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Abstract. This paper proposes and evaluates interaction techniques for
camera-equipped mobile phones. The proposed techniques are based on
a visual code system that provides a number of orientation parameters,
such as target pointing, rotation, tilting, distance, and relative move-
ment. Our conceptual framework defines a set of fundamental physical
gestures that form a basic vocabulary for describing interaction when
using mobile phones capable of reading visual codes. These interaction
primitives can be combined to create more complex and expressive in-
teractions. A stateless interaction model allows for specifying interaction
sequences, which guide the user with iconic and auditory cues. In using
the parameters of the visual code system as a means of input, our frame-
work enhances the currently limited input capabilities of mobile phones.
Moreover, it enables users to interact with real-world objects in their
current environment. We present an XML-based specification language
for this model, a corresponding authoring tool, and a generic interpreter
application for Symbian phones.

1 Introduction

Today’s camera-equipped mobile phones and PDAs combine a large number
of features and provide computing and communication capabilities comparable
to those of earlier desktop PCs. Yet much of this functionality is hard to use.
If we consider the input capabilities of camera phones, we soon discover that
mobile device technology has outgrown the ability of the interface to support it.
For example, small keypads are ill-suited for input tasks of moderate complexity.
These input problems are only slightly mitigated with the integration of joysticks
and touch screens.

What is missing is an interface that takes mobile users’ constantly changing
context into account and allows for spontaneous interaction with physical objects
that users encounter while on the move. If we can provide a simple way to access
information services associated with these objects, then we can create a more
useful mobile Internet. Also, if we can provide a consistent interaction model for
objects in the user’s environment, then we can greatly increase the usability and
functionality of mobile devices.



In this paper, we show how camera phones can be used as versatile interfaces
to real-world objects. Our goal is to create an expressive means to “bridge the
gulf between physical and virtual worlds” [1] for mobile users. To this end, we
augment mobile phones with physical gestures, such as those reported in tangi-
ble [2] and embodied [3] user interfaces. We show how integrated cameras can
act as a powerful input channel for mobile devices and turn them into interaction
instruments for objects in the user’s vicinity. In this way, camera phones can be
used as enhanced input and control devices, e.g. for large-scale displays [4], and
physical/virtual intermediaries at the same time.

In our conceptual framework, we propose and evaluate a number of physical
gestures that form a basic vocabulary for interaction when using mobile phones
capable of reading visual codes. These fundamental interaction primitives are
based on camera input and simple image processing algorithms. The primitives
can be combined to form more expressive interactions that provide rich input
capabilities and effectively structure the output space. An interaction specifica-
tion language defines rules that associate conditions of certain phone postures to
actions, such as textual, graphical, and auditory output, which are performed by
the mobile device. As described in detail below, these interaction primitives can
be used in visual code image maps, augmented board games, product packaging,
posters, and large public displays.

frame 
indicating 

recognized 
code

code value 
(76 or 96 bits)

target point 
(crosshair)

code 
coordinates 

(3,9)

tilting (left, 
bottom)

distance of 
camera to code 

(49 units)

rotation (38°
counterclock-

wise)

x

y

(0,0)

(x,y) 
= (16,18)

(10,0)

(0,10)

α

code bit elements
(capacity: 76 bits 
with error detection)

Fig. 1. Visual code parameters (left) and code coordinate system (right).

The visual code system described in [5] and [6] forms the basis for the pro-
posed interaction techniques. The recognition algorithm has been designed for
mobile devices with limited computing capabilities and is able to simultaneously
detect multiple codes in a single camera image. In addition to the encoded value,
the recognition algorithm provides a number of orientation parameters (see Fig-
ure 1). These include the rotation of the code in the image, the amount of tilting
of the image plane relative to the code plane, and the distance between the code
and the camera. The algorithm also senses the movement of the camera relative
to the background. No calibration step is necessary to compute the orientation
parameters.



An essential feature of the visual code system is mapping points in the image
plane to corresponding points in the code plane, and vice versa (see Figure 1,
right). With this feature, the pixel coordinates of the camera focus (the point the
user aims at, indicated by a crosshair during view finder mode) can be mapped
to corresponding code coordinates. Each code defines its own local coordinate
system that has its origin in the upper left edge of the code and is independent
of the orientation of the code in the image. Areas that are defined with respect
to the code coordinate system are thus invariant to projective distortion.

The following section gives a brief overview of related work. Section 3 outlines
a number of application scenarios. Section 4 discusses interaction primitives,
their combinations, and how they are indicated to the user. In Section 5, we
define our user interaction model, which describes how to create visual code
image map applications. Also, we describe an XML-based specification language,
an authoring tool for visual code image maps, and a corresponding parser and
interpreter on the phone. In Section 6, we report about a usability study in
which we evaluated our interaction techniques. We wrap up with a number of
conclusions and ideas for future work.

2 Related Work

Several projects have investigated linking physical objects with virtual resources,
using technologies such as RFID tags or infrared beacons [1, 7]. However, these
projects were mainly concerned with physical linking per se or with the in-
frastructure required for identifier resolution. They were limited in the richness
of user interactions and typically allowed just a single physical gesture (for ex-
ample presence in the reading range of an RFID reader) and thus just a single
action per object. We, in contrast, allow the semantics to be a function of both
the object and the gestural sequence.

A number of projects focused on improving interaction with the device itself
rather than with the user’s environment. No objects in the environment were
integrated in the interaction. In 1994, Fitzmaurice et al. [8, 9] prototyped a
spatially aware palmtop device with a six degrees-of-freedom tracker to create
a porthole window into a large 3D workspace. The actual processing was done
on a graphics workstation. The palmtop sensed its position and orientation in
space and combined input control and output display in a single unit – thus
integrating “seeing” and “acting”. One could explore the 3D workspace with the
palmtop using an eye-in-the-hand navigation metaphor. The goal was to step
out of the “claustrophobic designs and constraints” imposed by the form factor
of handheld devices. While this was a vision in 1994, similar interfaces can be
built today with handheld devices and interaction techniques as presented in
this paper.

Our work can be seen as an instance of an embodied user interface [3], in
which the user directly interacts with the device itself – for example by tilting
it – and both the manipulation and the virtual representation are integrated
within the same object. Tilting of a handheld device has been explored as an



input parameter for menu selection, scrolling, navigation, text entry, and 3D
object manipulation [10–15]. Readability problems of tilted displays, which we
also experienced in this work, are described in [11] and [12].

In [2] Fishkin analyzed the idea of a physical grammar, and in [3] he addressed
the issue of multi-gesture command sequences. Bartlett [12] used gestures – like
tilting, snapping, shaking, tapping, and fanning – as a vocabulary of commands
for a handheld electronic photo album. Our work tries to build compound inter-
actions from a vocabulary of interaction primitives.

Bartlett [12] commented on some of the limits of embodied user interfaces:
“perceived motion on the screen is the sum of the motion of the embodied device
and the changes made to the display by the device. As you interact with the
device by moving it, the orientation of the display to the user changes, then in
response to that motion the display contents move on the display.” This effect is
especially severe for fast movements; however such movements are not required
in our design. Rather, our work is more concerned with subtle yet easily and
manually controllable changes.

Our interaction model allows us to define state spaces of phone postures
in 3D. These issues are similar to those experienced with augmented reality
environments and with 3D input devices [16, 15]. In our case however, our 3D
environment is the physical world perceived through the camera lens. The Video-
Mouse [15] is an optical mouse for 3D input based on video sensing and although
it shares some similarities with our system, it is different in that it provides only
very limited height sensing.

3 Application Scenarios

As outlined in the introduction, our system enhances the general input capabil-
ities of mobile devices and provides a way to access mobile information services
related to physical objects within a user’s vicinity. Our system allows fine-grained
control and access to various information items and services that can be physi-
cally hyperlinked [7] to objects in the environment. Typical objects that a mobile
user might encounter include product packaging, vending and ticketing machines,
posters and signs, as well as large electronic displays [4]. A few application sce-
narios are outlined below.

– Tram stop. The left and middle sections of Figure 2 show a tram stop in-
formation panel tagged with a visual code which allows users to access tram
arrival times and to obtain further information by rotating the phone. To ob-
tain information about the route of interest, users focus on the corresponding
route number.

– Vending machine. The right part of Figure 2 shows a vending machine
tagged with visual codes. To purchase products and confirm the purchase,
users aim at the desired object. Of course in this scenario, a payment method
needs to be in place.

– Campus map. Visual code image maps can help to find the location of an
event on a campus map. A visitor to the campus could focus on an area



Fig. 2. A tram stop (left and middle) and a vending machine (right) equipped with
visual code image maps.

labeled “current events” to get information about conferences, talks, and
other events. The location of the event could then be highlighted on the
mobile phone screen.

– Augmented board games. Computer-augmented board games are an-
other good candidate for using visual code image maps since such games
could benefit from a wide range of interaction possibilities that do not tie
the user to a desktop computer.

4 Interaction Techniques

This section introduces the interaction techniques that are used in visual code
image map applications. These techniques rely on sensing visual codes from
different perspectives. We describe how interactions are combined from basic
building blocks and how interaction cues guide users in the interaction process.

4.1 Interaction Primitives and Interaction Cues

Combined interactions are constructed from basic building blocks, called interac-
tion primitives. Static interaction primitives require the user to aim their camera
phone at a visual code from a certain orientation and to stay in that orientation.
We defined two kinds of dynamic interaction primitives, which either involve
“sweeping” the camera across a visual code or simply moving the phone relative
to the background.

To facilitate information access and guide users in their interaction flows,
each interaction primitive is associated with one or more interaction cues in the
form of an icon. They appear on the mobile device’s display and provide users
with an indication of the possible interaction postures. Visual cues can optionally
be combined with auditory icons.

For instance, the leftmost rotation interaction cue in table 1 indicates to
users to rotate the mobile phone either clockwise or counterclockwise in order



to access more information. The rightmost cue for the distance primitive means
that more information can be obtained by moving the phone closer to the code
– relative to the current posture.

An interaction cue should be both intuitive when encountered for the first
time and easy to remember. Interaction cues should also be unambiguous so that
it is easy to distinguish between different interaction primitives. In our design
of interaction icons, we use color extensively since it facilitates distinguishing
between different interaction primitives, and color displays are available on all
camera phones. We restrict icon size, since the interaction cues must occupy only
a small part of the phone display. They have to be rather simple and plain in
order not to unnecessarily distract the user or clutter the interface.

4.2 Input and Output Capacity

Static interaction primitives map certain orientations of the mobile phone, also
called postures, to individual information aspects. The posture of the device is
determined with respect to a visual code in the camera image. With the term
input capacity we denote the number of discrete information aspects that can be
sensibly encoded in each of the interaction primitives. The input capacity is a
measure of how many discrete interaction postures can be easily and efficiently
located and selected by users. An important performance aspect is the time it
takes a user to locate an individual information item among a set of available
information items. This time depends on the kind of interaction primitive, the
number of available postures, as well as the quality of feedback that is provided
to the user. For static interaction primitives, discrete postures are possible, like
focusing a particular information area, as well as more fine-grained forms of
input, like the continuous adjustment of a value by moving closer to or away
from a code. For each interaction primitive, we will give an estimation of its
input capacity, which has been obtained experimentally and during user testing.
In this work, discrete postures activate associated information aspects. It would
also be conceivable to use voice commands for this purpose. In addition, voice
commands can be taken as a way to get further input once a certain posture
has been reached. This combination of postures and audio input would realize a
multi-modal user interface.

The output capabilities of mobile devices are limited due to the small screen
size. Thus, the amount of textual and graphical information that can be shown
on a single screen is limited. Fortunately, the interaction postures are very well
suited for structuring the presentation of data by distributing it across several
related interaction postures. With the proposed approach, text and graphics can
be overlaid over the camera image as known from augmented reality applications.
Graphical elements can be registered with objects in the image, i.e. shown at the
same position and resized and adapted to the viewing perspective. This makes
the connection between the physical object and the information shown on the
display more obvious to the user and avoids its isolated presentation without
any other context.



Output can also be used to realize a feedback loop to the input side, which
has an impact on the input capacity. To create the feedback loop, characteristic
icons can represent interaction primitives and indicate interaction possibilities to
the user. Mobile devices typically have an audio output channel which can be also
used for establishing a feedback loop. Characteristic audio cues (“earcons” [17])
can be permanently associated to different information or interaction types. Au-
ditory cues have the advantage that they do not take up any space on the device
display. Designing audio feedback needs to be done with care, because it has
privacy repercussions or might be distracting to some users. Another interesting
option to support the feedback loop between output and input is available with
the phone’s vibration feature (“tactons” [18]).

4.3 Static Interaction Primitives

Static interaction primitives are based on the parameters of the visual code sys-
tem, as well as the focused area, key presses, and the time stayed in a given
interaction posture. For the user, this means finding a posture in view finder
mode guided by the interaction cues, staying in that posture, and optionally tak-
ing a high-resolution picture to “freeze” the current posture. The “information
freezing” feature stops the view finder mode and shows the information related
to the last captured phone posture. The available static interaction primitives,
their estimated input capacity, and the associated icons are shown in table 1.

(icon has a highlighted keypad)
12 (keypad) + 

5 (joystick)
keystroke
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number of 
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pointing

Interaction cuesInput capacity
Static interaction 
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Table 1. Input capacity and interaction cues of static interaction primitives.



Pointing. The pointing interaction primitive requires targeting an area with
the crosshair shown on the device display in view finder mode. The area is defined
in terms of code coordinates. The input capacity is only limited by the number
of areas that can be reached with the crosshair while the associated visual code
is in the camera view. Section 5.5 presents techniques for extending the scope of
reach. The borders of an area are highlighted when the associated visual code is
recognized and the focus point is inside that area.

Rotation. The rotation interaction primitive associates rotation regions with
discrete information items. For usability purposes, the rotation of the phone
should be limited to ±90◦ from the upright position. To improve legibility, text
should be aligned vertically if the rotation is greater than 45◦. Users can complete
up to 7 discrete postures, which correspond to regions that cover about 30◦ each,
centered at 0◦, ±30◦, ±60◦, and ±90◦. Rotation is also usable as a continuous
input control for a parameter value, such as the volume of a hi-fi system.

Tilting. During user testing, tilting turned out to be the most challenging
interaction primitive for users since it requires turning the head in order to
follow the device screen. We therefore do not use precise tilting values, but only
an indication of the direction (“north”, “west”, “south”, “east”, and central
position). This results in an input capacity of five postures. It is straightforward
to extend this by “north-west”, “north-east”, “south-west”, and “south-east”,
resulting in an overall input capacity of 9 postures.

Distance. The distance is measured during view finder mode and has an
input capacity of 8 easily distinguishable distances. Distance is another a good
candidate for continuous input.

Stay. The stay interaction primitive requires the user to stay in a certain pos-
ture. It automatically changes the provided information after a certain amount
of time. The time interval can be freely specified, but should depend on the
amount of information shown on the device screen. For a few lines of informa-
tion it would typically be a couple of seconds. This primitive can be combined
with the keystroke primitive described next, in order to realize a “timeout kill”
mechanism as used for multi-tap text entry [14]. The input capacity is unlimited
in principle, requiring the user to wait.

Keystroke. Finally, the keystroke interaction primitive consists of pressing a
button on the device’s keypad or using the device’s thumb-operated joystick. Our
target device has a 12 button numeric keypad and a non-isometric joystick with
five states (left, right, up, down, press). The input capacity of this interaction
primitive is obviously limited by the number of available keys.

The numbers given for the discernible input capacity of each interaction
primitive decrease, if the basic primitives are combined with each other, as shown
in the next sections.

4.4 Dynamic Interaction Primitives

There are two kinds of dynamic interaction primitives. With the first, the phone
is moved (“swept”) across the code in a certain direction while the camera is
in view finder mode. The direction of movement is sensed by the mobile device



and used as the input parameter. Interaction symbols for this kind of dynamic
interaction primitive are not shown on the device display, but printed next to
the code. For each possible direction of movement, a label is given, informing
the user about the operation that will be triggered when the code is “swept”
in the indicated direction. These interaction primitives are suitable for “blind”
operation, in which a single operation is selected and immediately triggered
after the movement. Sweep primitives can be regarded as the equivalent of a
crossing-based interface for visual codes [19]. The input capacity amounts to 4
for both horizontal and vertical movement as well as for diagonal movement. A
combination of both movement types seems to be too complex. With current
phone hardware, the movement must not be too fast, in order for the codes to
be reliably detected at multiple positions in the image. The input capacity and
interaction cues are depicted in table 2.

Dynamic interaction 
primitive („sweep“)

Input 
capacity Interaction cues (printed next to the code)

horizontal or 
vertical movement 4

diagonal movement 4

option 4

option 3

option 1

option 2

option 2

option 1

option 2option 1

option 1 option 2

option 3 option 4

option 1

option 2

option 1

option 2

option 3

option 2

option 1

option 4

option 2

option 1

option 2option 1

option 1 option 2

option 4 option 3

option 1

option 3

option 2

option 4

Table 2. Input capacity and interaction cues of sweep interaction primitives.

The second kind of dynamic interaction primitives is based on the optical
movement detection algorithm that does not require a visual code in the cam-
era image. It provides relative linear movement and relative rotation. It is not
suited for discrete input, but for continuous adjustment of parameter values or
for direct manipulation tasks. The corresponding interaction cues can be shown
on the device display, printed next to a code, or shown on an electronic display
to indicate that its objects can be directly manipulated by movement detec-
tion. Table 3 contains the capacities and interaction cues of these interaction
primitives.

A clutching mechanism is required to prevent incidental motions of the phone
from triggering unwanted dynamic interaction primitives. In our system, the
relative movement tracking is active while the phone’s joystick button is held
down. Releasing the button exits the relative movement detection state. This is
also known as a quasimode as defined by Raskin in [20]. In Buxton’s model [21],
pressing the joystick button down corresponds to a state transition between state
1 (“tracking”) and state 2 (“dragging”), releasing the button again transitions
back to state 1.



Dynamic interaction 
primitive (relative 
movement)

Input 
capacity Interaction cues

relative linear movement 4 (continuous)

relative rotation 2 (continuous)

Table 3. Input capacity and interaction cues of relative movement interaction primi-
tives.

4.5 Combinations of Interaction Primitives

The basic interaction cues are designed in such a way that they can be combined
to form more complex interaction cues. Table 4 shows the possible combinations
of two static interaction cues. When the mobile display shows a combination
interaction cue, this means that the user has a choice to select between more
than one interaction primitive to reach further information items. The usability
of such combinations is discussed in Section 6. Combinations of more than two
interaction cues should be avoided in order not to confuse the user. Even with
combinations of only two static interaction cues, a large number interaction
possibilities results.

Some of the static interaction primitives can be combined with the dynamic
sweep interaction primitives. Each of the eight directions of movement can be
combined with the following static interactions: rotation, tilting, and distance.
The idea is to move the camera across the code in the chosen direction while
keeping a certain rotation, tilting, or distance. In the case of rotation, for exam-
ple, it should be easy to hold the phone rotated 90◦ counterclockwise from the
upright position.

Combinations of static primitives and dynamic primitives that sense relative
movement seem to be more practical. Even if they cannot be executed simul-
taneously, performing a dynamic after a static interaction primitive is useful.
A user first selects a certain parameter using a static interaction primitive –
like tilting – and then uses relative linear movement to adjust the value. The
relative movement detection is activated while the user is holding the joystick
button down. This kind of combination resembles a “point & drag” transaction
in classical GUI interfaces [21].

5 Visual Code Image Maps

In this section, we describe how combinations of interaction primitives can be
applied in entire visual code image map applications. Visual code image maps
consist of a number of areas, which are located close to a visual code and asso-
ciated with multiple information aspects or specific operations. Areas can cover



rotation & stay+ highlighted 
area

pointing & rotation

distance & keystrokerotation & distance

distance & stayrotation & tilting

tilting & keystroke
+ highlighted 

area
pointing & keystroke

tilting & stay
+ highlighted 

area
pointing & stay

tilting & distance
+ highlighted 

area
pointing & distance

rotation & keystroke+ highlighted 
area

pointing & tilting

Interaction cueCombinationInteraction cueCombination

Table 4. Combinations of two static interaction primitives with example interaction
cues.

a certain region in the vicinity of a code, occupy the same space as the code,
or even be defined as infinitely large. Area locations and shapes are defined in
terms of the coordinate systems of the visual codes located near them. Area-
related information is accessed by varying the input parameters provided by the
visual code system. The input parameters are abstracted to a set of postures
that are easily discoverable and applicable by users. The postures are specified
as combinations of interaction primitives in an image map definition.

Figure 3 shows an example interaction flow for a simple image map. To the
left of the screenshots, the enlarged interaction cues are drawn. An elliptical re-
gion next to a visual code is associated with six information items. At a farther
distance (depicted in the upper three screenshots), three different information
items are presented. The user just has to stay at that distance. The stay user
interaction symbol indicates that more information will be displayed by wait-
ing. Moving closer to the code plane, the interaction cue changes and another
information aspect is displayed (depicted in the lower three screenshots). In the
near distance posture, more information can be accessed by rotating the phone
to the left (counterclockwise) and to the right (clockwise). The underlying user
interaction model is discussed in more detail below.

When designing overlays over the camera image, design guidelines as de-
scribed in [22] should be taken into account. The visual context given by the
camera image should be maintained as far as possible. A graphical representa-
tion should be chosen such that the underlying context is revealed. This avoids
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Fig. 3. An example interaction flow in a visual code image map.

the issue that the user has to split visual attention between the camera image
(the “context”) and the generated graphical overlay. It enables dual attention,
which is characteristic of see-through tools. In addition, unnecessary informa-
tion, i.e., information that is not part of the currently pointed area should be
hidden. This is especially important for small displays.

5.1 User Interaction Model

The user interaction model determines how a user can browse information or
trigger actions in a visual code image map. We use a stateless model that only
considers the currently sensed parameters. Each interaction posture is associ-
ated with a rule. A rule consists of a condition and a result that is activated
when the condition is met. A condition is made up of a set of constraints. A
constraint restricts the valid range of a single input parameter. The rules are
continuously checked and their results activated if their conditions are met. The
visual code image map designer has to ensure that conditions are mutually ex-
clusive. If they are not, the order of execution is undefined. For non-idempotent
functions, it is important that they are not activated multiple times. Checking
such constraints is part of the semantics of each action result and not specified
in the interaction model. The stateless model is easy to understand for users,
since they always see the same result if the same input posture is chosen. For
image map designers, image map applications are easy to specify in this model.
In a completely stateless model, some of the proposed combinations of static



and dynamic interaction primitives cannot be realized. It is therefore slightly
extended as described below.

State-based models are inherently difficult to understand for users since the
system can behave differently on the same input parameters if it has different
states. We therefore limited the notion of input state in the system to the rel-
ative movement interaction primitives. In order to activate relative movement
detection, the user has to hold the joystick button down. The user’s last pos-
ture receives relative movement updates while the joystick button is held down.
Releasing the button exits the relative movement detection state. This quasi-
mode scheme ensures that the user is not inadvertently locked in a state. The
second notion of state is introduced with the stay static interaction primitive. It
becomes true when the time stayed in a certain posture is within a predefined
time range. The state is thus defined by the set of other constraints of a condi-
tion, without the stay interaction primitive. A rule containing a stay interaction
primitive fires when all other constraints have been true for the specified amount
of time. The timeout is reset when the rule becomes invalid again.

5.2 Visual Code Image Map Specification Language

Based on the interaction model described above, we developed a visual code
image map specification language. The specification language is XML-based.
Depending on the visual code value, different measures are taken to retrieve
the specification of an unknown image map. The XML description is loaded
from the local file system, obtained via Bluetooth or the mobile phone network.
It is parsed and the extracted information is used to present information and
provide functionality according to the image map. We assume that up-to-date
information is inserted into the XML file on the server, e.g. via PHP scripting.

5.3 Information Results

Information results can consist of auditory cues, textual overlay over the camera
image, bitmap overlays, and overlays of graphical shapes. Textual overlays can
appear at a constant position in the mobile’s display, which is the default in
the current implementation. The text position can also be tied to specific code
coordinates and thus appear as an overlay of an element in the image map.
Bitmap overlays can either appear at a constant display position or located at
specific code coordinates. As with textual output, free rotation of images is an
expensive operation for current mobile devices and can thus not be performed
in real time on current devices. The Symbian operating system, for example,
only provides functions for rotating text in steps of 90◦, which is sufficient for
legibility in the case of rotation. Graphical overlays, such as rectangles, ellipses,
and polygons are automatically adapted to perspective distortion by using the
code coordinate system mapping. It is possible to specify multiple textual and
graphical outputs in a single information result.



5.4 Action Results

Triggering an action result consists of starting the requested application on the
device and dispatching the provided arguments in the format the application
requires. The semantics of the arguments depend on the given application. In
the simplest case, the argument string provided in the XML description is sim-
ply passed on to the application. In a more complex case, it requires parsing
the argument string and calling multiple methods on the phone application. The
action result needs to define whether it has to be executed on each image update
while the corresponding condition is valid, once as the rule first becomes active,
or only when the joystick is additionally held down. Example action results are
starting the WAP browser with a specific URL as an argument, storing vCard
and vCalendar entries, placing a phone call to the number given in the argument
string, invoking the SMS editor, or sending a predefined text message without
invoking the SMS editor. Other action results include opening a Bluetooth con-
nection to report relative movement updates and visual code sightings.

5.5 Focus Point Adaptation

A problem with visual code image maps comes from the fact that at least one
code needs to be present in the camera view in order to compute the mapping
from the image to the code coordinate system. This restricts the radius of ac-
tion for moving the focus point. This situation is shown in the left section of
Figure 4. The focus point is typically indicated to the user with a cross hair
that is located in the middle of the display. The reachability problem can be
solved in a number of ways. First, multiple codes can be dispersed throughout
an image map. This raises aesthetical concerns and restricts the designer of an
image map, because more space is occupied by visual markers. This might be
mitigated in the future with higher-resolution cameras, allowing much smaller
codes to be used. Additionally, with zoom cameras, a wide angle setting can be
used to cover a larger part of the image map. Second, there is no reason why the
focus point has to be located in the middle of the screen. One option would be
to include the most suitable position of the cursor as a parameter in the image
map specification. If a visual code is located to the left of a vertical arrangement
of areas, for example, the focus point might be set horizontally to the right for
easier targeting.

A third option is to dynamically adapt the position of the focus point depend-
ing on the position of the code center on the screen. This is shown in the middle
and right of Figure 4. The focus point is computed as the mirror point of the
code center point through the image center point. In usability tests, this smooth
adaptation style seemed to be more predictable than another adaptation style,
in which discrete focus point positions had been used. The smooth adaptation
of the cursor position requires more dexterity than a fixed cursor position, but
is manageable after a short time. If no code is present in the image for a certain
time, the focus point is repositioned to the display center. If multiple codes are
available, the nearest one is chosen for adaptation. If multiple codes are visible



Focus Point Adaptation
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Fig. 4. Central focus point (left) and adapted focus point (middle and right).

in the camera image, the adaptation can be disabled, because the reachability
problem is no longer given. With dynamic adaptation, the reachable radius is
increased by up to 100% compared to a focus point which is centered on the
display.

5.6 Visual Code Image Map Editor and Interpreter

We have developed a visual code image map editor in Java. The editor produces
image map specifications from jpg, gif, and png images (typically a picture of
the visual code in the real world) so that users can draw areas and specify
constraints, interaction cues, and results. The resulting output is an XML file
that can be stored on a server and which can be downloaded to the mobile phone.

On the device side, we have developed a generic visual code image map
interpreter in C++ for Symbian devices. For each detected code, the interpreter
tries to locate the corresponding image map and continuously checks for satisfied
conditions in the available rules. As long as the conditions of a rule are satisfied,
the corresponding information or external application is shown.

6 Usability Evaluation

6.1 Goals and Design

To understand the strengths and weaknesses of the individual interaction tech-
niques, as well as the approach as a whole, we designed a qualitative usability
study. It consisted of a questionnaire, two task execution parts, and a final in-
terview. The questionnaire covered basic biographic data and asked about users’
level of experience with mobile phones, text messaging, and playing computer
games. The two task execution parts served different purposes. The aim of the
first one was to evaluate individual interaction primitives and their combinations
independently from the semantics of a specific application. The second one used



the campus map scenario outlined in Section 3 to help users understand the im-
plications of using the interaction concepts in a broader context. The dynamic
interaction primitives have not been evaluated in this study.

A number of technical factors influence the users’ satisfaction with the inter-
action techniques, such as the size and quality of the display and the response
time and reliability of the visual code system. However, we can expect that
most of these technical factors are likely to improve. The usability evaluation
thus tried to focus on issues that are inherent to the design of the proposed
interaction techniques.

The first part of the study consisted of 15 individual tasks. Users employed
the various interaction techniques to try and find a secret number and a secret
letter in a particular image map. The first few tasks tested the dexterity required
for the basic interaction primitives as well as how easily users were able to
remember and distinguish between various interaction cues. The remaining tasks
tested combined interactions. The second part of the study allowed users to get
a feel for a possible real-word application. Lastly, in post-test interviews, users
were asked to express their opinion about the overall system, rate the individual
interaction primitives, and to give feedback about the presented scenario.

When observing tasks, we used the think-aloud technique. Tasks were per-
formed under quiet, laboratory-like conditions. Our evaluation procedure was
adapted from the guidelines proposed in [23].

The execution of the study, including the initial questionnaire and the final
interview, lasted approximately one hour per user. Eight users took part in our
study, with ages ranging between 17 and 35. All of our users had some experience
with personal computers, and all regularly used mobile phones for making phone
calls and writing text messages. Some of them were heavy phone users, who often
played mobile phone games and accessed information via WAP.

6.2 Findings and Discussion

Our results indicate the most challenging interaction primitive for users to do
was tilting. The pointing, distance, and stay primitives were rated the best,
followed by keystroke and rotation. For combinations which used pointing with
other static primitives, we found two groups of people who preferred different
user interactions. The first group, consisting of five participants, preferred user
interactions that demand less manual dexterity. They favored the pointing & stay
interaction, followed by the pointing & keystroke interaction. The second group,
consisting of three participants, preferred the pointing & distance and pointing &
rotation combinations. One possible explanation for this difference is dexterity.
Since the first group seemed to have more problems with manual dexterity, they
preferred passive user interactions, like stay, and well-known interactions, like
keystroke. The second group, which had less problems with manual dexterity,
liked combinations which used distance and rotation primitives the best because
this gave them immediate control over the visual code application. With the
stay primitive, the system forces the user to pause. This can be problematic,
since the user cannot control the duration of each state. The pointing & tilting



combination was by far the most difficult interaction. The reason seems to be
that this combined interaction which asks users to simultaneously focus on an
area while keeping a visual code in the camera image and tilting the phone to
the required position is very demanding for first time users.

During view finder mode, camera images are continuously sampled and the
display is updated accordingly. We provided an “information freezing” feature
that stops the view finder mode and shows the information related to the last
captured phone posture. Some users used this feature as soon as they reached
the correct phone posture. The feature is extremely important in that it provides
users with some sense of permanence and stability.

We observed some learning effects during the usability test. In general, par-
ticipants managed the rotation interaction primitive in task 131 more easily and
more rapidly than in task 32 although task 13 was more difficult. Evidently, par-
ticipants had improved their skills in handling the interaction techniques during
the performed tasks and, moreover, the tasks did not seem to exhaust them.

All user interaction cues seemed to be easy to learn and remember. However,
two participants first confused the tilting and rotation interaction cues. But after
this first mistake they had no further problems. The interaction cues have been
redesigned in the meantime and now use different colors for indicating “rotation”
(red) and “tilting” (blue), which should improve distinguishability.

In the second part of the study, users had to look up a building on a campus
map that was printed on a poster and attached to the wall. Observation showed
that the application was not self-explanatory. Most users needed some instruc-
tions on how to use it. The following observations have been made during the
second part:

– If the information areas are not clear, users tend to focus on the visual codes
since they assume that they contain information items. The observation of
this behavior offers two conclusions: first, a visual code image map designer
should pay attention to design obvious information areas. Second, in a com-
plex image map application, focusing directly on the visual codes should
trigger a help menu or a description of the application.

– Most users tended to read printed information that was captured by the
camera and shown on the phone display by looking directly at the printed
information. They seemed to avoid the display since the size and quality
is not yet good enough. However, users had no problems to read generated
textual information and graphical overlays over the camera image directly
on the display.

– Two users spontaneously remarked that they find it easier to access infor-
mation aspects with the information map application on the wall than with
the newspaper-like tasks on the table.

– Reading distances differed between users, but all users managed to find a
suitable distance between a printed code and the camera after a short time.

1 rotation plus pointing and only one visual code in range
2 rotation plus pointing and two visual codes in range



7 Conclusions and Future Work

We have used a visual code system to augment camera phones with physical ges-
tures in order to turn them into versatile interfaces to real-world objects. The
proposed conceptual framework allows constructing rich interaction sequences
by combining a few basic interaction primitives in a flexible way. Even though
the input capacity of each individual interaction primitive is limited, their com-
bination results in a large number of input postures. The chosen stateless inter-
action model, or rather its realization as an XML-based specification language,
adequately describes visual code information maps, including input postures,
phone movements, information results, and action results. An authoring tool
and a generic interpreter application for Symbian phones enable the creation
and usage of visual code image map applications.

The user evaluation showed that most of the postures are easily and quickly
discoverable with the help of graphical and auditory cues. It also showed that
users generally like the proposed interaction paradigm. A few undesirable com-
binations of interaction primitives have been revealed that should be avoided by
visual code image map designers.

A possible next step in this research would be to investigate how data found
in an image map can be actively manipulated instead of just accessed. Another
idea would be to examine if users develop a kind of “posture memory” – in
the sense of “muscle memory” – when they repeatedly access the same infor-
mation items. Furthermore, investigating the proposed interaction techniques in
computer-augmented board games would be very interesting.
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