
On the Use of Sensor Nodes and Mobile Phones for
the Assessment of Noise Pollution Levels

in Urban Environments
Silvia Santini, Benedikt Ostermaier, Robert Adelmann

Institute for Pervasive Computing
ETH Zurich

CH-8092 Zurich, Switzerland
{santinis,ostermaier,adelmann}@inf.ethz.ch

Abstract—Recent work in the field of wireless sensing networks
shows that cheap sensing platforms like wireless sensor nodes
or mobile phones can be used, or “misued”, for monitoring
environmental pollution levels. In particular, several authors
dedicated their attention to the problem of the assessment of
environmental noise levels in urban environments, a complex
and expensive task that public administrations and often also
private entities are willing or forced to take over. In this paper,
we review the approaches that have been presented within the
wireless sensing research community and report on our own
experiences in assessing noise pollution levels using both sensor
nodes and mobile phones. Drawing form other authors’ and
our own work, we outline common pitfalls and open issues in
the implementation of wireless noise monitoring systems and
provide practical considerations that can speed up and advance
the development of such systems.

I. INTRODUCTION

The negative effects of environmental pollutants on human
health and quality of life are nowadays unquestioned [1]. The
definition of adequate strategies for the abatement of pollutants
levels is therefore becoming a prime political issue in many
developed and developing countries. The first step towards the
identification of effective abetment strategies typically consists
in the acquisition of data describing sources and distributions
of the pollutants under consideration. Performing the thereby
required data collection campaigns, however, is an expensive
and cumbersome task and technical solutions that can reduce
their costs and increase their reliability are therefore highly in
demand.

Focusing on the assessment of environmental noise pol-
lution in urban areas, we already outlined the advantages
as well as the technical challenges that the use of wireless
sensor networks may bring in this context [2]. In particu-
lar, we tested the feasibility of off-the shelf wireless sensor
network platforms, like the Tmote invent from Moteiv [3],
to be used as environmental noise sensors and outlined the
thereby arising problems. For instance, we showed that the
built-in microphones of the nodes are poorly calibrated and
thus nearby devices typically produce misaligned acoustic
responses, even if they actually record the same acoustic
signal. This lack of calibration prevents the possibility to use

such readings for mapping noise levels across a neighborhood
or city, since measurements collected by different nodes do not
refer to a common and reliable reference. Solving this problem
requires not only using alternative hardware platforms, but
also the definition adequate procedures to perform frequent
re-calibrations towards a reliable reference. In section II, we
will wrap-up the available know-how on using sensor nodes for
noise pollution monitoring, and report our latest experiences.

Moving beyond the traditional wireless sensor networks
paradigm, several recently started research projects aim at
leveraging the computational, communication, and sensing
capabilities of mobile phones to capture data from the envi-
ronment. For instance, it has been postulated that microphones
of mobile phones may be used as cheap and ubiquitously
present noise pollution sensors [4], [5]. The availability of
noise pollution data may then allow to infer information about
the traffic situation or the crowdedness of a public place,
which in turn can be used to feed other applications like
a restaurant locator [5]. In section III, we will provide an
overview on projects that adopted mobile phones to capture
noise pollution data and we will outline the benefits and
limits of such approaches. Supporting our assertions with
experimental results, we will show that noise data collected
with mobile phones is often not accurate enough to support the
above mentioned application scenarios. Furthermore, we will
summarize common pitfalls in the design and implementation
of noise level metering applications and provide practical
guidelines to ease their workaround.

The contribution of this paper is therefore threefold. First,
we provide an extensive overview on related work concerning
the gathering of noise levels data using commercially available
sensor nodes and mobile phone platforms. Second, we report
a detailed analysis of experimentally gathered data to assess
the feasibility of mobile phones to be used as noise pollution
sensors. Third, we provide a summary of the main technical
issues influencing the design and implementation of reliable
systems for the assessment of noise pollution levels using
mobile phones.



II. ASSESSMENT OF NOISE POLLUTION LEVELS USING
WIRELESS SENSOR NODES

In recent years, the European Commission dedicated in-
creasing attention to the problem of environmental noise
pollution [1], [6], as also the large number of funded research
projects demonstrates [7]. The implementation of reliable
noise monitoring and management systems indeed still re-
quires research on several issues, spanning from the refinement
of noise propagation models to the development of an adequate
standard infrastructure for noise management. Along this line,
the European Community recently issued a Directive that
requires all agglomerations within the European Union with
more than 250′000 inhabitants to provide accurate mappings
of noise pollution levels across their territory [6, p.1], [2].
Such noise maps must be provided on a yearly basis and
made available to the public through adequate web interfaces.
However, since currently available noise maps are mainly
drawn upon synthetic data, they often provide only rough
estimations of the actual perceived noise levels. Therefore,
the European Commission emphasizes that, although synthetic
data may still be used, “every effort should be made to obtain
accurate real data on noise sources” [8, p.6].

In our own previous work we outlined how wireless sensor
networks could help in satisfying this need for real noise pol-
lution data with relatively cheap and marketable solutions [2],
[9]. In particular, we tested three different different hardware
platforms: the Tmote invent from Moteiv [3] and the Tmote
Sky, also from Moteiv, equipped with either the SBT80 multi-
modality sensor board available from EasySen [10] or with a
custom-made noise level meter. Although the Tmote invent
features significantly better audio circuitry with respect to the
EasySen board, both platforms provided quite unsatisfactory
results. In particular, readings from different sensor nodes
exhibit significant discrepancies, even if the measurements
were taken concurrently in the same experimental setting.
Additionally, acquiring and processing audio data on Tmote
platforms heavily overloads the processor and quickly exhausts
nodes’ batteries.

To bypass the problems related to an inadequate audio
sensor while still exploiting the potential of state-of-the-art
networked sensing systems, we very recently investigated the
possibility of interfacing the Tmote Sky platform with off-the-
shelf sound level meters. Devices providing adequate output
channels can be connected almost effortlessly to one of Tmote
Sky’s extension connectors. For instance, the Extech 407740
class 2 sound level meter makes the measured noise levels
available on an analog output channel. We can thus easily
gather the signal on this channel through a standard 3.5 mm
TRS-connector (audio jack) and report it to one of the Tmote
Sky’s ADC input channels. A simple tinyOS1 application can
then read the measured noise levels, expressed in deciBel
(dB), and log them on a back-end terminal through the serial
connector of the Tmote. This simple prototype, although
useful for collecting preliminary experimental data, does not

1www.tinyos.net

represent a viable solution for a large scale deployment, due
to the bulky form factor of the Extech 407740. As an inviting
alternative, the SL328 hand-held sound level meter provides an
agreeable compromise in terms of form-factor, accuracy and
costs. However, it does not provide any standard interface to
capture the measured noise levels and we are thus considering
the possibility to develop a customized connection board.

Besides our own work, several other authors analyzed the
possibility of using wireless sensor networks for noise pollu-
tion monitoring. For instance, in a well-known seminal paper
back into 1999, Deborah Estrin and her co-authors mentioned
fine-grained collection of noise data as one of the potential
application scenarios for wireless sensor networks [11]. In the
following years, other authors referred to noise monitoring as
a possible application for wireless sensor networks, without
however providing closer investigations [12]. Most recently,
the BikeNet project [13] showed how average noise levels can
be used to influence daily decisions like the choice of the
cycling route to work. The prototype developed for the BikeNet
project uses the Tmote invent platform to derive estimations
of the actual noise levels in the immediate neighborhood of a
cyclist. However, as reported in [2] and as we briefly recalled
above, the Tmote invent platform doesn’t lend itself well for
accurate measurements of noise pollution levels.

Before moving on with our analysis, we would like to recall
that a consistent body of literature deals with applications for
wireless sensor networks that exploit acoustic measurements,
like target or event detection and classification (e.g., shooters,
birds or volcanic eruptions) or acoustic-based localization or
communication [14]–[17]. For these applications, however,
specific features of the audio signal, like its frequency spec-
trum (e.g., for birds classification) or the relative loudness or
time shifting between two signals (for detection and localiza-
tion) are of interest, and not the absolute loudness, like for the
assessment of noise levels.

III. ASSESSMENT OF NOISE POLLUTION LEVELS USING
MOBILE PHONES

As we already mentioned in the introduction, several re-
search projects or even commercial applications2 aim at using
the microphone of commonly available mobile phones as
ubiquitous environmental noise sensors. Measured noise levels
can then contribute to the estimation of traffic loads or of the
“healthiness” of a bike trail or to the preparation of noise maps
[2], [5]. However, the reports on the usage of mobile phones
for measuring noise levels presented so far do not mention
important technical considerations and let the actual accuracy
of the measured noise levels remain unascertained.

For instance, the MobGeoSens system [4] used built-in
microphones and other sensors attached to mobile phones to
collect pollutant levels in an urban environment. Examples of
noise levels, expressed in dB, are presented, but the accuracy
of this data as well as its coherence with measurements taken
from nearby phones is not discussed at all.

2See, for instance, the WideNoise project: www.widetag.com/widenoise.



Within Microsoft’s Nericell project [18], audio recordings
from the built-in microphone of a smartphone constitutes the
input of a honk-detection algorithm, which in turn feeds an
estimator of the current traffic conditions. The authors inves-
tigate the influence of background noise and the sensitivity of
the microphones on the performances of the honk-detector, but
their approach does not support the assessment of the absolute
of the actual noise levels. Similarly, the CenceMe system [19]
uses simple Python scripts to capture audio signals on Nokia
N80 and N95 mobile phones, but the data is processed on the
mobile phone to determine whether it contains voice or just
background noise.

Other efforts investigate the challenges and possibilities
related to the use of mobile phones as “complex” sensors.
For instance, Misra et al. [20], present several examples
of how the microphone of mobile phones can be used
for music applications. Furthermore, they underline that,
being the development of mobile operating systems still
ongoing, writing applications for mobile platforms that rely
on such systems may be cumbersome and time consuming.
Also other authors dedicated their attention to the actual
ease of programming of mobile devices, and some focused
specifically on the audio subsystem [19], [21].

Using mobile devices for assessing environmental noise
levels poses several technical challenges that are only partially
addressed in the above described efforts. In the remainder of
this section we provide a list of properties an application for
capturing noise levels should be endowed with, along with
suggestions and ideas on how to enforce such properties.

Context-Awareness. Information about the context of the
user should be collected and used to trigger data collection.
Indeed, the phone should measure noise levels only when this
makes sense in the actual location and status of the user, e.g.,
if she is visiting a neighborhood whose “loudness” could be
of interest for her or other users or applications. The particular
context of the mobile device also influences the decision
about wether to start a measurement or not. For instance, it
would be of little value to perform a measurement while the
phone is in a pocket or in a bag. In these cases, however,
using microphones of Bluetooth- or cable-based headsets
may represent an alternative solution. Context recognition
techniques able to classify the status of both the user and her
mobile phone are therefore needed and could ideally involve
several local sensors [22].

Unobtrusiveness. Access to the resources of the mobile
phone should occur in the background, possibly without
requiring the user to perform any action to participate in the
sensing task. An unobtrusive usage of the sensing resources
of the mobile phones includes a thrifty access to hardware
resources (computation, communication, batteries) and the
availability of adequate primitives that allow the user to set
her privacy settings. In the case of audio measurements, for
instance, we often hit upon users mistrusting the application

and fearing for their conversations to be recorded without
their consensus. Besides supporting privacy issues from the
technical side (e.g., by computing noise levels on the phone
and transmitting only the averaged dB values to the back-end
server), providing adequate incentives for participation in the
sensing task may help reducing or redirecting users concerns.

Correctness. The accuracy of the measured value should be
estimated and logged along with the value itself. Audio input
channels of mobile phones typically feature noise canceling
or low-pass filters and/or dynamic input level adjustment,
which partially hamper the possibility of measuring the actual
absolute loudness of a received acoustic signal. Exploiting
available programming primitives to bypass filtering of the
audio signal is the first, fundamental step towards more
precise mobile phone-based noise level measurements.
Indeed, although it is to expect that common mobile phones
won’t be able to reach the accuracy of dedicated sound level
meters, it is important to ascertain if the obtainable accuracy
is sufficient to allow the envisioned applications to work
reliably. In many cases, for instance for the identification of
quiet bike trails [5], it would be sufficient to infer discrete
states from the raw measurements (e.g., quiet, moderately
loud or very loud). However, inadequacy of the hardware
or not disengageable processing stages may hamper even
this possibility, as we will also demonstrate trough our
experimental study in the following section IV. Last but not
least, since microphones of mobile phones are obviously not
intended for noise measurements, calibration issues arise,
as in the case of wireless sensor nodes. We will investigate
programming and audio processing issues in more details in
the following section IV.

Energy-Awareness. To preserve the battery of the mobile
phone, the amount of energy used to measure noise levels
should be kept as low as possible. Clearly, the energy spent for
sensing heavily depends on the duration of the measurements.
Since acoustic signals usually exhibit quick and wide fluc-
tuations, noise levels are computed as long-term averages of
the (opportunely time- and frequency-weighted) mean square
acoustic pressure [2], [23], [24]. Although short-term averages
may be valuable too, an averaging period of at least few
seconds should always be guaranteed. Additionally, within this
period the measuring devices should be let in a stable position.
Energy awareness should be enforced in the system by, for
instance, make the duration of a measurement depend upon
the available battery charge.

IV. EXPERIMENTAL RESULTS

To understand the feasibility of mobile phones to be used as
noise pollution sensors, we performed a series of experiments
using several different test signals, and carefully analyzed the
collected data. Our experiments aim at investigating two main
issues, namely, the comparableness of the acoustic measure-
ments of nearby located phones and the accuracy of such



measurements against those taken by a reference sound level
meter.

As test devices, we used three Nokia N95 8GB mobile
phones3, to which we will refer as Phone1, Phone2 and
Phone3. The Nokia N95 8GB well represents state-of-the-art
mobile devices, featuring remarkable processing power, good
permanent storage capability and several built-in sensors, like
an accelerometer and a GPS-receiver. We emphasize here that
the availability of a GPS-module is an essential feature for
devices serving mobile sensing applications, since it allows
to associate a sensor value with the correspondent location at
which the measurement took place. Furthermore, recent work
demonstrated that accurate indoor-localization is doable by
opportunely processing signals received by standard Bluetooth
and WLAN modules [25], both being available on the Nokia
N95 8GB devices.

We used three devices of the same type to avoid as far as
possible discrepancies in the responses of the mobile phones
being due to differences in the built-in hardware. Indeed,
even devices of the same type may be built using chips from
different manufactures, but their overall performance remain
congruent still in this case. Although we experimented on
devices of a specific manufacturer (Nokia) and type (N95),
our conclusions qualitatively apply also to most commercially
available mobile phone platforms, since these usually exhibit
comparable characteristics with respect to their audio circuitry.

In our experiments, we stimulated the mobile devices with a
series of different acoustic signals and recorded the responses
of the phones for offline analysis. To capture such responses,
we implemented two recording applications, one in Python
(PyS60) and the other in Java (J2ME), which simply capture
audio signals and store them in a wave file. Both the Python
and the Java API expose simple methods for recording audio
data but while the first only allows to capture signals at a rate
of 8kHz, the latter enables sampling rates of up to 41kHz.
Lower level primitives granting direct access to the unpro-
cessed raw audio data are in both cases still unavailable. This
implies that before we can record them, the audio signals likely
undergo the processing steps typical for voice communication
applications, like band-pass filtering, noise canceling, or input
level adjustment. This “polishing” of the signal, if not properly
bypassed, constitutes a serious burden to the use of mobile
phones for the assessment of environmental noise levels, as
we will show later in this section. The third programming
option for the Nokia mobile devices under consideration is
C++ Symbian. The correspondent API offers methods for
setting low-level audio parameters like the microphone gain,
as well as for defining custom codecs or selecting the specific
audio source (built-in microphone, line-in, phone call or radio).
To the best of our knowledge, however, C++ Symbian does
not expose methods for immediate access to the raw audio
data, as also underlined in [19]. Considering the complexity
related to writing application in C++ Symbian, we limited
our investigations to Python and Java, and let additional

3www.forum.nokia.com/devices/N95 8GB

implementations to future work.
In all our experiments, the Extech 407740 class 2 profes-

sional sound level meter, connected as sketched in section
II, has been co-located with the three mobile devices and
collected ground-truth noise level measurements. We set the
phonometer to gather data using F-weighting in time and A-
weighting in frequency, as recommended in [24]. F-weighting
basically runs a moving average on the squared acoustic pres-
sure using a time constant of 125 ms, while the A-weighting
attenuates very low and very high frequencies to resemble
the natural filtering behavior of the human ear [2], [23]. We
correspondingly applied F- and A-weighting filters also to the
responses of the mobile phones and indicated the resulting
A-weighted noise levels in dBA (A-weighted decibels). We
should notice at this point that due to mechanical or thermal
shocks even professional sound level meters may get out
of calibration and therefore return erroneous measurements.
During our experiments, we let the phonometer rigourously
untouched across and during measurements, so as to reduce
errors due to calibration drifts.

To reproduce the test signals we used a common laptop
supporting up to 192kHz audio in-/output that we opportunely
connected to high quality external speakers. In the following,
we will refer to this system as the “audio source”.

Fig. 1. Experimental setup: (a) the audio source; (b) the three mobile phones;
(c) the phonometer.

A. Response to the tones test signal

Our first experiment aimed at studying the response of the
mobile phones to synthetic test signals produced by an audio
source in a controlled environment. To this scope, we aligned
the three mobile devices and the phonometer on a surface in
a silent room4, all at approximately the same distance from
the audio source, as shown in figure 1. In this setting, we

4When the audio source is off, the average noise level in this room,
measured with our reference phonometer, is slightly above 30dBA.



reproduced three times a one minute long test signal and
recorded responses of the phonometer and the three mobile
phones. The test signal starts with a five seconds long white
noise snippet, followed by five seconds of silence (i.e., the
audio sources is on but outputs a zero-amplitude signal). After
this first phase, the test signal repeats five times a five seconds
long 1 kHz sinusoidal tone, whose amplitude is regularly
increased at each repetition (varying from 20% to 100% of
the total available output dynamic). The tones are interleaved
with five seconds long silence cuts. We use a pure tone as test
signal since standard calibrators calibrate sound level meters
at one single frequency, namely 1 kHz. Since the signal is a
repetition of sine tones, we will refer to it as the tones test
signal.
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Fig. 2. Response of Phone1 to the first run of the tones test signal.

Figure 2 displays an example of the recorded instantaneous
acoustic pressure levels correspondent to a single run of the
tones test signal. As we can see, the mobile phone properly
mirrors the increasing amplitude of the five sinusoidal tones.
Instead, the response of the mobile phone to the white noise
signal, framed in a black rectangle in figure 2, clearly shows
the effect of a noise canceling filter. After recording the white
noise signal for about one-third of the five seconds snippet, the
filter classifies the signal as background noise and suppresses
it, causing a reduction in the amplitude of the recorded signal,
and, consequently, a diminution of the “perceived” loudness
associated with the signal. Noise canceling is a standard signal
processing technique used in several audio applications and
it is therefore not a surprise to ascertain its effect in this
measurement. However, we aimed at outlining that the action
of noise canceling can hamper the possibility to use mobile
phones for the measurement of environmental noise levels,
since it may partially suppress the signal one is actually trying
to capture. As mentioned above, the availability of adequate
programming primitives granting access to the raw audio data
would allow to bypass this problem, but this is still not possible
with the currently available APIs.

The noise levels corresponding to the recorded acoustic
pressure levels, properly A- and F-weighted and averaged over
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Fig. 3. Response to the three runs of the tones test signal, for the three devices
under test Phone1, Phone2 and Phone3 and the reference phonometer.
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difference of the levels measured by the phonometer and the correspondent
levels captured by Phone1, Phone2 and Phone3. The difference are averaged
over the three runs of the test signal.

five seconds, are reported in figure 3, along with the noise
levels measured by the phonometer. Figure 4 reports the differ-
ences between the measurements of the phonometer and those
of the three phones for the first run of the tones test signal.
Both figures 2 and 4 make evident that, when the test signal
is white noise, there is a the high discrepancy (> 20dBA)
between the noise level measured by the phonometer and
those measured by the phones. This discrepancy is consistently
lower, although still high (∼ 10dB), for all the five subsequent



measurements and for all the three test devices. A constant
divergence from the reference measurement would represent a
correction factor that could be used for calibrating the mobile
phones against the reference itself. However, our experiments
showed that this value may change of several (> 5) dBAs,
when the measurement is repeated in the same setting but at
a different time.

B. Response to the chirp test signal
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Fig. 5. Equivalent noise levels measured by the phonometer and by Phone1
(using both the PyS60 and J2ME applications). The levels are averaged over
the 5 seconds duration of each tone of the chirp test signal.

To investigate the ability of the mobile phones to capture
signals at different frequencies, we performed a second
experiment using a test signal consisting of five sine waves
of equal amplitude whose frequencies increments from 1 to
4, 8, 16 and 20kHz. Since a signal whose frequency content
increases linearly with time is typically called a chirp, we
refer to this sequence of sine tones as the chirp test signal.
Letting unchanged the experimental setting, we played the
sixty seconds long test signal three times in a row, and
recorded the responses for offline analysis. Figure 5 shows
the average noise levels measured during the first run of
the chirp test signal, using both the PyS60 and the J2ME
applications and along with the correspondent values recorded
by the phonometer. These levels result from averaging the
F- and A-weighted squared instantaneous acoustic pressure
over the five seconds long snippets of the chirp test signal.
As we can see, the audio signal captured by the PyS60
application is clearly low-passed, since already the response
to the 4kHz tone is so feeble that it approaches the value
measured when no test signal is present. This results doesn’t
come as a surprise, since for voice transmission applications
a low-pass filtering at a frequency around 4 kHz is a standard
figure. However, since the human hear can actually hear
frequencies far above 4 kHz [23], bypassing this low-pass
filter is mandatory if the mobile device is intended to be
used as noise level meter. The J2ME programming primitives
clearly allow to access richer audio input data, since our
J2ME application manages to capture, although with low
accuracy, also the tone at 20 kHz, as shown again in figure
5. This superior recording quality, however, comes at the cost
of higher processing and storage loads.

C. Response to the traffic jam test signal
To evaluate the response of the mobile devices in more

realistic conditions, we performed a third experiment using
a thirty seconds long recording of a traffic jam. The signal
features several different honks, breaks and engine noises,
resulting in complex frequency and amplitude spectra. The
experimental setting is the same as in the first two experiments
and the test signal is again played three times in a row. Since
the responses to the three subsequent runs of the test signal
are very similar to each other, we report, in figure 6, only
the results ascertained in the first run. Since the PyS60 and
the J2ME applications cannot run concurrently on the mobile
phone, we performed the test twice, recording once with the
PyS60 and once with the J2ME application. As expected,
since the test signal and the experimental setting did not
change at all, the phonometer profiles collected during the
two subsequent experiments overlap almost perfectly. For
this reason, in commenting figure 6 we can indistinguishably
refer to the phonometer profile. A visual inspection of figure
6(a), demonstrates the superior fidelity of the J2ME-profile
to the actual ground-truth measurements collected by the
phonometer. The PyS60-profile, on the contrary, diverges
consistently from the phonometer profile, as also the average
noise levels reported in figure 6(b) show. The difference
between the average levels recorded by the phonometer and
those captured by Phone1 are also reported in figure 6(c).
This graph evidences the higher accuracy reachable using the
J2ME application but also shows that the difference between
the noise levels measured by the phones and those measured
by the phonometer varies significantly across different time
sectors of the signal.

The experimental results presented in this section allow to
make some general qualitative assertions on the feasibility of
mobile phones to be used as noise pollution sensors. First,
devices of the same type do return coherent audio responses
so that a direct comparison of their readings is, at least
qualitatively, possible. Second, the noise levels measured
by mobile phones may diverge from those captured by a
co-located professional sound level meter and the magnitude
of this divergence may vary significantly over time, depending
on the actual audio signals. Moreover, the accuracy of the
measured noise levels is influenced by the processing steps
the audio signal undergoes before being recorded and by the
sampling rate at which the signal is captured. Further, the
specific language used to program the devices may influence
the accuracy of the measured noise levels, since different
APIs may expose audio data at different “rawness” levels.

V. CONCLUSIONS

In this paper, we reported qualitative considerations, an
overview of related work and a collection of experimental data
that demonstrate the complexity hiding behind the intriguing
idea of using mobile phones to unobtrusively and ubiquitously
capture noise pollution data.
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Fig. 6. Response to the first run of the traffic jam test signal.

The reported experimental evidences show that the assess-
ment of noise pollution levels using mobile phones still poses
several challenges. For instance, bypassing the audio signal
processing modules of the mobile phones (noise canceling,
low-pass filtering) is still unfeasible even on state-of-the art
mobile devices. Furthermore, we outlined several additional
factors that may hamper reliable collection of noise levels.
Among these, we mentioned the need for determining the
context of both the mobile phone and the user carrying it to
ascertain weather a measurement should be taken or not and
the problem of fixing an appropriate value for the duration of
the measurements. Possible users’ concerns about audio data
being recorded “in the background” by their mobile phone
should also be considered in the design of a system for noise
monitoring.
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