone system and is not able to work with other
Voxi systems on the Internet. In fact, the virtual meta object approach conflicts with
our definition of a smart thing, which states that it is a unique association of exactly one
thing and exactly one representation, and also the artefact memory as a service cannot
be modeled as a smart thing in our model. Table 5.1 summarizes the main tasks of the
different elements of the Voxi system.

5.3 Wsst

Wsst, short hand for deployment of web services to model smart things, is the second
smart thing system of our group that has been developed under the supervision of the
dissertation’s author. It builds on Web Services as an underlying service discovery plat-
form, in contrast to Voxi, which builds on Jini. Besides the different service discovery
platform, in Wsst we added some of the missing concepts and also analyzed different
design decisions. In comparison to Voxi, Wsst has a hierarchy of location managers that
allow for smart things to be tracked world-wide, a hierarchy of UDDI servers that allows
users to find every representation on the Internet instead of supporting migration and
finally, Wsst allows for composition of smart things so that the location information can
be handed down. Similar to Voxi, Wsst is a system that consists of a software framework,
in this case with C# classes, and some middleware services. A report [101] provides a
more detailed description of the system.

84 CHAPTER 5. ARCHITECTURE OF THE SMART THING SYSTEMS

Element Type Realization Main tasks
Event source MW Java object connection for tag

detection systems
Virtual object MW Jini service download code for virtual
manager objects and locations,

instantiates them,
registers them

Virtual object MW Web server provides code
repository (Java class files)
Lookup service MW Jini service manges references to

virtual objects and locations
and virtual object managers

Virtual location FW Jini service neighborhood relation,
event bus for representations

Virtual object FW Jini service encapsulate additional
functionality

Table 5.1: Summary of Voxi elements

5.3.1 Overview

As Figure 5.4 shows, a tag detection system is responsible for detecting the tagged things
in its range. When such a tagged thing comes into the range of a tag detection system,
the latter has to read out an identifier (URI) stored on the tag. Using this URI, the
tag detection system contacts a hierarchy of UDDI servers to resolve this URI into the
corresponding URL of a web service that acts as the representation for the smart thing.
Note that in Figure 5.4 smart thing refers to its representation. After the resolving
process, the tag detection system calls a method on the representation that updates the
location of the tagged thing. Finally, the representation registers itself at a hierarchy of
location managers, which implement the neighborhood concept. If a smart thing is part
of another smart thing, then its location does not need to be set, since it inherits this
information from its parent node in the composition tree. In comparison to Voxi, this
procedure has no central elements, so that it can be deployed globally.

Figure 5.4: Overview of the Wsst system

5.3.2 Components

Tag detection system Similarly to Voxi, Wsst does not define the actual tag detection
system either, but the interface which a tag detection system can use to register a tagged
thing which has newly appeared. Unlike in our model, the tag detection system does not
need to update the location manager, but the representation directly. This is possible

5.3. WSST 85

since migration is not supported, so that the static representation is always reachable. To
update the representation about its location, the tag detection system has to get to know
the identifier of the tagged thing first, in order to be able to look up the representation
as well as to determine the position of the tagged thing. The identifier in Wsst is similar
to the one we defined in the model. It consists of a name and an address part: the name
is an unique and random UUID that has been generated by a UDDI server where the
representation is registered, the address part consists of a DNS-like name that denotes the
UDDI server where the representation is registered, e.g. uri:pharma.apotis:40a96d21-ee00-
0000-0080-e698e3243f5a with pharma.apotis as DNS-like name and 40a96d21-ee00-0000-
0080-e698e3243f5a as UUID. The tag detection system consults a hierarchy of UDDI
servers that returns the URL where the representation can be accessed. Before the tag
detection system can update the representation, the location still needs to be determined.
This can be done in an arbitrary way, since the location model supports the WGS 84
standard and a symbolic naming scheme similar to the one defined in the symbolic world
location model. Finally, the symbolic location of the tag reader can be used to call the
set-location method of the representation.

UDDI Hierarchy As explained in 3.1.2, UDDI servers normally build a service cloud.
Since they are originally intended to store references to business services on the Internet,
a service cloud is an appropriate means for their management. In our case, we have
to handle many more entities, since every representation needs to be registered at the
service cloud, the service cloud might break under the registration load, so that a structure
within the UDDI servers would be helpful. For this purpose, we developed a DNS-like
naming scheme and algorithm that allow UDDI servers to partition the registrations of
representations. The DNS-like address consists of UDDI server names that are separated
by dots, e.g. ”pharma.apotis” whereby ”pharma” as well as ”pharama.apotis” denote
a UDDI server. This approach is compatible with the identifier concept in our model,
where we only state that the address part of the identifier depends on the underlying
network technology. Since we use UDDI as underlying technology, we have to use an
addressing scheme that is compatible with UDDI. If a representation should be looked
up, the algorithm first checks whether the current UDDI server is already the right UDDI
server. If not, it forwards the request to one of the UDDI servers on the path to the right
one. After the right UDDI server has been found, the UUID of the name can be used
to look up the URL of the representation. The UDDI hierarchy, i.e. the actual UDDI
server that stores the reference of a representation, can be regarded as a simple home
service, although it does not provide data and code storage. These are only necessary
if migration is supported. Since the UDDI server requests delay execution, every entity
can make use of a UDDI cache that only contacts the UDDI server hierarchy if the URL
for the requested URI has not already been cached. Figure 5.5 shows an example UDDI
hierarchy.

Web server Since Web Services normally communicate via HTTP, a web server is
needed that is able to process the SOAP messages for the representations in order to
invoke their methods. The web service is comparable to the hosting service, since it acts
as an execution environment for representations. This also means that the representation
is available although the thing might currently not be in the coverage range of any tag
reader. On the one hand, since migration is not supported, the system is much simpler to
realize and the representation is always available. On the other hand, the delay between

86 CHAPTER 5. ARCHITECTURE OF THE SMART THING SYSTEMS

Figure 5.5: Example UDDI hierarchy

the tag and the representation is higher and temporary network failures can break the
connection between tag and representation. The Iceo system that will be described at
the end of this chapter supports migration. Since the support of migration is one key
decision when implementing the model into a system, we are able to discuss the pros and
cons.

Smart Thing In Wsst, the smart thing also stands for the actual representation of
a smart thing. A smart thing is realized as a web service without a separate execution
thread and even with a complicated procedure to save the current state data between two
method invocations. Its URL is stored in the UDDI server hierarchy so that the web server
where a smart thing is executed can be contacted by any other smart thing or application.
A smart thing implements a lean C# interface that provides the basic abilities of a smart
thing, which also include the possibility to retrieve its WSDL document where all the
methods of a smart thing are listed. That way, a developer is able to easily extend the
generic smart thing interface to include smart thing-specific behaviour, which is described
in that WSDL document. Common to all smart things is that they know their identifier,
an arbitrary and additional name, their current location, and the location managers where
they have to register and to unregister themselves if they have been updated with a new
location. Since smart things implement the composition relation, they also know their
parent and child nodes in the composition tree. This relation needs to be explicitly set by
external applications, for example, the new location is set externally by the tag detection
system. Additionally, this provides a method to retrieve the history of a smart thing that
mainly refers to the visited locations, but can also contain any past state information.
There is no dedicated artefact memory in Wsst, so that every representation stores its
state and its history data in a file in an XML format where it is executed. If a new
location is set by an external tag detection system, a smart thing first has to check if
it is the root of the composition hierarchy. If this is the case, it first unregisters itself
at the old location and then registers itself at the new location at the location manager
hierarchy. The registration process returns all responsible location managers where the
smart thing has been registered. If a smart thing is not the root of the composition tree,
it does not need to update its location, since this information is handed down from the
root in the composition tree. Normally, smart things are rather passive in contrast to

5.3. WSST 87

the representations in Voxi which have their own execution thread, but a smart thing in
Wsst is able to create its own execution thread so that more active behavior is possible.
Figure 5.6 shows the structure of a smart thing. As these explanations have shown, a
smart thing in Wsst is a full implementation of the representation concept of our model.

Figure 5.6: Structure of a smart thing

Location managers The location managers, which are the last piece in the Wsst
system, come close to the definition of the location manager graph in the model. A
location manager that is implemented as a web service, such as the representations, is
responsible for a certain location. A location always has one symbolic name and contains
one contiguous space of WGS 84 positions. Other location managers can be its children if
their locations are real subsets of its location. Two restrictions on the location manager
graph are that exactly one root node with the symbolic name world exists that comprises
all WGS 84 positions and the second restriction is that the graph can only be a tree. A
smart thing needs to be registered at this world node that hands down the registration
request to all location managers that contain the new position of the smart thing but
none of its children. These location managers can be asked for the absolute neighbors of
a smart thing. One main difference to STILM is that the Wsst location model does not
support a dedicated localization within smart things, but allows for smart things that
contain other smart things to register themselves in the mobile branch of the location
tree. Since locations have no behavior, locations can have a reference to a host service
that is a regular smart thing, e.g. the location truck has a reference to the host service
truck. If the location and the smart thing interface is implemented by the same class,
the host service reference points to itself. Since all these functions are listed in a lean C#
interface that must be implemented by every location manager, it can be contacted by
any smart thing or application. Figure 5.7 shows an example location manager hierarchy.
Since migration is not supported, the concepts of super, hub and base location managers
are not as important as they are with systems that support migration. Therefore, these
concepts are implemented in the Iceo system, which explicitly supports migration.

Communication In Wsst, we have no dedicated event communication, since the com-
munication is handled by explicit method invocations. Applications and smart things
can access the location manager tree to get to know the identifiers of the smart things
at a certain location, which need to be resolved first by the UDDI hierarchy before other
smart things can be contacted. All communication issues are transparently handled by
SOAP’s method invocations. Since the focus on supporting sensors, actuators and dif-
ferent localization technologies is put in the Iceo system instead of the Wsst system, we
have no real counterpart of communication channels in this system.

88 CHAPTER 5. ARCHITECTURE OF THE SMART THING SYSTEMS

Figure 5.7: Example location manager hierarchy

5.3.3 Comparison with the smart things model

In comparison with the Voxi system, Wsst comes much closer to our smart things model
with the restriction that migration is not supported: a UDDI server acts as a simple
home service, a web server as a hosting service, a web service as the representation and
a restricted location manager hierarchy is also available. The main restriction of the
location manager hierarchy is that it only allows a tree instead of a more general graph
structure. Location domains and the differentiation between hub, base and super location
managers are not necessary since they are only needed to support migration. The option
to use a smart thing as a host service at a location manager allows for a restricted
containedness relation, since smart things do not have their own location model, but the
Wsst location model is a hybrid location model that uses the WGS 84 standard as well as
a symbolic naming scheme. With the combination of a UUID and the DNS-like address
of a UDDI server, the structure of an identifier corresponds to the identifier introduced
in the model. Besides the implementation of the neighborhood and the history concept,
Wsst also implements the containedness relation that allows for handing down location
information to make the system more efficient. Although Wsst implements more of the
concepts of the model, there are still some important aspects such as the support of
sensors and actuators or the generic support of tag detection systems missing. Due to
the fact that migration is not supported, the implementation of some concepts becomes
much simpler, e.g. a home service does not need to provide the code and the current
state of an object. A better support of the location graph and a better support of the
containedness relation is also missing in Wsst. In comparison with the Iceo system, Wsst
supports no migration. Wsst has its focus on smart thing relations like composition and
Iceo has its focus on the abstraction of different tag detection hardware which includes
sensors and actuators. Table 5.2 summarizes the main tasks of the different elements of
the Wsst system.

5.4 Iceo

Iceo, short for intelligent communicating everyday objects, is the last smart thing sys-
tem that has been developed under the supervision of the dissertation’s author that, on

5.4. ICEO 89

Element Type Realization Main tasks
UDDI hierarchy MW UDDI server maps URI to URL of

smart thing web service
Web server MW Web server execution environment

for smart things
Smart thing FW C# web service encapsulates additional

functionality
supports composition

Location managers MW C# Web Services neighborhood concept
supports mobile locations

Table 5.2: Summary of Wsst elements

the one hand, implements the missing concepts and, on the other hand, considers per-
formance aspects. In comparison to the previous systems, it has a dedicated support
for tag detection systems, sensors and actuators, and it allows for efficient migration of
representations. Due to the poor performance of the web service approach, Iceo again
builds on Jini as the underlying service discovery platform. The implementation is much
more complex since it relies on the work of three master theses in contrast to Wsst and
Voxi, each of which only builds on the work of a single master thesis. Thus, Iceo can
go deeper into the analyzed aspects. The reports [30, 107, 124] provide a more detailed
description of the system.

5.4.1 Overview

In this overview, we assume that a smart thing is detected the first time. A hardware
specific scanner detects the tagged things within its coverage space and informs its base
about this fact with the identifier that has been read out and the symbolic location of
the scanner system. The identifier consists of a name and a home address as described in
the model – the location can either be a symbolic location or a physical position of the
detected tagged thing. Bases are comparable with base location managers in the model
that are arranged in a tree structure with a hub as the root of this tree. Since the base
as well as its child nodes process this identifier the first time, they forward the execution
request toward the hub. In our case, the hub has not processed the identifier before,
either, so that it uses the home address part of an identifier to contact the home service,
in this case called producer. The producer knows the hub where the representation is
currently executed as well as the static Java code. Since the representation is currently
not managed anywhere, the producer sets the requesting hub as managing hub and
returns the static Java code to the hub. The hub and the other bases on the path
to the base with the scanner that detected the smart thing, hand down the code and
mark the way to the managing base with the identifier. The managing base has its own
object manager as a hosting service that instantiates the representation. The scanner
module creates two communication channels to the sensors and to the actuators that are
given to the representation. After the instantiation, a representation can ask the base
for neighbors and can use both communication channels to control the sensors and the
actuators. If the smart thing leaves the range of scanner A.1 and enters the range of
scanner B.1, the representation will be migrated from base A to base B and the paths

90 CHAPTER 5. ARCHITECTURE OF THE SMART THING SYSTEMS

from the hub to the old and the new managing base will be updated. Figure 5.8 shows
the important components of Iceo. As these explanations show, the main concepts of
the model, especially home service, hosting service, location managers, communication
channels and the tag detection system including sensors and actuators are implemented
by Iceo. Relations of smart things such as containedness or composition are not part of
Iceo, since these concepts were already focused on in Wsst. Since the implementations
of these concepts are not interdependent, one implementation is sufficient.

Figure 5.8: Overview of the Iceo system

5.4.2 Components

Scanner In contrast to the previous two smart thing systems, Iceo’s framework part
provides the basic classes to model tag detection systems. In Iceo, scanner stands for the
tag reader that scans for tags in its coverage space. Although the control of the tag de-
tection hardware is hardware specific, some common properties of different tag detection
hardware can be extracted: first, a tagged thing is modeled as a real object that possesses
an identifier and a hardware-specific address that is used by the tag reader. Then, these
real objects are managed in a real object pool that states whether a real object is detected
or not. The scanning interface represents the actual tag detection service that detects
these real objects. The four localization combinations, i.e. the symbolic location or the
physical position of a tag or its reader are modeled and integrated into the tag detection
process. A hardware specific solution, e.g. a bar code solution, only needs to extend
these basic classes with the hardware specific behavior. Currently, Iceo has implementa-
tions for bar codes, BTNodes and RFID i-Code tags, which provide their functionality
as Jini services. Besides the identification and localization issues that are handled by the
scanning component, the communication with sensor, actuator and localization modules
is also supported. For every component that is supported by a specific tag detection
system, a correspondent Jini service will be instantiated that handles the communication
with the modules on the tag, e.g. if a tag possesses several sensors and actuators, a sensor
and an actuator Jini service will be created that handles the communication with all tags
concerning the component’s sensors, or actuators. Thus, Iceo allows for communication
channels, as mentioned in the model, between a tag and its representation. Figure 5.9
shows the four module groups of a tag that provide their functionality as Jini services.

5.4. ICEO 91

Figure 5.9: Tag modules provided as Jini services

Base A base in Iceo, in fact, is not the same as a base location manager in the model,
but comes close to it. One base can control several scanners, and it provides the execution
environment for the representations, for all of its scanners. Bases that are higher in the
tree hierarchy should be responsible for scanners that cover a larger area, which in turn
contains the areas of its child bases’ scanners, e.g. a WLAN tag detection system that
covers a floor can have several RFID tag detection systems as child nodes that cover only
single rooms. From the hub to the hosting base, every base stores information on whether
itself or one of its children is hosting a representation as mentioned in the model. The
setup of the base tree is not predetermined, but rather takes into account which and how
many scanners are installed and how many representations need to be hosted. As rule of
thumb, it can be stated: the more scanners or representations that have to be managed,
the larger the base tree. Every base which is a Jini service, has its own lookup service,
where all services belonging to this base are registered, i.e. the hardware specific scanners
as well as the optional sensor, actuator and localization services are also registered at
the lookup service of the base where the scanner is managed. Every base has its own
base location service, another Jini service, which manages the locations of the identified
smart things of the managed scanners, so that queries about smart things’ neighbors can
be posted to that service. A base has exactly one parent and several child nodes. These
nodes do not directly reference the corresponding node, but its lookup service. This
can be advantageous if one of the nodes crashes, since the lookup service manages such
situations. The actual execution of a representation is handled by an object manager that
is described below. Figure 5.10 shows the lookup services of a base, hub and a producer
and the minimum set of Jini services that are registered there.

Hub As the root of the base tree, a hub builds the connection to the producer (home
service). Like a base, it knows which of its child nodes is hosting a certain representation.
If a hub is asked for a representation that is not managed by its tree, it contacts the pro-
ducer service which returns the hosting hub or if no hosting hub exists, a producer service
can provide an initial version of a representation. Unlike the model, a hub is not a special
base, but a separate entity that cannot control scanners or manage representations. Its
main task is just to build the bridge to the producer. Like a base, a hub is also registered
at its own lookup service, where its own hub location manager is registered, too. Since
a hub cannot host a representation, the hub location service contacts the corresponding
base location services, e.g. a hub location service can be requested to return references
to all smart things of its base tree.

92 CHAPTER 5. ARCHITECTURE OF THE SMART THING SYSTEMS

Figure 5.10: Lookup services with registered Jini services

Producer A producer can be compared with the home service in our model, since it
is referenced by an identifier and it knows at which base in the tree its representations
are currently managed. Analogous to the base and the hub, a producer is a Jini service
that is registered at its own lookup service, which also contains a proxy for a producer
location service that, for example, returns the current location of an object by consulting
the corresponding base location service. The main task of the producer service is to
update its hub entry, so it can be asked for it, and to provide an initial instance of a
representation whose code is retrieved by a mapping between identifiers and Java classes.

Object Manager The object manager can be regarded as the heart of the whole
system, since it provides the actual execution environment for the representations, so that
it is comparable with the hosting service in our model. An object manager registers itself
at the base location manager to be informed about the appearance and disappearance
of tagged things. These asynchronous notifications are handled by a dedicated event
manager. In comparison with our model, the event manager corresponds to the event
bus service. Since one of our requirements for the Iceo system was that it needs to be
efficient, the object manager uses a task manager to process the events instead of creating
an individual thread for every event and every representation as in the Voxi system. For
every event there is a corresponding task, e.g. an entry task for an entry event or a
migrate task if a representation needs to be migrated. Depending on the task load, the
task manager can create or shut down worker threads that process the tasks. An object
manager itself generates events to inform other object managers about the treatment of
a representation: a manage event indicates that it started to manage a representation,
a migrate event says that a representation will only be managed for the started grace
period and finally, an unmanage event is generated after the grace period has elapsed and
the representation has been locally deleted. With these three events and the two events
from the base location service, every object manager administrates a state machine for
every representation that has been mentioned in one of these five events. Finally, an

5.4. ICEO 93

object manager retrieves a representation instance from another object manager where
the representation is in the grace state, or an initial version from the producer. After
having received the representation via RMI, an object manager triggers the representation
with a manage event to start and a migrate event to stop its execution. Figure 5.11
shows the structure of an object manager. The management of representations, including
starting and stopping of a representation, implements the procedure of our model.

Figure 5.11: Structure of an object manager

Element Type Realization Main tasks
Tag detection FW Jini services basic support for identification,
system localization, sensors, actuators
Base MW Jini services location management

for representations
Hub MW Jini services bridge between bases and

producer
Producer MW Jini services provides code

knows current hub
Object manager MW Jini services executes representations
Representation FW Java object encapsulates additional

functionality

Table 5.3: Summary of Iceo elements

Representation The actual representation is a simple Java object that must be ex-
tended for smart thing specific behavior: it has references for two optional communication
channels to control its sensors and actuators, it knows its identifier, it has a reference to
its object manager and an additional reference to a storage provider that is comparable
with the data service in the model which can be used to store and retrieve state infor-
mation. Since the characterized functionality is quite limited, a representation provides
a generic way to inform others about its capabilities by stating the Java interfaces it
implements. In the same way, it provides a generic mechanism so that applications and
remote representations can access the representation: if an entity needs to be contacted
that is not executed in the same JVM as the representation, an RMI object is created
that handles the communication with the local representation. A last important aspect
of a representation is the event notification: a representation provides a method to be
informed about starting and stopping and about any other event it has registered for.

94 CHAPTER 5. ARCHITECTURE OF THE SMART THING SYSTEMS

Normally, a representation does not have its own, costly execution thread, since the event
notification is handled in the event handler thread, which can be used by the representa-
tion for short actions. If a representation or an application wants to communicate with
another representations, both can contact the bases for a reference. Thus, the represen-
tation in Iceo is a complete implementation of the representation concept of our model.
In contrast to Wsst, Iceo supports migration of representations.

5.4.3 Comparison with the smart thing model

The third smart thing system, Iceo, comes very close to the smart thing model. In com-
parison with the other systems, it provides generic support for the tag detection system
and provides communication channels between the tag and the representation to control
sensors and actuators. The base tree roughly corresponds to the location manager ser-
vices of the smart thing model, the object manager represents the hosting service, and the
producer stands for the home service. In a final implementation of the smart thing model,
the base tree of Iceo and the location managers of Wsst need to be merged. Additionally,
the full STILM model and the three extensions: containedness, simultaneous detection
of the same tag, and smart things with multiple tags needs to be properly supported.
The containedness and composition relation has not been implemented in Iceo, since it
has already been tested in Wsst, but smart things with multiple tags are already partly
supported in Iceo. Table 5.3 summarizes the main tasks of the different elements of the
Iceo system.

Chapter 6

Evaluation of the Smart Thing
Systems

The overall goal of smart thing systems as has been explained in Chapter 2 is to enable
and to facilitate the development of applications that make use of smart things. In this
chapter, we want to evaluate the smart thing systems presented in Chapter 5 and the
concepts of Chapter 4, which these systems implement, with the smart supply chain ap-
plication that has been introduced in 2.3. Our evaluation consists of two parts: first, we
want to evaluate qualitatively the development of an application in order to determine
whether and how the systems actually facilitate the development of smart thing appli-
cations. Second, we want to evaluate the systems in a quantitative manner to find out
whether they are suitable for deployment in real world scenarios.

6.1 Qualitative evaluation

The qualitative evaluation considers all aspects concerning the setup of middleware ser-
vices and the actual development of the business logic in smart things and dedicated
applications. As a generic example, we chose the smart supply chain application, since
it covers different locations and hierarchies of smart things, and this application comes
close to an application that can be deployed in reality. First of all, we describe the com-
mon procedure used in every smart thing system for developing an application. We then
describe how we modeled the business logic that is independent from the smart thing
system deployed. Since Voxi and Wsst do not provide any support for a tag detection
system, we describe the RFID framework that was originally developed for simple RFID
applications to work independently of an arbitrary underlying RFID hardware. We con-
nected the RFID framework with all three systems in order to receive entry and exit
events from monitored RFID tags. After this preparation, we describe the deployment of
the smart supply chain application and the setup of the middleware services, first with
the Voxi system, followed by the Wsst system and finally with the Iceo system.

6.1.1 General deployment scheme

Besides the development of the business logic, we have to consider some more aspects
that mainly refer to the installation and the setup of the tag detection system. The
following list summarizes the important aspects concerning the tag detection system:

95

96 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

• attaching the tag to the thing

• loading an identifier on the tag

• installing the tag readers in the physical environment or within a smart thing

• associating a symbolic location name to the tag detection service

• setup the localization policy of the tag detection system

It also depends on the deployed technology whether the attachment of the tag or the
upload of the identifier comes first. A bar code, for example, always needs to encode
and print the identifier first before it can be attached to a thing. An RFID label, on the
other hand, might be programmed after it has been attached to a thing. The installation
of the tag readers normally require that a symbolic location name is associated with the
tag detection service that acts as address for all detected tagged things in the detection
space, but this is not absolutely necessary, since a tag detection system or the thing itself
could determine the physical position. Which localization technology is finally used is
determined by the localization policy, which has to be interpreted by the tag detection
service. The environment can be extended step by step by attaching new tags to things
and by installing new tag readers. This means in turn that a start with only one tag
reader and several tagged things is possible. While the installation of the tag readers,
which should occur rather rarely, always requires manual work, the programming of the
tags and their application on the thing can be automated within the production process
of a thing.

After the hardware issues have been addressed, we next have to setup the middleware
services. This roughly comprises the following tasks:

• startup and setup a home service on a computer

• download the representation code to the home service

• association of the identifiers with the code at the home service

• startup and setup of hosting services

• startup and setup of bases, hubs and super location managers

• connecting location managers, tag detection services and hosting services

The startup and setup process of one of the above mentioned entities also includes the
setup of the underlying network technology. If Jini is used, the necessary components
such as the RMI daemon or the lookup service need to be started. In general, the
computers where the services run should be configured in such a way that they restart
the services after a reboot. The startup of a home service is a rather rare event, since
it is only necessary when a new provider of representations comes on the market or if
an existing provider of representations gets another home address for its representations.
In this case a new home service is required, i.e. for every home address that is part of
the stored identifier on a tag, there is exactly one home service. More frequent is the
introduction of a new representation. In that case, the static code has to be uploaded
to the home service. Most frequent, though, is the registration of a new identifier at the

6.1. QUALITATIVE EVALUATION 97

home service. Such a registration is needed to map an identifier to its code. The startup
of hosting services as well as location managers normally also occurs rather rarely, since
such a startup is mostly a consequence of the installation of a new tag reader. The setup
of location managers requires the allocation of symbolic names and physical positions:
while the former is mostly straightforward, e.g. one takes the room number as name,
the latter can be more complicated, since the exact physical coordinates of a certain
space are not always easy to determine. The actual connection between the location
managers, the tag detection service and the hosting service is straightforward and can be
comfortably made with a GUI by an administrator that is responsible for the deployment
of that system at a site (location domain). The only task that might be automated is the
association of the identifier with the code at the home service: if a tag is automatically
applied on the thing and if the production process knows which code should be used
for the products it is producing, the production process can automatically register the
identifier at the home service.

The final and last block in the deployment of a smart thing system is the actual
development of the business logic which roughly comprises the following tasks:

• development of the representation

• development of the application

• connection with proprietary systems

First, it is necessary to determine how to distribute the business logic over represen-
tations, smart things applications and existing applications. Normally, it is clear whether
a function is part of a smart thing or of an application that solely communicates with
smart things, but this is not really predetermined: in the smart supply chain example,
the smart things can either check themselves in with the existing warehouse manage-
ment system, or an application that monitors the check-in area checks them in. Since
existing systems normally cannot communicate with smart things, an additional appli-
cation that acts as bridge is necessary. However, existing systems and even applications
are not mandatory: the whole business logic could be realized only within the smart
things. Normally, the development of new representations occurs more frequently than
the development of new applications, since applications normally cooperate with classes
of different smart things: the application that monitors the check-in area is developed
once, but it is able to communicate with smart things that have been developed later.

In summary, we can state that the deployment of a smart thing system comprises
three major tasks:

• installation of the tag detection system

• startup and setup of middleware services

• development of representations and applications

6.1.2 Implementation of the business logic

No matter which smart thing system is used to develop the smart supply chain applica-
tion, the same aspects have to be considered and the inherent business logic that has to
be modeled is the same for every system. The goal of the smart supply chain application

98 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

is the automation and verification of all steps within a supply chain in order to reduce
the costs and to increase the operation speed. In our small supply chain, a retailer can
send orders for mineral water from different bottlers to a wholesaler. The wholesaler
that processes the order has to check the availability of the ordered mineral water and
to initiate the transport from its storage areas to the check-out area. There, the goods
are loaded onto an ordered truck that drives the goods to the retailer where they are
unloaded. Finally, the retailer has to move the goods from its check-in area to its storage
area. In every step, we want to check whether the right product instances have passed
a predetermined location, and the products should be able to ascertain the temperature
in order to check whether they are stored at the right temperature. The same procedure
also applies to the orders between the wholesaler and the two bottlers – the detailed
procedure is described in Chapter 2.3. In order to implement the smart supply chain
application, we differentiate between five components:

1. warehouse management systems at different locations

2. orders that are sent between these locations

3. order management

4. monitoring application

5. representations

We need a warehouse management system at every location that manages the products
at this location, i.e. which products are currently stored there. We also need to check
whether the right product instances come in and go out. The second point means that
the orders that are sent between the different entities need to be modeled, and since they
have to be processed, the order management has to be modeled separately. We need a
monitoring application that allows us to see what happens at the different locations and
that allows us to send the orders between a retailer and the wholesaler or between the
wholesaler and the bottlers. The last point requires that the products either have to
communicate with the warehouse management system - e.g. a bottle has to communicate
what its content is, in order to be properly stored - or they have to communicate among
themselves, e.g. a bottle asks a thermometer for the current temperature.

Orders We differentiate between four messages that are sent between the different
locations: a goods order states which products and how many are ordered, a transport
order states that a truck needs to drive the goods from A to B, a transportOK is used
to signal that a truck has arrived at a certain location, and finally an ASN containing
the identifiers of the products that have to be shipped notifies all involved parties which
product instances to expect. As Figure 6.1 shows, the common feature of all orders
is that they have a sender and a receiver as well as a sequential number. A goods
order additionally knows which products and how many have been ordered. An ASN
additionally knows the identifiers and the corresponding goods order. A transport order
just has an additional reference to a goods order that triggered that transport and a
transportOK only needs to state to which transport order it belongs to.

6.1. QUALITATIVE EVALUATION 99

Figure 6.1: UML diagram of all order types

Order management Every location that is able to receive at least one of the above
orders needs an order management system that stores and processes the orders. Such
an order manager differentiates between four states of an order, which can be seen in
Figure 6.2: pending, processing, processed and current. Pending means that the order
has been received but still needs to be processed, processing means that the order has
been partly processed and some information is still missing to complete the processing of
this order, processed means that the order has been finally processed and current refers
to the message that is currently being processed by the order manager – only one order
can be the current order at any one time. A second task of the order manager is the
generation of the sequential number for an order: starting from 0, after every request,
the counter will be increased by one. This scheme only allows the sequential number
to be unique for one sender, since each sender has its own order manager, so that the
same sequential number might be generated many times by different senders. A third
task of the order management system is to check whether the right number of product
instances or product types enters or leaves the location it is responsible for. Normally,
the order manager works on the instance level. If it expects some products to arrive,
then it knows the concrete product instances from the ASN. If it expects some products
to leave, then it can recognize the product instances that are leaving the field. There
is one exception when it cannot work on instance level: if a goods order arrives at the
storage area where the product instances are actually stored, the order manager can
only check whether the right amount of the ordered product type has been taken out,
but this reflects the intended behavior in such a case. In order to fulfil this task, an
order manager differentiates between the three states in, out and none: in means that
it expects products to enter its location, out means that it expects products to leave its
location and none means that currently no order is active. If it works on the product
instance level, it uses a set of identifiers, otherwise, it uses a counter for every product
type. Additionally, it knows which product instances are in the field to compare these
with the set of identifiers or the product type counters.

Warehouse management system Every participant in our supply chain has different
internal locations that it has to manage: the wholesaler has one check-in area, two storage
areas and one check-out area, a bottler has at least a check-out area, a retailer has at
least one check-in area and a truck has a loading space. Every location can be the sender
or the receiver of the four different order types and therefore every location uses an
order manager to handle the orders. Although the order manager takes care of a lot of

100 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

Figure 6.2: State machine for an order

the management work that is needed to manage the goods at a certain location, every
location has its own procedure for the treatment of goods. A check-in area, for example,
always tries to forward the goods to the storage area, in order to be able to process the
next delivery, or another example is a truck that cannot load or unload goods while it
is driving. Thus, every location needs its own warehouse management system that takes
into account the special needs of a certain location. To handle the general management
aspects, a warehouse management system uses an order manager.

General tasks that need to be fulfilled by a warehouse management system comprise
the notification of interested parties about certain events, e.g. the reception of an order,
the completion of an order, or concrete instructions, such as the request to move the
goods from the check-out area to the truck. In our case, these messages will be displayed
by the monitoring application. Another task is the subscription for entry and exit events
of smart things that enter or leave the location the warehouse management system is
responsible for. After the reception of these events, the warehouse management system
forwards these events to its order manager, which determines whether the order has been
processed. In such a case, the warehouse management system can signal that all products
are either in or out, depending on the type of order, and the next order can be processed.
In addition, the monitoring application will be notified. All other functions are then
location-specific. Figure 6.3 shows the location-specific state machines of the warehouse
management systems concerning the mentioned states: in, out and none.

Figure 6.3: State machines for warehouse management systems

6.1. QUALITATIVE EVALUATION 101

After a bottler has received a goods order, it performs several tasks: first, it calculates
the amount of boxes and containers that are needed to transport the goods, second, it
checks whether it has enough bottles, boxes and containers, third, it sends a transport
order to its forwarder. The reception of a transportOK from the ordered truck changes
the state from none to out. While the goods are loaded into the truck, the bottler checks
whether the right amount of product types have been taken out. Finally, the allOut
signal again changes the state from out to none and the bottler sends an ASN with the
identifiers of the smart things taken out to the truck and to the wholesaler.

Trucks that receive a transport order start driving to the receiver of the goods order
associated to the transport order. When they arrive at the destination, they send a
transportOK there to signal that they have arrived. They then wait for an ASN that
states which product instances have to be loaded. The ASN also triggers the change
of the state from none to in. After receiving the allIn signal, the truck drives to the
orderer of the goods and changes the state from in to out. Having arrived at the final
destination, it again sends a transportOK and waits until the goods are unloaded: this
event is signaled by an allOut which in turn triggers the state from out to none.

A wholesaler’s check-in area can receive a goods order from the monitoring application
that the wholesaler only needs to forward to its bottlers. A human user can trigger the
goods order with the monitoring application. Next, the check-in area waits for an ASN
that corresponds to the forwarded goods order and for the transportOK of the truck that
is delivering the ordered goods in order to change the state from none to in. It checks
whether the right product instances have arrived by means of the ASN. The allIn signal
triggers the state change from in to out. Next, the goods have to be moved to the different
internal storage areas. Depending on the smart thing, the check-in area knows the right
storage area for each product type. Every storage area receives an internal ASN that
states which product instances have to be moved from the check-in area to each storage
area. Finally, the allOut signal changes the state from out to none and the check-in area
can process the next delivery.

Storage areas of a wholesaler are the connecting location between the goods order
from the wholesaler at its bottlers and the goods order from a retailer at its wholesaler.
In the former case, the goods are brought into the wholesaler’s storage area and in the
latter case, the goods are taken out of the storage area. After the reception of an internal
ASN, its state changes from none to in, and the storage area checks whether the right
product instances have arrived at its location by means of the internal ASN. The allIn
signal triggers the state change from in to none. If an internal goods order from the check-
out area arrives, the storage first checks whether it has the requested number of product
types available and changes its state from none to out. The allOut signal changes the
state back to none and an ASN with the smart thing identifiers is sent to the check-out
area.

If a wholesaler’s check-out area receives a goods order from a retailer, it sends a
transport order to its forwarder, calculates the number of boxes and containers that are
needed to transport the goods, and depending where the product types are stored, it
sends internal goods orders to its storage areas. After reception of the internal ASNs
from its storage areas and the transportOK from the ordered truck, the state changes
from none to in. Until the allIn signal occurs, the check-out area checks the product
instances by means of the internal ASN. If the allIn signal then occurs, the state changes
to out and the check-out area waits until the products have been loaded onto the truck.
Finally, the allOut signal triggers the state change to none, so that the check-out area

102 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

can process other goods orders.
The last location that needs a warehouse management system is the retailer. Analo-

gously to the check-in area of the wholesaler, the retailer forwards goods orders coming
from the monitoring application to the wholesaler. It receives an ASN as well as a trans-
portOK as the answer to the forwarded goods order that triggers the state change from
none to in. By means of the ASN, the retailer checks whether the right product instances
have been unloaded from the truck. The allIn signal then triggers the state change back
to none and the retailer is able to receive new deliveries.

Representations Much of the business logic is already covered by the warehouse man-
agement systems, which use order managers to manage the orders sent. In order to coop-
erate with a warehouse management system, the identification and localization abilities
of a smart thing are necessary, but these are rather passive abilities of a smart thing,
since the identification and localization are mainly actively driven by the infrastructure.
Both abilities are necessary, since the warehouse management system has to ascertain
the identifiers of the smart things within the location it is responsible for. Besides these
passive abilities, a smart thing has to store and retrieve its state, and it must be able
to calculate a statistic concerning the retention period at its visited locations. It should
also be able to inform the monitoring application about its state.

A bottle, additionally, has to know its content, i.e. whether it is mineral water either
from LidWaters or from OpenWaters. The warehouse management system needs this
information to properly store and retrieve the bottles. A bottle also should record the
temperature for quality reasons. This can be done in three ways: either it asks the
warehouse management system for the current temperature, or it controls a sensor, or it
asks one of its neighbors.

Monitoring application The final component that we need for our smart supply chain
application is the monitoring application. This serves three purposes. First, it can be
used as browser for the locations that are managed by a warehouse management system
and the representations within, e.g. the monitoring application shows the current goods
order at a certain location or it shows the statistical analysis of a representation. Second,
it displays the messages of the warehouse management system, such as the request to
start loading a truck or an alarm message of a representation stating the temperature
is out of a predefined range. Third, the monitoring application provides the means to
cause a goods order to be sent from the retailer to the wholesaler or from the wholesaler
to both its bottlers.

6.1.3 RFID framework

Since only the Iceo system provides direct support for tag detection systems, i.e. for bar
codes and BTNodes, we used a system that has been previously developed to support
local RFID applications. By local we mean the RFID hardware, the RFID framework
and the application are connected, or run on the same machine. One application we
developed was the smart surgical kit: a surgical kit contains many small swabs that can
be left behind inside the patient during surgery. To detect such situations we equipped
every swab of the kit with an RFID tag and installed one RFID reader under the surgical
kit and another under the waste bin where the used swabs are disposed. Since the smart
surgical kit application knows the content of one surgical kit, it can infer whether an item

6.1. QUALITATIVE EVALUATION 103

is still in the kit, has already been thrown away, or it can infer that a swab is still in use.
In such applications, the RFID framework allows the application to work independently
of the underlying RFID hardware and allows applications to register for entry and exit
events. The assembly and a screenshot of this application can be seen in Figure 6.4. This
application has been developed for one of the M-Lab partner companies as a technical
demonstration. It does not make use of the concepts presented here. Its purpose is to
show how an application can make use of the RFID framework.

Figure 6.4: Assembly and screenshot of the smart surgical kit application

The framework itself consists of three layers: the hardware abstraction layer (RFID
Controller), the dispatcher layer and the filter layer as can be seen in Figure 6.5.

Figure 6.5: Layers of the the RFID framework

The hardware layer abstracts from the underlying RFID hardware by providing an
abstract controller class that needs to be extended for a specific piece of hardware. This
controller continuously polls the hardware-specific RFID reader for RFID tags in its
field, reads out their serial numbers and puts them into a queue. On the next layer, the
dispatcher layer, the dispatcher takes the serial numbers out of the queue and generates
an entry event if the tag was not seen in the last reading cycle. For every tag of the
last reading cycle that has not been detected in the current reading cycle, an exit event
will be generated. These events are delivered to all registered filters of the filter layer.
Several filters can be plugged together, since a filter only needs to understand the two
RFID events. In our case, we only used one filter to smooth spurious exit/entry event
combinations. One source of these spurious event combinations is the nondeterministic
behavior of most tag detection algorithms: first, the tag reader announces the number
of time slots in which the tags can transmit their identifier. Second, the tags randomly
choose one time slot to transmit their identifiers. Due to the probabilistic choice of the

104 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

time slot, two tags might choose the same time slot to answer and a collision occurs,
so that the tag reader cannot detect both tags in this detection cycle [114, 115]. In the
next detection cycle, both tags might be detected properly, so that a combination of
an exit and an entry event occurs due to the collision in the second reading cycle, as
Figure 6.6 shows. The smoothing filter delays the forwarding of an exit event: it puts
all exit events in a list and forwards them only after a predefined time window no entry
event for the same tag has occurred. If this happens, both events, the previous exit
event and the entry event, will be disregarded. This scheme means a trade-off between
real-time requirements and the occurrence of spurious event combinations. Finally, the
applications of the application layers will be notified of the entry and exit events that
have gone through the filters.

Figure 6.6: Collision of two RFID tags

6.1.4 Voxi

The Voxi system, which is written in Java and builds on Jini, uses a PostgreSQL database
to enable its artefact memory to store the data persistently. In order to run the Voxi
system, we installed the following software and hardware systems:

• Java 2 SDK, Standard Edition, Version 1.4.0

• Jini Technology, Version 1.2.1

• PostgreSQL, Version 7.2.3

• Softronica RFID reader

• Philips i-Code compatible RFID tags

In the following, we will describe the deployment of the smart supply chain application
step by step, as has been proposed in the general deployment scheme. This consists of
three phases: installation of the tag detection system, startup and setup of the middleware
service, and development of representations and applications.

Installation of the tag detection system Identifiers in Voxi (objectIDs) denominate
the Java class that encapsulates the additional functionality of a smart thing. First, we
glued the RFID tags on the 24 bottles, 4 boxes and 2 containers and then electronically
wrote the corresponding class names on the tags: Bottle1..24, Box1..4 and Container1..2.
Next, we had to develop a tag detection service that controls the RFID reader and gener-
ates the entry and exit events that are processed by the virtual object manager. For that
purpose, we simply developed an application that acts as a bridge between the RFID
framework and the event source of the Voxi system, as Figure 6.7 shows. This bridge

6.1. QUALITATIVE EVALUATION 105

registers itself as an application in the RFID framework and receives the corresponding
entry and exit events with the above mentioned objectIDs. One of the bridge’s startup
parameters is the locationID, so that the bridge can use the locationID as well as the
objectIDs from the RFID frameworks to notify the virtual object manager about entry
and exit events. In total, we need nine locationIDs: DistributeAllCI, DistributeAllCO,
DistributeAllStorage1, DistributeAllStorage2, FastDelivery, OnTimeDelivery, OpenWa-
tersCO, LidWatersCO and MigrosCI. Since we have only five RFID tag readers for nine
locations, we have to run the application in two phases, so that one RFID reader has to
manage two locations one after the other. We also need to configure the bridge with the
name of the virtual object manager which is the receiver of the two event types. In our
case, we use the locationIDs as symbolic location names of the tag detection service.

Figure 6.7: RFID/VOM-Bridge

Startup and setup of the middleware services In Voxi, the home service is re-
alized as an HTTP server. Since we use Sun’s Jini implementation, we can use the
HTTP server that is shipped with the Jini implementation. One of the HTTP server’s
startup parameters is the directory that contains the files offered by the server. Thus,
all the downloadable code for the Jini infrastructure as well as the static code of the
representations needs to be copied there. Next, the RMI daemon and the Jini lookup
service can be started, in order to allow the virtual object managers to register them-
selves there. Every participant in the supply chain has its own virtual object manager:
OnTimeDeliveryVOM, OpenWatersVOM, LidWatersVOM, MigrosVOM, DistributeAl-
lVOM, and FastDeliveryVOM, which are all started up then. In order to allow a bottle
to retrieve the current temperature, we registered a smart thermometer at every one of
the nine locations. Since we have no physical thermometer, we simulated such a smart
thing with a random number generator. The smart thermometers can be registered by
creating an entry event with the objectID of the thermometer and the locationIDs of the
nine locations. Then, we have to start the monitoring application for every participant
in the supply chain, to allow the inspection of their locations. Finally, we have to start
the artefact memory at the location Virtopia by generating a corresponding entry event
– the PostgreSQL server has to be started in advance.

Development of representations and applications The orders, the order man-
agement and the monitoring application are independent from the Voxi system and can
be implemented straightforwardly, so that we only introduce the representation and the
warehouse management system.

First, we developed a virtual product class as an extension of the virtual object class
that is provided by the framework. When this virtual product class receives the entry

106 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

event, it contacts the artefact memory to retrieve its state, and when it receives an exit
event, it writes its state to the artefact memory. Additionally, this class provides the
option to ascertain the actual state and the statistical data of the smart thing in order
to allow this information to be displayed by the monitoring application. From this class,
we derived the three specialized classes Container, Box and Bottle. Since all three classes
introduce new fields, the storing and retrieval of the state data at the artefact memory
needs to be extended. A bottle additionally registers itself for temperature events at
its location after it has received an entry event and a stop event triggers a bottle to
unregister for temperature events. Temperature events are published by the smart thing
thermometer that is available at every location. The bottle records the temperature data
and broadcasts a temperature alert if the temperature exceeds a certain limit. This shows
the neighborhood concept in Voxi: a bottle and a thermometer that are registered at the
same location can communicate through events. A bottle can also state its content in
order to be properly handled by the warehouse management system. For every smart
thing instance we had to extend a separate class that corresponds to the objectID, i.e.
we had to extend the Bottle class 24 times, with only the class name differing.

Next, we had to develop the warehouse management system for every one of the nine
locations. Since virtual locations are a specialization of virtual objects, we can implement
the warehouse management system as an extension of the basic virtual location class that
is provided by the framework. The virtual product location class extends the virtual lo-
cation class and provides the basic capabilities of a warehouse management system. It
instantiates an order manager to handle the orders. The orders are sent as regular Voxi
events between the warehouse management systems. Additionally, the virtual product
location generates the allIn and the allOut signals by calling two abstract methods that
need to be implemented by subclasses. Besides managing the identifiers, this class also
counts the smart things of a specific product type. Boxes and containers are classified
as boxes and containers by their objectID, which contains the corresponding string. If
a bottle enters a location, the bottle will be asked for its content and classified accord-
ing to its content: LidWaters or OpenWaters. Next, we extended the virtual location
class six times: Producer, Retailer, Truck, WholesalerCI, WholesalerCO and Wholesaler-
Storage and implemented the warehouse management location-specific behavior. These
six classes again had to be extended with the nine locationIDs. Here, we only had to
specify instance-specific behavior, e.g. LidWaters takes OnTimeDelivery as its forwarder
and OpenWaters takes FastDelivery as its forwarder. Figure 6.8 shows the monitoring
application at DistributeAll with its four locations and detected smart things at the
DistributeAllStorage2 location.

Experiences It was not possible to model the composition relation with the support
of the infrastructure, so that we do not include the four handles. Since the containedness
relation is not supported either, we did not model the containedness of the box and the
containers, but modeled them as regular smart things. We only used event communica-
tion, which on the one hand, was very easy, since we only had to specify the objectID
or the locationID as the receiver of the event and all communication details were trans-
parently handled by the event delivery manager. On the other hand, if we wanted to
send complex objects, we had to do the marshaling and unmarshaling of the complex
objects by hand, which is a very cumbersome task. Another problem is the distribution
of the application. Normally, each one of the five participants has its own subnet with its
own lookup service, so that our example application cannot work in a really distributed

6.1. QUALITATIVE EVALUATION 107

Figure 6.8: Screenshot of Voxi’s monitoring application

way for several reasons: first, the artifact memory is a central service, second, the event
delivery manager can send events only to local entities, and third, the virtual object
repository is a central service, too. However, we were able to show that the middleware
services work on principle, and that the concepts virtual objects (representations) and
virtual locations (location-dependent services) fit and provide an appropriate means for
developers to program smart thing applications.

6.1.5 Wsst

The Wsst system that is written in C# builds on Web Services that make use of SOAP
and UDDI. In order to run the Wsst system, we installed the following software and
hardware systems:

• Microsoft .NET Framework SDK, Version 1.1

• Microsoft Internet Information Services, Version 5.1

• SoapUDDI

• Microsoft Access ODBC drivers

• Apache Tomcat, Version 4.0.4

• IBM Web Services Toolkit, Version 3.0

• Softronica RFID reader

• Philips i-Code compatible RFID tags

Installation of the tag detection system Since we already glued the tags on the
things for the evaluation of the Voxi system, we were able to use the tagged things
again. Due to the fact that the Wsst system supports composition, we tagged the four
handles of the two boxes, too. In order to write the URIs on the tag, we first had to
register the representations at the UDDI server to retrieve the UUID that is part of the
URI. The URL part of the URI refers to the UDDI server where the representations are
registered. In our case, all representations are managed by packaging.plast, which refers
to the producer of the smart things that are all made of plastic. In total, we had to

108 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

write the URIs of 34 smart things on the corresponding tags. Similar to the approach in
Voxi, we developed a bridge between the RFID framework and the Wsst system: if the
bridge receives an entry event from the RFID framework, it interprets the serial number
as URI and resolves the URI at the UDDI hierarchy to a URL of the corresponding
representation. Since the bridge is developed in Java, we used the IBM Web Services
toolkit classes to call the set-location-method of the corresponding representation based
on SOAP. Each bridge needs to be configured with a symbolic name of the tag reader’s
coverage space and the physical position of the tag reader. Both items of information
are used to call the set-location-method of the representation. Since we now have twelve
locations and only five RFID readers, we developed a GUI where the user can select one
of the twelve locations that is used to update the representation.

Startup and setup of the middleware services First, we had to start up the twelve
UDDI servers for the following domains: Ω, trucks, trucks.man, packaging, packaging.-
plast, retailer, retailer.migros, food, food.openwaters, food.lidwaters, wholesaler, whole-
saler.distributeall, which are also illustrated in Figure 6.9. This list shows that every
participant in our supply chain has its own UDDI server where at least its locations are
registered and we have the producer of the trucks where both smart trucks are registered
as well as the producer of the packaging, where our 34 smart plastic parts, i.e. boxes,
containers, bottles and handles are registered. We developed a script that automates the
registration at the UDDI server hierarchy. For each of these twelve UDDI servers we had
to configure the Apache Tomcat web server and to create a Microsoft Access database
which is accessed via JDBC/ODBC by the SoapUDDI implementation to persistently
store the UDDI data. Ω refers to the root UDDI server.

Figure 6.9: UDDI hierarchy in the Wsst smart supply chain application

Next, we set up the super location managers that do not represent coverage spaces
of tag detection readers, as Figure 6.10 shows. As in every ordinary web service, we
also had to register the eleven super location managers at the UDDI hierarchy: ω at Ω,
mobile at Ω, ch at Ω, ch.zurich at Ω, ch.zurich.migroscity at retailer.migros, ch.zermatt at
Ω, ch.zermatt.openwaters at food.openwaters, ch.stmoritz at Ω, ch.stmoritz.lidwaters at
food.lidwaters, ch.olten at Ω, and ch.olten.distributeall at wholesaler.distributeall. The
very first ω refers to the world location manager. As the names indicate, MigrosCity is
located in Zurich, OpenWaters is located in Zermatt, LidWaters is located in St. Moritz
and DistributeAll is located in Olten.

In the Voxi implementation, we had nine locations in the supply chain that were ex-
tended to twelve locations with host services in the application for Wsst - with the storage
of the two bottlers and the retailer - to make the supply chain complete. These twelve lo-
cation managers, whose locations are covered by tag readers, also need to be registered at
UDDI servers: mobile.fastdelivery at trucks.man, mobile.ontimedelivery at trucks.man,

6.1. QUALITATIVE EVALUATION 109

Figure 6.10: Location managers in the Wsst smart supply chain application

ch.zuerich.migroscity.checkin at retailer.migros, ch.zermatt.openwaters.checkout at food.-
openwaters, ch.stmoritz.lidwaters.checkout at food.lidwaters, ch.olten.distributeall.check-
out at wholesaler.distributeall, ch.olten.distributeall.checkin at wholesaler.distributeall,
ch.olten.distributeall.storage1 at wholesaler.distributeall, ch.olten.distributeall.storage2
at wholesaler.distibuteall, ch.zermatt.openwaters.storage at food.openwaters, ch.stmor-
itz.lidwaters.storage at food.lidwaters, and ch.zuerich.migroscity.storage at retailer.mi-
gros.

Now, every smart thing and every location is registered at a UDDI server. The setup
of the location managers was a little bit cumbersome due to the fact that we had to
find out the WGS 84 coordinates for all locations except the both trucks. The location
managers are configured in such a way that they automatically register themselves at
their parent node when they are started for the first time. This means that a location
manager is initialized with a symbolic name, its WGS 84 coordinates, the UDDI server
address and the address of the parent location node where it has to register itself in both
cases.

The Internet Information Services that host the Web Services are integrated into
the Windows operating system. Normally, the web server runs by default and only the
directory that contains web services needs to be marked to accept the execution of Web
Services. Thus, all web services need to be copied to this directory.

Development of representations and applications The actual development of the
representations and applications comes close to the one in Voxi, so that we only state
the differences. In contrast to Voxi, we have no artefact memory where we can store
the state data, but every representation is able to write its state data into an XML file
which it can use again to retrieve an old state. Since Web Services rely on the stateless
HTTP protocol, a web service object cannot use members to store its state between two
method invocations. As work-around, we used the so-called application object that is
generated for every web service once. It can be used to save the internal state between
two method invocations. The availability of the location manager hierarchy enables us to
determine the relative neighborhood concept. This function is provided by the monitoring
application. Although the locations in Wsst have no behavior like the virtual locations
in Voxi, we can use the host service of a location manager that specifies a smart thing,

110 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

which in turn has a behavior. Effectively, a location-specific warehouse management
system can be implemented by a class that implements the location manager as well as
the smart thing interface, and whose host service references itself. Each of these smart
locations receives it own execution thread so that the implementation of Voxi with the
virtual objects and the virtual locations can be transferred to Wsst. One main difference
is in the communication: in Wsst, an entity first has to resolve the URI to retrieve the
URL of the web service. This URL can then be used to instantiate a proxy object that
transparently invokes the remote method of the web service.

The four handles were configured to have one of the two containers as their parent
node in the composition hierarchy, so that the location update of the handles could be
disregarded, since this information can be requested by the handles at their parent node.

Experiences Due to the fact that the development of the application in Wsst is quite
similar to the development of the application in the Voxi system, the code of the applica-
tion could be generated in a much shorter time. Although the remote method invocation
is transparently handled by SOAP, which does not require the manual marshaling and
unmarshaling of complex objects - unlike in Voxi with the event communication - it takes
substantially longer. The URI resolution at the UDDI server is particularly time con-
suming, so that we used a caching scheme for the URI resolution. The download of the
WSDL document enables a check at runtime whether a smart thing or a web service
supports a certain method, so that the interface of a smart thing can be kept simple,
since the WSDL document provides information about further protocols a smart thing
supports. Although the setup of the UDDI hierarchy as well as the location manager
hierarchy is complex, it has to be done only once and it allows for the distribution of
the whole system, which was not possible with the Voxi system. The location manager
hierarchy has proven that the relative neighborhood concept can be realized. It could also
be shown that the support of the containedness relation allows the location information
to be handed down. Another difference is the fact that the system only uses entry events
from the tag detection system, since it only allows the new location to be set. A problem
of both frameworks is that every smart thing instance needs its own class or web service.
It would be desirable if one static class could be instantiated with an identifier. The main
problem of the Web Services approach is the delay of the URI resolution and the SOAP
invocations. The Jini lookup service and RMI are more efficient, as will be shown later.

6.1.6 Iceo

The Iceo system has been completely written in Java and again builds on Jini as the
service discovery platform. One service, the producer, uses a JDBC connection to a
mySQL database to persistently store its data. Besides the RFID support through the
RFID framework, Iceo additionally provides support for bar codes and BTNodes. The
following software and hardware systems must be deployed in order to run the Iceo
system:

• Java 2 SDK, Standard Edition, Version 1.4.0

• Jini Technology, Version 1.2.1

• Java Communications API, Version 2.0

6.1. QUALITATIVE EVALUATION 111

• MySQL, Version 3.23.58

• Softronica RFID reader

• Philips i-Code compatible RFID tags

• Symbol CS 2000 bar code scanner

• AnyLabel, Demo Version 1.12

• BTNodes with sensorboards

Installation of the tag detection system Besides using the RFID framework to
support RFID, we also used the built-in support for bar codes and BTNodes. We mainly
used RFID tags and bar codes, since we did not have enough BTNodes or sensor boards to
equip all the smart things in the smart supply chain application. We again used the tagged
things in the Voxi and Wsst applications, except for the containers, since they are tagged
with bar codes. First, we had to write the identifiers of all the smart things onto their tag.
An identifier consists of an arbitrary name and the DNS address of the producer service.
As in the Wsst example, all smart things are made of plastic and have the same producer
named Plast whose producer service can be reached under producer.plast.com. For the
bottles, boxes, containers and handles, we used the following names: bottle1..24, box1..4,
con1..2, handle1..4. Although we wanted to use the names container1..2 instead of con1..2,
this was not possible, since the encoded Code 39 bar code container1@producer.plast.com
was too long to be read with our symbol bar code scanner. This meant that we had to
shorten the bar code to encode con1@producer.plast.com. We used the RFID framework
to write the identifiers on the tag and AnyLabel to print out the bar codes that we then
attached to the containers and boxes. We also attached one BTNode besides the RFID
label to a bottle with the identifier bottle1@producer.plast.com. We had to change the
identifier in the C source code of the BTNode code, then we had to compile the code and
upload the compiled code onto the BTNode.

Next, we had to setup the tag readers. For the RFID support, we again built an
RFID framework application that implements the Scanning interface, so that it can be
contacted by the Iceo system. For every entry and exit event of the RFID framework,
the application uses the serial number as an identifier and the location that has been
given as the startup parameter to update its base location service. Since we again have
twelve locations that need to be monitored, as in the Wsst system, we developed a GUI
that allows the location for one RFID reader to be selected, so that one RFID reader can
simulate several locations, as the screenshot in Figure 6.11 shows. Although the support
of the Symbol bar code scanner was already integrated into the system, we had to develop
another GUI that allows one of the nine locations to be selected, since we only have one
bar code scanner. We used another BTNode as a tag reader, by connecting it via the
serial interface to a computer. We also had to change the name of the location in the C
code to fastdelivery.truck1, to adapt it to the location that we wanted to monitor. This
changed C Code then had to be compiled and uploaded to the BTNode.

In summary, we have nine locations, which are all equipped with an RFID reader and
a bar code scanner. The containers and boxes are equipped with a bar code and all the
other smart things are equipped with an RFID tag. Additionally, we equipped one bottle
with a BTNode tag and one location, and the FastDelivery truck with a BTNode tag
reader.

112 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

Figure 6.11: Screenshots of Iceo’s RFID switcher and monitoring application

Startup and setup of the middleware services Since Iceo uses Jini, we first have
to start the HTTP server for the dynamic code download as well as the RMI daemon that
allows for remote method invocation on each computer. In our case, we simulated the
whole supply chain on three computers. Additionally, we start its own lookup service for
every base, hub and producer service, where they can register themselves as well as the
services they instantiate. Next, we have to start the different services that comprise bases,
hubs and producers. First, we start with the sole producer service that is responsible
for all identifiers that contain its address: producer.plast.com. For this purpose, we need
to start the mySQL database server. One table in the database contains the mapping
between the identifiers and the Java class files, which we add with a simple SQL script
running in the mySQL user client. For the startup of the producer service, we only need
to specify the address of the lookup service where it can register. Every service has
an additional XML configuration file where the additional services are specified. The
standard XML configuration file of the producer contains the producer location service.
Since we do not need any additional services at the producer site, we do not need to
change this configuration file. Figure 6.12 shows a screenshot of the producer GUI,
which contains the mapping between the serial number and the Java class.

Figure 6.12: Screenshots of Iceo’s producer GUI and monitoring application

Next, we start the six hub services for every participant in our supply chain, which
can be accessed at the addresses: hub.fastdelivery.ch, hub.ontimedelivery.ch, hub.open-
waters.ch, hub.lidwaters.ch, hub.zh-city.migros.ch, and hub.distributeall.ch. Analogously
to the producer service, we need to state its lookup service and do not need to update the
configuration file, which only contains the hub location service. Finally, we have to start
the nine bases. In this application, every base is responsible for exactly one location. In

6.1. QUALITATIVE EVALUATION 113

the following, we state the locations and the DNS addresses of each base: fastdelivery.-
truck1 and base.fastdelivery.ch, ontimedelivery.truck1 and base.ontimedelivery.ch, zh.-
migroscity.checkin and checkin.zh-city.migros.ch, zh.migroscity.storage and storage.zh-
city.migros.ch, openwaters.checkout and checkout.openwaters.ch, openwaters.storage and
storage.openwaters.ch, lidwaters.checkout and checkout.lidwaters.ch, lidwaters.storage
and storage.lidwaters.ch, distributeall.checkin and checkin.distributeall.ch, distributeall.-
checkout and checkout.distributeall.ch, distributeall.storage1 and storage1.distributeall.-
ch, distributeall.storage2 and storage2.distributeall.ch. In this application, we have a flat
hierarchy of bases, i.e. every base registers itself directly at its hub. For the actual startup
of the base, we have to state the lookup service of the base as well as the lookup service
of the hub, so that the base can register itself at its hub. In the case of the bases, we
had to extend the standard configuration file, which already contains the object manager
and the base location manager, together with the warehouse management system that
is responsible for the location that is managed by this base. Finally, we need to start
the scanners, i.e. for every location one bar code tag detection service and one RFID tag
detection service. Besides the technical parameters on which port to find the hardware,
the tag detection services also need to know the address of the lookup service of the base,
so that they can register themselves at the corresponding base that is responsible for the
location they monitor. Figure 6.13 shows the entities described above.

Figure 6.13: Main entities of Iceo’s smart supply chain application

Development of representations and applications The actual development of the
application was quite simple, since the Java code of the Voxi implementation could be
reused with only minor changes. Since Iceo already provides a browser for each base
(see Figure 6.11), the monitoring application (see Figure 6.12) only had to implement
the other two functions: providing a window for messages of the warehouse management
system and providing the buttons to send the two kinds of orders. The classes for the
orders and the order manager could be used without any changes. As stated above, a
location-specific warehouse management system is instantiated by a base as an additional
Jini service. In this case, the super class of all specific warehouse management systems,
called LocalWMImpl, short for local warehouse management implementation, asks its
base for the base location service and registers itself for entry and exit events of smart
things. It also has a reference to the base’s object manager, so that it can contact the

114 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

representations, e.g. a bottle has to be asked whether it contains LidWaters or OpenWa-
ters in order to classify a bottle. It creates a separate thread that handles the incoming
orders. The specific code for each location could be copied with minor changes: instead
of the event communication, we explicitly call methods at the other warehouse manage-
ment systems to hand over an order. The implementation of the representations was
even simpler, since the super class called VirtualObjectImpl handles the whole interac-
tion with the system, so that we only had to develop the smart thing specific behavior.
The actual behavior of a smart thing can be found out dynamically by checking which
Java interfaces a smart thing implements. In our case, we use the following interfaces:
Describable, Container, Composable, and Bulk. Describable means that a smart thing
has a name, Container refers to the containedness relation, Composable refers to the
composition relation and Bulk means that a smart thing can have a content. There is
a default implementation for each of these interfaces, so that the actual representations
only need to extend these default implementations. A handle implements Describable, a
bottle implements Describable and Bulk, a box implements Describable and Container,
and finally, a container implements Describable, Container, and Composable. Figure 6.14
shows the whole class hierarchy.

Figure 6.14: UML diagram of smart things in the Iceo application

The test of the Bottle with the BTNode has been carried out separately from the
actual smart supply chain application, since we do not have enough BTNodes. Instead
of measuring the temperature, we measured the brightness, since we also have an LED
as an actuator that has an impact on the current brightness. First we have to extend
our class from the virtual object class and to override two methods: the init-method uses

6.2. QUANTITATIVE EVALUATION 115

the reference to its sensors, which is able to support the sensor protocol we defined in
Chapter 4 to register itself for brightness events. The notify-method checks for brightness
events and if the brightness is too low, it uses the actuator reference and the actuator
protocol to switch an LED on.

Experiences One missing component is the data storage at the producer site, which
is able to save the state data of a representation. As long as a representation migrates
from one base to another base, the state and the code is transparently migrated by RMI.
Although we have a storage provider at each base, a representation can save its state
to this storage provider when it gets to the grace period, but this storage provider is
only locally accessible. The implementation of the location specific warehouse manage-
ment systems as services that are loaded by a base is conceptually better than having
smart locations, since a location might have to run several location-dependent services
instead of implementing the functionality into one smart location. From a performance
perspective, we think it is better that a representation is modeled as a simple Java ob-
ject without thread, since locations that have to handle several thousand smart things
might not have the computing power to handle several thousand active Jini services or
even worse, web services. Another positive aspect is the simple extension of the provided
abstract VirtualObject class for smart thing specific behavior, especially the possibility
to query sensors and to control actuators. In a final implementation, one has to merge
the advantages of the Wsst framework, i.e. location managers and composition, with the
advantages of the Iceo framework, i.e. migration and the modeling of representations as
simple Java objects.

6.2 Quantitative evaluation

Besides the qualitative evaluation of the systems and concepts, we also wanted to evaluate
the quantitative aspects in order to check whether our systems can be deployed in real
world scenarios with thousands of smart things at an arbitrary location. As the Web
Services approach showed, the performance can be a problem, but in general, we had
no performance problems in the smart supply chain application, since the only limiting
factor was the detection speed of the tag detection systems, which took most of the
processing time.

In order to compare our different smart thing systems, we do not measure the actual
smart thing systems, but the service discovery platforms they rely on, since these results
are easier to compare. Due to the fact that they also provide the basic building blocks
of our systems, we can use the qualitative analysis of these basic building blocks to
make inferences about the behavior of complex patterns consisting of these basic building
blocks.

The subject of our quantitative analysis is all aspects of a service discovery platform
that have an impact on the performance of our systems and the applications that make
use of them, including the memory usage of the runtime environment as well as the
services, time and network traffic needed to register a service, the time and network
traffic to lookup a service, the time and network traffic to invoke a remote method and
finally, the overall time and network traffic for a small test application. [100] provides a
more detailed description of the analysis.

116 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

In the following, we describe the test application, the test environment, the measure-
ment of the relevant values and finally present the test results.

6.2.1 Test application scenario

In the test application scenario, we have smart milk bottles whose things are tagged with
an arbitrary tagging technology. The representations of the smart milk bottles all run
on the same server, e.g. a server of their producer, and the tagging technology allows
recognition of whether a milk bottle has been put into the shelf or has been taken out of
it. A shelf notifies the representations of the milk bottles, which are capable of processing
such events, about the events. In the test application scenario, the distribution of the
milk bottles is realized by one national and two regional distribution centers as well as
four stores. We have a shelf in every distribution center and in every store, which is
illustrated in Figure 6.15.

Figure 6.15: Summary of the client application

Besides the representation, the shelves and the distribution centers or the stores are
also realized as services. It is possible to ask the shelves for the number of bottles and
a list of all bottles they host. The distribution centers provide a service that generates
a statistical analysis of all bottles in circulation, e.g. one method returns the number of
bottles in the distribution center and all of its sub distribution centers, or the average
storage period of the milk bottles on every distribution level can be determined by means
of the data each bottle has recorded before. Effectively, we simulate the scenario only
with the means of services that are, on one hand, web services and, on the other hand,
Jini services.

6.2.2 Test environment

As a test environment we used three Windows computers that are networked by a 100
Mbps Ethernet. The directory service ran on one computer, on a second computer we ran
all the services of the test application, i.e. smart things, shelves and statistics, and the
third computer was used for the requests to the directory service and the remote method
invocations of the client application. A fourth computer, which was also connected to
the network, carried out the analysis of the network traffic.

Computer/network All computers were PCs using the Windows XP operating sys-
tem, they had a 451 MHz Intel Pentium III processor and 256 MB RAM. The local

6.2. QUANTITATIVE EVALUATION 117

network was a 100 Mbps Ethernet and all the computers were equipped with a 100 Mbps
network interface card. During the execution of the tests, we made sure that no other
applications had an impact on the network traffic. For the measurement of the network
traffic we used Finisar Surveyor, which allows for such measurements.

Jini We used the Java 2 SDK, Standard Edition, Version 1.4.0 as well as Jini Technol-
ogy, Version 1.2.1.

Web Services Web Services are a platform and programming language independent
standard. There are several frameworks that provide a runtime and development envi-
ronment for Web Services. For our tests, we used the Microsoft .NET Framework as well
as the so called Java Web Services. We used Apache SOAP as runtime environment and
IBM’s Web Services Toolkit as the development environment for Java Web Services. We
deployed SoapUDDI as a private UDDI server that contacts a Microsoft Access database
for its directory entries and queries.

6.2.3 Measurement of the relevant values

We divided the measurement into five categories. First, we measured the memory usage
of the runtime environment as well as for the services. Then, we conducted performance
measurements of the three phases: service registration, service lookup, and service invo-
cation. Finally, we analyzed the performance of the described test application. Before
we present the actual results, we first describe how each value is measured.

Measurement procedure In the case of the runtime environments, the measurement
of the memory usage was carried out with the Windows Task Manager. The memory
usage of the services could be realized through methods provided by the runtime envi-
ronment for that purpose.

The measurement of the time was always carried out in the client application: the
current system time was taken directly before and after a service invocation. Thus,
the answer time is the difference between the two measurements, including the time for
marshaling and network delays besides the actual time for the service invocation. We
conducted every time measurement twenty times and calculated the average as well as
the standard deviation for every test.

The measurement of the network traffic was carried out with the above-mentioned
network analysis software, which measured the total network traffic between client and
service, including the IP and TCP headers.

Memory usage The memory usage is intended to give information about how many
resources are used by the infrastructure in which the services can be deployed. For Jini
and Java Web Services, we measured the memory usage of the JVM in which we start
the services. For the .NET Web Services, we measured the corresponding memory usage
of the .NET runtime environment.

The memory usage of the services is determined in the following way: from time
to time we started services of the same type and measured the average increase of the
memory usage within the runtime environment. This gives a hint of how many resources
are necessary per service and how many services can be deployed on one host. Since

118 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

the memory usage of services heavily depends on their complexity, we developed services
with a minimum functionality in order to allow them to participate in each platform.

Service registration First, this performance test has to show the time needed and the
network traffic generated by a service invocation. In our case, we compared Sun’s lookup
service implementation and the SoapUDDI implementation. To be able to compare the
performance, we did not include the time needed and the network traffic generated to
perform the discovery process in Jini.

Lookup of a service We analyzed how long it takes to find a service, when we use
on the one hand the unique service ID and, on the other hand, the service name. Ad-
ditionally, we measured the network traffic that occurs in this phase. Again we did not
consider the discovery process in Jini.

Another important criterion is the scalability of both platforms. To determine this,
we measured the response times for the lookup of a service based on the ID and based
on the name after more and more other services have been registered at the directory
service.

Service invocation This issue shows the performance of remote method invocations
in Jini with RMI and Web Services with SOAP. For this purpose, we call methods of the
representation: one method returns a simple integer value and another method returns
a complex array of objects, i.e. the list of locations where a smart milk bottle already
has been. In the latter case, we vary the number of objects. In all cases, we measure the
time and the network traffic.

Test application This last test analyzes a typical client application that includes the
lookup of a service and the following service invocation. Due to the complexity of the
application, we only implemented this test with Jini and .NET Web Services and left out
an application with Java Web Services.

In a first test, we wanted to find the statistical service of a store; in addition, its
name should be returned. In this test, we determined the time and the network traffic
and included the discovery phase in Jini in the test results. In a second test, our client
application has to find the statistical service of the national distribution center and to ask
for the total amount of bottles on all distribution levels. For this purpose, every statistical
service has to contact the both statistical services on the next level and to query its own
shelf in order to determine the number of bottles. These requests take place concurrently
and the results can be added up after all responses have been received. In total, a
statistical service and a shelf service each need to be looked up seven times; in addition,
the method that returns the number of bottles has to be called accordingly. In this last
test, we measure the response time for the client invocation and the total network traffic.

6.2.4 Results

For each of the five test categories, we present the results in a table and as a figure.
Additionally, we give a short interpretation of the results.

6.2. QUANTITATIVE EVALUATION 119

Memory usage Table 6.1 and Figure 6.16 show the results of the test concerning the
memory usage. Although the memory usage of the Jini runtime environment is approxi-
mately half of the memory usage of the .NET Web Services runtime environment, both
are high, since they are not optimized for optimal memory usage, so that an optimization
could reduce the memory usage in all cases. The memory usage of a single service in both
Java environments is much lower than a service in the .NET environment, since in Java,
the instantiation of another Java object is cheap in comparison with .NET Web Services,
where every web service possesses a broad spectrum of functions that is inherited from
its class hierarchy.

Measurement Jini Java Web Services .NET Web Services
Runtime
environment (KByte) 9564 22824 17332
Service (KByte) 1.84 38.42 1640.97

Table 6.1: Memory usage

Figure 6.16: Memory usage

Service registration Table 6.2 and Figure 6.17 show the results of the test concerning
the service registration. The service registration in Jini, where the discovery process is
not included, is faster in comparison with UDDI. The longer registration time in UDDI
results from its three SOAP requests: one to register the service, another to register the
so-called tModel and one to register the binding template. In Jini, on the other hand, one
request carries out the whole registration, including the registration of the proxy object
and the attributes. The network traffic is all about the same, but one has to consider
the continuous traffic of renewing the leases in Jini, which occurs after registration for
the whole lifetime of a service. Our tests showed that the time for the registration is
independent of how many other services have already been registered at the directory
service. We registered up to 20,000 services and noticed no substantial changes to the
values in the table.

Lookup of a service As Table 6.3 and Figure 6.18 shows, the network traffic for a
service lookup by means of the identifier is approximately the same, but the response
time with the Jini LUS is much faster than the response time of SoapUDDI. The poor
performance of the latter is due to two circumstances: first, the processing of the SOAP

120 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

Measurement Jini LUS SoapUDDI
Response time (ms) 137.6 ± 18.9 421.1 ± 82.7
Network traffic (Byte) 4067 3446

Table 6.2: Service registration

Figure 6.17: Service registration

protocol is more complex than RMI and the SoapUDDI implementation has to contact
a database, while the Jini LUS holds its information in its own memory’s address space.

Measurement Jini LUS SoapUDDI
Response time (ms) 9.0 ± 3.3 284.4 ± 21.6
Network traffic (Byte) 2040 2217

Table 6.3: Service lookup by means of a service ID

Table 6.4 and Figure 6.19 show that both numbers for the service lookup based on
the service name are only a little bit higher in Jini, but both numbers for SoapUDDI
are approximately doubled. The reason for the latter consists in the two phases of the
SoapUDDI lookup process: first, the service name is used to lookup the UUID and then
the UUID is used to lookup the service URL.

Figure 6.20 shows that Jini’s service lookup scales up to 20,000 services. If a service
lookup based on the service identifier is used it constantly takes 10 ms, and if the service
lookup based on the service name is used, the response time increases linearly but very
slowly up to 20 ms. In the case with SoapUUDI, the time to look up a service based
on the service ID also stays constant, but at a much higher time - around 300 ms. The
service lookup based on a service name scales very poorly: it is a linear relation that
takes about 1,200 seconds when 20,000 services are registered. The problem is that the
corresponding field in the database in not indexed. In general, a better implementation
of UDDI would lead us to expect better performance.

Service invocation As Table 6.5 and Figure 6.21 show, a service invocation in Jini
with RMI is much faster than a service invocation with the Web Services counterparts.
Although the .NET Web Services implementation is around 4 times faster than the Java
Web Services implementation, the Jini implementation is still around 10 times faster
than the .NET Web Services implementation. The network traffic caused by RMI is
approximately a fourth of the traffic generated by the SOAP counterparts, since SOAP
relies on ASCII/XML documents that are much larger than the compact serialization

6.2. QUANTITATIVE EVALUATION 121

Figure 6.18: Service lookup by means of a service ID

Measurement Jini LUS SoapUDDI
Response time (ms) 11.2 ± 3.6 546.3 ± 129.0
Network traffic (Byte) 2269 4220

Table 6.4: Service lookup by means of a service name

Figure 6.19: Service lookup by means of a service name

Figure 6.20: Scalability of the directory services

122 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

stream generated by RMI.

Measurement Jini Java Web Services .NET Web Services
Response time (ms) 14.4 ± 1.7 596.0 ± 20.3 159.1 ± 5.4
Network traffic (Byte) 575 2044 1894

Table 6.5: Service invocation

Figure 6.21: Service invocation

Again, Jini is superior to both Web Services approaches regarding the scalability of
return values, as Figure 6.22 shows. The response time in Jini stays almost constant,
but both Web Services implementations increase linearly but relatively steeply. The
same is true for the network traffic: the increase is linear at every solution, but Jini’s
increase is much flatter than the increases at the two Web Services implementations.
This mainly results from the complex marshaling scheme used in SOAP, resulting in
large XML documents which need to be processed at length.

Figure 6.22: Scalability of service invocations concerning array size

6.3. CONCLUSIONS 123

Test application Table 6.6 and Figure 6.23 show that Sun’s Jini implementation is
more efficient than the .NET Web Services implementation, especially concerning the
response time, as the previous tests led one to expect. The discovery process is included
in the numbers, except for the code download of the LUS proxy, which occurs only once.
It normally takes 1300 ms and generates 70 KBytes of network traffic, so if we included
this in the simple method invocation, the .NET Web Services approach would be better.

Measurement Jini LUS .NET Web Services
Response time (ms) 198.8 ± 7.2 814.8 ± 121.8
Network traffic (Byte) 5087 9325

Table 6.6: Simple invocation of the client application

Figure 6.23: Simple invocation of the client application

Table 6.7 and Figure 6.24 analogously show the same results for the complex invoca-
tion of the client application: Jini is around four times faster than .NET Web Services. If
we included the LUS download here, Jini would anyhow be more efficient than the .NET
Web Services implementation.

Measurement Jini LUS .NET Web Services
Response time (ms) 857.5 ± 32.8 4935.6 ± 260.8
Network traffic (Byte) 49756 66876

Table 6.7: Complex invocation of the client application

6.3 Conclusions

The tests confirm the concerns that we already had at the stage of qualitative evaluation
of the systems: method invocation, and especially service lookup, is more efficient under
Jini than under one of the two Web Services frameworks that make use of SoapUddi
implementation. Although another UDDI implementation might be much more efficient
than the current SoapUDDI implementation, one cannot expect a SOAP implementation
to get the same performance results as RMI, since SOAP relies on many more protocol
layers, which require more resources for processing than the much simpler RMI.

Although the Jini data states that a representation can be realized as a Jini service,
we think that this still involves too much effort for very simple smart objects that might

124 CHAPTER 6. EVALUATION OF THE SMART THING SYSTEMS

Figure 6.24: Complex invocation of the client application

not even have a state. A simple Java object also allows for migration by RMI, since
simple Java objects are transparently serialized and deserialized by RMI. Jini services as
remote objects, on the other hand, cannot be serialized, since RMI uses a corresponding
stub object in such a case.

From a qualitative and quantitative view, we recommend modelling representations
as simple Java objects and the middleware services as Jini services. Jini services that
run on the same machine should be started within the same JVM, so that RMI is not
necessary for interactions between services on the same machine. Since we expect that
most communication will take place locally, i.e. communication between representations
among themselves and with other applications, in these cases the whole communication
could be managed locally. Besides the performance aspects, the concepts Jini provides,
such as discovery, leases and remote events, are all needed by an implementation of the
model.

The concepts we proposed in our model have all be proven to be helpful to structure,
implement and deploy smart thing applications. Since we did not implement all the
concepts into one smart thing system, a final system can be easily composed of the
three systems we introduced. It is easy to integrate, since we already have efficient
implementations of all concepts and the different implementations are not interdependent,
so that a final system mainly has to bundle the different implementations into one.

Chapter 7

Related Work

The aim of this chapter is to show the overlap of the work presented in this dissertation
with the related work in the domain of smart thing systems and ubiquitous computing
in general, as well as adjacent domains, for two purposes: first, this comparison allows
the original contribution of this work to be emphasized and second, the related work
offers the chance to focus on some of the concepts that are outside the main scope of this
dissertation. In Chapter 3, we already introduced some other work with the intention to
show how we build on these technologies and standards in order to be independent from
them in our model. The related work presented in this chapter, on the other hand, partly
overlaps with the concepts and the smart thing systems we presented. The following
remarks do not provide a general introduction to the related work, but concentrate on the
common aspects it shares with the work we have carried out. For a more comprehensive
overview of the systems, we refer readers to the referenced literature.

We classify the related work into three classes: first, the related work of adjacent do-
mains that are not primarily part of ubiquitous computing research, but provide concepts
that are useful for our model. Second, the related work of smart thing infrastructures that
share our goal to support smart thing applications. Third, we consider some middleware
infrastructures for ubiquitous computing applications in general.

7.1 Adjacent domains

Adjacent domains refer to research areas that do not focus primarily on ubiquitous com-
puting issues, but these ubiquitous computing issues have to be considered in order to
model smart things.

7.1.1 Naming and addressing

We introduced an identifier as consisting of a unique name and a home address in order
to uniquely identify a smart thing. The name part only has to be unique within its
namespace, i.e. the home address. Further, we defined an address as the name of the
location where an entity resides. Thus, the home address is the name of the location in
the virtual world where the home service is located.

Hauzeur [46] generally considers the relation between names, addresses, and routing
in computer communication. A name is a linguistic object which uniquely identifies an
entity within a certain domain. A route is a list of names that denotes the path from the
source entity to the sink entity via which a message has to be transmitted. An address

125

126 CHAPTER 7. RELATED WORK

is a concept between name and route that is used to efficiently find a route. It can be
regarded as the name of the communication object that an entity uses to transmit its
message in the direction of the sink. Such addresses are normally numerical to enable
them to be processed efficiently, and a mapping between the entity and its communication
object is needed. IP addresses, for example, are numerical and the DNS system maps a
domain name of a host into an IP address. Hrachovec [54] and Su [110] also discuss these
issues.

Berners-Lee et al [12] introduce a Uniform Resource Identifier (URI) as a string of
characters to uniquely identify an abstract or physical resource. A URI can either be a
Uniform Resource Name (URN), a Uniform Resource Locator (URL), or both. While a
URL primarily identifies a resource via a representation of its primary access mechanism,
e.g. their network ”location”, a URN refers to URIs that remain globally unique even
when the resources cease to exist or become unavailable.

With our definition of a location in both worlds, i.e. real world and virtual world,
we are a bit more general and subsume the other definitions. Although an identifier
consisting of a name and a home address is similar to a URI that consists of a URN
and URL, we do not demand that the name must be globally unique, but only within its
namespace. In our case, this is not a restriction, since the home address as namespace
provides the uniqueness of the whole identifier. One could argue that it might be a
drawback that the home address cannot be changed, but we cannot require that, because
some technologies, such as printed bar codes or read-only RFID tags, do not the support
the modification of an identifier.

7.1.2 Location models

We presented a hybrid location model consisting of four parts that are connected through
fourteen translation functions. Two of the four parts refer to the world location model
that models static locations in the real world and the two other parts refer to the smart
thing location model that models the location within mobile smart things. Both parts of
each model refer to a symbolic location model as well as a physical position model, since
both kinds of models provide different advantages.

Leonhardt [75] proposes a hybrid location model to support location-based services
in mobile computing. This thesis considers all relevant aspects concerning location mod-
elling: these comprise location models, service models, acquisition of location data, uncer-
tainty, predication and interpolation, and security considerations. There are two functions
in the combined model that connects a symbolic model with a geometric model: the area
function maps every symbolic location to a geometric area and the leastMatchingArea
function maps an area to all the best matching symbolic locations.

Jiang et al [59] also propose a hybrid location model that allows for a tree of locations
that have a symbolic name and positions. Since every node in the tree can have its own
coordinate system for its positions, they require a function enabling every edge to convert
the position of one coordinate system into the other. The recursive application of that
scheme allows for conversion between two arbitrary nodes in the location tree.

Hightower et al [51] classify localization technologies according to several criteria:
technique, physical vs. symbolic, absolute vs. relative, localized location computation vs.
recognition, accuracy and precision, scale, cost, and limitations. Besides this classifi-
cation, the authors also consider several other aspects in localization, e.g. localization
techniques [51, 52, 53].

7.1. ADJACENT DOMAINS 127

Many other projects also make use of symbolic or hybrid location models. The in-
novation of our model is the clear distinction between a hybrid location model for the
static world and one for mobile smart things. Another aspect is the combination of the
two criteria: symbolic locations vs. physical positions and localized location computing
vs. recognition. Although both criteria have been already mentioned by Hightower et al
[51] to classify localization technologies, we make use of both these criteria and explicitly
built them into our tag detection model.

7.1.3 Cellular IP

Although Cellular IP [17, 18] refers to routing aspects of IP packets, we mention it,
since it adopts the concepts of cellular wireless networks to support mobility of IP-based
mobile computers. In our work, we adopt the concepts to support the management of
representations for mobile smart things. The reason for the introduction of Cellular IP
is to have the advantages of IP routing and the mobility management of cellular. In
fact, Mobile IP has been introduced to support mobility in IP routing, but the signaling
overhead for fast moving mobile nodes within a particular area is much higher than the
one needed by the management of cellular. Cellular IP extends the traditional Mobile
IP scheme, which uses a home agent to manage a care-of address with a gateway. In
a Cellular IP environment, the care-of-address denotes a so-called gateway that acts as
a gateway from the traditional Mobile IP enabled network to a Cellular IP network.
The latter consists of base stations that are the wireless access points for mobile hosts.
Within this network, the routing always takes place between the gateway and the base
stations where the mobile host is detected. If a mobile host changes to another base
station within the Cellular IP network, it does not need to update the home agent, since
the care-of-address of the gateway stays the same.

We chose a similar approach with the home service and the current address that refer-
ences the managing hub location manager, which is the root of a location domain of base
location managers. Although the concepts seem to be quite similar, our situation is more
complicated, since we have to manage smart things that can also act as a hub location
manager and we have a location manager lattice, so that the hub location manager is not
predetermined.

7.1.4 Artificial intelligence

We explicitly mentioned that smart does not refer to intelligent and therefore does not
cover aspects of artificial intelligence (AI) research. Typical issues of AI [93] comprise
intelligent agents, solving problems by searching, knowledge representation, reasoning,
planning, making decisions under uncertainty, learning and communicating, perceiving
and acting. However, some of the aspects have a slight connection to smart things. The
definition of an agent in [93] comes close to our definition of a smart thing: agents in-
teract with environments through sensors and effectors. We required a smart thing to
have an identity, to know its location, to be able to perceive its environment through
sensors, and to be able to manipulate the environment through actuators. Franklin et al
[38] discusses a taxonomy for autonomous agents. If we compare our requirements with
the requirements of an autonomous agent, the following factors are missing: autonomy
concerning its own actions, goal-orientation, i.e. the execution of actions to achieve its
own goals, and temporal continuity concerning its execution. A representation might be

128 CHAPTER 7. RELATED WORK

programmed to act autonomously and to achieve its own goals, and temporal continuity
is given for smart things that make use of implicit coupling. This means that implemen-
tation of our smart thing model might be deployed as an infrastructure for autonomous
software agents, with the restriction that they have to provide the functionality for a real-
world thing. Three further issues are communicating, perceiving and acting. Although
AI focuses on a broader spectrum in the three domains, i.e. natural language processing
vs. event communication, computer vision vs. brightness sensors and robotics vs. LEDs,
the foundations of these concepts remain the same. In general, intelligent vs. smart fo-
cuses on a broader spectrum, but in principle our smart things could be extended with
AI methods in the future. We only provide the minimum infrastructural support for a
thing to become smart; everything else is up to the developer of the representations and
applications.

7.2 Smart thing systems

To the best of our knowledge, five other projects or systems also try to support smart
thing applications that are mainly commercial products. The main difference to our
model is that the other systems only partly consider the identification and localization
aspects of smart things, allow only a passive behavior of smart things or do not scale to
world-wide usage.

7.2.1 Cooperating Smart Everyday Objects

Cooperating Smart Everyday Objects (CSEO) [102, 103, 104] is another approach of
our research group to enable smart things. The main abstraction of CSEO is an active
tag, which possesses its own microprocessor, power source, communication, and sensor
modules. By adding such active tags to everyday objects, cooperation among the tagged
everyday objects and with mobile user devices becomes possible. One key assumption is
that these active tags are resource-limited, such that only the cooperation between them
allows for powerful applications.

Context-awareness is the basis for smart everyday objects to cooperate. The concept
context-awareness refers to the recognition of the current situation of a smart everyday
object. In order to support such context-aware applications, CSEO introduces a software
platform consisting of a programming language for describing context-aware services, a
compiler for this language, and a tuplespace-based infrastructure for distributing data
among collaborating entities.

CSEO sees handhelds as cooperation partners for smart objects and identifies six
usage patterns for the communication between smart objects and handhelds: mobile
infrastructure access point, user interface, remote sensor, mobile storage medium, remote
resource provider, and weak user identifier. In order to make use of the computing power
of a handheld, a smart object might upload a so called Smoblet, i.e. a piece of code, to
the handheld where it can be executed.

The main difference to our approach is that CSEO focuses on the user interface and
the direct interaction of active tags only. In our approach, we explicitly do not support
user interaction, since we want to support applications with myriads of smart things
among themselves where user interaction is no longer possible. In fact, we also allow for
implicit coupling, i.e. the whole functionality is placed on the tag itself, but we focus on

7.2. SMART THING SYSTEMS 129

a background infrastructure that enables smart things.

7.2.2 Auto-ID Center

The former Auto-ID Center and its successor EPCGlobal1 attempt to establish standards
in the RFID domain in order to enable companies to exchange information about tagged
products. The elements of their infrastructure are: the Electronic Product Code (EPC),
the Reader Protocol, the Product Markup Language (PML), PML servers, the Object
Name Service (ONS), the Savant [85], and standards that define the air protocol between
RFID tags and readers. A Savant controls the tag readers with the Reader Protocol,
and the tag readers use the air protocols to communicate with the tags in their coverage
space, which transmit their stored EPC via the tag reader to the Savant. The Savant
uses the EPC to look up the address of a PML server in the ONS system, which it uses
to contact the PML server based on PML. Applications might be integrated via Savant
or by implementing the Reader Protocol directly.

An EPC can be roughly regarded as the traditional bar code on products, i.e. an
EAN or UCC bar code, extended with a serial number. For additional information on a
product, the ONS service has to be contacted: this maps the EPC to a URL whose DNS
part needs to be mapped to an IP address of a PML server, which stores the additional
information about a product. In our model, we directly store the DNS address of the
home service on the tag in order to prevent having another name service besides the
DNS. Although an EPC is shorter than our identifier and an additional indirection layer
provides more flexibility, we assume that the size of a tag memory is not a bottleneck,
since 64 Bytes or less are in most cases sufficient to store our identifier. The additional
mapping is not needed in our model, so that we cannot justify setting up a world-wide
ONS system that maps EPCs to URLs.

Since our smart thing systems work independently of the underlying tag detection
hardware, we do not consider aspects such as the air protocol or the Reader Protocol. In
general, it is not intended to support active smart things, but passive data about detected
tagged things.

The Savant is the central element of the infrastructure, but at the time of writing,
the whole specification of the Savant system is changing, so that we can only describe
the version 0.1 that we have also tested. At the moment, it consists of three indepen-
dent subsystems: the event management system (EMS), the task management system
(TMS), and a real-time in-memory database (RIED). Savants should be arranged in a
tree concerning organizational aspects of a company in order to be able to aggregate the
data. Leaf Savants control RFID readers and internal savants aggregate data. Since the
data exchange between Savants is not specified, we can only describe the Leaf Savants.
The EMS provide interfaces for adapters that communicate with the reader, queues that
decouple producers and consumers of events, filters that disregard events, and loggers
that finally store or process the events. Implementations of these interfaces need to be
specified in a startup script of the EMS, which plugs all the modules together. A log-
ger might use the RIED to store the tag reads in the memory. User tasks that can be
registered at the TMS are scheduled like a cron job. They access the RIED in order to
perform their task. After testing the Savant, we came to the conclusion that the concepts
of the EMS fit well, in contrast to the RIED and the TMS. In our opinion, RIED and

1www.epcglobalinc.org

130 CHAPTER 7. RELATED WORK

TMS do not provide the means to model smart thing based applications. It is easier to
write location-based services that register for entry and exit events, as proposed by our
model.

In general, it is not possible to evaluate Savant conclusively, since most of its compo-
nents are changing. Additionally, it is difficult to compare Savant with our smart thing
systems, since it is intended to manage the data of smart things and does not provide a
representation.

7.2.3 Smart Items Infrastructure

The Smart Items Infrastructure (SII) [69] is SAP’s approach to a middleware for smart
things, in order to couple them with its enterprise resource planning (ERP) systems.
An official announcement2 concerning the adoption of SII was published at the time of
writing. For SII as a commercial product, the amount of information is limited, so that
we are only able to roughly describe the architecture, which consists of communication
services and four layers that use them: a hardware abstraction and a third party adap-
tion layer, an information processing layer, a smart item manager layer, and a business
adaptation layer. To enable communication between the modules of the four layers that
are normally distributed, the communication services comprise content-based messaging,
publish/subscribe communication, and point-to-point communication. The hardware ab-
straction layer is used to disengage from the identification technology and the third party
adaptation is used to control other applications such as production control systems. The
next layer, the information processing layer, mainly has to filter out events from the hard-
ware layer that are not required by the other layers, such as spurious exit/entry event
combinations. At one level above, the smart item manager provides the main functional-
ity in four separate modules: the system management module, used to manage the entire
SII, a data management module, which decides on what data to store in the data storage
module, and finally an event handling module, which filters or aggregates events based
on rules in predicate logic or if/then-statements. At the top is the business adaptation
layer, which builds the bridge to ERP systems such as SAP R/3.

Since the focus of the SII is similar to that of the infrastructure of the Auto-ID
Center, in terms of the passive modeling of a smart thing, it is difficult to compare it
with our smart thing systems, where every smart thing has its own representation, which
is able to control the sensors and actuators on the smart thing. Both systems are fairly
complementary to our systems, in that they both support smart thing applications.

7.2.4 VisuM

VisuM, short for Visualisation und MapMatching, is an operative middleware system
that supports smart things applications in the Volkswagen production process. As a
proprietary development of Volkswagen, there is no public documentation available, so
that this description relies on slides of a talk, given by the developer3 about this system
at one of the M-Lab events4.

The overall goal of VisuM is to identify and localize objects in the real world in order to
provide this information to applications. VisuM allows for the support of different Auto-

2http://www.sap.com/company/press/press.asp?pressID=2609
3Christoph Pelich, Volkswagen AG, christoph.pelich@volkswagen.de
4http://www.m-lab.ch/events/ws1-2003.html

7.2. SMART THING SYSTEMS 131

ID technologies by uncoupling from them through the VisuM protocol. A message from
the VisuM protocol is sent from a tag detection system to a predefined VisuM server,
which stores the content of the message in a relational database. Another server, the
VisuM App-Server, provides access to the information in the database. A visualization
tool, for example, queries the database through the VisuM App-Server and shows on
a scalable map how many products of a certain type are located at the locations that
the map covers. A message of the VisuM protocol contains the identifier of the tag,
the location as either a GPS coordinate or symbolic location name, consisting of four
parts describing a place within the Volkswagen location hierarchy, a timestamp of the
detection, and an application ID that maps the tag to a specific application. These items
of information and the association of the tag with its thing are stored in the database,
so that applications can make use of them.

The system and the application work properly and reliably. As with the previous two
systems, it is difficult to compare them with our smart thing systems, since these systems
manage the passive data of tagged things and do not provide a representation, so that
VisuM can also be regarded as complementary to our approach.

7.2.5 RAUM

The RAUM (German for room) system [10, 11, 55] of the Karlsruhe University of Tech-
nology aims to enable communication between smart artefacts that are collocated. In
order to enable this communication, it defines a location and a communication model.
The former defines a root tree with four levels of symbolic names as wells as the physi-
cal position of an artefact within the location that is denoted by the symbolic location.
Artefacts that are resource limited only have to store their own position as a path of the
location tree in order to save memory. Every artefact spans a co-called RAUM, i.e. the
space in which it communicates with other artefacts. These spaces should be covered by
the location tree in order to support communication within a RAUM. A smart artefact
can span one of the three RAUMs: a Listener RAUM enables a smart artefact to receive
messages from other smart artefacts in the RAUM, a Speaker RAUM enables a smart
artefact to send messages to other smart artefacts in the RAUM, and a Discussion RAUM
can be regarded as combination of the two other ones. Besides its location path, a smart
artefact has to manage two sets: one set contains all the RAUMs that are defined by it
and another set contains all the RAUMs which contain the smart artefact, in order to
decide on the reception of messages. Several operators are defined to manage the RAUM.
The open operator, for example, is used to announce the definition of a new RAUM. An
artefact that is not able to determine its own position uses the location stuffing of the
infrastructure, i.e. the smart artefact leaves the location field in a message out in order
to allow the infrastructure to fill out this field. Route bridges and routers are the infras-
tructural services that manage the communication between smart artefacts that use IR
or RF as a communication medium.

The RAUM system comes closer to our smart thing systems than the three other
systems described above, since it allows for active representations that can communicate
among themselves. The main difference to our smart thing systems is that it only allows
for implicit coupling, i.e. the representation has to be integrated or attached to the
artefact. In our smart thing systems, we provide an infrastructure that allows for the
execution of the representation on a hosting service in the background infrastructure.

132 CHAPTER 7. RELATED WORK

7.3 Ubiquitous computing systems

Besides the five smart thing systems, we considered eleven other ubiquitous computing
systems in terms of their middleware support, in order to check whether we can adapt
some of their concepts for our model. This was part of a general analysis about middle-
ware [2, 19, 23, 24, 78, 111] for ubiquitous computing [1, 32, 47, 66]. We briefly sketch
the goal of each system and provide a summary of the functions they support. Not all
projects have the same relevance for our model, so that we describe five projects in a little
bit more detail that target similar issues to those involved in our smart thing systems.

7.3.1 Overview

This overview simply states the name of the project, the bibliography references, the
organization that carries out the project and a short description of the project’s goals:

• Aura [59, 105, 112, 117], Carnegie Mellon University: Aura’s goal is to minimize
the distraction of a computer for a human user. The main abstractions are user
tasks that can be transparently executed on heterogeneous hardware and software.

• Cooltown, [9, 25, 63, 64, 65, 67, 88], HP Invent: Cooltown aims to support no-
madic users with electronic devices that move from one location to another. For
this purpose, web technologies need to be extended in order to allow for pervasive
computing applications.

• EasyLiving, [14, 15, 79], Microsoft Research: This project aims to support users
in so-called intelligent environments. Users have to be recognized and tracked in
order to allow the system to select appropriate input and output devices.

• GaiaOS, [48, 49, 90, 91], University of Illinois at Urbana-Champaign: Concepts
of operating systems are transferred by this project to the ubiquitous computing
domain in order to support ubiquitous computing applications.

• Hive, [80, 89], Massachusetts Institute of Technology: Originally, Hive is a sys-
tem which provides an infrastructure for mobile software agents that can also be
deployed to support ubiquitous computing scenarios.

• iWork, [60, 61, 87], Stanford University: This project provides the necessary in-
frastructural means in order to support user interaction with various hardware and
software components.

• Nexus, [42, 74, 83, 84], University of Stuttgart: As an extension of a geographical
information system, the Nexus system models static and dynamic location informa-
tion of objects and their environment in order to provide location-based services.

• one.world, [43, 44, 45], University of Washington: With three principles to make
changes in the environment explicit, dynamic composition of applications, and the
separation of code and data, one.world provides a system framework for ubiquitous
computing.

7.3. UBIQUITOUS COMPUTING SYSTEMS 133

• ParcTab, [119, 120, 121, 122, 123], Xerox PARC: The oldest of all the projects
mentioned here, which has been initialized by the ubiquitous computing pioneer
Marc Weiser, considers an infrastructure for pager-sized computers, which can be
localized at a room level.

• Stitch, [6], Xerox Research Centre Europe: Stitch is a middleware that is intended
to support ubiquitous computing applications with the two concepts event handling
and distributed tuple spaces.

• Sylph, [22], University of California at Los Angeles: Sylph provides an abstraction
layer in order to provide sensor values with an arbitrary service platform such as
Jini. Sylph explicitly considers single sensors and not sensor networks: the latter
are also subject to current research [4].

7.3.2 Common functions

Besides the analysis of each individual system, we were also interested in factorizing the
tasks that are commonly supported by these middleware projects, especially in compar-
ison with traditional middleware systems. In the following, we give a short summary of
our results:

Provision of environment information: the main goal of the monitoring of the en-
vironment is to recognize human users in order to enable applications to use this
information to personalize their services. Some projects support sensors to retrieve
general data concerning environmental phenomena.

Support of implicit and explicit user interaction: these projects provide a rich se-
lection of new interaction schemes. Besides the sensor technology, which is mainly
responsible for user interaction in the background, some new input devices and
techniques are supported.

Support of migration of software components: mobility of software components
can be understood in two ways: on the one hand, software components can sponta-
neously appear and disappear. On the other hand, they can migrate from one host
to another host.

Support of location awareness and mobility of physical objects: a physical ob-
ject can either be a mobile electronic device or a smart thing. Since hardware
components normally have a software proxy, their appearance and disappearance
can be handled the same way as with the software components. Besides this binary
information about whether an object has been detected, different location models,
technologies, and systems are used. If additional information is required that is not
available on the object, the information needs to be looked up. Sometimes objects
cannot sign off, so that timeouts, leases, or heartbeat messages are necessary.

Modeling: every project needs to define what parts of the world it wants to model.
Projects that do not explicitly consider this aspect have the semantics implicitly
encoded in their methods and protocols. Other projects provide XML languages
such as the Resource Definition Language (RDF) or a class hierarchy in order to
dynamically describe relevant parts of the world.

134 CHAPTER 7. RELATED WORK

Communication mechanisms: most projects make use of the means provided by the
operating system and other middleware systems, such as CORBA. For performance
reasons and for appropriate modeling of their domain, some projects define their
own communication mechanisms and protocols.

Synchronous vs. asynchronous communication: most projects provide both kinds
of communication: for synchronous communication they mainly rely on traditional
middleware systems. Asynchronous communication is mainly realized through pub-
lish/subscribe systems.

Transparency: traditional middleware systems tried to abstract from the distribution
of the entire system. This has changed in middleware for ubiquitous computing
systems that explicitly consider the distribution and the locations of the system’s
entities. The main abstraction now rather refers to transparent access to heteroge-
neous hardware and software.

Decentralized vs. centralized architecture: the decision whether the architecture
should be laid out in either a centralized or decentralized way mainly depends on the
availability of a background infrastructure. If such a background infrastructure is
available, the systems use a centralized design, since the background infrastructure
is able to provide centralized services. If no background infrastructure is available,
the design must be decentralized, since no central services are possible.

Realization of the data storage: normally, the realization of the data storage should
be transparent to the middleware, but some projects explicitly focus on tuple spaces
[20]. Besides this option, regular database management systems are used to store
and to retrieve data.

Support of the developer: in general, the projects provide three different means to
support the developer: the provision of new software patterns, such as the extension
of the model-view-controller, scripting languages, and software frameworks with a
generic class hierarchy for a certain application domain.

Integration with existing systems: to support integration with existing applications,
the projects provide three different approaches: first, the systems do not consider
this aspect and it is up to the developer to integrate existing software. Second, the
systems provide integration with the existing software of a certain domain, as in
meeting rooms, where only web browsers and presentation platforms are necessary.
Third, the projects provide a general abstraction to integrate existing systems.

7.3.3 Nexus

Nexus [42, 74, 83, 84] provides a middleware for mobile and spatially aware applications.
Its main abstraction is the augmented world model that, on the one hand, models the
real world and, on the other hand, augments this model with virtual information. The
architecture consists of three layers: the top layer consists of the actual application that
uses the application interface to access the next layer, the federation layer. This layer
comprises nodes that use the Area Service Register (ASR) in order to access the next
layer, the service layer, via the service interface. Such a node splits a request into several
sub-requests and after the reception of the sub-results, it aggregates the response and

7.3. UBIQUITOUS COMPUTING SYSTEMS 135

returns it to the application. The service layer consists of the Spatial Model Server
(SMS), which stores the actual information about static objects. For mobile objects, on
the other hand, a location service is used. One key idea of this system is that everyone
can set up its own SMS, which has to be compliant with the Nexus interfaces in order
to extend the Nexus system; for example, everyone could set up a web server in order to
extend the WWW. Nexus also provides a generic and extensible class hierarchy in order
to model the static and mobile objects of the real world.

An important feature, in comparison with our model, is the use of a location service.
Location services have to track objects using positioning systems or tracking systems.
The location services are distributed and communicate among themselves via wireless
or wired communication networks. A sighting of an object consists of the object’s iden-
tifier, the WGS 84 coordinates, an area of coordinates that specifies the inaccuracy of
the localization system, a timestamp and information on whether the data comes from
a positioning system or a tracking system. An object references an object register that
knows the location service where the object has signed in. Each location service has a
location register that stores all objects at a certain location. Building on these compo-
nents, a location service can answer queries concerning the neighborhood relation and it
also provides event notifications, for example, it provides entry and exit events.

The static modeling of the world with the SMS can be regarded as complementary to
our approach, since we only focus on mobile smart things. The location service approach,
on the other hand, comes very close to our location model and forms a subset of it, since
we support additional features, such as locations within smart things, as well as the
location domain concept that provides better scalability with local handovers.

7.3.4 Cooltown

Cooltown [9, 25, 63, 64, 65, 67, 88] extends well-known web technologies to support mobile
users with electronic devices such as PDAs to allow for the support of the mobile user’s
activities. Its main abstractions are people, places and things. One generic Cooltown
scenario is a user that carries a PDA with an Auto-ID system which it uses to scan
identifiers that are attached to objects. These IDs can be URLs, or else a resolver has to
map them to a URL, which in turn is used to contact the corresponding web server to
show the ”homepage” of the object, which provides additional services around this object.
Another Cooltown scenario refers to the e-squirt concept. In contrast to the content pull
with the homepage of an object, the e-squirt concept enables a content push by means
of scanning a URL from a source and sending it to a sink with its PDA. Besides the
homepage of an object, a place can also possess a homepage that offers location-aware
services that can be linked together to hierarchies, so that Cooltown also provides a
hierarchical management of locations that can contain objects.

In Cooltown, the scanning and the resolution of identifiers is a central issue since
it has to retrieve the homepage of an object or support the e-squirt concept. Thus,
Cooltown has concentrated on this issue, too. First, it states the tasks associated with
an ID: creation, binding to a physical or virtual entity, and capturing of an ID, followed
by a resolution process where additional data can influence the resolution process. The
result of the resolution process can be a resource or a list of links. An ID itself has to
fulfil several requirements: uniqueness, non-exhaustive supply of new IDs, integration
with existing schemes, human tractability, and a simple generation of new IDs. Based on
these properties, Cooltown proposes an ID called ’tag’ that should not be mixed up with

136 CHAPTER 7. RELATED WORK

our definition of a tag. Such a tag is unique over time and space and easy to generate,
since an already unique name, e.g. an e-mail address, is combined with a timestamp.

We think that the use of the web as platform to enable smart things is an appropri-
ate approach in order to enable human interaction with smart things, since the web is
intended to support user interaction and to provide linked information. Since we put the
focus on the communication between the smart things, the Cooltown approach can be
regarded as complementary to our model. The issues concerning the IDs are also covered
by our smart thing systems, as has been explained in the deployment schemes of Chapter
6.

7.3.5 Hive

Hive [80, 89] is a middleware project that aims to support the concepts of the Things
That Think project that we introduced in Chapter 1. Its main abstractions are agents,
cells, and shadows. Cells are the execution environment for agents that can migrate from
one cell to another. Agents can communicate locally within one cell or communicate
remotely with other agents. Shadows represent access to local resources and they can be
contacted by agents only locally. A hive network is a loose bunch of cells and ideally, one
cell would be located on one object or device and would host one agent. Such a scenario
might be too costly concerning the resources on an object, so that a cell can also be
executed as a process on a workstation and would be responsible for several devices. The
support of migration considers the static code as well as the dynamic state of an agent.

In comparison with our model, an agent would be a representation, a cell would be a
hosting service, and a shadow represents the access to a tag’s sensors. Implicit coupling
would be realized as a cell that is hosted directly on the object. In summary, the concepts
they introduce can also be found in our model, but as our model shows, they are a subset
of the whole model.

7.3.6 Sylph

Sylph [22] is a middleware that registers sensors as services at arbitrary service discovery
platforms. The main component of this system is the proxy core that communicates with
both sides, i.e. it queries the sensors and it registers the sensors as services. Additionally,
it handles the communication between the application and the sensors after an application
has downloaded a service module that has been created and registered by the proxy core
beforehand. At the startup of the service proxy, it reads a configuration file in order to
initialize the sensors – a sensor can either be contacted directly or it can be contacted
via a base station, so that wireless sensors and sensor boards are supported, too. An
application that has downloaded a service module from a service discovery platform can
specify a sensor request in an SQL-like Transducer Query Language that allows for the
specification of the sensor types, a predicate clause that must be fulfilled, an interval for
how often the value is needed and the duration for how long the sensor value should be
recorded. A simple sensor cannot process such complex queries, so that the proxy core
maps these queries into corresponding simple get and set-methods that can be understood
by a sensor.

Sylph provides concepts concerning the communication between an application and
the actual sensor that are comparable with our approach. Although we do not need a
service discovery platform, since the association between a representation and the sensors

7.4. SUMMARY 137

on the corresponding tag is unique, we introduce a tag service. This tag service is
comparable with the proxy core since, on the one hand, it understands the sensor protocol
and, on the other hand, it maps the sensor protocol messages to simple commands that
are communicated to the sensors. A major difference is that we also consider the offline
state, where the representation has no communication channel to the tag.

7.3.7 ParcTab

In conclusion, we want to look at the first ubiquitous computing project from Marc
Weiser. The ParcTab project [119, 120, 121, 122, 123] considers pager-sized computers
with a small display and three buttons that are intended to provide their users with
services, includingg location-based services. Besides the pager-sized computers, Weiser
also envisions notebook-sized computer and larger displays on walls. Due to the low
computing power of the ParcTabs, they have a proxy in the background infrastructure:
the tab agent. The communication between the two is based on IR, i.e. every ParcTab has
an IR transceiver and another IR transceiver is mounted at the ceiling of an office room,
which additionally has a connection to the background infrastructure. The tab agent can
send commands from the tab remote procedure call to its tab, which acts accordingly,
but the other way round is also possible through event communication from the tab to
the tab agent. An IR gateway that receives such an event first has to consult a name
service to look up the tab agent, so that the gateway can forward the event to the tab
with additional symbolic location information that can be processed by the tab agent.

Although Weiser used a small electronic device instead of considering smart things,
and did not explicitly mention a tag detection system and a representation, the system
implicitly implements these concepts. Compared with our model, the ParcTab is the
thing, the tab agent is the representation, and the IR system acts as a tag detection
system, so that Weiser unwittingly implemented our high level concepts in this very
early stage of ubiquitous computing.

7.4 Summary

The goal of this chapter was to show how our work is related to other work that also has
to consider the same or similar aspects as this work. Since a smart thing infrastructure
as we envision it did not exist, we had to develop our concepts from scratch. The related
work is either complementary to our approach or provides a subset of our concepts, so
that our model as a whole and each of its concepts are innovative and provide a new and
overall view of systems that enable smart thing applications.

We divided the related work into adjacent domains, smart thing systems, and ubiq-
uitous computing systems. First we looked at the adjacent domains that refer to naming
and addressing, location models, Cellular IP, and artificial intelligence. Although these
aspects do not primarily refer to smart thing systems, they provide features that are
also necessary in our domain. We then looked at four other smart thing systems. Three
of them, i.e. Savant, SII and VisuM, do not provide a representation, but manage the
static data that occurs during the tag detection process. The RAUM project, on the
other hand, provides a representation and enables location-aware communication be-
tween smart artefacts, so that this system can be regarded as the first system that goes
in the direction of our vision. Finally, we briefly described eleven ubiquitous computing

138 CHAPTER 7. RELATED WORK

middleware projects and summarized the common task they support. Five of them, i.e.
Nexus, Cooltown, Hive, Sylph, and ParcTab, have been described in more detail, since
they cover aspects that are relevant for our model.

Chapter 8

Conclusions

In this final chapter, we want to draw some conclusions from the work presented in our
dissertation. For this purpose, we first summarize the main points of the dissertation,
followed by a discussion of its contribution. Finally, we conclude with some statements
about how we expect the field of smart thing systems might develop in the future.

8.1 Summary

Based on Weiser’s vision of ubiquitous computing, Gershenfeld’s Things That Think, the
understanding of pervasive computing by the industry, and the technological drivers of
ubiquitous computing that Mattern proposes, we formulated our view on smart things. A
smart thing is an everyday item with a representation that provides additional functions:
we require that a smart thing has an identity, knows its own location, all the other smart
things in its proximity, is able to communicate with other smart things, and is able to
monitor its environment and its own state.

We showed that the realization of our view of smart things contributes to bridging the
media break. Data that refers to processes in the real world needs to be transferred into
computer systems in order to manage these processes. Since the transmission is mostly
done manually, e.g. with a keyboard or semi-automatically, e.g. scanning a bar code, the
data is transmitted via other media, which we call a media break. Two consequences of
the media break are faulty data and slow data entry. Smart things that bridge the gap
between the real world and the virtual world help to prevent these consequences. One
generic application that was used throughout this work is a smart supply chain where
smart things can automatically check in at the warehouse management systems and are
able to monitor their temperature. Building on this generic example we derived the
requirements of systems that enable such smart thing applications. Identification and
localization of smart things or the support of sensors and actuators are examples of these
requirements.

In order to support smart thing systems, one can make use of several existing software
and hardware technologies. Jini and Web Services are two service discovery platforms
that can be used as an underlying middleware system to distribute the components of
our system in a network. We also described Auto-ID systems such as bar codes or
RFID, as well as wireless networks such as Cellulars, WLANs and PANs as means to
enable identification and to transmit further information from a thing to a background
infrastructure. Besides the identification systems, we introduced localization systems
with location models and localization methods that are needed to determine the location

139

140 CHAPTER 8. CONCLUSIONS

of a smart thing. Since smart things might be able to perceive their environment and to
manipulate it, we briefly introduced sensors and actuators.

After this preparatory work, we presented a model of collaborating everyday items.
This model as the key contribution of this dissertation points out the relevant concepts
in smart thing systems and shows how they depend on each other. First, the high level
concepts that comprise a smart thing, namely, a tag detection system and managing
services were introduced. Then, the more specific concepts were introduced that refer to
the basic abilities of a smart thing: an identifier, locations, a location model, and sensor
and actuator data. These basic abilities were used to explain in more detail the concepts
of a smart thing that mainly refer to representation. Complementary to the smart thing
itself, the concepts of the infrastructure were introduced next: a tag, a tag reader, a tag
detection service, a home service, a hosting service, and location manager services. These
concepts provide the actual means to enable smart things. Since all of these concepts are
related to each other, we described the procedure for their interaction. For this purpose,
we introduced communication channels for the basic abilities, the identification and the
localization process, the update of the location managers, and the method of sensor and
actuator communication between a tag and its representations. Next, we introduced
three extensions to this procedure, whose handling is more complex than the standard
procedure. The first extension refers to containedness, i.e. a smart thing that contains
other smart things. The second extension considers the situation if a tag is detected
simultaneously by several tag readers, and the third extension looks at smart things that
have multiple tags, e.g. a bar code and an RFID tag. Besides these main concepts, we also
had to consider how the application logic is distributed over smart things and separate
applications. Finally, we modeled the lifecycle of a smart thing. Chapter 4.9 provides a
short overview of how these components actually interact.

The model has been iteratively developed in conjunction with the development of
three smart thing systems that implement the concepts as a proof of concept. We showed
how we had implemented the concepts in our three systems: first, we started with the
Voxi system that builds on Jini and that enables the migration of representations as well
as a simple notion of location. Then, we described the Wsst system that makes use
of Web Services and supports location hierarchies as well as the composition relation.
Finally, we presented the Iceo system that again builds on Jini and explicitly supports
the tag detection system as well as sensors and actuators. These systems also permit the
testing of different implementation strategies that are independent of the actual concepts,
such as the utilization of different middleware systems or the use of asynchronous event
communication vs. synchronous method invocations.

The overall goal we want to achieve is to enable and to facilitate the development of
smart thing applications. Therefore, we implemented the smart supply chain application
with all three smart thing systems in order to evaluate the concepts in terms of their
usability and effectiveness. This qualitative evaluation showed that the concepts of the
model that has been implemented by the three systems can really be used to support
such applications. We noticed that the use of a thread for every representation might
consume too many resources and that the use of Web Services as the underlying middle-
ware platform might be too slow for our real-time requirements. Thus, we conducted a
performance test between Jini and Web Services that confirmed our concerns regarding
the performance of Web Services, so that we came up with the recommendation to model
the services of our model as a Jini service and a representation as a simple Java object
that can be migrated from one hosting service to another. The requirements that we

8.2. CONTRIBUTIONS 141

stated in Chapter 2, derived from the smart supply chain demo, have been implemented
by the systems and proven by the example implementation of the smart supply chain
with our three systems.

Finally, we looked at the related work, which we split into three categories: adjacent
domains, smart thing systems, and ubiquitous computing systems. Under adjacent do-
mains, we considered naming and addressing, location models, Cellular IP, and artificial
intelligence. By adjacent we mean that these issues are not primarily related to smart
thing systems but have a significant influence on these systems. Next, we considered
four existing smart thing projects: the Auto-ID Center, the Smart Items Infrastructure,
VisuM, and RAUM. The main difference to our model is that three of them provide
no support for a dedicated representation, but rather manage the data coming from a
tag reader. RAUM, on the other hand, provides a representation, but it only supports
implicit coupling and a limited location model. After this, we looked at eleven ubiqui-
tous computing middleware systems that do not primarily focus on smart things, and
extracted the common tasks they support. We took a deeper look at five of these sys-
tems, since they have an overlap with our smart thing systems. Generally, we can state
that either the related work is complementary to our work, or it provides a subset of our
concepts that in fact appropriately models the challenges of its domain, but the concepts
are not sufficient to fulfil the requirements of Chapter 2.

8.2 Contributions

We showed that there is a business need for smart things and that currently no existing
project adequately models this domain and provides systems that support smart thing
applications, except for emerging systems that only allow the passive data management of
tag readers. Thus, the main contribution of this dissertation is to provide a complete and
consistent picture of the modeling of smart thing systems, as well as recommendations for
the implementation and structuring of a smart thing system and the actual applications.
In particular, the subtle details of the location model, which supports containedness of
smart things, can be denoted as one of the major contributions. In the following, we
discuss the individual contributions of the most important concepts of our model.

High level concepts Although terms such as Things That Think, Smart Artefacts,
Smart Items, etc. are used with some projects, these concepts are introduced in an
intuitive and descriptive manner with the effect that an exact definition is missing. Thus,
it is not really clear what makes up a smart thing, so that different people might have
different notions of the term, which leads to misunderstandings. These complicate the
focus of the research in this domain and the implementation of systems and applications.
Our high level concepts that comprise things, representations, tag detection systems,
and managing services provide a clear partitioning that serves as a starting point for
modeling each high level concept in more detail. In particular, the distinction between
implicit coupling and explicit coupling shows two ways of bridging the gap between the
two worlds.

Identifier Identifiers in general are a commonly used concept in computer science.
Other projects, such as Cooltown, which introduces a tag or the Auto-ID center, which
introduces an EPC, propose identifiers. In our opinion these kind of identifiers are not

142 CHAPTER 8. CONCLUSIONS

well suited for our purposes since they rely on additional name services that map the
identifier to the actual resource. An additional name service means overheads in order
to manage the name service itself and to issue identifiers that are compatible with the
name service. In our model the identifier consists of a name and a home address. The
home address refers to the host that builds the access point for a representation. It is
resolved by the underlying network, so that no additional name services are needed. In
most cases the home address will be a DNS name or an IP address. The name can be
arbitrary chosen by the organization that manages the representation in order to allow
internal optimizations. Although our identifier is considerably longer than an EPC, it
does not need an ONS and the allocation of EPCs, so that everyone can run the system
without any external dependencies.

Localization One of the major contributions is the location model that supports the
containedness relation of smart things, so that we are able to describe a location within a
smart thing, e.g. freighters, trucks or just simple containers. Our location model consists
of a hybrid location model that describes symbolic locations and physical positions in
the static real world, and it consists of a hybrid location model that describes symbolic
locations and physical positions in mobile smart things. We require three functions that
allow translation between symbolic locations and physical positions and between the
smart thing and the world location models. Although a hybrid location model and the
translation between location models have already been mentioned in the literature, the
combination of a static model with mobile nodes is unique.

We also differentiate between four localization methods that our model supports. The
four methods result from the combination of symbolic locations vs. physical positions and
localization on the tag vs. localization at the tag reader. This explicit consideration is
also unique.

Representation We already mentioned that other projects consider the representation
only as a database entry. In our model, we introduce a representation as consisting of
static code and dynamic data. This allows for individual behavior of a smart thing that
can, dependent on its programming, decide on its own actions and does not depend
on other programs that process database entries. This dichotomy allows for efficient
migration and data storage, since the static code only needs to be stored or migrated
once, so that different instances of the same smart thing type can use the same static
code.

Relations of a smart thing As with object oriented programming languages, where
the root object class only provides the necessary means to manage objects in the runtime
environment, and where the specific behavior of an object class is up to the programmer,
we take the same approach. We only model aspects of a representation that are abso-
lutely necessary to manage a smart thing. It is up to the developer of a representation to
extend it with the smart thing specific behavior. These core aspects, besides its identifier
and its location, comprise three relations: neighborhood, containedness, and composi-
tion. We noticed that these relations are common features that need to be supported by
the infrastructure. These concepts also support the infrastructure, e.g. the containedness
relation allows for the inheritance of sensor data or localization data, so that the infras-
tructure does not need to update the location information of a contained thing, since this

8.2. CONTRIBUTIONS 143

information can be retrieved from the containing thing. We divided the neighborhood
concept into the absolute and the relative neighborhood concept: absolute neighborhood
refers to the fact that two smart things are contained at the same smallest location in
the location tree, whereas relative location explicitly mentions the location where all the
smart things of that location are neighbors. The containedness relation has been split
into simple and complex containedness. Complex and simple refer to whether a smart
thing has its own tag detection system. In particular, the division of the two concepts is
unique.

Management of representations We introduced the home, hosting, and location
manager services that are responsible for managing a representation. This partitioning
allows for a scalable infrastructure that enables migration of representations. A home
service acts as the access point for representations, a hosting service executes a repre-
sentation, and the location manager services (including hub, base and super location
managers) provide the means for efficient administration, since local migrations within
the same location domain only generate local network traffic. This approach is also
unique: although it is oriented to GSM, it includes the recursive support of contained
smart things. The management of representations also considers the aspects of multiple
detection of the same tag and the detection of a thing with multiple tags. The working
out of these last two concepts was subtle in its details.

Tag detection systems The general tag detection system concept does not depend
on the deployed Auto-ID and wireless network technologies. A tag detection system is
responsible for the identification and localization of tags. This abstraction, consisting of
tags, tag readers, and tag detection services, is also unique.

Communication channel Communication channels allow the concrete communica-
tion aspects between a tag and its representation, or the location manager lattice, to
be disregarded. A tag has two communication channels to one location manager, which
are used to retrieve its identifier and its location. Two further communication channels
exist between the tag and the representation: these are used to query the sensors and
to control the actuators of a tag. This is necessary, since the concrete implementation
can strongly vary. On the one hand, a tag with a GPS module and a WLAN module
might directly contact the location manager hierarchy to update its location. On the
other hand, an RFID reader might detect RFID tags and the tag detection service has to
retrieve the information to contact the location manager. Every communication channel
has its own protocol that defines what kind of information can be exchanged.

Application logic Our evaluation has shown that distributing the application logic
over smart things and location-specific applications is a suitable approach in order to
support smart thing applications. Location-specific applications register themselves at
location managers, so that they are able to communicate with the smart things that have
been detected at this location. Which functionality should be part of a smart thing and
which functionality should be part of a location-specific application is not predetermined,
but in most cases obvious.

144 CHAPTER 8. CONCLUSIONS

Recommendations The evaluation of the various smart thing systems has shown that
all the concepts of our model can be efficiently implemented and that the concepts ef-
fectively support the development of smart thing applications. On the basis of the per-
formance analysis, we recommend implementing the services as Jini services and the
representations as Java objects, in a similar way to the procedure in the Iceo system. As
stated above, the application logic should be distributed over smart thing and location-
specific applications.

8.3 Prospects

This dissertation has shown that the concepts of our model can be implemented in systems
that support the development of smart thing applications, so that we currently see no
reason to adapt or to extend the core model.

Although we evaluated all of our concepts with our three systems, none of these three
systems implements all the concepts, so that a system that implements them all would
be desirable. Such a smart thing system could take over most of the existing code.

During the development of the warehouse management systems, we noticed that all
location-specific warehouse management systems have some common features that can
be provided by a warehouse management framework that builds on our systems. Anal-
ogously to a framework that supports warehouse management applications, we assume
that frameworks for other scenarios would also be helpful, e.g. frameworks that can be
used in production, facility management, retail, etc.

We connected three different tag detection technologies with our smart thing system:
RFID, bar code, and BTNodes with sensors and actuators. In addition, it would be
desirable to connect other tag detection technologies that we mentioned, such as WLAN
or GSM, to our system.

Other aspects that have to be considered are security and privacy. We explicitly did
not consider these aspects in order to focus on the inherent aspects of smart thing sys-
tems. Security typically refers to issues such as authentication, authorization, integrity,
confidentiality, non-repudiation, and delegation, which are normally covered by the un-
derlying middleware platform, such as Jini or Web Services, that provide corresponding
security packages that can be used to implement these security aspects. Analogously to
the middleware systems, some tag detection hardware also provides security measures
such as challenge/response procedures in order to authenticate a tag. We mentioned
that a home service has a data storage facility where it stores its dynamic state, which is
accessible by every hosting service. If an organization wants to keep the data captured
by a representation at one of the organization’s hosting services private, the representa-
tion can use the local data storage facility of the organization to store the private data
that should only be accessible to this hosting service, so that other organizations have no
access to this data. Privacy in general comprises more aspects than using this local data
storage, so that results from current research into privacy, such as [71, 72, 77] could also
be integrated.

Our smart thing system is most advantageous if many things are tagged and the
infrastructure is installed at many locations, so that deployment on a larger scale would
be another aspect of future work.

Bibliography

[1] Abowd G (1996) Software engineering and programming language considerations
for ubiquitous computing. ACM Computing Surveys 18(4), Article 190

[2] Aiken B, Strassner J, Carpenter B, Foster I, Lynch C, Mambretti J, Moore R,
Teilbaum B (2000) A Report of a Workshop on Middleware. RFC 2768

[3] AIM Homepage (2003) Auto-ID Manufactures. http://www.aimglobal.org/

[4] Akyildiz I, Su W, Sanakarasubramaniam Y, Cayirci E (2002) Wireless Sensor Net-
works: A Survey. Computer Networks Journal 38(4): 393-422

[5] Alexander K, Gilliam T, Gramling K, Kindy M, Moogimane D, Schultz M, Woods
M (2002) Focus on the Supply Chain: Applying Auto-ID within the Distribution
Center. Report IBM-AUTOID-BC-002, Auto-ID Center

[6] Arregui D, Fernström C, Pacull F, Rondeau G, Williamowski J (2003) Stitch: Mid-
dleware for Ubiquitous Applications. In: Proceedings of sOc’2003 (Smart Objects
Conference), http://www.grenoble-soc.com/proceedings03/Pdf/55-Arregui.pdf

[7] Assistant Secretary of Defense for Command, Control, Communications, and In-
telligence (2001) Global Positioning System Standard Positioning Service Perfor-
mance Standard, http://www.navcen.uscg.gov/gps/geninfo/2001SPSPerformance
StandardFINAL.pdf

[8] Bar Code 1 Homepage (2003) A Web of Information About Bar Code, http://
www.barcode-1.net/

[9] Barton J, Kindberg T (2001) The challenges and opportunities of integrating the
physical world and networked systems. Technical Report TR HPL-2001-18, HP
Labs

[10] Beigl M, Zimmer T, Decker C (2002) A location model for communicating and
processing of context. Personal and Ubiquitous Computing 6(5-6): 341-357

[11] Beigl M. (1999) Using spatial Co-location for Coordination in Ubiquitous Comput-
ing Environments. In: Proceedings of First International Symposium on Handheld
and Ubiquitous Computing, pp. 259-273

[12] Berners-Lee T, Fielding R, Masinter L (1998) Uniform Resource Identifier (URI):
Generic Syntax. RFC 2396

[13] Berners-Lee T, Masinter L, McCahill (1994) Uniform Resource Locators (URL).
RFC 1738

145

146 BIBLIOGRAPHY

[14] Brumitt B, Meyers B, Krumm J, Kern A, Shafer S (2000) EasyLiving: Technologies
for Intelligent Environments. In: Proceedings of the 2nd International Symposium
on Handheld and Ubiquitous Computing, pp. 12-27

[15] Brumitt B, Shafer S (2001) Topological World Modeling Using Semantic Spaces.
In: Proceedings of the Workshop on Location Modeling for Ubiquitous Computing,
pp. 55-62, http://www.teco.edu/locationws/final.pdf (30.09.03)

[16] Burkhardt J, Henn H, Hepper S, Rindtorff K, Schäck, T (2001) Pervasive Comput-
ing. Addision-Wesley, ISBN 3-8273-1729-0

[17] Campbell A, Gomez J, Kim S, Valko A, Wan C, Turanyi Z (2000) Design, Im-
plementation, and Evaluation of Cellular IP. IEEE Personal Communications 4:
42-49

[18] Campbell A, Gomez J, Valko A (1999) An Overview of Cellular IP. IEEE Wireless
Communications and Networks Conferance (WCNC’99) 2: 606-611

[19] Carpa L, Emmerich W, Mascolo C (2002) Middleware for Mobile Computing. Ad-
vanced Lectures on Networking, Springer-Verlag, Networking 2002 Tutorials, pp.
20-58

[20] Carriero N, Gelernter D (1988) Applications experience with Linda. In Proceedings
of the ACM SIGPLANPPEALS, ACM Symposium on Parallel Programming 23:
173-187

[21] Cauldwell P, Chawla R, Chopra V, Damschen G, Dix C, Hong T, Norton F, Ogbuji
U, Richman M, Saunders K, Zaev Z (2001) Professional XML Web Services. Wrox
Press, ISBN 1-861005-09-1

[22] Chen A, Muntz R, Yuen S, Locher I, Park S, Srivasta M (2002) A Support Infras-
tructure for the Smart Kindergarten. IEEE Pervasive Computing 1(2): 49-57

[23] Chen G, Kotz D (2000) A Survey of Context-Aware Mobile Computing Research.
Dartmouth Computer Science Technical Report, TR2000-381

[24] Coulouris G, Dollimore J, Kindberg T (1998) Distributed Systems - Concepts and
Design. Addison-Wesley, ISBN 0-201-62433-8

[25] Daniel R (1997) A Trivial Convention for using HTTP in URN Resolution. RFC
2169

[26] Domnitcheva S (2001) Location Modeling: State of the Art and Challenges. In:
Proceedings of the Workshop on Location Modeling for Ubiquitous Computing,
http://www.teco.edu/locationws/final.pdf, pp. 13-19

[27] Dübendorfer T (2001) An Extensible Infrastructure and a Representation Scheme
for Distributed Smart Proxies of Real World Objects. Technical Report 359, ETH
Zurich, Institute of Information Systems

[28] EAN.UCC White Paper on Radio Frequency Identification (1999) EAN Interna-
tional, http://www.autoid.org/SC31/clr/200305 3821 EANUCC

BIBLIOGRAPHY 147

[29] Edwards W (1999) Core Jini. Prentice Hall, ISBN 0-13-014469-X

[30] Eicher T (2003) Smart Things - Modeling the Spirit. Diplomarbeit, ETH Zurich,
Institute for Information Systems

[31] Elpas Ltd (2001) EIRIS with Web/WAP Capabilities. Case study, http://www.
elpas.com/Downloads/Uploads/Pacific.pdf

[32] Esler M, Hightower J, Anderson T, Borriello G (1999) Next Century Challenges:
Data-Centric Networking for Invisible Computing. In: Proceedings of MOBI-
COM’99, pp. 256-262

[33] EUROCONTROL, Institute of Geodesy and Navigation (1998) WGS 84 Implemen-
tation Manual, http://www.wgs84.com/files/wgsman24.pdf

[34] Finkenzeller K (2002) RFID-Handbuch. Carl Hanser Verlag, ISBN 3-446-22071-2

[35] Fleisch E, Mattern F, Billinger S (2003) Betriebswirtschaftliche Applikationen
des Ubiquitous Computing. In: Heinz Sauerburger (Ed.): Ubiquitous Computing,
HMD 229 - Praxis der Wirtschaftsinformatik, dpunkt.verlag, ISBN 3-89864-200-3,
pp. 5-15

[36] Fleisch E, Mattern F, Österle H (2002) Betriebliche Anwendungen mobiler Tech-
nologien: Ubiquitous Commerce. Computerwoche (CW-Extra, Themenheft ”Col-
laborative Commerce / Neue Geschäftsprozesse”)

[37] Flörkemeier C, Lampe M, Schoch T (2003) The Smart Box Concept for Ubiquitous
Computing Environments. In: Proceedings of sOc’2003 (Smart Objects Confer-
ence), pp. 118-121

[38] Franklin S, Graesser A (1996) Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents. In: Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages, pp. 21-36

[39] Friday A, Davies N, Catterall E (2001) Supporting service discovery, querying and
interaction in ubiquitous computing environments. In: Proceedings of the 2nd ACM
international workshop on Data engineering for wireless and mobile access table of
contents, pp. 7-13

[40] Geihs K (2001) Middleware Challenges Ahead. IEEE Computer 34(6): 24-31

[41] Gershenfeld N (1999) When Things Start To Think. Henry Holt, ISBN 0-8050-
5874-5

[42] Gloss B (2002) Ortsbewusste Anwendungen mit Nexus. Beiträge zur ITG Fachta-
gung Neue Kommunikationsanwendungen in modernen Netzen, pp. 179-180

[43] Grimm R (2002) System support for pervasive applications. Ph.D. Thesis, Univer-
sity of Washington

[44] Grimm R, Anderson T, Bershad B, Wetherall D (2000) A system architecture for
pervasive computing. In Proceedings of the 9th ACM SIGOPS European Workshop,
pp. 177-182

148 BIBLIOGRAPHY

[45] Grimm R, Davis J, Lemar E, MacBeth A, Swanson S, Gribble S, Anderson T,
Bershad B, Boriello G, Wetherall D (2001) Programming for Pervasive Computing
Environments. University of Washington, Technical Report, UW-CSE-01-06-01

[46] Hauzeur B (1986) A Model for Naming, Addressing, and Routing. ACM Transac-
tions on Office Information Systems 4(4): 293-311

[47] Henricksen K, Indulska J, Rakotonirainy A (2001) Infrastructure for Pervasive Com-
puting: Challenges. GI Jahrestagung (1), pp. 214-222

[48] Hess C (2003) The Design and Implementation of a Context-Aware File System for
Ubiquitous Computing Applications. Ph.D. Thesis, University of Illinois at Urbana-
Champaign, Urbana-Champaign, Computer Science

[49] Hess C, Campbell R (2002) A Context File System for Ubiquitous Computing En-
vironments. Technical Report UIUCDCS-R-2002-2285 UILU-ENG-2002-1729, Uni-
versity of Illinois at Urbana-Champaign, Urbana-Champaign, Computer Science

[50] Hightower J, Borriello G (2001) Location Sensing Techniques. Technical Report,
University of Washington, Computer Science and Engineering

[51] Hightower J, Borriello G (2001) Location Systems for Ubiquitous Computing. IEEE
Computer magazine 34(8): 57-66

[52] Hightower J, Brumitt B, Borriello G (2002) The location stack: A layered model
for location in ubiquitous computing. In Proceedings of the 4th IEEE Workshop
on Mobile Computing Systems & Applications (WMCSA 2002), pp. 22-28

[53] Hightower J, Want R, Borriello G (2002) SpotON: An Indoor 3D Location Sensing
Technology Based on RF Signal Strength, Technical Report UW CSE 00-02-02,
University of Washington, Department of Computer Science and Engineering

[54] Hrachovec H (2001) Computernamen im Internet. Techno-phänomenologische As-
pekte. In: Journal Phänomenologie, Heft 15/2001, pp. 15-24

[55] Hupfeld F, Beigl M (2000) Spatially aware local communication in the RAUM
system. In: Proceedings of the IDMS, pp. 285-296

[56] IEEE Robotics & Automation Magazine (1999) 6(1)

[57] Immer Anschluss unter dieser Nummer (2003) Frankfurter Allgemeine Zeitung,
November 24th, http://fazarchiv.faz.net/

[58] JavaTM Remote Method Invocation (RMI) (2003) Sun Microsystems, http://java.
sun.com/j2se/1.4.2/docs/guide/rmi/index.html

[59] Jiang C, Steenkiste P (2002) A Hybrid Location Model with a Computable Loca-
tion Identifier for Ubiquitous Computing. In: Proceedings of the 4th international
conference on Ubiquitous Computing, pp. 246-263

[60] Johanson B, Fox A (2002) The Event Heap: A Coordination Infrastructure for
Interactive Workspaces. In: Proceedings of 4th IEEE Workshop on Mobile Com-
puting Systems and Applications, pp. 83-93

BIBLIOGRAPHY 149

[61] Johanson B, Fox A, Winograd T (2002) The Interactive Workspaces Project: Ex-
periences with Ubiquitous Computing Rooms. IEEE Pervasive Computing 1(2):
67-75

[62] Kambil A, Brooks J (2002) Auto-ID Across the Value Chain: From Dramatic
Potential to Greater Efficiency & Profit. Report ACN-AUTOID-BC-001, Auto-ID
Center

[63] Kindberg T (2001) Ubiquitous and contextual identifier resolution for the real-world
wide web, Technical Report HPL-2001-95R1, HP Labs

[64] Kindberg T, Barton J (2001) A Web-Based Nomadic Computing System. Computer
Networks 35(4): 443-456

[65] Kindberg T, Barton J, Morgan J, Becker G, Caswell D, Debaty P, Gopal G, Frid
M, Krishnan V, Morris H, Schettino J, Serra B, Spasojevic M (2000) People, places,
things: Web presence for the real world. In: Proceedings of Third IEEE Workshop
on Mobile Computing Systems and Applications (WMCSA’00), pp. 19-30

[66] Kindberg T, Fox A (2002) System Software for Ubiqutous Computing. IEEE Per-
vasive Computing 1(1): 70-81

[67] Kindberg, T, Barton J (2000) Towards a Real-World Wide Web, Technical Report
HPL-2000-47

[68] Kirchner H, Schönfeld W, Steinmetz R (2002) Verfahren zur Diensterkennung und
Dienstinformationsbereitstellung im Vergleich. ITG Fachtagung Neue Kommunika-
tionsanwendungen in modernen Netzen, pp. 19-27

[69] Kubach U (2003) Betriebswirtschaftliche Applikationen des Ubiquitous Comput-
ing. In: Heinz Sauerburger (Ed.): Ubiquitous Computing, HMD 229 - Praxis der
Wirtschaftsinformatik, dpunkt.verlag, ISBN 3-89864-200-3, pp. 56-67

[70] Langheinrich M (2000) The 5th Dimension: Building Blocks for Smart Infrastruc-
tures. Workshop on Infrastructure for Smart Devices - How to Make Ubiquity an
Actuality, http://www.vs.inf.ethz.ch/events/HUK2kW/

[71] Langheinrich M (2001) Privacy by Design - Principles of Privacy-Aware Ubiquitous
Systems. In: Proceedings of Ubicomp 2001, pp. 273-291

[72] Langheinrich M, Coroama V, Bohn J, Rohs M (2002) As we may live - Real-world
implications of ubiquitous computing. Technical Report, ETH Zurich, Institute for
Information Systems

[73] Langheinrich M, Mattern F, Römer K, Vogt H (2000) First Steps Towards an Event-
Based Infrastructure for Smart Things. Ubiquitous Computing Workshop (PACT
2000), http://www.vs.inf.ethz.ch/publ/papers/firststeps.pdf

[74] Leonhardi A, Kubach U (1999) An Architecture for a Distributed Universal Loca-
tion Service. In: Proceedings of the European Wireless ’99 Conference, pp. 351-355

[75] Leonhardt U (1998) Supporting Location-Awareness in Open Distributed Systems.
Ph.D. Thesis, Department of Computing, Imperial College London

150 BIBLIOGRAPHY

[76] Mattern F (2003) Vom Verschwinden des Computers - Die Vision des Ubiquitous
Computing. In: Friedemann Mattern (Ed.): Total vernetzt, Springer-Verlag, pp.
1-41

[77] Mattern F, Langheinrich M: Allgegenwärtigkeit des Computers? Datenschutz in
einer Welt intelligenter Alltagsdinge (2001) In: Müller G, Reichenbach M (Hrsg.):
Sicherheitskonzepte für das Internet, Springer-Verlag, pp. 7-26

[78] Mattern F, Sturm P (2003) From Distributed Systems to Ubiquitous Computing
- The State of the Art, Trends, and Prospects of Future Networked Systems. In:
Irmscher K, Fähnrich KP (eds) Conference Proceedings der Fachtagung Kommu-
nikation in Verteilten Systemen. Springer-Verlag, pp. 3-25

[79] Meyers B, Kern A (2000) <Context-Aware> schema </Context-Aware>. CHI
Workshop on The What, Who, When, Where, Why, and How of Context-
Awareness, http://www.cc.gatech.edu/fce/contexttoolkit/chiws/Meyers.doc

[80] Minar N, Gray M, Roup O, Krikorian R, Maes P (1999) Hive: Distributed Agents
for Networking Things. In: Proceedings of the First International Symposium on
Mobile Agents, pp. 118-129

[81] Moats R (1997) URN Syntax. RFC 2141

[82] Muller N (2001) Bluetooth. MITP-Verlag, ISBN 3-8266-0738-4

[83] Nicklas D, Grossmann M, Schwarz T, Volz S, Mitschang B (2001) A model-based,
open architecture for mobile, spatially aware applications. In: Proceedings of the
7th International Symposium on Spatial and Temporal Databases, pp. 117-135

[84] Nicklas D, Mitschang B (2001) The Nexus Augmented World Model: An Extensible
Approach for Mobile, Spatially-Aware Applications. In: Proceedings of the 7th
International Conference on Object-Oriented Information Systems, pp. 392-401

[85] Oat Systems (2002) The Savant - Version 0.1 (Alpha). Oat Systems & Mas-
sachusetts Institute of Technology (MIT) Auto-ID Center, Cambridge, http://www.
autoidcenter.org/research/MIT-AUTOID-TM-003.pdf

[86] Orr R, Abowd G (2000) The Smart Floor: A Mechanism for Natural User Identi-
fication and Tracking. GVU Report GITGVU-00-02, Graphics, Visualization and
Usability (GVU) Center, Georgia Institute of Technology

[87] Ponnekanti S, Lee B, Fox A, Hanrahan P, Winograd T (2001) ICrafter: A Service
Framework for Ubiquitous Computing Environments. In: Proceedings of Ubicomp
2001: Ubiquitous Computing: Third International Conference, pp. 56-75

[88] Pradhan S (2000) Semantic Location. Personal and Ubiquitous Computing 4(4):
213-216

[89] Rhodes B, Minar N, Weaver J (1999) Wearable Computing Meets Ubiquitous Com-
puting - Reaping the best of both worlds. In: Proceedings of The Third Interna-
tional Symposium on Wearable Computers (ISWC ’99), pp. 141-149

BIBLIOGRAPHY 151

[90] Roman M (2003) An Application Framework for Active Space Applications. Ph.D.
Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, Computer
Science

[91] Roman M, Hess C, Cerqueria R, Ranganat A, Campbell R, Nahrstedt K (2002)
Gaia: A Middleware Infastructure to Enable Active Spaces. IEEE Pervasive Com-
putting 1(4): 74-83

[92] Roth J (2002) Mobile Computing. dpunkt.verlag, ISBN 3-89864-165-1

[93] Russel S, Norvig P (1995) Artificial Intelligence - A Modern Approach. Prentice
Hall, ISBN 0-13-360124-2

[94] Römer K, Schoch T (2002) Infrastructure Concepts for Tag-Based Ubiquitous Com-
puting Applications. Workshop on Concepts and Models for Ubiquitous Com-
puting at Ubicomp 2002, http://www.vs.inf.ethz.ch/publ/papers/infrastructure-
concepts.pdf

[95] Römer K, Schoch T, Mattern F, Dübendorfer T (2003) Smart Identification Frame-
works for Ubiquitous Computing Applications. In: Proceedings of PerCom 2003
(IEEE International Conference on Pervasive Computing and Communications),
pp. 253-262

[96] Römer K, Schoch T, Mattern F, Dübendorfer T (2004) Smart Identification Frame-
works for Ubiquitous Computing Applications. To appear in: Wireless Networks
10(6)

[97] Schnellere Hilfe durch Handy-Ortung (2003) Frankfurter Allgemeine Zeitung, De-
cember 3rd, http://fazarchiv.faz.net/

[98] Schoch T (2000) An Authentication and Authorization Architecture for Jini Ser-
vices. Diplomarbeit, Darmstadt University of Technology, Deptartment of Com-
puter Science

[99] Schoch T, Krone O, Federrath H (2001) Making Jini Secure. In: Proceedings of 4th
International Conference on Electronic Commerce Research, pp. 276-286

[100] Schwägli T (2002) Jini vs. Web Services - Ein Leistungsvergleich. Semesterarbeit,
ETH Zurich, Institute for Information Systems

[101] Schädler S (2002) Smart Things - Einsatz von Web Services zur Modellierung von
intelligenten Alltagsgegenständen. Diplomarbeit, ETH Zurich, Institute for Infor-
mation Systems

[102] Siegemund F (2004) A Context-Aware Communication Platform for Smart Objects.
In: Proceeedings of PERVASIVE 2004 (Pervasive Computing: Second International
Conference), pp. 69-86

[103] Siegemund F, Flörkemeier C, Vogt H (2004) The Value of Handhelds in Smart
Environments. In: Proceedings of ARCS 2004 (17th International Conference on
Architecture of Computing Systems - Organic and Pervasive Computing), pp. 291-
308

152 BIBLIOGRAPHY

[104] Siegemund F, Krauer T (2004) Integrating Handhelds into Environments of Coop-
erating Smart Everyday Objects. To appear in: Proceedings of EUSAI 2004 (2nd
European Symposium on Ambient Intelligence)

[105] Sousa J, Garlan D (2000) Aura: An Architectural Framework for User Mobility
in Ubiquitous Computing Environments. In: Software Architecture: System De-
sign, Development, and Maintenance (Conference Proceedings of the 3rd Working
IEEE/IFIP Conference on Software Architecture), pp. 29-43

[106] Sriram T, Vishwanatha R, Biswas S, Ahmed B (1996) Applications of barcode
technology in automated storage and retrieval systems. In: Proceedings of the 1996
IEEE IECON 22nd International Conference, pp. 641-646

[107] Steiner M (2003) Smart Infrastructure - Dienste für eine Welt schlauer Gegenstände.
Diplomarbeit, ETH Zurich, Institute for Information Systems

[108] Strassner M, Schoch T (2002) Today’s Impact of Ubiquitous Computing on Business
Processes. In: Short Paper Proc. International Conference on Pervasive Computing,
pp. 62-74

[109] Strassner M, Schoch T (2003) Wie smarte Dinge Prozesse unterstützen. In: Heinz
Sauerburger (Ed.): Ubiquitous Computing, HMD 229 - Praxis der Wirtschaftsin-
formatik, pp. 23-31

[110] Su Z (1983) Identification in computer networks. In: Proceedings of the eighth
symposium on Data communications, pp. 51-55

[111] Sun Microsystems (2003) JXTA v2.0 Protocols Specification, http://spec.jxta.
org/nonav/v1.0/docbook/JXTAProtocols.html

[112] Thayer S, Steenkiste P (2003) An Architecture for the Integration of Physical and
Informational Spaces. Personal and Ubiquitous Computing 7(2): 82-90

[113] The GCI Intelligent Tagging Model (2001) Report, Global Commerce Initiative,
http://www.autoid.org/SC31/clr/200305 3827 GCI

[114] Vogt H (2002) Efficient Object Identification With Passive RFID Tags. In: Pro-
ceedings of International Conference on Pervasive Computing, pp. 98-113

[115] Vogt H (2002) Multiple Object Identification with Passive RFID Tags. Au-
toID invited session at SMC ’02 conference, http://www.vs.inf.ethz.ch/publ/
papers/smc02rfid.pdf

[116] Wang H, Raman B, Chuah C, Biswas R, Gummadi R, Hohlt B, Hong X, Kiciman
E, Mao Z, Shih J, Subraimanian L, Zhno B, Joseph A, Katz R (2000) ICEBERG: an
Internet core network architecture for integrated communications. IEEE Personal
Communications 7(4): 10-19

[117] Wang Z, Garlan D (2000) Task-Driven Computing. Technical Report CMU-CS-00-
154, Computer Science Department, School of Computer Science, Carnegie Mellon
University

BIBLIOGRAPHY 153

[118] Want R, Fishkin K, Gujar A, Harrison B (1999) Bridging Physical and Virtual
Worlds with Electronic Tags. In: Proceedings of SIGCHI ’99, pp. 370-377

[119] Want R, Schilit B, Adams N, Gold R, Peterson K, Goldberg D, Ellis J, Weiser M
(1995) The ParcTab Ubiquitous Computing Experiment. Xerox Palo Alto Research
Center Technical Report, CSL 95-1

[120] Weiser M (1991) The computer for the twenty-first century. Scientific American
44(9-20): 94-104

[121] Weiser M (1993) Hot topics - ubiquitous computing. IEEE Computer 26(10): 71-72

[122] Weiser M (1993) Some computer science issues in ubiquitous computing. Commu-
nications of the ACM 36(7): 75-85

[123] Weiser M (1994) The world is not a desktop. ACM Interactions 1(1): 7-8

[124] Westhoff A (2003) Bridging the Gap - Kommunikation von Gegenständen mit
Repräsentationen. Diplomarbeit, ETH Zurich, Institute for Information Systems

Appendix A

Curriculum Vitae

Personal data

Thomas Marcus Schoch

Born June 13, 1977
Unmarried
Computer scientist
Citizen of Germany

School

1993-1996 Gymnasiale Oberstufe Claus-von-Stauffenberg-Schule,
Abitur diploma, mark 1.2, best student of the year,
collaboration in setting up the class schedule,
library software

1983-1996 Elementary school and comprehensive school
3 years in a row class representative
best student of the year

University

2001-2004 Setting up and participation in the third-party
funded M-Lab project, key account for Volkswagen

2001-2004 Assistant at ETH Zurich, Computer Science
Department, distributed systems group,
tutorship for seminars and classes,
supervision of student projects and theses

154

155

1996-2000 Study of computer science at Darmstadt University
of Technology, subsidiary subject business
administration, computer science diploma with
honors, mark 1.18, course completed in 8.5 semesters
compared to the average 14.3 semesters required

1997-2000 Scholar funded by Studienstiftung des deutschen
Volkes (German national foundation),
participation in various programs

2000 Master’s thesis at International Computer Science
Institute, Berkeley, USA

1998 Exhibition at CeBIT, Hanover for Bosch Telekom
GmbH and Darmstadt University of Technology

Professional

1996-2002 Software development, freelance,
Rock ’n’ Roll tournament management, timekeeping

1995-2002 Private lessons, freelance, individualized teaching
private and foursome groups at institutes

1996-1999 DTP, freelance for VICTORIA AG

1999-2000 Tutorship, Darmstadt University of Technology

1997-1999 System administration, Darmstadt University
of Technology

1997 Laboratory report (CeBIT), Darmstadt University
of Technology

Additional items

1994-1996 Home care of critically ill father

Foreign languages German (native language), English (USA stay),
French, elementary Italian

Miscellaneous Driver’s license, class 3 (Germany)

