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Abstract Dynamic root-development models are
indispensable for biomechanical and biomass allo-
cation studies, and also play an important role in
understanding slope stability. There are few root-
development models in the literature, and there is a
specific lack of dynamic models. Therefore, the aim of
this study is to develop a 3D growth-development
model for coarse roots, which is species independent, as
long as annual rings are formed. In order to implement
this model, the objectives are (I) to interpolate annual
growth layers, and (II) to evaluate the interpolations and
annual volume computations. The model developed is a
combination of 3D laser scans and 2D tree-ring data. A
FARO laser ScanArm is used to acquire the coarse-root
structure. AMATLAB program then integrates the ring-
width measurements into the 3D model. A weighted
interpolation algorithm is used to compute cross
sections at any point within the model to obtain growth

layers. The algorithm considers both the root structure
and the ring-width data. The model reconstructed ring
profiles with a mean absolute error for mean ring
chronologies of <9% and for single radii of <20%. The
interpolation accuracy was dependent on the number of
input sections and root curvature. Total volume compu-
tations deviated by 3.5–6.6% from the reference model.
A new robust root-modelling tool was developed which
allows for annual volume computations and sophisti-
cated root-development analyses.

Keywords Allocation . Laser scanning . Root growth .
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Abbreviations
MAE Mean absolute error
MAPE Mean absolute percentage error
MC Mean ring chronologies
3D 3-dimensional
2D 2-dimensional

Introduction

Roots play a key role in the global carbon budget and
may influence forests responses to a changing environ-
ment (Rasse et al. 2001; Tobin et al. 2007). Root
anchorage is also an essential factor in slope stability
and there is evidence that biomass allocation to roots is
especially important in this process (Reubens et al.
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2007). However, many processes connected to root
development and carbon allocation to roots are not
well understood (Heimann and Reichstein 2008). To
improve understanding of these growth processes, we
need to increase the detail of our analyzes, e.g., by
modeling these growth processes for a better under-
standing of forest ecosystems (Lecompte et al. 2001;
Tobin et al. 2007). Roots have to be included in these
growth models (Brunner and Godbold 2007), because
each part of a tree (e. g. shoots, roots, branches) is
tightly connected to and dependent on every other
components. Thus, no tree operates independently
from its roots (Tobin et al. 2007).

Detailed information about the 3D architecture of
root systems is required to completely understand
coarse-root structure and functioning (Dupuy et al.
2007, Henderson et al. 1983). In this regard, modelling
of root systems is an important step towards the full
understanding of root-system development.

Root volume, length and diameter of compart-
ments are the specific measures needed for a more
complete quantitative description of root-system
architecture and coarse-root distribution (Reubens et
al. 2007).

For a long time there was especially a lack of root
development studies describing the growth of entire
root systems (Tobin et al. 2007). A dynamic view of
root architecture is also required to understand tree
anchorage, since branching and spreading patterns
have to be assessed.

Existing dynamic models for root architecture
facilitate analyses of the retrospective and are the
link between static observations and dynamic simu-
lations of the root architecture (Pagès and Aries 1988;
Lecompte et al. 2001; Vercambre et al. 2003), as
calibration of the dynamic models is needed
(Lecompte et al. 2001). However, it is not clear if
those simulations are able to reconstruct plant
development in a realistic way. Simulations predict
rather than reconstruct how a root system develops
over time (Pradal et al. 2009). Thus, they are
assuming that quantitative and qualitative processes
are stable in time (Vercambre et al. 2003). The latter is
under discussion and hence, there is a need for
reliable models, which are truly reconstructing root
development. The full potential of reconstructing root
development has not been tapped so far.

Because trees are slow growing organisms, long
term observations of root-development and the respec-

tive data acquisition would be time consuming and
therefore, unrealistic for most research studies. For the
juvenile phase of trees it is possible to use growth
chambers and field rhizotrones to actually observe the
root development over time (Le Roux and Pagès 1994;
Jourdan and Rey 1997, Pagès and Bengough 1997,
Pagès et al. 2004). In contrast, observations of tree-root
architecture over time-spans of decades are simply not
possible. As well, these practical observations are
mostly discontinuous only a part of the entire system
is observed (Vercambre et al. 2003) and they might not
be representative for actual root development in soils
and for root architectural analyses (Lecompte et al.
2001). Another drawback of these studies is that it is
not possible to quantify the effective volume develop-
ment over time.

Although estimations of volume or biomass are
possible without 3D models e.g. via fractal analyses
(Van Noordwijk et al. 1994), allometric statistical
models (Tobin et al. 2007), or equations based on
breast-height diameters (Drexhage and Gruber 1999)
there is evidence that estimations are not very
accurate (Zianis et al. 2005). Estimates are also often
species or stand specific because the development of
biomass is strongly dependent on site conditions
(Tobin et al. 2007) which limit their broader applica-
bility. Another restriction of these models is that they
provide only limited information about dynamical
growth processes (Van Noordwijk et al. 1994).

It is becoming increasingly important to develop
models, which are able to concurrently fulfill different
tasks (Tobin et al. 2007). 3D root-development
models, which are reliably able to reconstruct coarse
root growth, can be an important tool for analyses of
root growth (e.g. radial growth, elongation, branching)
and volume development over time.

Root-dynamic studies at a long-term scale have
only been realized in two ways (Danjon and Reubens
2008), either using chronosequences or using dendro-
ecological studies: (i) Chronosequences are frequently
used to analyze different age stages (Jourdan and Rey
1997; King et al. 2007; Genet et al. 2009) and to get
information about root development over time. How-
ever, even if the site factors are comparable it is still
not possible to analyze the reaction of individual trees
on specific environmental conditions or events. (ii)
Dendro-ecological studies are used for retrospective
measurements, which allow for complete analyses of
the past growth of trees. For root-growth analyses
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even the positions of the ring-width measurements
can be tagged within a 3D model (Danjon and
Reubens 2008). This connects the ring-width data to
their spatial context. In addition, it is possible to
integrate the ring-width data into a 3D structural
surface model of a root system (Wagner et al. 2010;
Wagner et al. 2011). Entire ring-profiles were directly
integrated at different cross sections into a 3D surface
model acquired with laser scanning. These models
enable more comprehensive analyses of growth
processes and the statistical evaluation of growth
processes in a spatio-temporal context. However, a
full 3D reconstruction on the basis of the ring-width
data has not yet been realized.

Therefore, the scope of the current study is to
develop a 3D growth-development model for coarse
roots, which is independent of tree species, as long as
annual rings are formed. In order to implement this,
the objectives are (I) to interpolate 3D growth layers
for every single growth year and (II), to evaluate the
interpolations and annual volume computations. The
high resolution model is based on two different data
sets laser scans and ring-width data. The fusion of
these data sets will allow for a 3D spatio-temporal
reconstruction of root development on an annual
basis. This study is based on the successful integra-
tion of tree-ring profiles at defined cross sections into
a 3D surface model (Wagner et al. 2011). The model
is limited to a certain complexity degree of root
systems and should primarily be used for younger
trees and those with protruding root systems.

Methods

A 12 year old pine root system (Pinus silvestris) was
excavated in November 2009 within the nature reserve
“Loonse en Drunese Duinen” in the Netherlands. The
pine grew in sandy soil in an inland dune system. The
tree was about 2.5 m high and the stem at the collar
about 8 cm in diameter. The top soil layers near the tree
base were removed by hand and the course of roots
followed and gently exposed with shuffles and pick-
axes. The entire exposed root system was transported to
a storage building where the root system was rearranged
and fixed for scanning. Roots with a diameter smaller
than 0.5 mm were removed from the system prior to
scanning. In order to acquire the outer shape of the roots
a FARO Laser ScanArm (http://www.faro.com/) where

the operator directs the scan device interactively along
the surface of the root system, was used. The scanner
has a resolution of ±50 μm (FARO Inc. 2010) and
acquires 19,200 points per second.

The resulting raw data are point clouds in the 3D
Euclidean space, which require further processing
due to noise (e.g. scattering effects) regularly
occurring during scanning (Lichti et al. 2005).
These artifacts were removed using filter techniques
in Geomagic (e.g. outlier detection, uniform sample;
http://www.geomagic.com/). The point clouds were
then triangulated in Geomagic, which allows for
volume computations to the date of uprooting. Based
on the scanning and the post processing of the scans,
a high resolved 3D surface model was developed
representing the outer shape of the root system in a
realistic way (Fig. 1a). Volume computations based
on the scanner model showed an overestimation of
up to 7% as was tested with water replacement tests
(Wagner et al. 2010), referred to as “offset” in the
current study. Before scanning the root system the
positions for tree-ring measurements were marked
with pins (Bert and Danjon 2006). After the 3D
structure of the root was accessed, the root was cut
into segments at the pinned positions. In most cases,
a cut was set every 10 cm. In cases where the root
structure was highly curved additional cross sections
were cut to guarantee a straightforward interpolation.
In general, the discs were cut perpendicular to the
axis of growth of the root. The cross sections were
sanded and tree-rings measured according to stan-
dard techniques in dendrochronology (Cook and
Kairiukstis 1990). On each cross section ring-width
measurements were done along four radii using the
WinDENDRO image-analyzing software (Regent
Instrument Inc. 2004). In general, the radii were
positioned perpendicular to each other. Nevertheless,
sometimes it was necessary to modify the angle due
to deformations or cracks. For highly deformed cross
sections additional input radii were required. Before
the ring-width data could be used, it was necessary
to perform crossdating and, to mark the presence of
missing rings. For our tree this was very difficult
because the tree was only 12 years old, not providing
enough rings for proper crossdating. Nevertheless,
crossdating is essential for correct dating. If missing
rings were detected the coordinates of the previous
ring boundary were used twice to mark the occur-
rence of a missing ring. Therefore, the system
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registers the respective calendar year even though
there is no ring. This procedure is required for the
correct dating of the plant parts and the proper
reconstruction of the growth layers.

WinDENDRO enables ring-width measurements
based on scanned images generated by a distortion-
free flatbed scanner. Data are provided as text files
giving the ring width in mm. As previously presented
in Wagner et al. (2011) cross sectional ring-width
profiles were incorporated into the 3D surface model
(Fig. 1a). On the basis of the integrated ring profiles
and the outer structure of the root, a weighted
interpolation algorithm was used to reconstruct the
data gaps between the adjacent input cross sections.
For test purposes, two single roots out of the scanned
root system were chosen to apply the model, but ring-
width data is available for the entire system. Root 1
was about 1.6 cm and root 2 about 1.8 cm in diameter.

The 3D reconstruction procedure required five
main steps: (I) Point matching between adjacent input
cross sections; (II) Insertion of intermediate cross
sections; (III) Identification of the coordinates of the
growth center of intermediate cross sections; (IV)

Computation of ring profiles of intermediate cross
sections; and, finally (V) Computation of annually
resolved volume.

(I) First of all, a correspondence between two adjacent
input cross sections (CS1, CS2; Fig. 2) was
required for the 3D interpolation, because the
individual cross sections had their own reference
system. Also the intersection between the cross
sections and the 3D model was required. A set of
reference points serving as “anchors” for the
interpolation function must thus be computed
coherently for all cross sections. The first 3D data
processing step recomputed the ring-width radii
from the profiles of the available input cross
sections along polar grids, as schematically
depicted in Fig. 3. A polar grid was defined for
the first cross section (CS1) and was later projected
onto CS2. The projection of the polar grid from
one cross section to the other worked as follows.
The ring-width data of the first cross section, CS1,
were computed in 1° steps resulting in 360 radii,
i.e. in the context of this study ntotal has been set to
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=  Starting point of total radius (incl. bark)
=  Starting point of xylem radius (ring-width)
=  next considered ring width
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Fig. 1 a Triangulated surface model, acquired with the Laser
ScanArm and state of the model after integrating tree-ring radii
(right) and entire tree-ring profiles (left) based on ring-width

measurements b Schematic illustration of the 2D interpolation
of tree-ring profiles between measured tree-ring radii
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360. As a result, n is an index standing for n=1,..,
ntotal. The n-th radius (rn of CS1) is a line segment
limited by the center of growth C1 and the point
I1n, which represents the intersection point of rn
with the circumference of the cross section CS1.
The set of all ntotal radii of CS1 represents the polar
grid to project on CS2. This required finding, for
each of the ntotal radii, the point I2n on CS2 that
was properly aligned with I1n. To this end, the
plane passing through the three points C1, C2, and
I1n was computed (Fig. 2), and the point I2n was
determined as the intersection between this plane
and the circumference of CS2. Afterwards the
plane was rotated in the 1° steps calculating at
each step the respective intersection points and the
ring-width radii of CS2 were recomputed on this
new grid, using the method described in Wagner et
al. (2011). The same procedure was repeated for
each pair of adjacent cross sections (CS2 and CS3,
CS3 and CS4, etc.).

(II) In a next step additional cross sections were
calculated between any two adjacent input cross
sections (Fig. 3a). With the default settings, 4
additional cross sections were inserted at regularly
spaced intervals between each pair of adjacent
input cross sections. The number of additional
cross sections and also their spacing can be
increased or decreased arbitrarily. The additional
cross sections can therefore be inserted at any
point between the two input cross sections. The
method is described exemplarily for one new
cross section (CSx) laying between two adjacent
input cross sections CS1 and CS2. The index x
refers to any new cross section calculated. In order
to retrieve the circumference of the new cross
section, a plane was inserted at the desired
position of the 3D model (Fig. 3a). The circum-
ference of the new cross section was determined
as the intersection between the 3D root model
and the plane having distance d1 from CS1 and
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Fig. 2 Plane used as
a reference between two
adjacent input cross sections
(step I of the interpolation
procedure)
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d2 from CS2. The input cross sections were
usually not truly parallel. Therefore, the orien-
tation of the plane was set to be a weighted
average between the orientation of CS1 and
that of CS2. Because the 3D model was
available as a point cloud, the intersection
between the plane and the point cloud was
approximated as follows. The points of the
cloud positioned within a certain Euclidean
distance to the plane and thus, smaller than a

given threshold (default value dT=0.1 mm)
were orthogonally projected on the plane. The
set of these projected points represented the
desired approximation of the circumference of
the new cross section.

(III) In the third processing step, the position of the
growth center (Cx) of each additional cross
section (CSx) was computed (Fig. 3b) as a
correspondence for the later integration of the
ring data. Therefore, dCxIxn was the unknown

x
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CS

dI2nIxn

dI2nIxn

I2n

I1n

Ixn

Cx

C1

C2

Ixn
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P1ni=  next ring border
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Fig. 3 Schematic illustra-
tion of the interpolation
steps (steps II–IV); a
Calculating CSX from the
scanner model (step II); b
Defining CX of CSX (step
III); c interpolation of ring
profiles at CSX (step IV)
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distance required (Fig. 3b). Although the dis-
tances can be estimated, the problem remained
to find their correct position within the cross
section. Thus, a correspondence within the
CSx was needed to project the respective
distances on the cross section. For that purpose
the intersection points Ixn, n=1,..,ntotal, were
first determined using the procedure described
in step (I). Applying this procedure also
allowed computing an estimate of the orienta-
tion of the radii on CSx or, in other words, of
the lines on which the line segments CxIxn
were lying. These lines (Lxn) represent the
axes of the polar grid of CSx. The next step in
the estimation procedure of the coordinates of
the point Cx determined the unknown distan-
ces dCxIxn between the center of growth Cx

and the intersection point Ixn for all the radii.
These estimates were indicated as d*CxIxn and
computed as follows:

d»CxIxn ¼ dC1I1n � 1� w1nð Þ þ w1n � dC2I2n

For the estimation of d*CxIxn the following
distance was required:

dIxnI1n; dIxnI2n Distance between the intersection
point Ixn and I1n (I2n), which gives a
measure of the distance of CSx to
CS1 (CS2)

dC1I1n; dC2I2n Distance between the intersection
point I1n (I2n) and the growth center
C1 (C2), which gives a measure of
the respective radii (rn) at CS1 (CS2)

The defined weight w1n takes into account the
relative distance of CSx to CS1 and CS2:

w1n ¼ dIxnI1n
dIxnI1n þ dIxnI2nð Þ

The x-, y-, and z-coordinate of Cx were then
computed as follows. For each of the ntotal radii, the
coordinates of the point Cxn lying on the line Lxn and
having distance d*CxIxn from Ixn were determined.
These points represented each an approximation of the
growth center. Thus, the x-, y-, and z-coordinate of the
unknown point Cx were computed as the average of the

x-, y-, and z-coordinate of all the ntotal estimates Cxn.
This approach relies on the assumption that the lines Lxn
approximate with the real radii of CSx (Fig. 3b).
(IV) During the fourth processing phase, the ring

profiles of each additional cross section CSx
were reconstructed. For the integration of the
new ring profiles a weighted interpolation
algorithm was used. Dependent on the distance
of CSx to CS1 and CS2 a stronger weight was
either put on the ring width of CS1 or CS2
respectively. The ring profiles of CSx were
reconstructed from the two profiles of the input
cross sections (CS1 and CS2).

As mentioned above the model based on the
scan data overestimated the total volume by up
to 7%. This resulted for the ring integration in a
gap between the outermost point of the radii
representing the bark and the circumference of
the cross section retrieved by the scanner
(Wagner et al. 2010). This offset had no impact
on the accuracy of the tree-ring data, as ring-
width values were consistent with WinDEN-
DRO measurements (Figs. 2 and 3c). However,
this offset had to be considered for the
calculation of the ring profiles.

The offset was calculated separately for CS1
and CS2:

offset1n ¼ dC1I1n �
X

rw1n

offset2n ¼ dC2I2n �
X

rw2n

Then, the corresponding offset for the n-th radius
of the cross section CSx was determined:

offsetxn ¼ 1� w1avg

� �
»offset1n þ w1avg»offset2n

∑rw1n; ∑rw2n the sum of the ring-width data for
the individual growth years on rn of
CS1 (CS2)

w1avg the average of the ntotal weights w1n

computed during the third
processing phase.

Tree ring interpolations are shown for any new ring
border (Pxni) laying on rn of CS1 (CS2). Each ring
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boundary was identified by an index i. In particular,
the index i=1 indicated the innermost ring while i=
rtotal was the outermost one. The ring of index 0 was a
“degenerated” ring that coincided with the center of
growth. The point P1ni (P2ni) indicated the i-th ring
boundary on rn for CS1 (CS2) (Figs. 1 and 3c).

For the computation of the ring boundary an
additional distance was considered (Fig. 3c):

dP1n(i-1)P1ni;
dP2n(i-1)P2ni

Distances between the (i-1)-th and i-th
ring boundary (i.e., the i-th ring width)
on rn for CS1 (CS2).

Using these distances and also the above computed
values for dCxIxn and the offsetxn, the following ratios
were computed for i that varies between 1 and rtotal.

ratio1ni ¼
dP1n i�1ð ÞP1ni

dC1I1n � offset1n

ratio2ni ¼
dP2n i�1ð ÞP2ni

dC2I2n � offset2n
:

ratioXni ¼
dPXnði�1ÞPXni

dCX IXn � offsetXn
;

In order to calculate the ring boundaries the offset
was subtracted from the overall distance dCxIxn
(Fig. 3c). The individual rings were computed by

considering the proportion of the specific ring on the
distance dCxIxn – offsetxn (Fig. 3b, 3c).

Using the by nowwell-knownweighting interpolation
technique, an estimate of the ratios for CSx was possible:

ratioXni ¼ ratio1ni � 1� w1avg

� �þ ratio2ni � w1avg

Thus, combining the two latter formulas the desired
values of the ring-width distances dPxn(i−1)Pxni can be
retrieved for all ring boundaries and along all radii of
CSx. To guarantee that the sum of the new calculated
ratiosXni for each rn matched the before computed
distances dCxIxn-offsetxn the following constraintP
i
ratioXni ¼ 1 was used and a scaling needed to be

done (Santini and Wagner 2010).

scaled ratioxni ¼ ratioxniP
i
ratioxni

:

This scaling ensured that the constraint was not
violated (Santini and Wagner 2010). This way, the
reconstruction of the ring profiles of the cross section
CSx was completed.
(V) The computation of the volume was done per

annual growth year and calculated for individual
sectors. The volume is first computed between
pairs of adjacent cross sections and then added
up for all pairs. The space between the two cross
sections is divided in sectors delimited by two
adjacent radii (Fig. 4). Each sector has a 1°

C1C2

1°1°

= Intersection points
=  Center of growth

I

IIII

CS1

CS2

I1n

I2n

= Triangular (base area of prisma)
= Trapezoid (base area of prisma)

I

rw1, rw2

C1

IIII

I

1°1°

S1

S2

rw2

rw1

Signatures :

=  Ring width
I II I

=  sectorsS1, S2

Fig. 4 Schematic illustra-
tion of the volume
computations (step V)
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angle representing the same 1° steps (ntotal=360)
for the ring calculations. Each sector was again
subdivided into cells, whose boundaries within
the sector are determined by two successive
rings (Fig. 4). The base area of the first ring at
the corresponding cross section was a triangle
and therefore, a prismatic shape was approxi-
mated between two adjacent cross sections
(Papula 2008). The base area of all the other
rings was approximated by a trapezoid. For the
total volume, the volumes of the individual cells
were added to each other and this for every
single growth year. Dependent on the growth
year the increment portion of other years was
subtracted. The error in the computation of the
volume of each cell depends on the actual
curvature of the rings. However, the default
spacing between sectors is just 1° and a straight
line may thus well approximate the ring profile
in such a restricted space. A second volume
computation was implemented as a control of
the volume computations approximating a cyl-
inder between the cross sections by using the
average of all radii and in addition the average
distance between C1 and C2.

Tree stems and likewise roots have less tree
rings at their tip compared to their base. In this
study cross sections were measured approximately
every 10 cm, although additional sections were
measured in the presence of high curvature. Along
the growth axis the innermost annual ring(s) may
disappear between two adjacent sections, because
of decreasing age. As a consequence the growth
layer of the innermost ring is present in the older
cross section but not in the younger one. The end of
such a growth layer was therefore represented as a
cone between the two adjacent input cross sections.
For this, the cross section withmore rings had still a
basal area for the disappearing ring whereas the
cone of the growth layer tapered towards zero
ending at the center point of the adjacent cross
section (Santini and Wagner 2010). Thus, the
interpolation algorithm between two cross sec-
tions is reconstructing only the last common ring.

The branching zone of roots features highly
complex structures. These zones were difficult to
interpolate and consequently a simplified ap-
proach was chosen. One of the roots was modeled
as a continuous root and the second part was

attached as a more or less flat cylinder starting on
the surface of the continuous root representing the
branching point.

The performance error of the model was
difficult to assess as no empirical data about the
annual volume or growth development existed.
Therefore, different validation approaches were
chosen—first based on the ring-width measure-
ments and in addition based on the volume
computations. The first approach compared the
ring-width measurements of the input cross sec-
tions (based on the 2D interpolations between four
input radii) with those achieved by the 3D
interpolation. For every cross section the 360 radii
were computed in step (I) of the interpolation
procedure. To test the interpolation performance
individual input cross sections were skipped (one
section at a time) and recalculated. Thus, input
cross sections CS1 and CS3 were used as input
sections to recalculate CS2. Hence, the interpola-
tion of ring-width profiles was then implemented
at the corresponding site to this cross section and
the two profiles compared with each other.
Moreover, the series were computed with the
new calculated growth origin Cx (III) and with the
original input growth center of the respective cross
section, in order to control the computation of Cx.

The second validation approach was comparing
the total volume computations of the roots. Volume
was computed in two different ways with our
model (for sectors; cylinders; (V)) and compared
with the scanner reference model, which was the
source model for the MATLAB program. The
MATLAB program used the cross sections gained
from the scanner model as input. In addition, the
volumewas computed using a changing number of
intermediate cross sections (CSx).

To verify the data descriptive statistics for tree-
ring series were used (standard deviation, mean,
variance). In addition, the MAE (mean absolute
error) and the MAPE (mean absolute percentage
error) were computed. They were computed for the
entire data matrix (size 360 x i; i=number of rings)
which was directly comparing the radii measured
in 1° steps. The MAE and the MAPE were also
computed for the mean chronologies per cross
section. Pearson’s correlation was used to back up
the relationship between the 2D and 3D tree-ring
interpolations.
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Results

Ring-width data were successfully integrated into the
3D surface model and data gaps between the input
cross sections were filled via 3D interpolation. Thus,
the computation of tree-ring data was possible at any
point within the 3D model and therefore, the annual
reconstruction of the root development was realized
(Fig. 5). These data of the 3D annual ring interpola-
tions were compared with the ring profiles created by
the 2D interpolations. Table 1 shows the comparison
for the individual cross sections of two different roots.
The mean annual ring width of each cross section
resulting from the 3D interpolation widely agreed
with the results gained from the 2D interpolations
(Table 1). For root1 it deviated in average by
0.0054 mm and for Root2 by 0.0140 mm. When
directly comparing the single radii (360) among each

other, the MAE was always higher than if comparing
the mean chronologies of the single cross sections. An
exception of the generally robust reconstructions was
cross section 11 (CS11) of root1 having the highest
reconstruction error of 0.1454 mm for the 360 single
radii (MAPE of 34.4%), and 0.1324 mm MAE for the
mean chronologies (MAPE 20.9%). Nevertheless, the
mean ring-width remained similar (0.554 mm 2D
interpolation, 0.572 mm 3D interpolation). In con-
trast, the cross sections CS12 and CS13 of root2 had
the smallest MAE for mean chronologies 0.0245 mm
and 0.0314 mm respectively (Table 1). The lowest
MAPE of 4.7% showed CS4 of root1, although the
MAPE for the individual radii of CS4 was with
21.92% comparably high.

Figure 6 shows the ring profiles of the 2D and 3D
interpolations in direct comparison for root1_CS11,
root2_CS6, and root2_CS12. The difference in the

 3D interpolation

 Root1

Fig. 5 Model of root1 after
the 3D interpolation of
intermediate cross sections
(four pro segment). With
MATLAB it is also possible
to connect the adjacent
cross sections and therefore,
to define the entire growth
layer
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Table 1 Comparison of the main statistical values of the ring-
width data resulting from the 2D and 3D interpolation on all
cross sections of root1 and root2 (Mean Mean ring width;
StandDev standard deviation; MAE 1° steps Mean absolute

error for the 360 1° steps; MAE (MC) Mean absolute error for
the mean tree-ring chronologies; MAPE Mean absolute per-
centage error)

Root 1 Mean
(mm)

StandDev
(mm)

Variance MAE 1° steps
(mm)

MAPE 1° steps
(%)

MAE (MC)
(mm)

MAPE (MC)
(%)

CS2 Interpolated 2D 0.832 0.109 0.0162 0.0834 11.0363 0.0457 5.9084
Interpolated 3D 0.829 0.096 0.0152

CS3 Interpolated 2D 0.794 0.099 0.0147 0.1093 15.1672 0.0447 5.9413
Interpolated 3D 0.803 0.088 0.0090

CS4 Interpolated 2D 0.749 0.159 0.0330 0.1266 21.9244 0.0352 4.6732
Interpolated 3D 0.748 0.111 0.0171

CS5 Interpolated 2D 0.701 0.115 0.0186 0.0926 19.9232 0.0314 5.5581
Interpolated 3D 0.719 0.090 0.0113

CS6 Interpolated 2D 0.716 0.148 0.0310 0.0863 17.8709 0.0442 6.5840
Interpolated 3D 0.712 0.078 0.0096

CS7 Interpolated 2D 0.685 0.140 0.0328 0.1047 19.3232 0.0669 8.4273
Interpolated 3D 0.686 0.061 0.0046

CS8 Interpolated 2D 0.617 0.083 0.0100 0.0800 17.2330 0.0378 7.54806
Interpolated 3D 0.616 0.067 0.0057

CS9 Interpolated 2D 0.572 0.114 0.0161 0.0962 19.1686 0.0538 6.8570
Interpolated 3D 0.586 0.070 0.0060

CS10 Interpolated 2D 0.538 0.083 0.0094 0.0899 18.5391 0.0621 10.8879
Interpolated 3D 0.526 0.058 0.0038

CS11 Interpolated 2D 0.554 0.128 0.0223 0.1454 34.3984 0.1324 20.8988
Interpolated 3D 0.572 0.065 0.0053

CS12 Interpolated 2D 0.510 0.096 0.0128 0.1032 19.9208 0.0757 12.3165
Interpolated 3D 0.506 0.060 0.0047

CS13 Interpolated 2D 0.494 0.079 0.0075 0.0834 17.9481 0.0568 9.3686
Interpolated 3D 0.499 0.070 0.0071

Root 2

CS2 Interpolated 2D 1.197 0.266 0.1101 0.1495 14.3105 0.0984 9.4385
Interpolated 3D 1.176 0.206 0.0718

CS3 Interpolated 2D 1.135 0.105 0.0195 0.0952 10.7462 0.0606 7.3187
Interpolated 3D 1.142 0.116 0.0218

CS4 Interpolated 2D 1.038 0.090 0.0095 0.1013 11.6436 0.067 7.6624
Interpolated 3D 1.025 0.065 0.0054

CS5 Interpolated 2D 0.958 0.072 0.0058 0.0821 11.0699 0.0446 5.6782
Interpolated 3D 0.946 0.072 0.0065

CS6 Interpolated 2D 0.925 0.105 0.0142 0.0977 12.8154 0.0507 6.3849
Interpolated 3D 0.943 0.056 0.0042

CS7 Interpolated 2D 0.859 0.064 0.0068 0.1042 13.7931 0.0506 5.9729
Interpolated 3D 0.854 0.070 0.0062

CS8 Interpolated 2D 0.855 0.130 0.0229 0.1065 18.1576 0.0643 12.5788
Interpolated 3D 0.866 0.095 0.0140

CS9 Interpolated 2D 0.826 0.094 0.0100 0.1032 16.7858 0.0399 8.9450
Interpolated 3D 0.846 0.061 0.0046

CS10 Interpolated 2D 0.792 0.121 0.0174 0.0990 14.8814 0.0312 7.4537
Interpolated 3D 0.801 0.049 0.0026

CS11 Interpolated 2D 0.696 0.060 0.0043 0.0815 13.9551 0.0283 7.6528
Interpolated 3D 0.715 0.070 0.0060

CS12 Interpolated 2D 0.655 0.057 0.0189 0.0621 12.1580 0.0245 6.5448
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performance for the three cross sections is clearly
visible. Especially the shift of the growth origin for
section root1_CS11 is evident. The mean ring-width
series are also exemplarily shown for the same three
cross sections (Fig. 6). The differences in the
reconstruction performance are also visible here. In
general, the 2D and 3D interpolations showed the
same growth patterns. Even for CS11 with the shifted
growth origin the growth pattern was still preserved in
the mean chronologies.

Table 2 shows the average MAPE for root1 and
root2 in dependence on the growth center used. The
average MAPE for the comparison of the 360 radii of
all 12 tested cross sections of root1 was 19.4% and
for all 14 sections of root2 16.9% (Table 2). The
MAPE computed for the mean chronologies of the
individual roots were in average 8.75% for both roots.
In general, the results for root2 were more accurate.
The average MAPE for the mean chronologies
calculated with the CSx were by 0.39% slightly
higher for root1 (by 0.55% slightly higher for root2)
than those done with the input growth center. For the
MAPE of the single radii the impact of the growth
center used was more evident. Here the average
MAPE for interpolations with Cx were by 5.39%
greater for root1 and by 3.96% greater for root2
compared to calculations with the input growth center.
The high correlation coefficient especially for root2 (r=
0.9683) emphasized the strong relationship between
the 2D and 3D interpolations. Of course data were
dependent on each other and therefore, a high
correlation coefficient was expected; nevertheless the
interpolation performance was further proofed.

The total and annually resolved volume computa-
tions are presented in Table 3. For both roots the
MATLAB model resulted in a greater volume
compared to the scanner and the cylinder model.

The cylinder approximation was underestimating the
volume compared to the scanner model. The higher
accuracy of the ring reconstructions of root2 was also
shown in a smaller deviation in volume for root2
(Table 3). The calculated offset was always between
5% and 6% (Table 4), which is comparable with the
offset of the scanner model.

The sum of the annual volume computation for
root1 was 184,302 mm3, only 0.54% greater than
the volume calculations of the reference model
(182,968 mm3). For root2 the sum of the annual
volume computation was 439,900 mm3, which is
2.2% less than the volume computations of the
reference model.

When the number of the calculated intermediate
cross sections (CSx) was changed, the computed
volume deviated slightly (Table 4). The deviations
of root1 showed continuous increases with the
number of intermediate cross sections. This was not
true for root2, where the deviations increased when
using two, four and six intermediate sections, but
decreased from six to ten intermediate sections.

Discussion

The tool developed was able to calculate annual ring
data at any point within the 3D model. Hence, a
model was developed, which allows for annual
growth analyses and annual volume computations.
The question is if the model is a robust and reliable
tool for a realistic reconstruction of root development.
The verification of the annual volume data is
problematic since no empirical data of the annual
volume distribution were available. However, total
volume computations and ring-width data were used
to validate the model.

Table 1 (continued)

Root 1 Mean
(mm)

StandDev
(mm)

Variance MAE 1° steps
(mm)

MAPE 1° steps
(%)

MAE (MC)
(mm)

MAPE (MC)
(%)

Interpolated 3D 0.670 0.051 0.0028

CS13 Interpolated 2D 0.594 0.070 0.0056 0.0648 13.7492 0.0314 8.5417
Interpolated 3D 0.596 0.046 0.0025

CS14 Interpolated 2D 0.551 0.078 0.0074 0.0712 14.3729 0.04140 10.1619
Interpolated 3D 0.574 0.043 0.0023

CS15 Interpolated 2D 0.495 0.054 0.0034 0.0698 17.2460 0.0389 12.6175
Interpolated 3D 0.521 0.039 0.0019
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The MATLAB volume computations (sector model)
for root1 were about 6.5% (root2 about 3.7%) greater
than the volumes of the scanned reference model
(Table 4). These results were promising, but it has to
be considered that the scanner model already showed
an offset by about 5 to 7% from the actual volume. A
primary question was if these errors propagated within

the model. There is evidence that this was not the case,
because the offset, which was included in each of the
models remained stable, independent of the calculation
technique used (Table 4). The offset ranged from 5.5 to
6.1%. Due to the stable ratios between offset and total
volume the presented model was able to provide
predictable volume data. When subtracting the offset
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Fig. 6 Three reconstructed
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from the MATLAB-sector model, the volume matches
the total volume of the scanner models including the
offset. Therefore, we can conclude that the volume of the
sector method was within the error range of the scanner
(5–7%). This deviation in volume is a convincing result
for a model, which is always an approximation to reality.

Volume computations were deviating slightly with
changing number of intermediate cross sections
calculated. For root1 the offset in volume increased
with the number of sections. In general one would
expect that the interpolations will gain in accuracy
with increasing number of sections. However, this
was not necessarily the case as all intermediate
sections (CX) were calculated independent of each
other. Therefore, we believe that no matter how many
intermediate sections are calculated (CX) their accu-
racy is dependent on the position where the section is
calculated rather than the amount of sections. This can
be examined when looking at Fig. 5 an extreme
deformation of an input section will influence the
structure of CX due to the applied weight, but a
deformation of the circumference of CX was having
only local impact on the section itself. Hence, when
cutting the cross sections out of the scanner model it
is already necessary to check if the circumference is
representative for the true circumference or if artifacts
occur due to bark sticking out or smaller roots. The
deviation in volume was therefore rather a result of
the root structure and the position where the cut was
calculated than of the number of sections (Table 4).

In general, the root size has to be considered for
the error computation. A very small overestimation in
diameter on small roots can give a high percentage of
error for the volume computations whereas the same
absolute error may give a smaller percentage error for
larger roots. The roots used for the presented study
were rather small (1.6 and 1.8 cm). T
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Table 2 Comparison of tree-ring profiles computed once with
the original center point of the input data and once with the new
computed center point Cx (Pearson’s correlation coefficient,
MAPE and for single radii (1°) and (MC) mean chronologies)

Correlation Coeff MAPE
(%) 1°steps

MAPE
(%) (MC)

root1 CX 0.8924 19.3711 8.7474

Input center 0.9078 13.9775 8.3537

root2 CX 0.9683 16.8561 8.7467

Input center 0.9732 12.8977 8.1937
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Although we are confident that our volume computa-
tions are in a predictable range (see above) the
computations were done by approximating prismatic
shapes, which is not truly the case (Fig. 4). We believe
that our method reflects a reliable approximation,
because each sector had only an angle of 1° and thus
was rather small. If necessary the angle could be further
reduced. One critical point though was that the
neglected portion may vary between the rings an
especially between inner and outer most rings. Usually
we would expect an underestimation of volume, because
the portion neglected at the upper part of the prism
should be larger than the one added at the lower part of
the prism. Here, the curvature of the tree-ring structure
plays a role. When a cyclic ring form is assumed, for a
0.5 mm growth ring the error due to the approximation
increases with increasing distance to the growth center
(e.g., distance 1 mm: 0.00000211 mm2; distance 1 cm:
0.00000454 mm2; distance 2 cm: 0.00000897 mm2). At
cross sections with extreme deformations overestima-
tions might occur. Another possible explanation for
overestimations might be that the prismatic shapes did
not consider the root tapering after branching points in a
sufficient (Soethe et al. 2007). However, the reason for a
general overestimation is not fully understood and
requires further investigations.

The tree-ring analyses allowed an additional check
for our model. When comparing the MAPE of the 2D
and the 3D interpolations the MAPE for the single
radii were in average 19.37% for root1 and 16.86%
for root2, which is quite high. Nevertheless, the
results for the mean chronologies were promising
(average MAPE 8.75% for both roots).

Analyses of the positions of the individual cross
sections may help to understand the differences in the

interpolation performances. CS11 of root1 for example
showed the most pronounced deviations with a MAPE
of 20.9% for MC (Fig. 6). In contrast, CS12 of root2
was a good approximation to reality with a MAPE of
6.54% for MC. When their positions within the root
system were analyzed (Fig. 6) CS12 was positioned at a
relatively straight part of the root although the distance
between the input cross sections was wider. CS6 of
root2 was also a quite robust reconstruction although
showing similar conditions as root1_CS11.

Although some greater reconstruction errors
occurred the growth trends were clearly preserved
in all mean chronologies and also in all the
chronologies of the individual radii. This makes
the model an innovative and applicable tool for
tree-ring analyses. The fact that mean chronologies
are widely used for tree-ring analyses (Cook and
Kairiukstis 1990) and also for biomass equations
(Pearson et al. 1987) strengthened this assumption.

The model is based on a limited data set of 4 radii
per cross section, the outer structure of the root at
the input cross sections and the new calculated
cross sections. Therefore, certain assumptions were
required for the interpolation of the missing data.
These assumptions can also be error sources if they
do not conform to reality. The calculation of the
center points Cx was based on the assumption that
Cx is close to the intersection lines with the plane (I).
The assumption was tested by comparing the ring
profiles once calculated with the new center Cx and
once with the measured input growth center. As
expected computations were more accurate when the
growth centers of the input data were used. Never-
theless, the deviations between the two approaches
showed only slight differences for MC by 0.39% for

No of CS 2 4 6 8 10 STD Mean Variance

root1

Sectors 6.31 6.45 6.61 6.58 6.80 0.1820 6.61 0.0145

Cylinder 3.45 4.00 4.10 4.13 4.14 0.2955 4.09 0.0005

Offset_cylinder 5.84 5.87 5.9 5.89 5.90 0.0241 5.89 0.0001

Offset_sectors 5.49 5.51 5.52 5.53 5.53 0.0139 5.52 0.0000

root2

Sectors 3.52 3.63 3.91 3.65 3.71 0.1438 3.73 0.0182

Cylinder 2.07 1.83 1.78 2.01 2.05 0.1344 1.91 0.0213

Offset_cylinder 6.09 6.09 6.11 6.10 6.11 0.0116 6.10 0.0000

Offset_sectors 5.88 5.88 5.88 5.89 5.89 0.0054 5.88 0.0000

Table 4 Deviations for
volume computation techni-
ques in comparison to the
reference scanner model and
for a varying amount of
intermediate cross sections
calculated between C1 and
C2 given in percent (%)
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root1 and 0.55% for root2 of the MAPE. This
strengthened the assumption that the calculation of
the CX is widely applicable. For the individual radii
the deviations were clearer dependent on the growth
center used (root1 MAPE deviated by 5.39%).
Therefore, an additional check of the calculated
growth center is required for critical sections e.g.,
with a stronger inclination. For other cross sections
minor deviations were also reached for single radii
(CS2 root1, CS3 root2) which also strengthened the
assumption made and the applicability of the model.

The changing growth axis might play a crucial role
in several parts of the procedure, for instance resulting
in non-parallel input cross sections. In general, the
interpolation results were improved, when input cross
sections were parallel to each other and the shape of
the root quite straight (Fig. 6). This showed the
importance of the raw data. Clearly, for straighter
parts of the root less input cross sections were
sufficient whereas it was necessary in high curved
regions to set additional cuts. The interpolations were
more accurate when more input data were available
(Zu Castell et al. 2005). However, a compromise had
to be made between a realistic workload and a
sufficient number of input sections for higher accura-
cy. When the cross sections for ring-width measure-
ments were set carefully the tool developed was a
robust instrument for 3D root reconstruction. For all
cross sections except cross section root1 CS11 the
results for the MC were in a convincing range.

Some of the possible error sources such as the distance
and angle between input sections and the structure of the
surface model can be further improved in future.
Although for single sections some bigger deviations to
reality occurred (root1 CS11) the error may be caused by
the input data rather than the algorithm. The curvature
of the 3D surface model and the raw data turned out to
be a critical point in these terms. Possible solutions to
improve the method further would be to develop more
complex weights for the interpolation algorithm which
consider the rotation between two input cross sections
in more detail or for highly deformed sections to
measure additional input cross sections.

Models are always approximations to the reality
and therefore, certain compromises have to be accepted.
However, the model presented was able to generate
convincing ring profiles and volume data, as the MAPE
for the MC was in average 8.75% and the volume
deviated by up to 6.6%. Although the error for

individual tree-ring radii was higher (MAPE 19.37%)
the tree-ring series were clearly showing the same
growth pattern. Therefore, we are confident that the
produced data will allow for complex tree-ring analyses
within a root system. The uniqueness of the data set
fully justifies the amount of work.

Conclusion

The coarse-root development model presented is able
to shed light on annual root development and
especially on volume allocation within the root
system. Such data was not available before and can
help answering crucial questions in terms of biomass
allocation and anchorage processes.

A model was developed which is reconstructing the
3D development of a root system on an annual basis.
The measurements and prearrangements of the input
data (ring-width measurements, scanning, modeling) are
time demanding, which is typical for coarse root studies
(Tobin et al. 2007). Nevertheless, we are convinced that
it is worth it the effort. The data acquired from this new
method have never been available before and can
answer fundamental questions about root development.
Although this model was applied for roots it can easily
be transferred to the aboveground part of trees allowing
for complex analyses of allocation and moreover,
influence of root on stem development.

However, when applying the model, some restric-
tions have to be considered. Laser scanning is limited
when the root systems exceed a certain complexity,
because the laser beam will not reach all parts of a
root system hidden by other roots. Thus, we highly
recommend the model especially for younger trees
and those who have protruding root-systems. Higher
deformations may result in a higher error or to avoid
these errors in additional workload.

With the presented model a tool was developed to
analyze individual reactions of root systems to specific
environmental conditions. In future, the approach will
be extended to an entire tree to quantify the relationships
between above- and belowground growth patterns. This
is fundamental for understanding allocation and bio-
mass development over time, which plays a key
question for the global carbon budget. The workload
for the aboveground part is expected to be comparable
low and the reconstructions more robust due to the
simpler shapes.
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The model presented here has high potential to be
upgraded and linked with other models for instance,
topological models (Danjon and Reubens 2008). The
Laser ScanArm applied consists of a tactile probe for
point measurements. This could be used for additional
topological measurements comparable to the digitizer
as it was already successfully applied (Danjon et al.
1999; Oppelt et al. 2000).

Due to the complexity of the problems in root
development, biomass etc. a combination of existing
models is advisable (Tobin et al. 2007). Simulations
are not possible with the presented model but a
combination with predictive models is conceivable
and by supply data of the past growth may act as a
control for these models.
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