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Abstract
The assessment of environmental pollution levels is a complex

and expensive task that public administration and often also private
entities are willing or forced to take over. Focusing on the assess-
ment of environmental noise pollution in urban areas, we provide
qualitative considerations and experimental results to show the fea-
sibility of wireless sensor networks to be used in this context. We
present a prototype for the collection and logging of noise pollution
data based on the Tmote invent prototyping platform, using which
we performed indoor and outdoor noise pollution measurements.
We build upon these first experimental results to depict the poten-
tials and limits of currently available wireless sensor networks pro-
totyping platforms to be used as noise pollution sensors. Further-
more, we present tinyLAB, a Matlab-based tool developed in the
context of this work, which enables real-time acquisition, process-
ing and visualization of data collected in wireless sensor networks.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Experimentation, Measurement

Keywords
Wireless sensor networks, environmental monitoring, noise pol-

lution

1 Introduction
While environmental issues keep gaining increasing attention

from the public opinion and policy makers, several experiments
demonstrated the feasibility of wireless sensor networks to be used
in a large variety of environmental monitoring applications. For in-
stance, wireless sensor networks have already been used to monitor
bird habitats and habits [11, 17], to investigate the growth model
of redwood trees [5], or to study the influence of environmental
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parameters on the quality of agricultural products [16]. In more
recent years, several projects that aim at monitoring environmen-
tal pollution parameters in urban areas have been kicked off and
are expected to map pollutants distributions with an accuracy that
was unimaginable, though desirable, even a few years ago. For in-
stance, the CitySense1 project will provide a fixed network of 100
line-powered wireless sensors and allow collecting fine-grained air
pollution data as well as deliver it in real-time to the users. Fine-
grained data collection is essential to foster scientific research and
increase the understanding about actual pollutants spreading mech-
anisms and their influence on human health. Furthermore, any ac-
tion plan aiming at the reduction of environmental pollutants may
fail or be ineffective if no adequate actual data is available for plan-
ning and successive validation.

While the above considerations apply to almost any type of envi-
ronmental pollutant, we focused our attention on the peculiar prob-
lems and challenges that arise when considering the assessment of
environmental noise pollution in urban areas. Recent studies in-
deed demonstrated that exposure to environmental noise clearly in-
creases the risk of hypertension, ischaemic heart diseases, hearing
losses and sleep disorder, and that it negatively influences produc-
tivity and social behavior [8]. Recognizing in noise pollution a seri-
ous hazard to health and productivity as well as a source of increas-
ing complaints from the public, the European Commission made
the avoidance, prevention, and reduction of environmental noise a
prime issue in European policy [1]. Through a recent document,
the Commission additionally states that “more detailed noise mod-
elling/mapping and noise exposure assessment may have to be un-
dertaken in order to produce detailed local action plans” [9, p.5].

The European Directive 2002/49/EC indeed requires mem-
ber states to regularly provide accurate mappings of noise levels
throughout all agglomerations with more than 250.000 inhabitants
and to make this information publicly available through adequate
web-interfaces [1, p.15]. However, only few pioneering adminis-
trations already provide easily accessible web front-ends exposing
noise mapping information to citizens [6, 12]. Furthermore, these
maps are actually generated from synthetic data, i.e., approximate
noise levels computed by numerical models taking into account typ-
ical noise propagation patterns as well as parameters like the (esti-
mated) number of vehicle transits and the actual urban topology.
Even though these models allow to gain a first insight into the noise
pollution problem, they often provide just inaccurate data. This
poses an alarming uncertainty on the effectiveness of noise pol-
lution abatement plans elaborated upon information distilled from
this data. To cope with this problem, the European Commission
explicitly recommends that “every effort should be made to obtain
accurate real data on noise sources” [9, p. 6]. As we will de-
tail in the next sections, collecting accurate actual noise pollution

1www.citysense.net



data relying on the current measurement procedures is costly and
cumbersome and does not scale with the demand for higher data
granularity. We argue that wireless sensor networks could be suc-
cessfully used in this context to provide accurate, fine-grained data
on noise pollution.

In this paper, we report our experiences in testing the feasi-
bility of commonly available wireless sensor nodes to be used as
noise pollution sensors. After pointing out the peculiar characteris-
tics that make sensor networks a perfect fit for environmental noise
monitoring applications, we comment on the prototyping platforms
we selected for our experiments. We then introduce tinyLAB, a
Matlab-based tool enabling real-time data handling and interaction
with tinyOS-based wireless sensor networks. Finally, we present
and comment on an excerpt of the noise sensing experiments we
performed using the Tmote invent prototyping platform and pro-
vide our conclusions.

2 Assessment of Noise Pollution Levels
Through a personal in-depth interview with noise measurement

experts of the Department for Environmental Noise Protection of
the City of Zurich, we learned about today’s currently used noise
assessment procedures. In particular, we understood that typical
noise measurements in urban areas are mainly carried out by des-
ignated officers that collect data at a location of interest for suc-
cessive analysis and storage, using a sound level meter or similar
microphone-equipped device. The measuring sessions take place
only at few accessible spots and during short time intervals (e.g.,
thirty minutes). The collected data is then stored in a land register
and possibly used to feed computational models providing extrap-
olated noise exposure levels for all those areas in which no mea-
surement session took place. Furthermore, we got to know that the
inaccuracy inevitably introduced by the lack of actual noise mea-
surements becomes critical when the same data is used to develop
and validate urbanization projects or traffic management plans.

An additional issue regarding the specific case of the assessment
of road traffic noise, lies in the determination of the number of ve-
hicles passing through a road whose average noise level has to be
measured or computed. This number is currently either estimated
through numerical models or it is extrapolated from manually gath-
ered data, i.e., data collected by a designated officer standing nearby
the road and annotating the type and number of vehicles passing by.
This method for estimating the total number of vehicles’ transits
exhibits the the same drawbacks outlined above with respect to the
assessment procedure of noise levels, and could equivalently profit
from the adoption of wireless sensor networks technology, as we
will detail in the following section.

2.1 Assessment of Noise Pollution Levels Us-
ing Wireless Sensor Networks

Collecting fine-grained noise measurements through the manual
collection procedure described above is clearly inefficient and ex-
pensive. Nevertheless, since the need for higher granularity of noise
data in both time and space has been explicitly stated by the Eu-
ropean Commission, public administration will likely be required
to invest more human and material resources to provide enough
actual data on noise sources. In this scenario, wireless sensor
networks represent a promising technology that can overcome the
drawbacks of the current noise data collection procedure as well as
open new monitoring opportunities. Indeed, adequately equipped
sensor nodes could be deployed over an area of interest and col-
lect noise pollution readings over longer periods of time, operating
unattended and requiring human intervention only for network in-
stallation and removal. Noise pollution data reported to a central
sink could then be easily stored in a land register and subsequently
be used to produce noise maps and validate previously estimated

noise levels. Wireless sensor networks could bring significant im-
provements in particular in the assessment of noise pollution due to
vehicular traffic on urban roads, since its fine-grained observation
would allow for the design of better traffic management plans aim-
ing at reducing the noise exposure in affected neighborhoods. Fur-
thermore, the assessment of road traffic noise also requires estimat-
ing the average number of vehicles passing-by at daytime, evening
and night and the average noise level for each vehicle pass-by [4].
We will show in section 5 that these figures could be extracted
from collected noise levels after adequate processing and possibly
in combination with additional data from magnetometric sensors.

2.2 Noise Indicators
Noise pollution levels can be specified using several different

rating methods, provided they comply with international standards
and the guidelines defined by the European Commission through its
directives and studies. For the preparation of noise maps, however,
the equivalent continuous sound pressure level Leq has to be used.
This indicator is defined as:

Leq,T = 10log10(
1
T

∫ T

0

p(t)2

p2
0

dt), (1)

where p(t) represents the rms (root mean square) instantaneous
sound pressure produced by an acoustic wave, and p0 is a stan-
dard reference value corresponding to the minimal (human-) audi-
ble acoustic signal (i.e., 20µPa). The period T , over which the Leq
indicator is computed, may vary depending on the specific noise
source or area of interest and may last from few seconds to weeks
or years. The Leq indicator, measured in decibel (dB), captures the
sound level of a constant noise source over the time interval T that
has the same acoustic energy as the actual varying sound over the
same interval.

The equivalent sound level pressure Leq defined above drives the
computation of those specific noise indicators that are used for the
preparation of noise maps. Indeed, European member states must
provide noise pollution data in terms of the Lnight and Lden indica-
tors, which represent the equivalent sound levels averaged over the
night only and over the whole day, respectively 2 [1].

The computation of noise indicators is actually more complex
as it may appear from the definition of the Leq indicator in equa-
tion 1. For instance, the raw acoustic signal p(t) typically needs to
go through a filtering stage that simulates the frequency response
of the human hear (A-weighting). This filtering can be easily del-
egated to dedicated hardware or standard software packages and
represents an optimization that can be added at a later prototyping
stage. Therefore, we neglected this and other similar signal pro-
cessing steps in order to quickly get a working prototype and first
experimental results to investigate on. Further fundamental issues,
like the spatial distribution of the measurement points, should how-
ever always be carefully considered when measuring sound pres-
sure levels, as detailed in several standards and documents regulat-
ing the assessment of environmental noise [1, 8].

2Accurate definition of these indicators is provided in ISO 1996-
2:2007, which recently replaced the withdrawn ISO 1996-2:1987.
The standard recommends to consider the day period to last 12
hours, starting at 6:00 a.m., the evening to be 4 hours, starting at
6:00 p.m., and the night to extend for 8 hours, starting at 10:00
p.m..



3 Prototyping Platform
To understand the feasibility of wireless sensor nodes to be used

as noise pollution sensing devices, we tested and evaluated three
different hardware platforms. At a preliminary stage we considered
using the Tmote Sky platform from Moteiv [13] equipped with the
SBT80 multi-modality sensor board available from EasySen [7]. As
reported in [15], however, we rapidly abandoned this platform due
to its highly unsatisfactory performances. We then moved on ex-
amining the Tmote invent prototyping platform, also from Moteiv,
which provides an extended sensor suite including an omnidirec-
tional electret microphone that we used to measure environmental
noise. To this scope, we implemented the Ennowa (Environmen-
tal Noise Watcher) application, which collects raw acoustic sam-
ples, computes the correspondent equivalent noise levels using a
remotely settable time period T , and reports the computed values
to a central sink at regular time intervals. Ennowa runs on top of
Boomerang, Moteiv’s proprietary distribution of the tinyOS operat-
ing system. The centrally collected noise samples are then stored in
a database and can be further processed and visualized on common
map-based web-interfaces like Google Maps [14]. While the use of
the Tmote invent platform allowed for collection of first data sets
to investigate on, it also made us come across the computational
limits of this resource-poor sensor node. Indeed, computation of
noise indicators requires the Tmote invent to sample acoustic sig-
nals at rates as high as 32 kHz. This high processing load causes
rapid exhaustion of nodes batteries and may be hard to sustain if
the CPU must concurrently filter the gathered samples or even send
and receive messages over the radio.

To overcome the drawback represented by high sampling rates,
we decided to test a third prototyping platform that could outsource
the computation of noise indicators to dedicated hardware, thus dra-
matically reducing the computational load bearing on sensor nodes.
To this scope, we built a simple, customized noise level meter and
interfaced it with the Tmote Sky platform. The developed circuitry
exhibits a nominal error of ±2 dB and includes some of the sig-
nal processing stages mentioned at the end of section 2.2, like band
pass filtering and frequency weighting. Measurements obtained us-
ing this instrument have been reported in more detail in a related
publication [10], while in this paper we focus on the experiments
performed using the Tmote invent platform. For both platforms,
however, microphones’ calibration is a yet-to-solve issue, which
partially prevents a direct comparison of data collected by different
nodes, as we will show in section 5.

4 tinyLAB: A Deployment Aid Tool
Prototyping wireless sensor network applications often requires

to visualize and analyze collected sensor data to identify unex-
pected behavior or malfunctioning of the nodes as quickly as pos-
sible. Even if there exists tools that have been developed to serve
this scope (e.g., [5]), they often do not provide satisfactory data
processing and visualization features. The Matlab computing envi-
ronment, on the contrary, has been developed to serve scientists in
managing, processing and visualizing their data and appears there-
fore particularly well-suited to be used in the context of wireless
sensor networks. Indeed, the tinyOS1.x software suite allows to
use the Matlab environment in conjunction with the tinyOS Java-
tools, thereby providing basic primitives to interact with a sensor
network. However, this solutions requires binding Matlab code to
the tinyOS tree and thus limits flexibility and portability.

To enable Matlab-based remote control and interaction with a
wireless sensor network, we developed tinyLAB, a simple frame-
work that allows to receive and send messages from and to a sensor
network and to visualize and process data as it comes from the net-
work. tinyLAB is implemented relying solely on the Matlab soft-
ware suite and offers a simple API to receive and send data from and

to a tinyOS-based wireless sensor network. The structures of mes-
sages tinyLAB can exchange with the network must be entered in an
appropriate Matlab file, resembling a simple nesC header file. Fur-
thermore, an appropriate communication channel must be specified.
tinyLAB currently supports receiving and sending messages from
and to a serial port and/or from a TCP/IP server like the well-known
SerialForwarder. Avoiding any cumbersome installation procedure,
tinyLAB enables using the full Matlab computing power to manage
incoming messages, process, store and visualize data, as well as to
send commands to specific nodes or the whole network.

5 Experimental Results
To investigate the suitability of the Tmote invent prototyping

platform to be used as noise pollution sensor we performed ex-
tensive noise measurements sessions in both indoor and outdoor
settings. Due to space constraints, we focus here on two spe-
cific experiments that illustrate nodes’ responses to both synthetic
and real acoustic stimuli. Furthermore, we report about a case of
nodes’ malfunctioning we happened to come across. Experiments
have been performed by letting the Ennowa application collect raw
acoustic samples at a 8 kHz rate and compute the correspondent
equivalent noise level (defined by equation 1) with a temporal gran-
ularity T of one second. The experimental settings comprised up to
eigth sensor nodes deployed in the field, which used a star topol-
ogy for communication. Deployed nodes regularly reported noise
levels readings to the sink node, which had been in turn physically
attached to a powerful computing device running tinyLAB. A sim-
ple Matlab script, written using the tinyLAB API, received nodes’
messages from the sink node, timestamped, processed and visual-
ized collected noise data (as well as other data of interest) in real-
time, and finally stored all reusable information in Matlab-friendly
format.
5.1 Calibration

To observe the behavior of different nodes in response to the
same acoustic stimuli, we deployed all the 8 Tmote invent plat-
forms we dispose of at close distances from each other. We then
used the freely available Audacity tool [3] to produce a chain of
five seconds wide white noise pulses of increasing amplitudes. Fig-
ure 1 shows the responses to these acoustic events of four different
nodes, clearly pointing out a misalignment in the measured equiv-
alent noise levels. This discrepancy is mainly due to mismatches
in microphones’ sensitivities3, frequency responses and positions.
Adequate standard calibration procedures using pistonphones or
anechoic chambers would definitely help in limiting the misalign-
ment in nodes’ responses. This would be a necessary precondition
to enable comparison of data gathered by different sensor nodes, as
actually required for the preparation of noise maps.
5.2 Road Traffic Noise

To demonstrate the performances of the Tmote invent platform
in an outdoor setting, we deployed the sensor nodes close to a ur-
ban road (about 3 meters distance) and recorded nodes responses.
Figure 2 shows a segment of the collected data with the typical rises
of the equivalent noise level values caused by vehicles transits. The
rises are respectively labeled with the actual type of vehicle pass-
ing by, which we manually annotated during the experiment. This
data shows that the high noise rise produced by a bus transit extends
over a longer period of time if compared to that produced by a car.
This characteristic, along with additional information like magne-
tometric data, could be exploited to design a detector able to count
total vehicles transits and possibly differentiate between different
vehicles categories [2]. As mentioned in section 2 current vehicle

3Microphones’ sensitivities may deviate from the nominal value
due to flaws in the manufacturing process, experienced mechanical
shocks or temperature gradients.



counting procedures are expensive and inefficient, while relying on
wireless sensor networks could significantly reduce costs and in-
crease data accuracy and availability. Please note that since tram
tracks are about 200 meters away from the measurement point, the
produced noise levels do not reach absolute values as high as those
of buses or cars, which are as close as few meters. Information
about the approximate distance of noise sources from the actual as-
sessment point is an important information that should always be
reported when collecting noise pollution data.
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Figure 1. Acoustic responses of four different nodes to a chain
of white noise pulses of increasing amplitude.
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Figure 2. Acoustic responses of four different nodes in corre-
spondence of vehicles transits.

5.3 Reference Voltage
While inspecting collected sensor data using the tinyLAB tool

described in section 4, we observed an unexpected behavior of the
nodes’ reference voltage. In particular, we noticed that under a
constant acoustic stimulus the average output voltage of the mi-
crophone assumes different values depending on the node being
plugged into a power outlet or being draining current from its own
batteries. Since we observed a perfectly analogous behavior for

all the 8 Tmote invent platforms we dispose of, we report results
related to a single, representative, sensor node. Figure 3 helps illus-
trating the above mentioned malfunctioning by reporting in subplot
(a) the development of the total number of samples collected during
a single sampling interval, in subplot (b) the average output voltage
of the microphone and in subplot (c) the computed equivalent noise
level. We annotated different sectors of the plot with letters from a
to h, to identify different phases of our experiment. As observation
begins, the node is attached to a power outlet through an adequate
usb adapter and the average output voltage of the microphone is
0.8 volts (sector a). Once the node is detached from the adapter,
this voltage level increases up to 1.1 volts, as shown in sector b of
figure 3(b) and regularly returns to 0.8 volts if the node is plugged
in again (sector c). Surprisingly, the effect of plugging/unplugging
the node is also visible on the number of samples collected during
the interval T , as shown in subplot 3(a). Indeed, as long as the
node is plugged in the power outlet it collects about 8200 samples,
while this figure increases up to 8600 samples once the node runs
on batteries4. This oscillation do not (appear to) significantly in-
fluence the computed equivalent noise levels, but clearly indicate a
malfunctioning in the circuitry regulating the power supply. Things
become even more interesting if, instead of unplugging the node
from the usb adapter, both the node and the adapter are detached
from the power outlet. In this case, the average output level of the
microphone shrinks to a very small value hindering proper compu-
tation of noise levels, as shown in subplots 3(b) and 3(c) (sector
d). Instead, the number of samples keeps oscillating as observed
above (see subplot 3(a)). Plugging in the node does not help in re-
pairing the malfunctioning microphone (sector e) and only a node
reboot restores the initial node behavior (sector f ). Sectors g and h
of figure 3 finally show the reproducibility of the above described
behavior in the case the sensor node is plugged in the usb adapter
(sector g) or not (sector h).

We would like to point out that the tinyLAB tool allowed us to
identify and easily analyze this unexpected behavior of the nodes’
reference voltage. Before deploying the network in an outdoor en-
vironment, we indeed tested the hardware and software in our lab to
both understand signal dynamics and investigate the issue of cali-
bration. The comfortable and powerful visualization and processing
features offered by the Matlab computing environment, made avail-
able by the tinyLAB tool, allowed for a fast and effective real-time
analysis of the data reported by the sensor nodes. Analyzing the
behavior of the Tmote invent platform using a typical approach in
which data is collected, stored and analyzed at a later stage, would
have surely considerably delayed our prototyping process.

6 Conclusions
Focusing on the assessment of environmental noise pollution in

urban areas we provided qualitative considerations and experimen-
tal results to understand the feasibility of wireless sensor networks
to be used in this context. We reported our experiences in using the
Tmote invent prototyping platform for collecting noise pollution
data in both indoor and outdoor settings, and pointed out the poten-
tials and limits of our prototype. While our results show the general
suitability of wireless sensor nodes to be used as noise pollution
sensors, they also illustrate the practical limits of today’s commer-
cially available platforms. In particular, we showed that uncali-
brated nodes’ microphones produce misaligned acoustic responses,
hindering a direct comparison of noise readings collected by dif-
ferent nodes. Finally, we demonstrated that tinyLAB, our Matlab-
based software suite, enables real-time data collection, processing

4Since the interval T extends for one binary second (1024 bi-
nary milliseconds), a sampling rate of 8 kHz results in 8192 sam-
ples/second.
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and visualization of wireless sensor network data, thereby revealing
as a powerful tool for supporting first prototyping and deployments
steps.
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