
Mining Event Patterns in Sensor Networks?

Kay Römer

Institute for Pervasive Computing
ETH Zurich, 8092 Zurich, Switzerland

roemer@inf.ethz.ch

Abstract. Many sensor network applications are concerned with discovering in-
teresting patterns among observed real-world events. Often, only limited apriori
knowledge exists about the patterns to be found eventually. Here, raw streams of
sensor readings are collected at the sink for later offline analysis – resulting in a
large communication overhead. In this paper, we explore the use of in-network
data mining techniques to discover frequent event patterns and their spatial and
temporal properties. With that approach, compact event patterns rather than raw
data streams are sent to the sink. We also discuss issues with the implementation
of our proposal and report our experience with preliminary experiments.

1 Introduction

Wireless sensor networks have been successfully applied for detailed observation of a
variety of real-world phenomena. Many of these applications are of a highly exploratory
nature, where only a very rough idea of the expected findings exists before the exper-
iment. In this case, streams of raw sensor readings from every node are typically de-
livered to a central sink for later offline analysis in order to find interesting patterns in
the data – resulting in a large data volume that has to be delivered through the network
(e.g., [5]).

A similar approach is used in the context of monitoring and debugging sensor net-
works [4]. Experience has shown that subtle real-world influences and large scale are
the cause of numerous bugs and indeterministic behavior of sensor networks. Again,
since the nature of these problems is often unknown in advance, testbeds and deploy-
ment support networks have been proposed to deliver high-volume event logs from
every sensor node to a central sink for offline analysis in order to identify patterns that
lead to failure.

In the above cases, missing advance knowledge about the patterns to be found even-
tually in the data limits the applicability of sophisticated in-network data processing
and reduction techniques. Rather, raw data streams are delivered to the sink for later
analysis. The resulting large data volume is a serious obstacle for deploying long-lived
and large-scale sensor networks.

In this position paper, we explore the use of distributed data mining techniques to
discover potentially interesting data patterns in a sensor network for the above type

? The work presented in this paper was supported (in part) by the Swiss National Science Foun-
dation under grant number 5005-67322 (NCCR-MICS).

of applications. Rather than transmitting raw data streams from every sensor to the
sink, only compact patterns mined at sensor nodes are transmitted to the sink, thus
contributing to long-lived and large-scale sensor network deployments.

2 Approach

With our approach, a user can pose amining queryto the sensor network. This query is
executed by a distributed runtime system in the sensor network. As a result, the user will
receive at regular (but long) intervals a set of discovered event patterns from each node.
An event pattern is a frequently occurring set of events observed at different nodes in
the network.

A mining query specifies the types of events a user is interested in. The notion
of event refers to a user-specified state change at a sensor node (e.g., sudden drop of
temperature as measured by a sensor). In the context of our work, an event is simply
an identifier (e.g., “temperature-drop”) plus a timestamp when this event occurred ac-
cording to some global time scale. We assume that time is partitioned into equal-sized
epochs.

In addition, a mining query contains a number of constraints on the event patterns
the system should look for. These are needed to limit the huge search space of potential
event patterns.

The distributed mining algorithm then proceeds as follows. Every node in the net-
work continuously collects event notifications from nodes in a user-defined network
neighborhood(the size of which is specified by the mining query) using in-network
aggregation techniques. The events that have been collected in this way during a user-
defined amount of time calledhistory(the duration of which is specified by the mining
query as an integral number of epochs) are then fed to a mining algorithm. This algo-
rithm executed at noden mines patterns of the following form:

A1 ∧ ... ∧Am ⇒ E [S, C] (1)

meaning that an event of typeE occurred at noden with supportS and confidenceC
given that antecedentsAi all hold true. Every antecedentAi is of the form

Ai = (Ei, Di, Ti, Ni) (2)

meaning thatAi is true iff a certain type of eventEi occurredNi times at a distanceDi

from noden andTi time units beforeE. Di, Ti, andNi usually denote intervals such
asTi = “more than five minutes ago”, Di = “less than 20 meters away”, or Ni =
“between one and five times”.

SupportS is a number between 0 and 1 indicating how often this pattern could be
found over time. ConfidenceC is a number between 0 and 1 indicating how strong the
implication⇒ is. Note that the above patterns are a specific instance ofassociation
rules[1].

An example pattern discovered by this approach would be:

(tempdrop, [0, 10m], [0, 5min], [3, inf]) ⇒ tempdrop[0.95, 0.8] (3)

meaning that noden observed a “temperature drop” event with support 0.95 and con-
fidence 0.8 if at least 3 nodes no more than 20 meters away fromn did also observe
a “temperature drop” event during the last 5 minutes. The following sections contain
details on some selected aspects of the basic approach described above.

2.1 Mining Queries

A mining query contains the following information:

– epochlen: the duration of an epoch in seconds.
– neighborhood: the radius of the neighborhood around a node given in network

hops or meters.
– history: the length of the history given in epochs.
– minimum support: a number between 0 and 1 indicating the minimum frequency

required for reported patterns.
– minimum confidence: a number between 0 and 1 indicating the minimum confi-

dence for the implication⇒ required for reported patterns.
– distance quantization: quantization of Euclidean distance between nodes into a

small set of partitions. Each partition is assigned a name (e.g., near=(0m,5m],
far=(5m,∞]).

– time quantization: quantization of time between events into a small set of parti-
tions. Each partition is assigned a name (e.g., now=0, recent=[1, 5epochs], old=(5epochs,
∞]).

– event frequency quantization: quantization of number of events into a small set
of partitions. Each partition is assigned a name (e.g., none=0, some=[1,∞]).

The purpose of quantization is to cut down the search space to be considered by the
mining algorithm by binning event occurrences into a small number of “partitions”.
Note that quantization is a critical issue as it affects the patterns that will be found
eventually.

2.2 Event Collection

As stated earlier, each node in the network collects event notifications from nodes in a
neighborhood. This can be achieved by applying a framework that supports neighbor-
hood abstractions such as Abstract Regions [6]. These tools allow a node in the network
to define aneighborhoodthat consists of a set of nodes that fulfill certain conditions
such as to be within a given distance of the node. Primitives for collecting data from
the nodes in a neighborhood are provided. Using the quantization of distance discussed
in the previous section, in-network data aggregation is applied to collect the frequency
of each event for each distance partition in the neighborhood of the node. Using the
example partitions from the previous section, we would count the occurrence of each
event at distances “near” and “far” using in-network aggregation.

2.3 Mining Algorithm

The overall approach we apply is to transform the set of events collected from the
neighborhood during history into an assignment of{TRUE, FALSE} to a small set of
binary variables. The values of these variables characterize the collected events in a
compact way and serve as the input for the data mining algorithm.

For the transformation, we make use of the quantization of distances, time, and
event frequencies specified by the mining query. Essentially, there is one binary variable
< E > . < D > . < T > . < N > for each possible combination of an event< E >,
a distance partition< D >, a time partition< T >, and an event frequency partition
< N >. For example, the variabletempdrop.near.now.some would beTRUE, iff
event “temperature drop” was observed by at least one node (partition “some”), during
this epoch (partition “now”), not more than 5 meters away (partition “near”).

In addition, we include a binary variable< E > for each possible event< E > that
is TRUEiff this event occurred at the node executing the mining algorithm in the current
epoch. For example, the variabletempdrop would beTRUEiff the node executing the
mining algorithm observed a “temperature drop” event in the current epoch.

By applying this transformation, we obtain the set of binary variables with value
TRUEfor each epoch. Over time, this results in a stream of sets of binary variables with
valueTRUE.

To discover event patterns matching the mining query, we need to find sets of the
above binary variables that occur with a minimum frequency in the stream. This lower
frequency bound is given by the minimum support value in the mining query. Among
the resulting frequent candidate sets, the ones satisfying the minimum confidence re-
quirement are selected. The remaining sets can then be easily transformed into patterns
of the form given in Equation 1.

Discovering such frequent sets of binary variables from a stream is a standard data
mining task. In the literature, this problem is referred to asmining of frequent itemsets
(each binary variable can be considered as an item that is either present in the set or
not). In the recent past, various algorithms have been proposed to solve this problem
with constrained resources over streams of itemsets (e.g., [2, 3]). From the resulting
frequent itemsets, the ones satisfying the minimum confidence requirement are selected
as in [1].

3 Implementation Issues

Clearly the major challenge in implementing our proposal is that of fitting the mining
approach described in the previous section into the constrained communication, compu-
tational, and memory resources of a sensor node. One of the most challenging aspects
is to implement the mining algorithm within the constrained memory resources of a
sensor node. The BTnode [7] platform, for example, offers 256 kB of bank-switched
RAM.

The memory footprint of algorithms for mining frequent itemsets is largely a func-
tion of the number of frequent itemsets discovered from the data stream. To examine the
number of such frequent itemsets for a practical application, we performed an experi-
ment using sensor data collected during one month from 54 sensor nodes in the Intel

Research Lab Berkeley [8]. This dataset was collected with an epoch duration of about
30 seconds (resulting in a total of about 65000 epochs) and contains, among others,
temperature and light readings.

In our experiment, we consider two types of events:temperatureand light events.
Each sensor node with a temperature reading> 23 degrees Celsius in an epoch emits a
temperature event in this epoch. Every sensor node with a light reading> 300 Lux emits
a light event. Otherwise, we use the quantization from the example given in Sect. 2.1
with a neighborhood size of 10 meters and a history duration of 10 epochs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

support

ite

m
se

ts

Fig. 1.Number of discovered maximal itemsets for different support values.

For our experiment, we consider the mining algorithm that would be executed on
mote with ID 1 in the dataset. With the above settings, mote 1 generates a temperature
event in about 23% of all epochs and a light event in about 14% of all epochs. We would
expect a strong correlation of the occurrence of these events on mote 1 with the light
and temperature events in the neighborhood of the mote.

Applying the method given in Sect. 2.3, we create a stream of itemsets which is then
fed to an algorithm to discover maximal itemsets (a variant of [1]) for different values
of minimum support. Here, a maximal itemset is a frequent itemset that has no proper
supersets that are also frequent.

The results shown in Figure 3 are encouraging as the number of maximal itemsets is
very small over the whole range of considered support values. Note that a single itemset
in this experiment can be represented with 26 bits, since there are 26 different binary
variables.

For a minimum support of 0.9 we obtain two maximal itemsets that result in the
following patterns for node 1 in the format of Eq. 1:

(t, now, far, some) ∧ (t, recent, ∗, some) ∧ (t, old, ∗, some) ⇒ t [0.96, 0.38]

(t, ∗, far, some) ∧ (l, now, far, some) ∧ (l, {old, recent}, ∗, some) ⇒ l [0.92, 0.32]

Here, “t” and “l” refer to temperature and light events as defined above. The notations
“{...,...}” and “*” mean that the enclosing antecedent is valid for the set of given par-
tition identifiers or for all possible partition identifiers, respectively. The rules indicate
that – as expected – the occurrence of temperature/light events at mote 1 is correlated
with the occurrence of these events in the neighborhood of the node.

4 Conclusions and Future Work

We have examined the use of data mining techniques to discover frequent event patterns
and their spatio-temporal relationships within a sensor network, such that compact pat-
terns rather than raw data streams would have to be transmitted from nodes to the sink.
In particular, such a system would be helpful to support exploratory settings, where
only a rough idea of the actual findings exists before the experiment.

We have also discussed challenges in implementing this proposal on sensor nodes.
In particular, we have identified the memory consumption of itemset discovery algo-
rithms. We have performed an experiment with real-world data to motivate that an
implementation is feasible. The work reported in this paper is a first step towards a
distributed event-pattern-mining system for sensor networks.

References

1. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. InVLDB 1994,
Santiago de Chile, Chile, September 1994.

2. H.-F. Li, S.-Y. Lee, and M.-K. Shan. An Efficient Algorithm for Mining Frequent Itemsets
over the entire History of Data Streams. InFirst Intl. Workshop on Knowledge Discovery in
Data Streams 2004, Pisa, Italy, September 2004.

3. G. S. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. InVLDB
2002, Kong Kong, China, August 2002.

4. N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin. Sympathy for the
Sensor Network Debugger. InSensys 2005, San Diego, USA, November 2005.

5. R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a Sensor Network
Expedition. InEWSN 2004, Berlin, Germany, January 2004.

6. M. Welsh and G. Mainland. Programming Sensor Networks Using Abstract Regions. InNSDI
2004, Boston, USA, March 2004.

7. BTnodes. www.btnode.ethz.ch.
8. Intel Lab Sensor Data. http://berkeley.intel-research.net/labdata/.

