Passive Distributed Assertions for Sensor Networks

Kay Romer
Institute for Pervasive Computing
ETH Zurich, Switzerland
roemer @inf.ethz.ch

Abstract— When deployed in a real-world setting, many
sensor networks fail to meet application requirements
even though they have been tested in the lab prior to
deployment. Hence, concepts and tools for inspection are
needed to identify failure causes in situ on the deployment
site. Tools for inspection should minimize the interference
with the sensor network to, firstly, ensure that failures of
the sensor network do not break the inspection mechanism,
and, secondly, to ensure that the inspection mechanism
does not change the behavior of the sensor network.
In this paper, we propose passive distributed assertions
(PDA) as a novel tool for identifying failure causes. PDA
allow a programmer to assert certain predicates over
distributed node states. Packet sniffing is used to detect
failed assertions, thus minimizing the interference with the
sensor network.'

I. INTRODUCTION

When deployed in a real-world setting, many sensor
networks fail to meet application requirements even
though they have been tested in the lab prior to de-
ployment [13]. For example, many sensor networks have
been reported to deliver only a small fraction of the sen-
sor data they are expected to produce [21], while others
failed altogether [7]. The reasons for such failures can be
manifold, including hardware problems (e.g., condensing
humidity causing short circuits in a sensor), software
bugs (e.g., timing problems that cause the microcon-
troller to reboot frequently), and networking problems
(e.g., communicating nodes fail to wake up concurrently
due to excessive clock drift caused by extreme tempera-
ture variations). Unfortunately, these problems are often
not encountered during pre-deployment tests, because the
environmental conditions that trigger these problems are
hard to simulate in the lab. Therefore, sensor networks
have to be inspected in situ on the deployment site to
identify and locate failures and their causes.

I'This invited paper is an extended version of an earlier paper [15]
that appeared at REALWSN 2008. The work presented in this paper
was partially supported by the Swiss National Science Foundation
under grant number 5005-67322 (NCCR-MICS).

Resource limitations of sensor networks make in-situ
inspection a hard problem. The strict need for energy
efficiency results in sensor network designs that expose
very little information about the system state to an
outside observer: every bit of extra information a sensor
node exposes about itself increases energy consumption.
However, without sufficient information about the system
state it is hard to identify failure causes. In practice, poor
visibility [20] of the network state makes deployment of
sensors networks a costly and cumbersome process.

Therefore, our goal is to increase the visibility of
sensor networks in order to reduce the effort required
to deploy sensor networks that do meet application
requirements. Any such effort should, however, minimize
the interference with the sensor network. In particular,
one should minimize the probability that a (partial)
failure of the sensor network also breaks the inspection
mechanism. Also, the inspection mechanism should not
change the behavior of the sensor network in significant
ways. To this end, we recently proposed passive inspec-
tion [14], where “passive” refers to the fact that a sensor
network does not have to be modified to allow inspec-
tion. In particular, we install a small number of additional
nodes alongside the sensor network to overhear messages
exchanged among sensor nodes. These “sniffer” nodes
use a second, robust communication channel (e.g., a
powerful radio operating on a different frequency or
cable) to send the overheard messages to a base station,
which generates a globally ordered message trace. As the
lifetime of the sniffer network is relatively short, energy
and resource constraints are not a major issue here.

By studying typical protocols used in sensor networks,
we found that a great deal of information about the state
of the sensor network can be inferred from a message
trace. For example, we can detect node failures and
node reboots without modifying the protocols used in
the sensor network. We can even infer routing topologies
or detect the existence of network partitions without
touching the sensor network [14].

While passive inspection allows to infer basic network

state and failure symptoms without modifications of the
sensor network, the actual failure causes often cannot be
identified in a completely passive manner (e.g., why does
a node fail to route data to the sink?). One of the reasons
for this is that passive inspection cannot access the
internal state of sensor nodes such as the values of certain
program variables. Hence, we propose to apply small
modifications to the software and protocols executing
on sensor nodes to expose some information about the
internal node state to the sniffer network to enable better
identification of possible failure causes.

In particular, we propose a mechanism called passive
distributed assertions (PDA), which allows a developer
to assert certain properties of the distributed system state
such as there should be at least one cluster head among
the neighbors of each node. These PDA are inserted into
the program code much like traditional assertions in C
programs. To verify that a PDA holds, affected nodes
would broadcast small amounts of additional information
that can be overheard by a sniffer network. Analyzing the
resulting message trace, one can detect failed distributed
assertions, giving valuable hints about possible failure
causes.

Using a sniffer network to check distributed assertions
minimizes interference with the sensor network. Firstly,
no complex distributed protocols are needed in the sensor
networks to check assertions. Secondly, as long as a node
can send messages, failures in the sensor network do not
affect the ability to check distributed assertions.

We introduce passive distributed assertions in Sect. II,
presentd the overall system architecture in Sect. III, and
discuss important implementation aspects in Sect. IV.
Related work is considered in Sect. V. Current status
and directions for future work are discuss in Sect. VI.

II. PASSIVE DISTRIBUTED ASSERTIONS

Traditional assertions such as those implemented by
assert () in the C language consist of a Boolean
predicate over a snapshot of the program state. The latter
consists of the values of some of the program variables
at a certain point in the execution of the program. An
assertion is said to have failed if the predicate evaluates
to false. For example, in the assertion assert (a ==
10), the predicate is an equality test and the relevant
system state is the variable a. The snapshot of the
program state is the value of a during the execution of
the assertion statement, assuming that assertions do not
change the variables they reference. The assertion fails if
the value of a does not equal 10. PDA extend this notion
to a set of distributed nodes and their state variables.

A. Addressing Nodes

Similar to traditional assertions, a PDA is a Boolean
expression over program variables. However, some of
these variables may reside on remote nodes. These
remote variables are prefixed by the address of the node.
For example,

PDA(a == 100:a)

asserts that the value of the variable a on the node
executing the PDA equals the value of the variable a
on the node with address 100. However, in practice one
often wants to specify relevant nodes by giving their
abstract properties instead of their addresses. As in our
initial example in Sect. I, we may want to assert that a
node has at least one cluster head among its neighbors.
Here, we would like to avoid digging out the addresses
of all neighbors manually. Also, we want to operate on
sets of nodes rather than individual nodes.

For this purpose, PDA offer node sets as a basic
abstraction and special identifiers to specify common
node sets such as all for all nodes in the network
or hood (N) for all nodes at most N hops apart from
the node executing the PDA. Here, hood refers to the
neighbor table maintained by the networking stack.

To express distributed assertions over such sets of
nodes, we offer the operator count. For example, the
PDA

PDA (count (hood (1),

$:1is_clusterhead == 1) >= 1)

asserts that there is at least one neighbor of the node
executing the PDA whose variable is_clusterhead
equals one. count essentially iterates over all nodes in
the set given as the first parameter, binding the special
address $ to the current node and checking the predicate
given as the second parameter. Two commonly used
special cases of count are any (S, p), which equals
count (S, p) >= landall(S, p), which equals
count (S, p) == |S|. Further operators over sets
of nodes are aggregation operations such as min, max,
or sum. For example,

PDA (max (hood (1),
$:1is_clusterhead) == 1)

would also check that there is at least one clusterhead
among the neighbors of the node executing the PDA,
assuming that the variable is_clusterhead has a
value of either zero or one.

B. Distributed Snapshots

Whenever a node executes a PDA statement, we
need to obtain a distributed snapshot of all the relevant
variables on all the nodes the PDA refers to. However,
due to the passive nature of PDA, we cannot trigger a
node from the outside to send a snapshot of its local
state at a specific point in time. Rather, we offer the
programmer a primitive to trigger sending node state
whenever the value of a relevant state variable changes.
In the above example, the programmer would have to
insert the statement

SNAP (is_clusterhead)

immediately after each assignment to the variable
is_clusterhead. Note that this could also be auto-
mated by applying a framework for analysis and trans-
formation of source code such as [11].

Executing a SNAP statement results in the node broad-
casting a message that contains the names and values of
the variables specified as parameters to SNAP.

Likewise, each PDA statement triggers broadcasting
the assertion predicate along with the current values of
the local variables of the executing node that are referred
to in the assertion.

C. Checking Assertions

To check for failed PDAs, the message trace — con-
sisting of broadcast messages resulting from PDA and
SNAP statements — obtained by the sniffer network is
analyzed. We assume that each message contains an
accurate timestamp of when the according SNAP or
PDA statement was executed on the originating node.
We discuss in Sect. IV how this can be achieved without
synchronizing the sensor network.

From the SNAP messages, we can reconstruct the
values of all relevant variables for each point in time.
Hence, to check a PDA, we extract the timestamp of
the PDA and lookup the values of the variables the PDA
refers to at this point in time and evaluate the predicate of
the PDA on these values. If the predicate does not hold,
we notify the user, reporting the location of the PDA in
the source code as well as the values of all variables the
PDA refers to.

While the basic approach is simple, a fundamental
issue is incomplete information resulting from failure of
the sniffer network to overhear all messages. This cannot
be avoided, as we cannot trigger sensor nodes to resend
missing messages due to our passive approach. However,
we can detect missing messages in the message trace
by adding per-node sequence numbers to all messages.
Thereby, we can detect missing messages for all but
the last message from each node in the trace. When
checking an assertion with timestamp ¢, for each remote
variable referenced by the assertion, we lookup the latest
SNAP message with a timestamp smaller than ¢ and the
earliest SNAP message with a timestamp larger than
t in the trace. If the sequence numbers of these two
messages differ by more than one for any referenced
remote variable, we cannot decide the assertion and
inform the user. Otherwise, we can decide the assertion
and inform the user only if the assertion failed.

III. SYSTEM ARCHITECTURE

Figure 1 depicts the architecture of the proposed
system for passive distributed assertions with its four
main components: preprocessing of application source
code which is then deployed on the sensor network,
the sniffer network overhearing messages generated by
PDA and SNAP statements, and the assertion checker
evaluating the message trace to detect failed assertions.

Preprocessing of the application source code has two
main purposes: firstly, reduction of the messages sizes
of SNIF and PDA messages and, secondly, automatic
insertion of SNAP statements into the source code. For
reduction of message sizes, the preprocessor extracts
all static information from PDA and SNAP statements.
With static information we refer to all information which
does not change across invocations of a single PDA
or SNAP statement, such as the assertion expression,
names and types of all referenced variables, as well
as filename and line in the source code where a PDA
statement occurs. Further, the preprocessor assigns a
unique identifier to each PDA and SNAP statement
by inserting the identifier as an additional parameter
of the PDA or SNAP function call. The preprocessor
also creates a so-called assertion table that maps unique
identifiers to the static information of the associated
PDA or SNAP statement. This assertion table is then
passed to the assertion checker. This preprocessing step
enables us to reduce the message sizes of PDA and
SNAP messages significantly by transmitting only the
unique identifier instead of all the static information. The
assertion checker can then extract the identifier from a

! preprocessing _ assertion checker
: L A
\

! source code v !

| D !

| U ' |

| ¢ [:

: ¥ . 9 :

' i . N assertion assertion '

' preprocessor T assertion table > '

' v parser parse trees '

1

| [:

: Yol :

1

: preprocessed | !! |

1

: source code ¥ :

1 |

NC i i v v g !
,SIIfIiiIvcooiiiioon PDA PDA i i '
) N — > . failed assertions |
! sensor network E i decoder g evaluation !

1
1 [!
A

| O QO O !

. O7 O :
____________________________________ . Y :
’ A

1 () !

O o [O _ SNAP ;

i i message trace > decoder node states K

| . AN ,

i sniffer network 1 s -

Fig. 1.

message and consult the assertion table to obtain the
static information.

The second purpose of preprocessing is to automat-
ically insert SNAP statements into the source code.
For this, PDA statements would be analyzed to extract
the referenced program variables. Wherever a value is
assigned to such a variable in the source code, a SNAP
statement would be inserted. However, automatic inser-
tion of SNAP statements is subject of future work. In
our current system, SNAP statements have to be inserted
manually.

The preprocessed source code is then compiled and
deployed on the sensor network, generating PDA and
SNAP messages when executed. These messages are
overheard by the sniffer network, producing a message
trace as output. This message trace and the assertion
table produced by the preprocessor form the input of the
assertion checker that is executed on a portable computer
that is connected to the sniffer network. Initially, the
assertion checker parses the assertion expressions con-
tained in the assertion table to validate the assertions
and generate a parse tree for each assertion that can
later be evaluated to check if an assertion holds. When
processing the messages trace, SNAP and PDA messages
are handled separately. Using the type information from
the assertion table, SNAP messages are decoded and
used to update a node state representation. The latter
is essentially a lookup table which can be used to obtain

System architecture for passive distributed assertions.

the value of a certain variable on a certain node at a
certain point in time.

PDA messages are decoded by using the type informa-
tion stored in the assertion table. To check the distributed
assertion, the according parse tree is evaluated, where
references to remote variables in the parse tree are bound
to values obtained from the node state representation.
Note that the evaluation of a PDA must be delayed
until appropriate snapshots (i.e., SNAP messages) have
been received and processed for all remote variables
referenced by the PDA. Hence, updates of the node state
representation trigger the evaluation of a PDA. If an as-
sertion fails or cannot be decided, an appropriate output
message is generated and presented to the user. These
output messages contain, among others, the assertion
expression, the location of the assertion in the source
code (file and line as stored in the assertion table), as
well as values and timestamps of all referenced variables.

IV. IMPLEMENTATION

In this section, we discuss several important imple-
mentation aspects of passive distributed assertions, in
particular the application programming interface exposed
to the developer, the sniffer network, and aspects related
time synchronization.

A. Language Mapping
Most sensor node platforms rely on C (or some dialect
of C) as the system programming language. PDA and

SNAP statements introduced in the previous section can
be mapped to C in a straight-forward way using a similar
approach as for printf (). For example, the assertion:

PDA (all (hood(l), a == $:b))

where a and b are integer variables, would be mapped
to the following C statement:

PDA ("all(%g, %d == $:b)", hood(l), a);

Here, node sets such as hood (1) are treated like
any other variable. $g acts as a placeholder for a node
set. The function hood (1) returns a pointer to a data
structure holding the set of neighbor addresses (i.e., a
copy of the neighbor table maintained by the networking
layer). For neighborhoods with more than one hop, the
assertion checker will compute the N-hop neighborhood
of a node by fusing the one-hop neighborhoods of
relevant nodes. $d acts as a placeholder for an integer
whose value is given in the variable argument list of the
function call.

The SNAP (b) statement to emit a snapshot of vari-
able b whenever its value changes would be mapped to:

SNAP ("b=%d", b);

The implementations of the PDA and SNAP functions
would simply scan the “format string” for placeholders
starting with %, fetch the value from the variable argu-
ment list, and put this value into a message.

As discussed in Sect. III, a preprocessor extracts
static information such as the format strings from the
source code, assigns each PDA and SNAP statement a
unique ID, and creates and assertion table that maps
unique identifiers to static information, including the
format strings. This way, only the unique ID is included
in SNAP and PDA messages, such that the assertion
checker can fetch the format strings from the assertion
table to decode the messages.

B. Messages

To get a feeling for the size of messages produced
by PDA and SNAP statements, let us consider the
example PDA from the previous section. We need to
include the node id of the sender (2 bytes), a sequence
number to detect message loss (1 byte), unique number

for the format string (2 bytes), a timestamp (4 bytes),
and the value of variable a (2 bytes) — giving us a
total of 11 bytes. It might even be possible to apply
differential compression techniques (e.g., if the value of
a variable changes only by a small increment) to reduce
the size of messages. Further, it is possible to aggregate
multiple PDA and/or SNAP messages into one to reduce
overhead.

The messages resulting from PDA and SNAP state-
ments don’t have to be transmitted immediately. Rather,
their transmission can be scheduled in a way that min-
imizes interference with the sensor network protocols.
However, the best way to schedule these messages
depends on the actual protocols used. For example, in
time-triggered applications, where nodes send sensor
readings at regular intervals, transmission of PDA and
SNAP messages can be scheduled during the idle periods
as other sensor nodes do not have to receive these
messages. Another option would be to append PDA and
SNAP message to other messages sent anyway by the
sensor node to minimize the impact on medium access
schedules and to eliminate preambles.

In any case, PDA and SNAP messages must be
ignored by sensor nodes receiving them. Only sniffer
nodes receive and process these messages.

C. Sniffer Network

Messages generated as a result of PDA and SNAP
statements are collected by a sniffer network, consisting
of additional nodes that are temporarily installed along-
side the sensor network during the deployment process.
The sniffer network can be removed as soon as the
sensor network works as expected. Thus, the lifetime of
the sniffer network is typically much shorter than than
the lifetime of the sensor network. Hence, energy and
resource constraints are not an issue with respect to the
sniffer network.

Figure 2 (a) and (b) shows two different approaches to
realize a sniffer network. In the figures, circles represent
sensor nodes and squares represent sniffer nodes. Dashed
lines depict wireless communication links. In (a), an
online sniffer network is shown overhearing messages
from the sensor network. Using a second (reliable and
high-bandwidth) radio operating in a different frequency
band than the sensor network radio, sniffer nodes for-
ward collected messages to a base station (a laptop in the
figure), which performs online analysis of the message
trace. We have developed a working prototype [14] of
such an online sniffer network based on the BTnode [1]
platform, which offers a low-power ChipCon CC1000

Fig. 2.

radio and a reliable and high-bandwidth Bluetooth radio.
The ChipCon radio is used to overhear sensor network
messages, while the Bluetooth radio is used to forward
overheard messages to the base station performing trace
analysis.

While an online sniffer network allows online detec-
tion of failed distributed assertions, it requires reliable
networking of sniffer nodes. Figure 2 (b) shows an
alternative solution, an offline sniffer network. Here,
sniffer nodes do not forward overheard messages to a
base station using a second radio, rather, these messages
are stored in the flash memory (depicted by a small
database symbol in the sniffer nodes). At some point,
these nodes are collected to download and merge the
individual messages traces from the flash memories.
The merged trace is then analyzed offline to find failed
assertions. Such offline sniffer networks have also been
used in WLAN environments (e.g., [2]). In principle,
messages could also be stored in the flash memories of
the sensor node generating it, thus eliminating the need
for additional sniffer nodes. However, this requires that
the sensor network is accurately time-synchronized (see
Sect. IV-D). Also, the sensor nodes themselves would
have to be collected to download the traces.

In fact, distributed assertions can also be applied in
testbed environments, where each sensor node has a
wired back-channel to a base station as depicted in Fig.
2 (c). Here, the PDA and SNAP messages would be
delivered over the wired channel rather than over the
sensor network radio. A variant is a wireless testbed
[3] as depicted in Fig. 2 (d). Here, additional nodes are
deployed as for the online sniffer network. Sensor nodes
have a wired back-channel to one of these additional
nodes. Further, these additional nodes are connected
to a base station using a reliable and high-bandwidth
radio. While both wired and wireless testbeds have the

(a) Online sniffer network (b) offline sniffer network (c) wired testbed (d) wireless testbed.

advantage of using an out-of-band channel for collecting
PDA and SNAP messages, their use is not very practical
during deployment as both require to wire sensor nodes.

D. Time Synchronization

In Sect. II-C we relied on accurate timestamping of
PDA and SNAP statements to check distributed asser-
tions. However, due to the passive nature of distributed
assertions, we cannot assume that the sensor network
itself is time-synchronized. In this section we discuss
how to obtain synchronized timestamps nonetheless.

The actual synchronization technique used depends on
the type of sniffer network / testbed used. For online
sniffer networks and wireless testbeds, we can assume
that the sniffer nodes are accurately synchronized among
each other. FTSP [10], for example, demonstrates that an
accuracy of few micro seconds in a multi-hop network of
60 nodes is feasible using MAC-layer timestamping tech-
niques. In the wired testbed, all messages are received by
a single base station over wires, so no synchronization
is necessary here.

In the offline sniffer network, sniffer nodes cannot
communicate with each other, so the message traces
collected by individual sniffer nodes need to be syn-
chronized with each other in an offline fashion. In fact,
this is possible if each message sent by the sensor
network is overheard by multiple sniffer nodes. As such
messages are broadcast messages, they will be received
almost simultaneously by multiple sniffer nodes. Hence,
these messages can be used as synchronization points to
compute the time offsets between the sniffer nodes that
received such as broadcast. In fact, this is equivalent to
performing reference broadcast synchronization (RBS)
[4] in an offline fashion. On motes, RBS has been
reported to achieve an accuracy of few tens of micro
seconds.

In summary, we can synchronize the sniffer / testbed
nodes accurately using the approaches described above.
What remains to be addressed is the fact that PDA and
SNAP messages may be arbitrarily delayed before being
sent as discussed in the Sect. IV-B. This is an issue
because we need to timestamp the execution of PDA
and SNAP statements on the sensor nodes.

Our approach to generate accurate timestamps for all
PDA and SNAP statements is as follows. For each such
statement, we read the local clock of the sending node
twice: the first time when executing the PDA or SNAP
statement resulting in timestamp %1, and the second time
using MAC-layer time stamping just before sending the
first byte of the message to the radio or over the wire,
resulting in timestamp t2. We include to — ¢; into the
message.

The sniffer or testbed node receiving the message also
reads its local clock when receiving the first byte of the
message from the wire or from the radio using MAC-
layer timestamping, resulting in timestamp t3. As t3
refers to the synchronized time of the sniffer network
or testbed, t3 — (to — t1) is an accurate synchronized
timestamp of the original PDA or SNAP statement
execution. RITS [17] uses a similar approach, reporting
an accuracy in the order of few tens of micro seconds.

Based on the above argumentation, we can expect
an overall synchronization accuracy in the order of
tens of micro seconds. The ATMEL ATMega 128, a
typical microcontroller used on sensor nodes, runs at an
average speed of 8 million instructions per second, which
means that one instruction takes 1/8 ps on average. A
synchronization error of 10 ps would then map to about
80 microcontroller instructions.

Note that it is possible that synchronization inaccuracy
changes the result of the evaluation of a distributed as-
sertion. For this to happen, the value of a remote variable
referred to in the distributed assertion must be changed
during a time window of 80 microcontroller instruction
before or after execution of the assertion (assuming a
synchronization error of 10 us). Although the probability
of this happening is non-zero, it is reasonably small
given the small time window. Note that we can detect
situations where this might be the case by checking if
the timestamp of the PDA message is very close to the
timestamp of one of the relevant SNAP messages. In
this case, we inform the user of potentially incorrect
decisions.

V. RELATED WORK

In previous work, we proposed passive inspection with
a sniffer network to inspect unmodified sensor networks
[14]. While we can detect symptoms of many failures
this way, we typically cannot identify the failure causes.
Passive distributed assertions address this limitation by
extending passive inspection to consider the internal
node states.

In [20], visibility is introduced as an important met-
ric for protocol design and visible protocols for data
collection and dissemination are proposed. However,
this approach focuses on the design of the networking
protocols and does not expose internal node states.

Several systems have been proposed for debugging of
sensor networks, notably Sympathy [12] and Memento
[16]. Both systems introduce monitoring protocols in-
band with the actual sensor network protocols. Also,
both tools support a fixed set of problems, while passive
distributed assertions are a generic mechanism. Tools
for sensor network management such as NUCLEUS
[19] provide read/write access to various parameters of
a sensor node that may be helpful to identify failure
causes. This approach also introduces protocols in-band
with the actual sensor network protocols. Recently, the
gdb source level debugger has been adopted to work on
sensor nodes [23]. However, typical debugging opera-
tions such as single-stepping do significantly interfere
with the sensor network, as the timing of operations
is changed substantially. Also, the overhead of typical
debugging operations is currently very high.

Complementary to PDA is work work on simulators
(e.g., SENS [18]), emulators (e.g., TOSSIM [8]), and
testbeds (e.g., MoteLab [22]). EmStar [5] integrates
simulation, emulation, and testbed concepts into a com-
mon framework where some nodes physically exist in
a testbed or in the real world, while the majority of
nodes is being emulated or simulated. In [3], a wireless
testbed is proposed, where sensor nodes still need to
be physically wired to a testbed node, but testbed nodes
communicate wirelessly with a base station. Hence, wire-
less testbeds may be suitable for use during deployment.

Packet sniffing has also been applied to wireless (and
wired) LANs [6]. In particular, two interesting systems
for passive analysis of WLANs have been proposed,
namely WIT [9] and JIGSAW [2]. WIT follows an offline
approach, merging redundant traces of network traffic
collected by distributed sniffers. Using a detailed model
of the 802.11 MAC, WIT then infers which packets
have actually been received by the respective destina-

tion nodes and derives different network performance
metrics. JIGSAW uses a similar approach to collect
and merge traces, but then focuses on online inference
of link-layer and transport-layer connections and their
characteristics, also using a detailed model of the 802.11
MAC. However, both systems do not provide access to
internal node state.

VI. CONCLUSIONS

Deployment of sensor networks remains a major chal-
lenge: many sensor networks fail to meet application
requirements even though they have been tested in the
lab prior to deployment, necessitating concepts and tools
to identify failure causes in situ on the deployment site.
In this context, limited visibility of the network state to
an outside observer is a key problem that needs to be
addressed. To this end, we proposed passive distributed
assertions, which allow developers to make assertions
on the distributed system state while minimizing inter-
ference with the sensor network.

We are currently implementing the above proposal on
the BTnode platform. Although we are confident that
passive distributed assertions will be a valuable tool to
help identify failure causes and make sensor networks
more robust, many aspects need to be investigated in
future work once the implementation is finished. Firstly,
we need to study whether the proposed language for
expressing assertions is sufficiently generic to address
practical problems. Secondly, we need to study the
traffic overhead introduced by PDA and SNAP messages
and to which extent this traffic interferes with sensor
network protocols. Thirdly, we need to study to which
extent message loss and synchronization errors affect the
frequency of undecidable assertions.

REFERENCES

[1] BTnodes. A Distributed Environment for Prototyping Ad Hoc
Networks. www.btnode.ethz.ch.

[2] Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M.
Voelker, and S. Savage. Jigsaw: Solving the Puzzle of Enterprise
802.11 Analysis. In SIGCOMM 2006.

[3] M. Dyer, J. Beutel, T. Kalt, P. Oehen, L. Thiele, K. Martin,
and P. Blum. Deployment Support Network - A Toolkit for the
Development of WSNs. In EWSN 2007.

[4] J. Elson, L. Girod, and D. Estrin. Fine-grained network time
synchronization using re ference broadcasts. In OSDI 2002.

[5] L. Girod, J. Elson, A. Cerpa, T. Stathapopoulos, N. Ramanan-
than, and D. Estrin. EmStar: A Software Environment for
Developing and Deploying Wireless Sensor Networks. In
USENIX 2004.

[6] T. Henderson and D. Kotz. Measuring Wireless LANs. In
R. Shorey, A. L. Ananda, M. C. Chan, and W. T. Ooi, editors,
Mobile, Wireless, and Sensor Networks. Wiley and Sons, 2006.

(7]

(8]

(9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]
(17]

(18]

[19]

[20]

(21]

[22]

(23]

K. Langendoen, A. Baggio, and O. Visser. Murphy Loves
Potatoes: Experiences from a Pilot Sensor Network Deployment
in Precision Agriculture. In WPDRTS 2006.

P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate
and Scalable Simulation of Entire TinyOS Applications. In
SenSys 2003.

R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. An-
alyzing the MAC-level Behavior of Wireless Networks. In
SIGCOMM 2006.

M. Maréti, B. Kusy, G. Simon, and A. Lédeczi. The flooding
time synchronization protocol. In SenSys 2004.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil:
Intermediate language and tools for analysis and transformation
of ¢ programs. In CC 2002.

N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and
D. Estrin. Sympathy for the Sensor Network Debugger. In
SenSys 2005.

M. Ringwald and K. Romer. Deployment of Sensor Networks:
Problems and Passive Inspection. In WISES 2007.

M. Ringwald, K. Romer, and A. Vialetti. Passive Inspection of
Sensor Networks. In DCOSS 2007.

K. Romer and M. Ringwald. Increasing the visibility of sensor
networks with passive distributed assertions. In REALWSN
2008.

S. Rost and H. Balakrishnan. Memento: A Health Monitoring
System for Wireless Sensor Networks. In SECON 2006.

J. Sallai, B. Kusy, A. Lédeczi, and P. Dutta. On the scalability
of routing integrated time synchronization. In EWSN 2006.

S. Sundresh, W. Kim, and G. Agha. SENS: A Sensor, Environ-
ment and Network Simulator. In Annual Simulation Symposium
2004.

G. Tolle and D. Culler. Design of an Application-Cooperative
Management System for Wireless Sensor Networks. In EWSN
2005.

M. Wachs, J. I. Choi, J. W. Lee, K. Srinivasan, Z. Chen, M. Jain,
and P. Levis. Visibility: a new metric for protocol design. In
SenSys 2007.

G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh.
Fidelity and yield in a volcano monitoring sensor network. In
OSDI 2006.

G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: a
wireless sensor network testbed. In IPSN 2005.

J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse. Clairvoy-
ant: a comprehensive source-level debugger for wireless sensor
networks. In SenSys 2007.

