
An Adaptive Strategy for Quality-Based Data
Reduction in Wireless Sensor Networks

Silvia Santini
Institute for Pervasive Computing

ETH Zurich
8092 Zurich, Switzerland

santinis@inf.ethz.ch

Kay Römer
Institute for Pervasive Computing

ETH Zurich
8092 Zurich, Switzerland

roemer@inf.ethz.ch

Abstract— Wireless sensor networks allow fine-grained obser-
vations of real-world phenomena. However, providing constant
measurement updates incurs high communication costs for each
individual node, resulting in increased energy depletion in the
network. Data reduction strategies aim at reducing the amount of
data sent by each node, for example by predicting the measured
values both at the source and the sink node, thus only requiring
nodes to send the readings that deviate from the prediction.
While effectively reducing power consumption, such techniques
so far needed to rely on a-priori knowledge to correctly model the
expected values. Our approach instead employs an algorithm that
requires no prior modeling, allowing nodes to work independently
and without using global model parameters. Using the Least-
Mean-Square (LMS) adaptive algorithm on a publicly available,
real-world (office environment) temperature data set, we have
been able to achieve up to 92% communication reduction while
maintaining a minimal accuracy of 0.5 degree Celsius.

I. INTRODUCTION

Wireless sensor networks offer the possibility of contin-
uously monitoring a variety of real-world phenomena in a
distributed fashion. Such monitoring applications could allow
a user to observe the evolution in both time and space of some
measurable quantity. The sensor nodes, being deployed over a
given region of interest, constitute an irregular spatial sampling
grid for the observed phenomenon. At each time instant, the
information residing in the network is thus a snapshot of the
observed phenomenon. However, reporting these snapshots
to an interested user represents a significant communication
overhead and energy consumption.

To conserve network resources – energy, network band-
width, CPU usage – a series of recent papers propose different
approaches to reduce the amount of data that need to be
delivered to the user [2], [5], [8], [15], [16], [18]. Since radio
communication is known to be the dominant factor of energy
consumption in wireless sensor networks, most of the proposed
approaches focus on reducing communication among nodes
while maintaining some form of cooperation. To get a concrete
idea about the impact of radio communication on the global
power budget of a sensor node, consider that on the Telos
Sky mote – a well-known prototyping platforms for wireless
sensor networks – the current consumption of powering radio
transceiver is about twenty times higher than operating the
micro-controller only and about three orders of magnitude
higher than keeping the micro-controller in idle mode [21].

One common approach to reduce communication overhead
is to select, among all data produced by the sensor network,
a subset of sensor readings that is delivered to the user
such that the original observation data can be reconstructed
within some user-defined accuracy. In [18] and a series of
later works, for example, the data maintained at the central
server are guaranteed to be within a certain interval of the
actual sensor readings, since nodes are required to report their
readings to the server if the value falls outside this interval.
To further reduce energy consumption, some recent works
[2], [5], [8] propose to exploit spatio-temporal correlation
among data to identify a subset of sensor readings from
which the remaining measurements can be predicted within
a given minimal accuracy. Readings which can be predicted
from already delivered data do not need to be reported to the
central server, thus reducing communication. Prediction can
be performed in both time and space for example on the basis
of some pre-defined model, whose parameters can be either
learnt from historical data [2] or assigned by virtue of a-priori
knowledge [8].

While these techniques have been proven to be effective
for reducing power consumption, they not only suffer from
performance losses when the model becomes outdated, but are
also not well-suited to follow fine grained changes in sensor
readings. To avoid a rapid deterioration in the predicted values,
such approaches thus need their models to be periodically val-
idated and correspondingly updated, implying again increased
communication costs.

In this paper, we present an alternative data-reduction
strategy that exploits the Least-Mean-Square (LMS) adaptive
algorithm. The LMS is an adaptive algorithm with very low
computational overhead and memory footprint that – despite
its simplicity – provides excellent performance. More impor-
tantly, unlike previous work, our approach does not require
a priori knowledge or modeling of the statistical properties
of the observed signals. Hence, our scheme can be applied
to a variety of real-world phenomena without restrictions.
Moreover, the proposed algorithm does not require nodes to
be assisted by a central entity for performing prediction, since
no global model parameters need to be defined. Due to these
characteristics, our approach can be easily integrated with
a variety of existing data collection approaches – including

schemes that support in-network data aggregation.
We show that our strategy can significantly reduce the

number of readings that a sensor node is required to report
to a sink node, while ensuring that the user can reconstruct
the original observation data within a pre-specified minimal
accuracy emax.

We will also show that our LMS-based prediction scheme
can be hierarchically extended to perform a joint prediction
over a block of readings from neighboring nodes. Since a joint
prediction can capture spatial correlation among neighboring
sensors, a further reduction in communication can be achieved.

The remainder of the paper is organized as follows: in
Section II, we provide a brief overview of related work. In
Section III, we introduce some basic concepts of adaptive
filter theory and provide a detailed description of our adaptive,
quality-based strategy for data reduction in wireless sensor
networks. After evaluating our approach in Section IV and
pointing out some open issues and directions for further
research in Section V, we will draw conclusions in Section
VI.

II. RELATED WORK

In the last years the problem of data reduction in sensor
networks has received growing attention from the research
community and a number of interesting approaches have been
proposed. Since data are collected in both time and space,
most of the proposed approaches perform data reduction in
either the time [7], [8], [18] or space domain [6], [15]. Only a
few approaches proposed feasible mechanisms for taking into
account both the spatial and the temporal domain [2], [5].

Pioneering work by Goel and Imilienski [5] suggested to
visualize a snapshot of the sensor readings in the network
as an optical image. Given this visualization, the authors
adapt the MPEG standard for video compression for use in
sensor networks. The basic paradigm requires a base station
to monitor the readings from the sensors and generate a
prediction-model, which is valid over a given time interval.
The model is then propagated to the sensor nodes, which
send their readings only if they significantly differ from those
predicted by the model. A similar, model-driven approach is
proposed by Deshpande et al. in [2]. Also in this case a spatio-
temporal prediction model is learnt from historical sensor data
and is then used to estimate sensor readings in the current
time period. Eventually, the model estimation can be refined
by interrogating the sensor network for some specific current
readings whose estimation uncertainty is high. Guestrin et al.
[6] proposed to build a model of the data in the network
using kernel linear regression and let the nodes transmit only
significant changes in the model coefficients instead of raw
data. In [15] several sensor subsets are identified, so that
the readings from a single subset are enough to predict the
readings of the remaining subsets. Using the subsets in a round
robin fashion allows the solicitation of one subset at a time,
with subsequent energy savings.

All the above described approaches have in common that
they require the presence of a central entity which collects

and process sensor readings from neighboring nodes in order
to extract an adequate prediction model. The sensor nodes
are thus not able to autonomously perform data reduction
since they are reliant on a centrally defined model. A natural
drawback of these techniques is also that models can become
outdated and thus unreliable, with subsequent accuracy losses.

In [8], Jain et al. propose to approach the data reduction
problem using classical linear filter theory. They introduce the
Dual Kalman Filter (DKF) architecture as a general linear
solution to this problem. In the DKF approach, each remote
source involved in a specific sensing task runs an instance of
a Kalman filter and performs linear prediction on smoothed
sensor readings, sending updates to a central server only when
the prediction error exceeds some given threshold. At the
central server there are as many Kalman filters running as the
number of remote sources. In this way, the server is able to
mirror the behavior of the data sources and thus to reconstruct
the phenomenon observed locally at each sensor node using
either the received real data, when available, or the computed
predictions. However, in order to use the Kalman filter for data
streams prediction given a sequence of noisy observations,
a model of the observed phenomenon must be provided to
the filter. This implies that both server and nodes must feed
the Kalman filter with the same model to be able to work
coherently. Other approaches, such as the ones presented in
[1], [14], are also based on the prior definition of prediction
models.

III. OUR APPROACH

Our approach aims at improving upon the work proposed
in [8] by implementing a non-model based adaptive predic-
tion scheme that does not require a-priori knowledge of the
observed phenomenon. In the following we briefly summarize
the basic mechanism of the dual prediction approach to data
reduction, before detailing our proposed LMS-based prediction
scheme.

A. Prediction-Based Monitoring

Consider a stream of sensor data {x[k]} that has to be
transmitted from a data source (i.e., some sensor node) to
a data sink (i.e., another sensor node; possibly the gateway
node). A minimal error budget (accuracy) emax is given and
known both by the source and the sink, such that the sink
requires to know a value in x[k]± emax rather than the exact
value x[k].

Instead of transmitting the complete data stream {x[k]}
from source to sink, the goal of a data reduction strategy is
to selectively transmit some elements of the data stream only,
such that the sink is able to reproduce the whole data stream
with the given accuracy. This can be achieved by the dual
prediction scheme introducing identical predictive filters both
in the source and in the sink. Such a filter can produce an
estimate of the next element in the data stream, given some
previous elements in the data stream. Only if the predicted
value differs from the actual value by more than the error
budget, the value is transmitted to the sink. Otherwise, the

sink uses its local filter to generate the same prediction as the
filter in the source – without need for communication.

Consider for example a node si having collected and
reported to the sink sj the readings x = {x[1], x[2], . . . , x[k−
1]}. Assume both the node and the sink applying the same
prediction algorithm to this data set and therewith computing
an estimation x̂[k] of the upcoming reading x[k]. Since the
node si holds the actual sensor reading x[k], it is able to
compute the estimation error e[k] = x̂[k]− x[k] and compare
it to the user defined threshold emax. If the threshold is
exceeded, the node reports the reading to the sink node.
Otherwise, if the threshold is not exceeded, the node simply
discards the reading x[k] and avoids reporting it to the sink
node, which interprets the missing reporting as an implicit
acknowledgement of the goodness of the prediction1 and thus
includes the value x̂[k] in its readings vector x in place of the
real sensor value x[k]. Since the node discards the real reading
x[k] and also includes x̂[k] in its readings vector x, the node
and the sink share, at each instant k, the same knowledge
about the observed phenomenon x. The basic principle of our
approach is thus to let the same prediction algorithm run on
the available data at both the node and the sink.

As we already mentioned in Section II, Jain et al. propose
a practical implementation of this dual prediction scheme that
makes use of Kalman filters [8]. Even if Kalman filtering
has been proven to be a successful technique for data stream
prediction in noisy environments, its practical application
requires a-priori knowledge about the statistical properties of
both the phenomenon being observed and of the measurement
noise. To work properly, node and sink must thus agree on
a pre-defined process model, which introduces an additional
overhead and limits the application of the filtering scheme to
a specific subclass of phenomena.

The classic adaptive filter theory [10] offers an elegant, al-
ternative solution for performing predictions over data streams
without requiring a-priori knowledge about the statistical
properties of the phenomena of interest. Adaptive filters are
indeed typically applied in environments where signals with
unknown or non-stationary statistic are involved and appear for
this reason particularly suited to be used in highly dynamic
systems like sensor networks. Among the variety of existing
adaptive algorithms we choose to use the Least-Mean-Square
(LMS) algorithm [11] to implement the dual prediction scheme
described above.

In Section III-C we will provide a brief introduction to the
adaptive filter theory and the LMS-algorithm. Before going
into further details, we would like to point out that this basic
concept can be applied to a variety of different data collection
approaches in sensor networks as described in the following
Section III-B.

1Since wireless transmission in sensor networks is known to be unreliable,
it is likely to happen that some of the node’s reported readings never reach
the sink node, thus causing a misalignment between the readings vector x at
the node and the correspondent vector at the sink. For simplicity, we assume
for the remainder of this section a loss-free communication link between the
nodes si and the sink sj . See section V for a discussion of some mechanisms
that allow to relax this assumption.

e e e

(b) (c)(a)

max max max

Fig. 1. Network model: (a) star network, (b) clustered network, (c) tree
network.

B. Network Model

In the sensor networks literature, numerous different ap-
proaches to data collection have been explored. Figure 1 shows
three typical network topologies used for delivering sensor
data from sensor nodes (circles) to the gateway node (square).
The conceptually simplest solution is a star topology depicted
in part (a), where each sensor node delivers a stream of sensor
data directly to the sink – possibly across multiple hops.
Numerous approaches (e.g., LEACH [12]) employ a cluster
structure depicted in part (b), where sensor nodes report data
to a cluster head, the cluster head processes these data and
delivers the result to the gateway – again, potentially accross
multiple hops. Another common topology is the tree structure
(e.g., TAG [16], Directed Diffusion [13]) depicted in part
(c), where a sensor node receives data from its children and
aggregates them with its own data, sending results on to its
parent.

Our data reduction scheme can be employed in all of these
scenarios. For this, we consider each pair of nodes that are
directly connected by an arrow in Figure 1 as a pair of source
and sink and introduce filters as described in the previous
section. Hence, the data reduction is not only applied to the
raw sensor data generated by a sensor node, but also to streams
of aggregated data such as the aggregated data sent by a cluster
head to the gateway in Figure 1(b). The latter is possible
since no a-priori knowledge about the statistical properties
of the aggregated data stream is needed by the filters. Also,
the low overhead of the LMS filter enables a sensor node to
run multiple instances of the filter (i.e., one for each of its
neighbors in the network topology).

An interesting issue here is what error budget should be
used by each of the source/sink pairs, given that the gateway
is requested to produce data with an error budget emax. To
examine this issue, let us assume that each non-leaf node
(i.e., the gateway in part (a) of Figure 1, clusters heads and
the gateway in part (b), inner nodes and gateway in part (c))
implement an aggregation function x[k] = f(x1[k], x2[k], ...),
where xi[k] are the values obtained from neighbor node i at
instant k. Assuming that the node implementing f is given
an error budget emax, error budgets ei must be computed
for each neighbor. If f is a simple selection function (e.g.,
min(xi),max(xi), or {xi}), then ei := emax assuming that
all neighbors produce identical data. However, f can also
be a more complex function. For example, it might compute

+
e[k]

d[k]

y[k]x[k] +

_
Adaptive

Filter

x[k]

(a)

+
e[k]x[k-1] +

_
Adaptive

FilterDelay T x̂[k]

(b)

Fig. 2. Adaptive filter: (a) generic scheme, (b) as a prediction filter.

TABLE I
LMS-ALGORITHM

y[k] = wt[k]x[k] Filter output

e[k] = d[k]− y[k] Error signal

w[k + 1] = w[k] + µx[k]e[k] Weights adaptation

the location of a tracked object given magnetometer readings
xi of its neighbors. In this case, emax will be a location
accuracy specified in, e.g., meters, which must be translated
into accuracy ei of magnetometer data from neighbor i. The
derivation of ei from emax is inherently dependent on f .

Computing the error budgets for a given network topology
can typically be performed during query dissemination, where
the query is delivered from the gateway to the sensor nodes
along the reverse direction of the arrows in Figure 1. When
a node receives a query containing the requested error budget
emax, it computes the ei according to f and includes the
respective value in the query message that is forwarded to
the respective neighbor.

C. Adaptive Filters and the LMS Algorithm

Adaptive filters are typically used in applications in which
signals with unknown or non-stationary statistics are involved.
The generic structure of an adaptive filter is shown in Figure
2a. Basically, a linear adaptive filter takes at each step k a
sample x[k] of the input signal x and computes the filter output
y[k] as:

y[k] =
N−1∑
i=0

wi+1[k] ∗ x[k − i] (1)

thus, as a linear combination of the last N samples of
the input signal x, each one of them being weighted by the
accordant filter coefficient wi[k]. The output signal y[k] is then
compared to a reference signal d[k] (d for desired), which is
the signal the filter tries to adapt to. The error signal e[k] is

thus simply computed as the difference e[k] = y[k]−d[k] and
given as input to the adaptation algorithm, which accordingly
updates the filter weights. These weights are modified at each
time step k in order to satisfy a given optimality criterion
which is typically the minimization of the Mean-Square-Error
(MSE), i.e., the average error power E{e2[k]}. Without going
into details, we want to point out that the choice of the MSE as
optimality criterion implies that the error function J(w), which
describes the dependency of the MSE from the filter weights
w, is a quadratic function, which has in most cases a unique
absolut minimum point wopt, i.e., a unique optimal solution
which minimizes the MSE. The filter weights are updated at
each step k with the aim to iteratively approach this minimum
point. The error signal e[k] gives the adaptation algorithm a
measure of the extent of the correction that needs to be applied
to the filter weights in order to reduce, at the subsequent step
k + 1, the error power E{e[k + 1]}.

If the statistics of the involved signals2 were stationary and
known a-priori, the set of optimal filter weights wopt which
minimizes the MSE could be computed trough the well-known
Wiener-Hopf equation [20], [10]. Adaptive filters however,
do not require a-priori knowledge on the signals statistics,
rather they learn these statistics from the data and adapt to
their changes by updating the filter weights w. In this sense,
adaptive filters provide a tracking capability, since they are
able, in a non-stationary environment, to track time variations
in the statistics of the input data, provided that these variations
are sufficiently slow.

There is a huge number of adaptive algorithms which have
been developed in the literature [10]. The choice of one
algorithm over another is determined by the trade-off among
different factors, like rate of convergence, robustness, compu-
tational complexity, numerical properties, among others. One
of the most successfully applied adaptive algorithm is the
so-called Least-Mean-Square algorithm (LMS). Despite of its
simplicity, this algorithm provides very good performances in
a wide spectrum of applications [11]. The LMS algorithm is
basically defined through the three equations reported in Table
I, where w[k] and x[k] denote the N × 1 column vectors:

w[k] = [w1[k], w2k, . . . , wN [k]]T (2)

x[k] = [x[k − 1], x[k − 2], . . . , x[k −N]]T (3)

The LMS algorithm, like any other adaptive algorithm, can
be used to perform prediction when the general filter structure
in Figure 2(a) is refined in the predictive structure of 2(b).
The basic principle consists in delaying the current input value
x[k] by one step and use it as the reference signal d[k]. The
filter computes an estimation x̂[k] of the input signal at the
step k, as a linear combination of the N previous readings
{x[k − 1], x[k − 2], . . . , x[k −N]}:

2In particular, the autocorrelation matrix of the input signal and the cross-
correlation vector of the input and the reference signal.

x̂[k] =
N∑

i=1

wi[k] ∗ x[k − i]. (4)

The prediction error is then computed and fed back to adapt
the filter weights. For the adaptation process, two parameters
need to be defined: the step-size µ, that appears in the weight
update equation (reported in Table I) and the filter length N .

The step-size µ is a critical parameter since it tunes the
convergence speed of the algorithm. There exists a practical
criterium for a straightforward computation of this parameter
from a small set of observations, as we will point out in the
next section.

The number of filter weights, normally referred to as
the filter length N , is also an important parameter for the
computational load and memory footprint of the filter. From
the equations reported in table I and recalling that w and x
are N × 1 vectors, it is straightforward to see that the LMS
algorithm requires 2N + 1 multiplications and 2N additions
per iteration. In order to keep the computational load of
the filter low, the number of weights N must be kept as
low as possible. We will show in Section IV that the filter
performs very efficiently even with very small filter lengths
(N = 4, . . . , 10). It is also important to notice that increasing
the filter length does not necessarily improve the performance
of the filter. In particular, increasing N above a theoretically
determinable threshold value Nopt will result in a performance
loss.

For a further detailed explanation of the characteristics of
the LMS algorithm, we refer to [11]. In the following, we will
explain how this algorithm allows the implementation of an
efficient data reduction strategy.

D. Quality-Based Data Reduction Using the LMS Algorithm

Using the LMS algorithm for implementing the dual
prediction scheme described in Section III-A allows to
significantly reduce the amount of data a node is required to
report to its sink in order to guarantee the user-defined error
budget emax. This reduction is achieved by letting the node
switch as frequently as possible from its normal operational
mode to a so-called stand-alone mode, in which the node
does not need to report sensor readings to the sink. In order
to be able to run the prediction algorithm, the node needs to
go through an initialization phase. These three basic states of
node operation are described in the remainder of this section.

1) Initialization mode: when a node receives a user query,
it starts collecting and reporting data to the sink node, without
performing prediction, as explained in Section III-A. In this
phase, the node and the sink compute an estimation of the step-
size µ. To ensure convergency, the step-size µ must satisfy the
following condition [10]:

0 ≤ µ ≤ 1
Ex

(5)

where Ex indicates the mean input power computed as:

Ex =
1
M

·
M∑

k=1

|x[k]|2 (6)

and M is the number of iterations used to train the filter
[10]. Since the input mean power Ex is time-varying, an
approximation Ēx can be computed over the first N samples
and used to compute the upper bound in inequality 5 above.
In practical applications, choosing the step-size µ two orders
of magnitude smaller than this bound, typically guarantees the
robustness of the filter [17]. The filter length N is set to very
small values that have proven to be efficient for the analyzed
data sets, as we will show in Section IV. We reserve for future
work the development of an on-line estimation technique of
the optimal filter length N .

Once the initialization phase is completed, both the node
and the sink will start performing prediction on the collected
readings and operate in either normal or stand-alone mode,
as explained below.

2) Normal mode: when working in normal mode, both
the node and the sink use the last N readings to compute
a prediction for the upcoming measurement, and update the
set of filter coefficients w on the basis of the actual prediction
error, using the equation given in Table I. Please note that
the default start value for the filter coefficients is assumed to
be w[0] = 0. This assumption is particularly relevant, since
unlike other adaptive algorithm, the LMS approach ensures
that multiple instances of the filter fed with the same sequence
of data and sharing the same set of initial weights w[0] (and,
of course, the same values for N and µ), will compute the
same set of filter coefficients and thus, the same predictions,
at each time instant k.

As long as the prediction error exceeds the user defined
error budget emax, the node keeps working in normal mode,
thus collecting and reporting its readings to the sink. When
the prediction error drops below the threshold emax for N
consecutive steps, the node will switch to stand-alone mode.
As long as the node remains in the normal mode, the sink
will let the prediction filter run over the received sensor
readings, in order to update the filter weights w coherently
with the node.

3) Stand-alone mode: when working in stand-alone mode,
the node keeps collecting data and computes the prediction at
each time step. As long as the prediction error remains below
the given threshold emax, the node discards the reading and
feeds the filter with the prediction x̂[k] instead of with the
real data x[k]. This will ensure the state of the filter at node
side to remain consistent with the state of the filter at the sink
side. Please note that feeding the filter with its own prediction
causes the prediction error e to be zero and thus the filter
weights to be left unchanged. This is another advantage of
using this technique since staying in stand-alone mode, the

Fig. 3. LMS prediction : (a) real sensor readings, (b) real and predicted
sensor readings, (c) prediction error.

node can omit updating the weights, thus saving half of the
computational overhead.

If at time instant k the node observes the prediction error
exceeding the threshold emax, it will report the reading x[k]
to the sink and switch back to normal mode.

While the node operates in stand-alone mode, the sink,
receiving no readings from the node3, implicitly assumes the
predicted readings being a good enough approximation of the
real readings and keeps running the prediction filter on these
values.

Figure 3 illustrates how our scheme works. We let our
algorithm (with N = 5 and µ = 10−5) run on a set of
temperature readings obtained from a real world sensor [22], as
shown in Figure 3(a). Figure 3(b) shows a detailed view of the
outlined area in subfigure (a), with an overlapping plot of the
correspondent filter output. Subfigure (c) shows the prediction
error of the datapoints in subfigure (b), including highlights
(with a cross) for those readings which the node effectively
needs to report to the sink in order to guarantee an accuracy
emax of ±0.5◦C. We see that as soon as the error exceeds
the given threshold, the corresponding sensor reading is sent

3For this, the sink has to decide whether a message has been sent by the
source or not. We assume the source to collect and (eventually) send readings
at regular time intervals, such that the sink can easily recognize the absence
of a message.

Fig. 4. Percentage of data transmitted by mote 11.

to the sink and the filter restarts adapting to the real data, thus
causing the prediction error to decrease. As soon as the error
remains below ±0.5◦C for at least N = 5 readings, the node
stops reporting data (i.e., switches again to stand-alone mode).

Note that an outlier detection mechanism could be easily
embedded into our scheme. Since outliers are likely to appear 4

and their presence could disturb the operation of the prediction
filter, it is good practice to include some automation in
the algorithms for their detection. In our case, an adequate
threshold may be defined either by the user or by the node
itself (e.g., as a multiple of the mean error). A reading whose
correspondent prediction error is larger than this threshold
will be classified as an outlier and discarded. In this case,
the discarded data could be replaced by the corresponding
prediction.

IV. EVALUATION

In this section we present the results obtained when applying
our LMS dual prediction scheme to real world data. Some
challenges related to the practical implementation of the
proposed algorithm, as well as some open issues which are
currently object of further research will be pointed out in the
next section.

We tested our LMS-based data reduction strategy on a set
of real world data publicly available at [22]. Once every 31
seconds, humidity, temperature, light and voltage values where
collected from 54 Mica2Dot sensor nodes [24] deployed in
the Intel Berkeley Research lab [23] between February 28 and
April 5, 2004. To report our results, we picked 4 of these 54
motes, namely motes 1, 11, 13, and 49 which were distributed
in different sectors of the deployment area. We applied our
scheme to the data reported by the temperature sensors of
these four motes between March 6 and 9.

In Figure 4 we report the percentage of sensor readings
that mote 11 would need to report as the error budget

4Consider for example that, in the case of normally distributed data, about
1 in 150 observations will be a mild outlier and only about 1 in 425,000 an
extreme outlier.

Fig. 5. Percentage of data transmitted by mote 49.

Fig. 6. Percentage of transmitted data by motes 1, 11, 13, and 49, for a filter
length N = 4.

emax increases, for different filter lengths N . As it can be
seen, a minimal accuracy of 0.5◦C can be guaranteed while
transmitting only about 10% of the collected sensor readings.
This significant data reduction is due to the optimal tracking
capability of the LMS algorithm. Moreover, no significant
changes in the performances are observed when varying the
number of filter weights from N = 4 to N = 10. Since the
number of operations to be performed at each time step grows
proportionally5 with N , this value should be kept as small
as possible. The tested values of N allow to keep extremely
low the computational overhead and memory footprint of the
algorithm. With N = 4, for example, the node must perform
at most 17 operations each 31 seconds and needs to store in
addition to the 4 filter coefficients and the filter parameters,
only the last 4 sensor readings. Analogous results have been
obtained testing our algorithm on mote 49, as reported in
Figure 5. However, since the data reported by mote 49 are

5Recall from section III-C that the computational cost per iteration of the
LMS algorithm is 4N + 1 when the node operates in normal mode and 2N
in stand-alone mode.

more spiky than those of mote 11, a small deterioration in
the performances can be seen. Finally, Figure 6 shows the
performances obtained with two additional data sets, namely
those collected by mote 1 and 13. Mote 1 is located far away
from both mote 11 and 49, while mote 13 lies in the same
room as mote 11. Also with these data sets we obtained very
good results in terms of data reduction.

V. OPEN ISSUES AND FUTURE WORK

While we could show that our LMS-based data reduction
strategy provides good prediction performance with no a
priory assumptions and low overhead, there are also some
potential problems and issues that need to be addressed.
These will be discussed below.

1) Communication model: Earlier in this paper we assumed
loss-free communication links between sink and source to
implement the dual prediction scheme. However, this is not
a realistic assumption in real-world deployments [22]. Hence,
we need to provide appropriate mechanisms to make our
scheme robust to message loss.

Let us consider the impact of message loss on our prediction
scheme. Firstly, if a message is lost, the sink will use its
filter to predict a value which is not within the error budget
emax. Secondly, the filters in source and sink will get out of
synchronization, that is, they will output different predictions.
Even when the sink receives a message eventually, the sink’s
filter will produce wrong predictions. Hence, it is important
to provide a mechanism whereby the sink can detect lost
messages and resynchronize its filter with the source. This
can be achieved, for example, by including a sequence number
in each message. If the sink detects a jump in the sequence
number, message loss is assumed and the source is forced into
initialization mode. However, this approach does not represent
a satisfactory solution due to the incurred communication
overhead.

We are currently examining an alternative approach,
where, based on the actual packet loss ratio p of the link
between source and sink (using either an a priori estimate
or in situ measurements), a modified equivalent error budget
eeq
max = f(p, emax) ≤ emax is computed and used instead of

emax, such that, on average, accuracy emax can be achieved
even in case of message loss. This solution will of course
cause some deterioration with respect to the performances
presented in Section IV, but will also allow to apply and test
our approach in a more realistic framework.

2) Node failures: In typical sensor network deployments,
sensor nodes are subject to frequent crashes, battery depletion,
and other temporary or permanent failures. If the source
node fails due to these reasons, the sink would continue to
output predictions. To limit the impact of such failures, the
sink needs a mechanism to detect source failure. This can be
easily achieved by forcing the source node transmit at least
one sensor reading every K instants, even though this would
not be necessary otherwise. If after K instants from the last

transmission the sink does not receive this message, source
failure is assumed.

3) Spatial prediction: In this paper, we presented the po-
tential of the LMS algorithm in performing the prediction
of a single sensor reading based on N previously observed
readings. In other words, we focused on prediction of a single
node in the time domain. However, since the LMS filter can
be extended to work on blocks of data instead on single
values, we envision an interesting spatial extension of our
prediction scheme. Consider for example a cluster head si

receiving sensor readings from N neighboring sensor nodes
and assume these readings are required to be reported to
the gateway (cf. Figure 1 (b)). At each time instant k, node
si holds a block of N values representing either the actual
or the predicted readings of the N nodes. This block of
readings can be used to train a multiple-error LMS adaptive
filter [3], which will jointly optimize the prediction error
over the block of given input data. Since this kind of joint
filtering will capture spatial correlation among readings, a
further reduction in communication overhead can be achieved,
since the node si will report its readings to the sink only if
the joint prediction error will exceed the given threshold. The
concrete implementation of this joint filtering scheme offers
interesting perspectives for future work.

VI. CONCLUSIONS

We considered wireless sensor network applications that
require a continuous delivery of sensor readings at regular time
intervals kT . We presented an adaptive approach that allows
to significantly reduce the amount of data that needs to be
transmitted, while ensuring that the original observation data
can be reconstructed within a pre-specified accuracy emax. Our
approach is based on an efficient prediction technique using
the LMS adaptive algorithm at both the source and sink of a
data stream. Through tests on real-world data we demonstrated
the effectiveness of this approach.

Unlike previous work, our approach is lightweight and
does not assume a-priori knowledge about statistical properties
of the observed phenomena and thus lends itself well to
many practical applications. Also, the approach can be easily
integrated with a variety of different data collection approaches
including clustering techniques and in-network data aggrega-
tion.

Future work includes an extension to spatial prediction by
means of a block variant of the LMS filter and an improved
handling of message loss.

VII. ACKNOWLEDGMENTS

We gratefully acknowledge Friedemann Mattern and Marc
Langheinrich for valuable comments and suggestions on draft
versions of this paper.

The work presented in this paper was partially supported
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

REFERENCES

[1] R.Cheng, D.V. Kalashnikov and S.Prabhakar: Evaluating Probabilis-
tic Queries over Imprecise Data. In Proceedings of the ACM SIG-
MOD/PODS Conference (SIGMOD ’03), San Diego, USA, June 2003.

[2] A. Deshpande, C. Guestrin, S.R. Madden, J.M. Hellerstein and W. Hong:
Model-Driven Data Acquisitionin Sensor Networks. In Proceedings of the
30th VLDB Conference (VLDB ’04), Toronto, Canada, 2004.

[3] S.C. Douglas: Analysis of the Multiple-Error and Block Least-Mean-
Square Adaptive Algorithms. IEEE Transactions on Circuits and Systems-
II: Analog and Digital Signal Processing, Vol. 42, No. 2, February 1995.

[4] D.Estrin, L. Girod, G. Pottie and M. Srivastava: Instrumenting the World
With Wireless Sensor Networks. International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’01), Salt Lake City, Utah, May
2001.

[5] S.Goel and T. Imielinski. Prediction-based monitoring in sensor networks:
Taking lessons from mpeg. In ACM Computer Communication Review,
31(5), 2001.

[6] C. Guestrin, P. Bodik, R. Thibaux R., M. Paskin and S. Madden: Dis-
tributed Regression: an Efficient Framework for Modeling Sensor Network
Data. In Proceedings of the 3rd International Symposium on Information
processing in Sensor Networks (IPSN ’04), Berkeley, USA, April 2004.

[7] A. Jain and E.Y. Chang: Adaptive Sampling for Sensor Networks. In
Proceeedings of the 1st International Workshop on Data Management
for Sensor Net works (DMSN ’04). Toronto, Canada, June 2004.

[8] A. Jain, E.Y. Chang and Y.-F. Wang: Adaptive stream resource manage-
ment using Kalman Filters. In Proceedings of the ACM SIGMOD/PODS
Conference (SIGMOD ’04). Paris, France, June 2004.

[9] Y. Kotidis: Snapshot Queries: Towards Data-Centric Sensor Networks. In
Proceedings of the 21st International Conference on Data Engineering
(ICDE ’05), Tokyo, Japan, April 2-5, 2005.

[10] S. Haykin: Adaptive Filter Theory. 4th ed., Prentice Hall, NJ, 2004.
[11] S. Haykin: Least-Mean-Square Adaptive Filters. Edited by S. Haykin,

New York Wiley-Interscience, 2003.
[12] W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan: Energy-

Efficient Communication Protocol for Wireless Microsensor Networks. In
Proceedings on the 33rd Hawaii International Conference on Computer
Sciences (HICSS ’00), Island of Maui, USA, Januray 2000.

[13] C. Intanagonwiwat, R. Govindan and D. Estrin: Directed Diffusion:
A Scalable and Robust Communication Paradigm for Sensor Networks.
In Preoceedings of the 6th Intl. Conference on Mobile Computing and
Networking (MobiCom ’00), Boston, USA, August 2000.

[14] I. Lazaridis and S.Mehrotra: Capturing Sensor-Generated Time Series
with Quality Guarantee. In Proceedings of the International Conference
on Data Engineering (ICDE ’03), Bangalore, India, March 2003.

[15] Y. Le Borgne and G. Bontempi: Round Robin Cycle for Predictions
in Wireless SensorNetworks. In Proceedings of the 2nd International
Conference on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP ’05), Melbourne, Australia, December 2005.

[16] S.R. Madden, M.J. Franklin, J.M. Hellerstein and W. Hong: TAG: a Tiny
Aggregation Service for Ad-Hoc Sensor Networks. In Proceedings of the
5th Symposium on Operating Systems Design and Implementation (OSDI
’02), Boston, USA, December 2002.

[17] G. Moschytz and M. Hofbauer: Adaptive Filter. Springer Verlag, Berlin,
2000, ISBN 3-540-67651-1.

[18] C. Olston, B.T. Loo and J.Widom: Adaptive precision setting for cached
approximate values. ACM SIGMOD, 2001.

[19] C. Olston and J.Widom: Best effort cache synchronization with source
cooperation. In Proceedings of the ACM SIGMOD/PODS Conference
(SIGMOD ’02), Madison, USA, June 2002.

[20] A.V. Oppenheim and R.W. Schafer: Discrete-Time Signal Processing.
Prentice Hall, 2nd edition, 1999.

[21] J. Polastre, R. Szewczyk and D. Culler: Telos: Enabling Ultra-Low
Power Research. In Proceedings of the 4th International Symposium on
Information processing in Sensor Networks (IPSN/SPOTS ’05), April
2005.

[22] http://db.lcs.mit.edu/labdata/labdata.html.
[23] http://www.intel-research.net/berkeley/index.asp.
[24] http://www.xbow.com/.

