
DISSense: An Adaptive Ultralow-power
Communication Protocol for Wireless Sensor

Networks
Ugo Maria Colesanti∗, Silvia Santini† and Andrea Vitaletti∗,

∗Dipartimento di Informatica e Sistemistica, “Sapienza” Università di Roma, Rome, Italy
Email: colesanti,vitaletti@dis.uniroma1.it

†Institute for Pervasive Computing, ETH Zurich, Zurich, Switzerland
Email: santinis@inf.ethz.ch

Abstract—This paper presents DISSense, an adaptive,
ultralow-power communication protocol for wireless sensor net-
works. DISSense is specifically designed for long-term environ-
mental monitoring applications and it provides for both data
collection and data dissemination services. By automatically
adapting the length of its active phases, DISSense can guarantee
for both a very low duty cycle and reliable data delivery. We
tested the performance of DISSense on both a testbed and on the
TOSSIM simulation environment. Our experimental results show
that a sensor network running DISSense can provide for average
data delivery ratios above 98% and at the same time achieve
a lifetime of several years. Our TinyOS 2.1 implementation of
DISSense is publicly available.

I. INTRODUCTION

Environmental monitoring [1], [2], [3], [4] is one of the
many envisioned application scenarios for wireless sensor net-
works (WSNs). Enabling fine-grained, long-term monitoring,
however, requires tens or hundreds of battery-powered nodes
to be deployed over a large area. The number of nodes and
the dimension of the network clearly make battery replacement
a cumbersome and time consuming task. Minimizing energy
consumption to extend network lifetime is thus a primary re-
quirement entering the design of protocols and applications for
WSNs. In particular, the operation of the wireless transceiver
causes high energy consumption on sensor nodes [22], and,
thus, energy saving techniques typically aim at optimizing
communication. For instance, sensor selection and data aggre-
gation algorithms aim at reducing the overall amount of data
and, thus, data packets, the network needs to relay to a central
collector [18], [19]. Energy-aware routing protocols try to
minimize the overall communication cost of relaying a packet
from a remote source to a sink node [12]. Finally, energy-
aware medium access control (MAC) protocols can reduce the
cost of packet transmissions by making the nodes persist in
to the so-called sleep mode whenever possible [7], [8], [11].
While in sleep mode, the wireless transceiver drains nearly
no current but it is still able to quickly resume operation.
The longer a node persists in sleep mode, the lower will be
the duty cycle of its radio, which is the percentage of time
during which the wireless transceiver is actively powered for
communication. Many MAC protocols for WSNs may indeed
achieve very good performance in terms of duty cycle [7], [8],

[11]. However, the actual duty cycle of the network strongly
depends on how efficiently MAC and routing protocols can
cooperate. Some approaches do offer optimized cross-layer
solutions [9], [10] but they have been tailored to specific
platforms, are not publicly available, or do not offer upper
bounds for the latency of delivered packets [9], [10].

In this paper, we present the design and implementation of
DISSense, an adaptive, ultralow-power communication pro-
tocol that has been designed taking into account cross-layer
optimization issues. DISSense offers both a collection and dis-
semination service and it is particularly suited to support long-
term environmental monitoring applications. We implemented
DISSense in TinyOS 2.1 and tested it on both an indoor testbed
and on the TOSSIM simulator [17]. Our experimental results
show that thanks to its ability to adapt to changing network
conditions, DISSense aggressively reduces the duty cycle of
the network, thereby enabling a mote-based network to reach a
lifetime of several years. At the same time, DISSense is able to
deliver, on average, more than 98% of the data packets injected
into the network. Other protocols presented in literature may
indeed achieve similar performance in terms of data delivery
ratio [9], [10], [12]. However, unlike other approaches [9],
[10], DISSense runs on several platforms, including Tmote
Sky and MicaZ motes [16], and its implementation in TinyOS
2.1 is publicly available. Furthermore, for scenarios in which
the sampling rate of the network is sufficiently low, DISSense
may provide for low latency and long network lifetime. Last
but not least, DISSense is able to adaptively compute its key
parameters, thereby relieving the user from a tedious, manual
protocol tuning.

II. BACKGROUND AND RELATED WORK

A. Periodic Environmental Monitoring

Periodic environmental monitoring (PEM) represents one
of the most popular application scenarios for WSNs [1], [2],
[3], [4]. In PEM deployments, sensor nodes are scattered
over a large area and periodically collect and report sensor
data to a central sink. Examples of measured quantity in-
clude temperature, electric conductivity, or moisture levels.
The sampling period may vary from few minutes to several
hours [1], [2], [3], [4]. The per-node amount of data collected

during each sampling period is usually low enough to fit
into a single data packet. The required data delivery ratio
typically exceeds 95% [6]. Latency requirements may vary
depending on the scenario. For off-line analysis, collecting
the data every day or even at slower pace typically suffice.
For other scenarios, such as cultural heritage monitoring or
fire detection, the latency must be sufficiently low (seconds or
minutes) in order to enable human or automatic intervention.
As for most application scenarios for WSNs, the lifetime of
the network may be required to be of several years. Because
replacement of, or intervention on, sensor nodes is unfeasible,
the nodes must rely on their own energy supply, which
often consists of common AA batteries. Critical application
scenarios may also require higher than average performance in
terms of delivery ratio and data rate [24], [25]. In these cases,
long network lifetime may be achieved either by using high
performing and possibly bulkier batteries [24] or by leveraging
energy harvesting techniques (e.g., photovoltaic panels) [25].
It is important to note that although WSNs are envisioned to
encompass thousands or millions of nodes [5], [23], common
PEM deployments build upon networks of tens or hundred of
nodes, which is also the reference network size for DISSense.

B. Routing and MAC Protocols

There exist a plethora of energy-aware MAC protocols for
WSNs. In [28], these are classified in slotted, random, frame-
based, and hybrid protocols. Slotted protocols make the nodes
share a common schedule that alternates sleep and active
phases. The length of active slots typically ranges between tens
and hundreds of milliseconds, while sleeps slots last signifi-
cantly longer resulting in low duty cycles. Within each active
slot CSMA-based techniques are used to manage channel
contention. Random access protocols avoid the use of a shared
schedule. Instead, they demand most of the communication
effort to the transmitter, which must inform the receiver if
a transmission will take place. Frame-based protocols group
slots into frames and assign one or more slots to each node. In
this way, nodes can avoid collisions and channel contention.
Keeping this schedule requires tight synchronization between
nodes and induces a large memory footprint, making frame-
based protocols hard to use in practice. Hybrid protocols aim
at combining the advantages of both random and frame-based
protocols. With respect their random counterparts, hybrid
protocols limit collisions but cause more control overhead.

T-MAC [7] is a slotted protocol that uses a CSMA/CA
MAC with RTS/CTS mechanism for packet transmission. T-
MAC achieves energy efficiency by keeping the active phase
as short as possible with respect to the sleep period. If no
traffic is sensed after a pre-specified timeout, a node can switch
to sleep mode until the next active period will start. T-MAC
sets the default length of the timeout to 15ms for a period
of 610ms. Thus, the duty cycle of the radio is 2.4%, which
is considerably high for PEM scenarios. Longer sleep periods
may cause synchronization problems and high latencies that
may hamper the correct operation of routing protocols.

BoX-MAC-1 [8] is a random protocol that is part of the

standard low-power MAC of the TinyOS operating system
[13]. Each node running BoX-MAC-1 wakes up periodically
from the sleep mode and checks for channel activity. This
mechanism, called Low Power Listening (LPL), enables a
transmitter to communicate with a receiver by continuously
transmitting data packets during an activity period. As soon
as all transmissions are acknowledged, nodes go back to
sleep mode. BoX-MAC-1 moves energy consumption for
communication from receivers to transmitters and works well
on 1-hop scenarios with low traffic loads. However, in multi-
hop scenarios that require a routing protocol, overhearing and
collisions as well as the transmission overhead of broadcast
messages such as routing beacons, significantly degrade the
energy efficiency of LPL-based protocols [28].

WiseMac [27] is a random protocol that uses LPL but,
unlike BoX-MAC-1, it maintains a neighbor table with poll
schedules, updated each time a packet is received, which
allows a node to send short preambles only. The preamble
length also takes into account the maximum clock drift from
the last message exchange and, if no poll schedule is available,
it simply falls back to long LPL preambles. Despite in [28]
WiseMac is considered the most performing MAC protocol
for low data rate applications, it is also mentioned that,
similarly to Box-MAC-1, its performances quickly degrades
when broadcast communication pattern is required.

Z-MAC [11] is a hybrid approach that works as a
contention-based protocol for low traffic levels, but it turns
into TDMA mode for high levels. Z-MAC uses global time
synchronization once during setup. Subsequently, only local
synchronization between sender and receiver is required. De-
spite the hybrid design, Z-MAC becomes energy efficient only
for high traffic load only (more than 3 packets per second per
node), but it is still far from reaching the ultralow energy
efficiency required by PEM applications.

CTP is a collection protocol for WSNs. It uses beacon
messages for building and maintaining a routing tree, and data
messages to report application data to the sink. The standard
implementation of CTP consists of three main logical software
components: the Link Estimator, the Routing Engine and the
Forwarding Engine. The Routing Engine takes care of sending
and receiving beacons as well as creating and updating the
routing table. The Forwarding Engine forwards data frames.
Each transmitted data frame is acknowledged at the link layer,
enhancing the reliability of the protocol. Furthermore, the FE
implements a duplicate-detection mechanism and it has the
ability to detect and repair routing loops. The Link Estimator is
mainly responsible for determining the inbound and outbound
quality of a communication link. CTP is compatible with the
BoX-MAC-1 MAC. Both these protocols have been tested in
a 100 node network with 5 minutes sampling period [12]: In
this work, the overall network lifetime reached approximately
4 months, which is far below the PEM requirements.

C. Full Layered Protocols.

Koala [10] implements an efficient asynchronous wake
up strategy and on-the-fly route computation whenever data

download is requested by the sink. The energy saved avoiding
the control overhead during inactivity periods compensates the
higher cost of wake up and route construction. The sampled
data is logged on the flash memory of each node and can be
sent when requested. To ensure energy efficiency, Koala needs
to log a significant amount of data before initiating the wake
up strategy. However, the low data rate of PEM applications
implies that several days are required to log a sufficiently
large volume of data such that the energy efficiency of Koala
becomes reasonably high.

Dozer [9] is a data-gathering protocol designed for Environ-
mental Monitoring. It integrates MAC layer, topology control
and routing to reduce energy wastage of the communication
subsystem. The data gathering in Dozer relies on a tree-based
network, while the data exchange is enabled by a TDMA
protocol. To avoid global synchronization, each node has
two independent TDMA schedules, one for its parent role
and one for its child role. Link-layer acknowledgement is
enabled for each packet transmission to enhance the protocol
reliability. Dozer provides mechanisms for load balancing,
parent selection and hidden-node collision avoidance. With its
lazy TDMA approach, Dozer is able to reach an ultralow-
power consumption, which increases network lifetime up to
8-10 years. To the best of our knowledge, Dozer is the most
performing ultralow power communication protocol available
nowadays. However, Dozer is a commercial closed-source pro-
tocol available only for the TinyNode platform [14]. Moreover,
it cannot provide any guarantees on data latency and requires
a fine tuning of its parameters during setup.

III. DISSENSE: PROTOCOL OVERVIEW

DISSense provides for both data dissemination and collec-
tion services for WSNs. It targets environmental monitoring
applications requiring periodic sampling of a given physical
phenomenon. In particular, DISSense takes as input the desired
sampling period and computes an adaptive time schedule for
the nodes to coordinate in order to build a data collection tree.
The schedule alternates short activity phases, during which
nodes deliver sensed data to the sink, and long intervals, during
which nodes operate in an ultralow-power mode. To dissemi-
nate the shared schedule to all nodes in the network, DISSense
provides an efficient, one-to-many backward channel .

A. Adaptation

DISSense achieves energy-efficient operation by adaptively
shortening the length of the time interval during which nodes
must activate their radio transceivers. Reducing the length
of the active phase clearly enables DISSense to reduce the
duty cycle of the network and, thus, to extend its lifetime.
The main challenge arising in this context consists in making
the protocol able to timely and reliably deliver data to the
sink despite the shortening of the active phase. The diameter,
density, and overall link quality of the network also affects
protocol behavior. For example, reliable protocols such as
DISSense may require several (re)transmission attempts over
a bad link before at least one succeeds. Moreover, the denser

the network the longer it takes to settle channel contention.
And the higher the diameter of the network the higher the
average number of hops packets must be relayed through
before reaching the sink. By taking into account all these
factors we make DISSense able to autonomously adapt its duty
cycle to the actual dynamics of the network, and to ensure
both high delivery ratios and energy efficiency. To control
DISSense’s adaptive behavior, we define two metrics: the Time
To Resync (TTR) and Time To Receive Data (TTRD), which
we will describe in detail in section IV-D.

B. Schedule

The sink is responsible for determining and disseminating
the schedule according to which nodes send and receive their
packets. Figure 1 illustrates the different phases of the DIS-
Sense schedule: active phases are scheduled at each sampling
period. Because of clock drifts and of the long inactivity
period between active phases, a Guard Time Interval (GT)
is foreseen at the beginning of each phase. Moreover, a re-
synchronization procedure periodically takes place during the
Re-synchronization Interval (RI), so as to realign the schedule
and compensate for clock drifts. Depending on the sampling
period and intervals length, DISSense is able to skip the RI for
one or more sampling periods, so as to optimize the overall
protocol duty cycle. The skip functionality depends on the
parameter σsk , whose computation is described in section
IV-D. During the RI, nodes exchanges routing beacons and
collect the information needed to build a collection tree having
the sink as its root. At the end of the RI, DISSense ensure
that the nodes share a common wake-up time for the next
active phase, and have a parent selected in the collection
tree for data transmission. After the RI, the Data Collection
Interval (DCI) begins. During the DCI each node sends its
data over the already built collection tree, and also act as
forwarders for other nodes of the network. Between two
active phases, DISSense turns into an Ultra-Low-Power State
(ULPS) by switching the radio to LPL mode with a 0.1%
duty cycle. In ULPS the radio is not turned fully off since
some nodes may be added and other ones can go out of
synchronization. Both these nodes need to retrieve the protocol
schedule in order to participate to the network. The value
of the duty cycle during ULPS is low such that it does not
significantly affect the overall protocol duty cycle. Note that
the sink schedule only adopts an ACTIVE interval, since it does
not need to discriminate the different intervals of the active
phase. The active phase of DISSense runs on a CSMA/CA
MAC with 100% duty cycled radio. The benefits of such a
solution are twofold. First, it accelerates the construction of the
collection tree and the data collection process itself, thereby
shortening the length of the active phase. Second, it prevents
the inefficiencies, described in section II, related to broadcast
transmissions (e.g. routing beacons) under duty cycled MAC
protocols.

Sink

Node 1

Node 2

Node 3

ULPM

Sampling Period
(with resync)

Radio 100% duty cycle Radio 0.1% duty cycle

GTACTIVE

GT RI DCI

Sampling Period
(no resync)

Sampling Period
(with resync)

GT ACTIVE ULPM

GT RI DCI

GT RI DCI

GT DCI

GT DCI

GT DCI

GT ACTIVE

GT RI DCI

GT RI DCI

GT RI DCI

GT ACTIVE

ULPM

ULPM

ULPM

ULPM

ULPM

ULPM

Fig. 1: DISSense schedule with σsk = 1

C. Collection and Backward Channel

Data collection in DISSense is achieved by leveraging and
extending the CTP Collection protocol [12]. CTP is a popular
and highly reliable collection protocol. When running CTP
each node computes a metric, called ETX, which represents
the estimated number of transmissions a packet from this node
will go through before reaching the sink. CTP also supports
loop detection, duplicate transmission and quick reaction to
topology changes. However, CTP is not optimized for appli-
cations requiring short active phase sessions interleaved with
inactivity periods, such as the scenario we are taking into
account. Instead, DISSense allows to stop, start, pause, and
reset the construction and maintenance of the collection tree
at any time.

The backward channel in DISSense is used by the sink to
resynchronize the network and to send schedule changes to
nodes (e.g. intervals length and changes in sampling period). A
node missing a schedule update is likely to loose synchroniza-
tion with the other nodes. DISSense implements a backward
channel, namely the Implicit Backward Channel (ICB), that
guarantees that each node node having selected a parent in the
collection tree, also shares the same values sent by the sink
over the ICB during the active phase. The ICB runs during the
RI and uses the same beacons required for the collection tree
construction. The main advantage of this solution is that the
RI interval can be tailored on the collection tree construction
only since the ICB execution does not require any additional
time. Further details are discussed in section IV-A and IV-B.

D. Architecture

Figure 2 illustrates DISSense’s architecture. DISSense main
modules are the Manager, the Adaptive Engine, the LplMan-
ager, and the NtpManager, which are described below. As
mentioned above, DISSense relies on CTP to build and main-
tain the routing tree. Thus, DISSenses embeds CTP’s Link
Estimator, Forwarding Engine, and Routing Engine modules.

1) Manager: The Manager handles DISSense core func-
tionalities, such as network re-synchronization and schedule
management. The module also provides a Send/Receive inter-
face to the application layer that enables the send of a single
data packet during each active phase and collects statistics for
the Adaptive Engine. The Manager has the ability to start,

ManagerLplManager

NtpManager

Application

MAC Protocol

DISSense

Forwarding Engine Routing Engine Link Estimator

CTP Routing Protocol

Serial Comm.
(Gateway)

Adaptive Engine

Fig. 2: DISSense Architecture

pause and reset the underlying CTP protocol. It can also
change the radio duty cycle.

2) Adaptive Engine: The Adaptive Engine has a dual
functionality. On the sink, it computes intervals length for
GT, RI, DCI and skip parameter σsk . These values are then
transmitted over the ICB. On the nodes, the Adaptive Engine
retrieves and stores the values, which can later be read by the
manager module.

3) LplManager: The LplManager module is responsible
for radio communications during Ultra-Low-Power Mode.
As mentioned in section III-B, during ULPM phase, the
nodes turn their radio to a 0.1% duty cycle rather than
switching it off. The LplManager enables a node that looses
synchronization or a newly added node to efficiently retrieve
synchronization information from its neighbors during their
inactivity period. This mechanism avoids the need to scan for
an active phase, which requires high power consumption. The
LplManager also supports the additional functionality of state
transmission, which consists in sending a snapshot of the node
state for debugging purposes.

4) NtpManager: The NtpManager module that is active
only on the sink, interacts with an external gateway to syn-
chronize the sink with an external entity (e.g. Ntp Time). The
NtpManager provides an additional functionality that enables
the user acting on the gateway, to dynamically change the
sampling period, and to determine the hour of the day at which
data samples need to be generated.

IV. DISSENSE: IMPLEMENTATION

DISSense is implemented in TinyOS 2.1 [13], a lightweight,
open-source operating system for WSNs. It supports the
TelosB/TmoteSky and MICAz platforms. Support for Iris
and TinyNode 184 is planned in future releases [16], [14].
DISSense also runs on the TOSSIM simulation environment.

As described in section III, the sink in DISSense acts as
an orchestrator for the network. In particular, the sink is
responsible to determine the adaptive schedule, share it over
the network, and periodically collect the sampled data from the

nodes. To this end, DISSense runs a deeply modified version
of CTP. On one hand, DISSense adapts CTP to run on the
specific schedule described in section III-B, which requires
CTP to be paused and resumed periodically following the
duty cycle of the protocol. On the other hand, DISSense
embeds a backward channel in CTP namely, the Implicit
Backward Channel, which enables DISSense to send controls
for initiating synchronization and tree construction.

A. Data Collection

In DISSense the CTP protocol is stopped during Ultra-
Low-Power Mode and resumed during the active phase. When
resumed, DISSense runs CTP in a stateful or stateless mode.
In stateful mode the routing information of the previous
sampling period used. This mode is employed when the DCI
is scheduled without the RI and there is the need to directly
collect the sampled data. Instead, in stateless mode the CTP
state (neighbor table, selected parent) is reset in order to
refresh the topology information of CTP and enable the IBC
to share new synchronization information as much as the new
schedule parameters values. The stateless mode is run when
the RI is scheduled.

B. Implicit Backward Channel

The IBC guarantees, during each RI interval, that a node
having selected a new parent also shares the values transmitted
by the sink at the beginning of the RI. DISSense uses the IBC
to share schedule’s information updates. In particular, at each
RI, the sink transmit over the IBC the sampling period, the
length of RI and DCI intervals, the skip parameter σsk and the
next wake up time. These values are appended as a footer to
each routing beacon. For each incoming beacon, the Routing
Engine follows the algorithm in figure 3 which enables a node
to store the information carried by the beacon (and retransmit
it as a footer in each subsequent transmitted beacon) if and
only if the sender has been selected as a parent.

Note that during beacons transmission, each node fills the
footer with its local values thus, at the beginning of the RI,
each node that has not yet selected a parent, transmits stale
content. The algorithm, however, implicitly solve this issue
thanks to the parent selection algorithm of CTP. The parent
selection algorithm guarantees that each parent candidate must
already have selected a parent in the tree. Thus, each parent
candidate must have run the IBC update process of algorithm
3 hence, carry updated values. As a consequence, at the end
of the RI, each node will be in one of these two states:
• The node belongs to the collection tree, is resynchronized

and have updated schedule parameters values;
• The node does not belong to the collection tree, is out

of synchronization and needs to retrieve the schedule
through the LplManager during ULPM.

C. Resynchronization

The re-synchronization procedure uses the IBC to reliably
propagate the timestamp related to the beginning of the next
active phase. DISSense manages the Next Wake Up Time

Require: node n
upon rx beacon bi from node i
if parent(n) == null then
temp← footer(bi)
process(bi)
if parent(n) == i then

resync(temp.nwu)
store(temp.ri, temp.dci)
store(temp.sp, temp.σsk)

end if
temp← null

else
process(bi)

end if
Fig. 3: IBC Algorithm

field of the IBC footer using the TimeSyncAMSend interface
implemented in TinyOS 2.1 by the CC2420TimeSyncMessage
component. This component is a submodule of the Flooding
Time Synchronization Protocol [15]. It has been written for
ChipCon2420 transceivers and allows a sender to piggyback a
local timestamp te, related to an event e, to each transmitted
packet. The receiver, in turn, decodes the timestamp te as a
new timestamp t′e = te + δ representing the event e expressed
as the receiver’s timestamp t′e with an error δ corresponding
to the packet propagation time.

Using the TimeSyncAMSend interface for CTP beacons
transmission enables DISSense to reliably propagate the next
wake up time over the network with a maximum error ∆ = d·δ
where d is the network diameter. Note that, over short dis-
tances, the packet propagation time is in the order of few
microseconds and, as it will be shown in section V-B, ∆ is
several orders of magnitude lower than the size of the active
phase. Thus, as figure 3 shows, when the parent is selected,
the resync commands is called over the Next Wake Up Time
field that realigns the schedule of the next wake up.

D. Adaptation

As described in section III-A, DISSense uses two metrics,
TTR and TTRD, in order to find a good tradeoff between
duty cycle minimization and correct protocol execution. These
metrics are computed by the Manager, which sends them to
the Adaptive Engine along with the protocol sampling period.
Based on these values, the Adaptive Engine computes the
intervals length of GT, RI, and DCI as well as the skip
parameter σsk .

Time To Resynchronize (TTR): The TTR represents the
maximum time required by DISSense to resynchronize all the
nodes of the network. The value is computed by the Manager
module of the sink during each sampling period where the RI
is scheduled. Let n be the number of nodes of the network,
the Manager retrieves TTRi from each node i = 1 . . . n − 1
and computes the TTR as max{TTR1, . . . TTRn−1}. The
TTRi of each node i is computed as the time elapsed from
the beginning of the active period and the resynchronization
event(c.f. resync command in algorithm of figure 3). Each

locally computed TTRi is piggybacked to data packets trans-
mitted at each sampling period.

Time To Receive Data (TTRD): The TTRD represents
the time required by DISSense to collect the sampling data
from the network. The Manager module of the sink computes
the TTRD, during each sampling period, as the time elapsed
between the reception of the first and the last data packet
during active phase. Note that the computed TTRD is an
approximation of the actual time required by DISSense to
collect sampling period because it ignores the node-to-sink
latency of the first packet received. However, the first packet
usually arrives from a 1 hop neighbor of the sink and thus, the
node-to-sink latency of the first packet is very small compared
to the overall computed TTRD.

Duty Cycle: Let Tperiod the sampling period and TGT ,
TRI , and TDCI the GT, RI and DCI lengths. Also let Ton(σsk)
be the fraction of time, within a sampling period, during
which the radio is in active phase. Similarly, let Tulpm =
1−Ton(σsk) represent the same ratio for the Ultra-Low-Power
Mode phase. We compute Ton(σsk) as:

Ton(σsk) =
TGT + TRI + TDCI

Tperiod · (σsk + 1)
+

TGT + TDCI

Tperiod · (σsk + 1)
·σsk

(1)
Recalling section III-B, during Ton(σsk) the duty cycle is
100% while during Tulpm it is set to 0.1%. We define the
protocol duty cycle Pdc(σsk) as weighted sum of Ton(σsk)
and Tulpm with their corresponding duty cycle, hence:

Pdc(σsk) = 1 · Ton(σsk) + 10−3 · Tulpm ≈ Ton(σsk) + 10−3

(2)
Guard Time Interval: The Guard Time interval must

be greater than the maximum drift produced within two
resynchronization procedures. It depends on clock precision,
sampling period and Skip value. For instance, the clock pre-
cision of TelosB motes is 50 ppm [16] that becomes 100ppm
assuming clocks drift of two nodes in opposite direction.
Further, resynchronization takes place each σsk + 1 sampling
periods. Thus, if Tperiod represents the sampling period, the
Adaptive Engine computes the Guard Time Interval as:

TGT = 3 · 50 · Tperiod · (σsk + 1) · 10−6 (3)

Note that to ensure a safety margin (e.g. unpredictable behav-
ior related to temperature changes) the interval is equal to the
maximum drift increased by 50%.

Skip period: The Adaptive Engine computes the skip
value σsk so as to minimize the overall duty cycle of the
protocol Pdc(σsk). Recalling equation (2), the minimum duty
cycle corresponds to the minimum Ton(σsk). Thus, replacing
(3) in (1) we have:

Ton(σsk) =
150 · (σsk + 1)

106
+
TDCI

Tperiod
+

TRI

Tperiod · (σsk + 1)
(4)

It is easy to demonstrate that the minimum of (4) is reached
for:

σ̃sk =

√
TRI · 106

Tperiod · 150
− 1 (5)

However, σsk must be an integer thus, after having observed
that the second derivative of (4) is positive, we can assess that
the minimum duty cycle is reached for:

σsk = arg min(Ton(bσ̃sk c), Ton(dσ̃sk e)) (6)

Resynchronization and Data Collection Intervals: The
RI must be long enough to allow DISSense to resynchronize
all the nodes of the network and build the collection tree.
Recalling the resynchronization algorithm in figure 3, a resyn-
chronized node has already selected the parent thus, the RI
depends uniquely on TTR. Similarly, the DCI must be long
enough to allow each generated sample to be routed to the
sink thus, it depends on TTRD.

For each TTR and TTRD update, the Adaptive Engine
increases them by 50% to catch values fluctuation and inserts
them in an Exponential Weighted Moving Average (EWMA)
obtaining:

TRI =
1.5 · TTRnew + 9 · TRIold

10
(7)

TDCI =
1.5 · TTRDnew + 9 · TDCIold

10
(8)

Where TTRnew and TTRDnew are the newly inserted values
while TRIold and TDCIold the intervals length before the
updates.

V. EVALUATION

We evaluated the performance of DISSense on both an
indoor testbed and on the TOSSIM simulator. While the latter
allowed us to test DISSense on different network topologies,
the testbed-based evaluation demonstrates DISSense feasibility
for real-world deployments. As detailed below, our experimen-
tal results show that DISSense can guarantee for reliable data
delivery and, thanks to its power-efficiency, it allows to operate
a Tmote Sky-based WSN with common AA type alkaline
batteries for several years.

A. Metrics

We evaluate the performance of DISSense in terms of
achieved duty cycle and data delivery, as well as in terms
of number of generated duplicate packets. For the definition
of DISSense’s duty cycle we refer to equations 1 and 2. We
derive an estimation of the lifetime of the network given
a specific duty cycle using the methodology suggested in
[9], thus ignoring power consumption of application-specific
sensors. We further assume that a node is powered by two
common AA Alkaline batteries of 2500mAh capacity each
and that the current drain of the TmoteSky during 100% duty
cycle and active CPU is 24.8mA [22]. Taking into account
battery self-discharge equal to 15% in 4 years [26], a network
running DISSense with a duty cycle of 1% can operate for 1
year. Reducing the duty cycle to 0.2% allows extending the
network lifetime to 5 years. These values show the significant
impact of the duty cycle on the lifetime of a WSN, although
they only represent rough estimates of the total lifetime.
Indeed, temperature, intermittent power drain, and chemical

Fig. 4: WSN Testbed (indoor)

deterioration over time can increase or decrease the speed of
battery discharge. Nonetheless, the lifetime can be increased
by using high-performance batteries [24] or by exploiting
energy harvesting techniques (e.g., photovoltaic panels [25]).

Besides being able to operate a WSN for long periods of
time, DISSense must also provide for reliable data delivery.
We thus evaluate its performance in terms of data delivery
ratio (DDR), which we define as the ratio between the number
of data packets injected by the nodes into the network and
the number of packets successfully collected at the sink. As
a further metric to describe the performance of DISSensee,
we also also consider the number of duplicate packets that
eventually reach the sink (the lower this number, the higher
DISSense’s efficiency).

We do not report results about performance of DISSense in
terms of latency, as its value is upper-bounded by the length
of the active phase. In all our experiments, latency never
exceeded 4.5 seconds, which represents the default active
phase interval at startup.

B. Testbed

Setup: We run DISSense on a testbed of 15 nodes
deployed on the first floor of an office building, as depicted
in Fig. 4. The presence of walls, a WiFi access point and
intense wireless communication activity contributed in creat-
ing an unreliable, unpredictable, and thus realistic wireless
communication channel. We run DISSense on this testbed for
2 months keeping the sampling period to: 1 minute for the
first 31 days; 15 minutes for next 10 days; 1 hour for the last
20 days. In the following, we indicate with DISSense-x the
instance of DISSense having a sampling period of x minutes.

Results: Fig. 5 shows how the length of the RI, DCI,
and GT intervals, as well as the parameter σsk, varies over
time when running DISSense-1. The default startup value
of both TRI and TDCI is 2 seconds. Using equations (6)
and (3), the default values of σsk and TGT result being 14
and 139ms, respectively. During each RI interval, the sink’s
Adaptive Engine recomputes the values of these parameters
thus enabling DISSense adaptive behavior. Indeed, Fig. 5
shows that the length of both the RI and DCI intervals quickly

Fig. 5: DISSense-1 Adaptive Engine Parameters (Testbed)

Fig. 6: DISSense-15 Adaptive Engine Parameters (sink reset)

converges to values included in the ranges [450ms, 650ms]
and [400ms, 500ms], respectively. It is interesting to point out
that since the sampling period is fixed and since equation (3),
which controls the evolution of TGT , depends on the values
of the sampling period and skip parameter only, the evolution
of TGT follows that of σsk .

Fig. 6 reports the same data as Fig. 5 but for DISSense-
15. In this experiment the sink has been reset to make the
nodes go out of synchronization. After this reset, the sink loads
the default values for the schedule and shares them with the
nodes. Fig. 6 shows that the Adaptive Engine is able to quickly
recompute new optimal values for the key protocol parameters.

Table I summarizes the performance of DISSense. As ex-
pected, increasing the sampling interval makes the duty cycle
shrink. In particular, it decreases from 1.09% for DISSense-
1 to 0.15% for DISSense-60. This is due to the fact that,
although a longer sampling period induces an increase in the
length of the guard interval TGT , the period during which
the nodes are inactive has a proportionally higher increase.
This results in an overall lower duty cycle. Table I also shows
that DISSense’s average delivery ratio oscillates around 98%
irrespectively of the sampling period. We found that that most
of the packet losses are due to the occurrence of routing

Sampling Period (min.)
1 15 60

Duty Cycle (%) 1.09 0.22 0.15
Data Delivery Ratio (%) 97.8 98.6 98.9
Duplicate Packets (%) 0.16 0.24 0.03

TABLE I: DISSense performance (testbed)

Path Loss Exponent 4.7
Shadowing Standard Dev. 3.2
Reference distance d0 (m) 1
Path Loss (d0) (dBm) 25.6
Noise Floor (dBm) -105
White Gaussian Noise 4

TABLE II: Parameters of the Network Generator

loops. Although DISSense can rely on CTP’s loop detection
mechanism, the time necessary to re-establish a valid route
is typically larger than the length of the active phase. Thus,
looping packets get dropped because they cannot reach the
sink before the network goes back to sleep.

The last row in Table I shows that, thank to the fact that
DISSense relies on CTP’s effective duplicates suppression
mechanism, the number of duplicate packets that reach the
sink is negligible with respect to the total data traffic.

C. Simulation Study

Setup: We run DISSense-1, DISSense-2 and DISSense-5
within the the TOSSIM simulation environment. To this end,
we generated networks having 10, 20, 30, 40, and 50 nodes
(excluding the sink) using TOSSIM’s Network Generator tool
with parameters set as summarized in Table II. For each net-
work size, we generated 20 different topologies. To reproduce
the vagaries of the wireless channel we resort to the casino-
lab noise model [17]. Furthermore, the queue size of CTP has
been increased to 40 packets so as to avoid packet losses due
to full buffers.

Results: Fig. 7 shows the value of the duty cycle of
DISSense as the number of nodes in the network increases.
The duty cycle increases with the number of nodes and
decreases as the sampling period increases. In particular, the
duty cycle of DISSense-1 increases from 0.8% for 10 nodes
to 3.3% for 50 nodes while for DISSense-2 it increases from
0.5% to 1.75% and for DISSense-5 from 0.35% to 0.8%.
The duty cycle further decreases when the sampling period
progressively grows to 60 minutes. From these results we
can discuss the major strengths and weakness of DISSense.
As described in section V-B, DISSense is very efficient for
relatively long sampling periods (larger than 5 minutes), for
which it can achieve duty cycles as low as 0.15%. However,
the performance of DISSense degrades as the sampling period
decreases and the network size increases. This is due to the
fact that the CSMA/CA-based design of DISSense makes
the time needed for channel contention increase with the
density of the network. This, in turn, makes the length of
DISSense synchronization and data collection intervals, and,
thus, the length of the active phase, increase, causing the duty
cycle to increase too. For long sampling periods this effect is
mitigated by the largely predominant ULPM interval. When
the sampling period is short, the effect becomes less negligible.

Fig. 7: Duty Cycle with different sampling intervals

Fig. 8: Delivery Ratio with different sampling intervals

On the other hand, data delivery rates are not affected by
changes in sampling period or network size. In fact, as Fig.
8 shows, DISSense achieves a DDR higher than 99% irre-
spectively of the sampling period or network size. DISSense
achieves this good performance by combining CTP’s inherent
reliability and the ability of the Adaptive Engine to estimate
the appropriate length of the RI, DCI, and GT intervals.

D. Multi-sink Support

To mitigate DISSense’s loss in performance for large net-
work sizes, it is possible to resort to a multi-sink approach. If
several sinks are defined, CTP will naturally construct several
collection trees, each having one of the sinks as its root.
This allows to reduce the overall diameter and density of the
network and thus to reduce the length of the active phase.
To this end, though, we have to assume that the sinks are all
synchronized (through the NtpManager). Multi-sink DISSense
works as the single-sink version except for the presence of
multiple schedules, one for each sink. In fact, each sink
shares its schedule with the nodes belonging to its subtree and
adapts it following the same principles described in sections
IV-B and IV-D. As the schedules depend on the number
of nodes of each subtree, each schedule will show different
values for TGT , TDCI , TRI , and σsk . As a consequence,
a node switching to a new subtree may have to adapt to a
new schedule and is thus likely to go out of synchronization.
This typically happens to nodes halfway between two sinks.
One possible solution to this problem consists in making
the sinks able to share their respective schedules through
the NtpManager. In particular, choosing the largest schedule

Fig. 9: Duty Cycle with Multi-sink

Fig. 10: Delivery Ratio with Multi-sink

within those computed by each sink, a node changing its
subtree will be able to easily integrate in the new subtree.
This approach requires precise synchronization between the
sinks running DISSense, which can be guaranteed as the
sinks are likely to be powerful, internet-enabled gateways. An
alternative solution to the subtree-switching problem consists
in simply letting nodes retrieve the correct schedule through
the LplManager.

Fig. 9 and Fig. 10 show the duty cycle and delivery ratio
reached by two multi-sink versions of DISSense compared
to the single-sink one. In particular, we have selected one
topology for each network size of the previous experiments
and compared DISSense-1 to 2-DISSense-1 and 3-DISSense-
1, where the prefix number corresponds to the number of
sinks. No schedule sharing services has been adopted and thus
the nodes changing their subtree retrieve the new schedule
through the LplManager. As Fig. 9 shows, the duty cycle
is greatly reduced for multi-sink DISSense. In particular, for
the 50 nodes topology, the duty cycle decreases from 3.8%
of DISSense-1 to 1.75% of 2-DISSense-1 and 1.1% of 3-
DISSense-1. Fig. 10 shows that also for the multi-sink version
of DISSense the DDR is always higher than 99%.

E. Comparison to Dozer [9] and Koala [10]

We finally provide a qualitative comparison between DIS-
Sense and its closest competitors: Dozer [9] and Koala [10]. In
particular, we compare the performance of the three protocols
in terms of data delivery ratio, latency, duty cycle, adaptability,
and openness. Table III summarizes our findings.

Data Delivery Ratio: DISSense, Dozer, and Koala all

show high performance in terms of data delivery ratio. In
particular, the end-to-end acknowledgement mechanism of
Koala enables the protocol to achieve a DDR of 99.99%.
Instead, both Dozer and DISSense make use of link-layer
acknowledgements thereby implicitly accepting some packet
losses. In particular, DISSense automatically drops packets not
delivered during the past active phase while Dozer overwrites
packets matching the same origin inside forwarding queues.
Nonetheless, both protocols achieve data delivery ratios of 98-
99%.

Latency: DISSense has an overall lower latency than Dozer
and Koala. As mentioned in V-A, latency in DISSense is
upper-bounded by the length of the active period, which is
typically lower than 5 seconds. Packet latency in Dozer (in
the worst-case scenario) is equal to the number of hops in the
collection tree times the length of the period of the TDMA
schedule, the latter being fixed and equal to 30 seconds.
Additionally, if an acknowledgement gets lost Dozer makes the
transmitting node to stop and wait for the next TDMA round
before retransmitting. This mechanism additionally increases
the latency in Dozer. Koala has an overall higher latency. To
keep its duty cycle short, Koala buffers packets and limits the
number of time it needs to wake-up the network and perform a
bulk download of the collected the data. The minimum buffer
size is 32 KB [10]. Considering a 2-minutes sampling period
and 35 bytes of payload per packet (as done in [9]), a 32
KB buffer would get filled in approximately 1.3 days. This
value clearly increases as the length of the sampling period
increases.

Duty Cycle: Dozer has an overall lower duty cycle than
Koala and DISSense. As reported in [9], Dozer can achieve an
average duty cycle of 0.168% on a network of 40 nodes and a 2
minutes sampling period. The actual duty cycle of each node
varies depending on the role the node has in the collection
tree. A node with many children needs to assign accordingly
many communication slots to its children, thus incurring in
a high duty cycle. In the setup described in [9] leaf nodes
have a duty cycle of 0.07% while nodes with many children
achieve 0.32%. If the network topology does not change
frequently enough, this difference may induce significantly
uneven lifetimes on different nodes of the network. Koala
manages to keep the duty cycle below 1% but, as discussed
above, at the cost of high data latency. In particular, waking-
up the network too often (e.g., each hour) would produce a
sensible increase in Koala’s duty cycle due to the high energy
cost of network wake-up, route computation and bulk data
download that the protocol requires. DISSense’s duty cycle
depends on the network size and on the sampling period.
As discussed previously, DISSense’s performance in terms of
duty cycle is comparable to that of Dozer for small network
sizes (<20 nodes) or high sampling period (>5 min.). Also,
DISSense induces the same duty cycle to all nodes, which
translates in an homogeneous power consumption amd, hence,
a predictable overall network lifetime.

Adaptability: Through its Adaptive Engine DISSense can
determine the optimal schedule for the network irrespectively

DISSense Dozer Koala
Duty Cycle 0.1% - 4% 0.168% 0.1% - 1%
Data Delivery Ratio 98-99% 98-99% >99.99%
Latency <5s minutes days
Platform Dependent no yes no
Open Source yes no yes
Adaptability yes no no

TABLE III: Protocols qualitative comparison

of its size, topology, or state of the wireless channel. In
particular, the Adaptive Engine autonomously collects statis-
tics while the protocols runs and thereby determines the key
protocol parameters. Instead, both Koala and Dozer depend
on the a priori specification of crucial parameters. For Koala
these include the probe interval for network wake-up and the
buffer size, while Dozer relies on knowledge of the round
period, parents update interval, overhearing phase length and
frequency, and slot length.

Openness: Last but not least, DISSense and Koala are
platform independent while, due to commercial agreements,
Dozer is implemented on the TinyNode platform only. Also,
Dozer is closed-source while DISSense and Koala are open-
source protocols with publicly available implementations.

VI. CONCLUSIONS

In this paper, we described the design and implementation
of DISSense, an adaptive, low-power communication protocol
for WSNs-based periodical environmental monitoring appli-
cations. DISSense is easy to setup thanks to its adaptive
engine that automatically updates the protocol parameters in
order to minimize its power consumption. We tested DISSense
on both a testbed and the TOSSIM WSN simulator. Our
experimental results show that DISSense can guarantee for
high data delivery and, thanks to its power-efficiency, it is
able to operate a Tmote Sky-based WSN for several years.

ACKNOWLEDGMENTS

This work has been partially supported by the EU-funded
project VITRO (contract number INFSOICT-257245) and by
the CHIRON project (JU ARTEMIS Grant Agreement #2009-
1-100228).

REFERENCES

[1] Brooke, T., Burrell, J.: From ethnography to design in a vineyard. In:
Conference on Designing for user experiences, pp. 1–4. 2003.

[2] Tiano, P., Pardini, C.: Book of proceedings of the international workshop
SMW08. Edizioni Firenze, Florence (2008).

[3] Beutel, J., Gruber, S., Gubler, S., Hasler, A., Keller, M., Lim, R., Talzi, I.,
Thiele, L., Tschudin, C., Yuecel, M.: The PermaSense Remote Monitoring
Infrastructure. In: ISSW 09 Europe, pp. 187–191, Switzerland (2009).

[4] Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.:
Wireless sensor networks for habitat monitoring. In: 1st ACM interna-
tional Workshop on Wireless Sensor Networks and Applications. 2002.

[5] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless
sensor networks: a survey. J. Computer Networks, Vol. 38, Issue 4. 2002.

[6] Gnawali O., Welsh, M.: Sensor networks architectures and protocols. In:
Emerging Wireless Technologies and the Future Mobile Internet, Chapter
5, Cambridge University Press, 2011.

[7] van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC pro-
tocol for wireless sensor networks. In: 1st international Conference on
Embedded Networked Sensor Systems, pp. 171–180. 2003.

[8] Moss D., Levis P.: BoX-MACs: Exploiting Physical and Link Layer
Boundaries in Low-Power Networking. Technical Report SING-08-00,
Stanford University (2008)

[9] Burri, N., Von Rickenbach P., Wattenhofer R.: Dozer: ultra-low power
data gathering in sensor networks. In: 6th international Conference on
information Processing in Sensor Networks, pp. 450–459. 2007.

[10] Musaloiu-E., R., Liang, C. M., and Terzis, A.: Koala: Ultra-Low
Power Data Retrieval in Wireless Sensor Networks. In: 7th international
Conference on information Processing in Sensor Networks, pp. 421–432.
IEEE Computer Society, Washington, DC (2008).

[11] Rhee, I., Warrier, A., Aia, M., and Min, J.: Z-MAC: a hybrid MAC for
wireless sensor networks. In: 3rd international Conference on Embedded
Networked Sensor Systems, pp. 90–101. 2005.

[12] Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., and Levis, P.: Col-
lection tree protocol. In: 7th ACM Conference on Embedded Networked
Sensor Systems, pp. 1–14. 2009.

[13] TinyOs Home Page, http://www.tinyos.net
[14] TinyNode Home Page, http://tinynode.com
[15] Maróti, M., Kusy, B., Simon, G., and Lédeczi, Á. The flooding time

synchronization protocol. In: 2nd international Conference on Embedded
Networked Sensor Systems, pp. 39–49. ACM, New York (2004)

[16] Memsic Wireless Modules,http://www.memsic.com
[17] Tossim Tutorial, http://docs.tinyos.net/index.php/TOSSIM
[18] Rowaihy, H., Eswaran, S., Johnson, M., Verma, D., Bar-Noy, A., Brown,

T., La Porta, T.: A survey of sensor selection schemes in wireless sensor
networks. In: SPIE Defense and Security Symposium Conference on
Unattended Ground, Sea, and Air Sensor Technologies and Applications
IX, vol. 6562, 2007.

[19] Hasan Cam, Suat Ozdemir, Prashant Nair, Devasenapathy
Muthuavinashiappan, H. Ozgur Sanli, Energy-efficient secure pattern
based data aggregation for wireless sensor networks, Computer
Communications, pp. 446–455, Volume 29, Issue 4, 2006.

[20] Sang Hyuk Lee, Soobin Lee, Heecheol Song, Hwang Soo Lee: Wireless
sensor network design for tactical military applications : Remote large-
scale environments.In: Military Communications Conference.2009.

[21] Molina-Garcia, A., Fuentes, J.A., Gomez-Lazaro, E., Bonastre, A.,
Campelo, J.C., Serrano, J.J.: Application of Wireless Sensor Network to
Direct Load Control in Residential Areas. In: Industrial Electronics.2007

[22] Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power
wireless research. In: Information Processing in Sensor Networks.2005.

[23] Yick, J., Mukherjee, B., Ghosal D.: Wireless sensor network survey.
Computer Networks, Volume 52, Issue 12, 22 August 2008

[24] Ceriotti, M., Mottola L., Picco G.P., Murphy, A.L., Gun S., Corr M.,
Pozzi M., Zonta D. and Zanon P.: Monitoring Heritage Buildings with
Wireless Sensor Networks: The Torre Aquila Deployment. In: 8th Int.
Conf. on Information Processing in Sensor Networks. 2009.

[25] Barrenetxea, G., Ingelrest, F., Schaefer, G. and Vetterli, M.: Wireless
Sensor Networks for Environmental Monitoring: The SensorScope Expe-
rience. In: 20th IEEE International Zurich Seminar on Communications
(IZS). 2008.

[26] Duracell Alkaline Technical Bulletin. Chapter 5. p.9. http://www1.
duracell.com/oem/Pdf/others/ATB-full.pdf

[27] El-Hoiydi, A. and Decotignie, J. D.: WiseMAC: an ultra low power
MAC protocol for the downlink of infrastructure wireless sensor net-
works. In: 9th International Symposium on Computers and Communica-
tions. 2004.

[28] Langendoen, K. and Meier, A.: Analyzing MAC protocols for low data-
rate applications. In: ACM Transaction on Sensor Networks. New York
(USA). 2010.

