
Diss. ETH No. 18876

Mobile Devices for Interacting with
Tagged Objects: Development

Support and Usability

A dissertation submitted to
ETH Zurich

for the degree of
Doctor of Sciences

presented by
Christof Roduner

M.Sc. in Computer Science, University of Zurich
born December 28, 1978

citizen of Sennwald SG, Switzerland

accepted on the recommendation of
Prof. Dr. Friedemann Mattern, examiner

Prof. Dr. Elgar Fleisch, co-examiner
Prof. Dr. Marc Langheinrich, co-examiner

2010

Abstract

Augmenting everyday physical objects with digital services is one of
the main interests of research in ubiquitous computing. In the pursuit
of this goal, personal mobile devices, and mobile phones in particular,
play an important role. As a powerful, networked, and highly personal
computing platform that is always carried along by most people, mo-
bile phones represent an ideal tool to mediate the interaction between
users and an environment that is enriched with ubiquitous computing
technology. They have thus become the default physical user interface
for many ubiquitous computing applications.
More recently, mobile phones have been equipped with technologies

that allow them to be used as reading devices for inexpensive passive
identification tags. These technologies include Near Field Communi-
cation (NFC) for the detection of RFID labels as well as the simple
mobile phone camera, which can be leveraged to recognize standard
barcodes as can be found on the majority of consumer goods.
As a result of this, it is now possible to augment virtually all physical

products with digital services without the need to deploy additional
hardware. This raises two important challenges. First, while a wide
range of possible applications and benefits for users have been proposed
by the research community, it remains unclear which of these can live
up to the promise of making our daily lives simpler, safer, or more
efficient. Second, the sheer number of everyday objects that can poten-
tially be augmented with digital services calls for the ability to create
such services in a fast and efficient way that goes beyond the ad-hoc
manner in which such applications are typically developed today.
This thesis addresses these challenges with three main contributions.

First, it investigates the specific case of using mobile phones to inter-
act with physical appliances. It provides a classification of interaction
task types and demonstrates in a user study which types are suitable
for phone-mediated interaction and which are not. Second, it proposes
an architecture and implementation of an infrastructure to publish and
discover services for tagged objects that frees service providers from

iv Abstract

the need to develop their own custom solutions and allows users to find
relevant services based on their context. Third and last, it presents
the design and implementation of a software framework that signifi-
cantly simplifies the development of digital services for tagged objects
on mobile phone platforms.
Taken together, these contributions facilitate the rapid creation of us-

able digital services for tagged everyday objects and lay the foundations
for a wider adoption of innovative applications in this area.

Kurzfassung

Eines der Hauptinteressen des Ubiquitous Computing ist es, physi-
schen Alltagsgegenständen eine zusätzliche Dimension zu geben, in-
dem sie mit digitalen Diensten angereichert werden. Dabei spielen mo-
bile Geräte und insbesondere Mobiltelefone eine wichtige Rolle. Dank
ihrer Vernetzung, ihrer einfachen Programmierbarkeit und ihres per-
sönlichen Charakters sind sie ein idealer Vermittler in der Interaktion
zwischen Benutzern und einer Umwelt, die auf vielfältige Art und Wei-
se mit Ubiquitous-Computing-Technologien ausgestattet ist. In vielen
Anwendungen sind Mobiltelefone daher zur eigentlichen physischen Be-
nutzungsschnittstelle des Systems geworden.
Neuere Mobiltelefone sind zunehmend auch mit Technologien aus-

gerüstet, die eine kostengünstige Identifikation von physischen Gegen-
ständen erlauben. Beispiele dafür sind die Near Field Communication
(NFC) oder auch nur die eingebaute Kamera, womit passive RFID-
Tags erkannt bzw. die weit verbreiteten Produkt-Barcodes ausgelesen
werden können.
Dies ermöglicht es, ohne grossen Aufwand nahezu alle physischen Pro-

dukte mit digitalen Services zu erweitern. Damit verbunden sind jedoch
zwei zentrale Herausforderungen: Erstens ist nicht klar, wo der Einsatz
solcher Dienste aus Benutzersicht tatsächlich Sinn ergibt. Zwar wird
gegenwärtig eine Vielzahl von Anwendungen diskutiert, die aus techni-
scher Sicht interessant sind. Jedoch stellt sich die Frage, welche davon
das Versprechen einer Vereinfachung unserer alltäglichen Lebenswelt
auch tatsächlich einlösen. Zweitens entsteht mit der grossen Zahl von
Gegenständen, für die solche Erweiterungen in Frage kommen, die Not-
wendigkeit, die digitalen Services rascher und effizienter zu entwicklen,
als dies mit den heute gebräuchlichen Ad-hoc-Ansätzen der Fall ist.
Die vorliegende Dissertation liefert drei Hauptbeiträge zu diesen Her-

ausforderungen: In einem ersten Teil wird der Einsatz von Mobiltele-
fonen zur Bedienung alltäglicher Geräte untersucht und eine Klassifi-
kation von Interaktionsarten vorgestellt. In einer Benutzerstudie wird
daraufhin gezeigt, für welche davon die Unterstützung durch ein Mo-

vi Kurzfassung

biltelefon zu einer verbesserten Benutzbarkeit führt und für welche dies
nicht der Fall ist. In einem zweiten Teil stellt die Dissertation die Ar-
chitektur und Implementierung einer Infrastruktur vor, mit der Dien-
ste mit Alltagsgegenständen verknüpft werden können. Dies erlaubt es
Benutzern, die für sie relevanten Dienste unter Berücksichtigung des
jeweiligen Kontexts zu finden. Schliesslich liefert der dritte Teil der
Arbeit ein Software-Framework für Mobiltelefone, welches auf der im
zweiten Teil vorgestellten Infrastruktur aufbaut und die Entwicklung
von digitalen Services für Alltagsgegenstände deutlich erleichtert.
Insgesamt ermöglichen diese Beiträge die raschere und einfachere Ein-

führung von benutzbaren Diensten für Alltagsgegenstände und schaffen
somit eine der Voraussetzungen für die Umsetzung innovativer Anwen-
dungen im Gebiet des Ubiquitous Computing.

Contents

1. Introduction 1
1.1. Background . 1
1.2. Opportunities . 3
1.3. Motivation . 5
1.4. Objective . 6
1.5. Contributions . 7

1.5.1. Usability evaluation 7
1.5.2. Infrastructure for publishing and discovering in-

formation and services for tagged objects 8
1.5.3. Concepts and framework for the development of

mobile services for tagged objects 8
1.6. Thesis Outline . 9

2. Usability of Mobile Phones for Operating Appliances 11
2.1. Introduction . 11
2.2. Related Work . 13
2.3. Usability Benefits . 15
2.4. Pre-Study . 18
2.5. Main User Study . 19

2.5.1. Hypotheses . 21
2.5.2. Appliances and tasks 21
2.5.3. Participants . 24
2.5.4. Apparatus . 24
2.5.5. Procedure . 27

2.6. Results . 32
2.6.1. Quantitative results 33
2.6.2. Qualitative results 34
2.6.3. User feedback 36

2.7. Discussion . 38
2.8. Summary . 40

viii Contents

3. Publishing and Discovering Services for Tagged Objects 41
3.1. Introduction . 41
3.2. Application Scenarios 42
3.3. Requirements . 43
3.4. Architecture . 44

3.4.1. Resources and resource descriptions 45
3.4.2. Resource repository 48
3.4.3. Manufacturer resolver service and search service . 49
3.4.4. Deployment and use 51

3.5. Implementation . 53
3.5.1. Resource repository 53
3.5.2. Manufacturer resolver service 53
3.5.3. Search service 54

3.6. Prototype Applications 56
3.6.1. Calorie tracker 56
3.6.2. Shopping assistant 57
3.6.3. Appliance support 58

3.7. Related Work . 59
3.8. Summary . 63

4. Facilitating Service Development – A Browser for the
Internet of Things 65
4.1. Introduction . 66
4.2. Limitations Today . 67
4.3. Scenario . 70
4.4. Requirements . 72
4.5. Implications . 76

4.5.1. Services provided by mobile devices 76
4.5.2. Mobile code rather than built-in protocols 77
4.5.3. Full programmability 77
4.5.4. Minimal attention user interface 78

4.6. Framework Core Concepts 78
4.6.1. Open lookup infrastructure 78
4.6.2. Perspectives . 79
4.6.3. Applets . 80
4.6.4. Runlists . 80
4.6.5. Applet dimensions 81
4.6.6. Tying applets to tagged objects 83
4.6.7. Virtual reads through bookmarks and history . . 84

Contents ix

4.6.8. Handling of tagged object reads 84
4.6.9. Endpoints . 88

4.7. Service Development 88
4.7.1. BIT markup language (BITML) 88
4.7.2. User interface organization and GUI widgets . . 89
4.7.3. Presentation . 94
4.7.4. Scripting . 94
4.7.5. Scripting in views 95
4.7.6. Applet organization 97
4.7.7. Callback functions and applet startup 98
4.7.8. The “tagged object” argument 99
4.7.9. BIT API . 100
4.7.10. Example applet 100

4.8. Browser Architecture and Implementation 104
4.8.1. Components . 104
4.8.2. Implementation 107
4.8.3. Security and privacy considerations 108

4.9. Example Services and Discussion 110
4.9.1. Product reviews 110
4.9.2. Political shopping 111
4.9.3. Carbon footprint calculator 111
4.9.4. Allergy checker 112
4.9.5. Price comparison 113
4.9.6. Shopping list . 113
4.9.7. Search service 114
4.9.8. Coffee maker controller 114
4.9.9. Self checkout . 116
4.9.10. Discussion . 117

4.10. Related Work . 122
4.10.1. User interface adaptation 122
4.10.2. Smart environment control 124
4.10.3. Retrieving information 127

4.11. Summary . 129

5. Conclusion 131
5.1. Summary . 131
5.2. Contributions . 134
5.3. Limitations and Future Work 135

x Contents

A. User Study Task Assignments 139

B. BIT API 145

Bibliography 154

1. Introduction

1.1. Background

Personal mobile devices, such as PDAs and mobile phones, have long
represented an important building block of many systems discussed
in the ubiquitous computing community [26, 54, 63, 72, 99]. Today,
even relatively simple mobile phones have many characteristics that
make them appear as an ideal tool for the implementation of novel
ubiquitous computing applications. As a cheap general purpose com-
puting platform that is equipped with input / output, storage, and
communication capabilities, mobile devices are also relatively easy to
program. Many of the models available today also ship with built-in
sensor modules in the form of accelerometers, embedded cameras, or
GPS receivers, which greatly facilitates the creation of context-aware
applications [29]. Replacing palmtop and tablet PCs used in early
context-aware systems [1, 22], they have often become the platform
of choice for such applications today. In addition, the combination
of these features allows for new interaction techniques that, together
with their prevalence, make mobile phones the default physical inter-
face for ubiquitous computing applications [8]. From a user perspec-
tive, they are, due to their personal nature, highly familiar, trusted,
and always in reach. Researchers in the ubiquitous computing domain
have thus used them for prototypical implementations of a wide range
of applications as diverse as attaching digital annotations to physical
objects [124], locating lost personal items [45], interacting with large
public displays [122], controlling a pointing device remotely [85], or
operating appliances of all sorts [98].
Another prominent theme in ubiquitous computing is auto-id tech-

nology, i.e., the automatic identification of physical objects. Its most
widely known form is the omnipresent EAN/UPC product barcode,
which has been used extensively since as early as the mid-1970s, when
barcode labels began to speed up the checkout process in retail stores.
Today, barcodes have become truly ubiquitous, forming the backbone

2 Chapter 1. Introduction

of many automated processes, such as in airline ticketing and baggage
handling, in libraries and video rental shops, in hospitals, and — most
of all — in industrial supply chain management.
During the past few years, radio frequency identification (RFID)

technology has received considerable attention, as it has the poten-
tial to significantly improve today’s supply chain [42]. RFID technol-
ogy can enable cost savings because it offers two distinct advantages
over barcodes: Firstly, RFID labels do not require a line of sight be-
tween a reader and a tag, thereby allowing large numbers of tags to
be read quickly and without manual labor. Secondly, traditional one-
dimensional EAN/UPC barcodes can only be used to identify products
at a class level, while RFID tags allow for the identification of individual
items, thus enabling more detailed product tracking capabilities.
Both technologies, barcodes as well as RFID tags, have been used in

ubiquitous computing as an inexpensive means of bridging the gap be-
tween the physical world with tangible items and the virtual world
offering information and services related to these items. The idea
of linking information and services to physical objects has been in-
vestigated in numerous research projects, using both printed mark-
ers [65, 84, 116, 123, 137] as well as less obtrusive embedded RFID
tags [145, 76, 126, 23].
More recently, the two fields of personal mobile devices and auto-id

technology have moved closer together with the advent of technologies
that allow mobile phones to read both visual as well as radio frequency
tags. For example, most phones feature an integrated camera, which
has been shown to be capable of decoding the omnipresent EAN/UPC
barcode symbols [3]. On top of this, some mobile phones are already
equipped with a Near Field Communication (NFC) module [102], which
is able to read passive RFID tags.
The convergence of tagging technologies and mobile phones makes it

possible for users to interact with products through mobile devices. As
the large body of ubiquitous computing research in this field illustrates,
the paradigm per se is not novel. Yet what is new is the scale at which
it can be applied. As the underlying technology — mobile phones
with built-in cameras or NFC modules, barcodes, and RFID tags —
is fundamentally inexpensive and readily available, it is no longer just
dedicated objects that can offer digital services in the form of a “virtual
counterpart” [126]. It is now possible for almost every ordinary product
to be augmented with digital services. As long as it is labeled with a

1.2. Opportunities 3

barcode or RFID tag, it can serve as a starting point for mobile phone-
based interaction.

1.2. Opportunities

From an industry perspective, this development opens many very at-
tractive opportunities for businesses, but it also poses challenges. While
the benefits of auto-id tags were earlier limited to internal business pro-
cesses (e.g., enhanced efficiency in supply chain management), it is now
possible to leverage this technology throughout a product’s life cycle.
One of the most promising prospects is that businesses are now able

to tie digital offerings to any physical product in an intuitive way. Con-
sumers can access these digital services by interacting with the phys-
ical product and simply following the “physical hyperlinks” that are
provided. In effect, this allows a tangible product’s intangible dimen-
sion [81] to be enriched and extended in novel ways. While an item’s
packaging is inherently limited in area, the mobile device offers another
channel for businesses to provide additional product intangibles.
These developments have a number of implications for product man-

ufacturers, third-party businesses, and customers alike:

• For a manufacturer, it is now possible to deliver added value to
customers by enriching its physical products with digital services
that can be accessed in a straightforward and intuitive way. Unlike
the physical product itself, such digital services are not static and
can evolve over time, thereby ensuring an ongoing appeal and re-
peated interaction with the product. If these services are tailored
to a consumer’s needs, they also allow for the personalization of
a product, which would not be feasible with the physical item
alone. Finally, repeated interaction between a consumer and a
product can be a valuable source of information. By analyzing
these interaction patterns, a manufacturer can gain a better un-
derstanding of a product’s actual use and learn about a customer’s
preferences. Such insight can be used both to further develop the
relationship with a customer, and to improve a product to better
meet consumer needs. Overall, a manufacturer can leverage the
combination of tagged products and mobile devices to differentiate
its offering and improve customer loyalty.

4 Chapter 1. Introduction

• Opportunities for services based on tagged products are not lim-
ited to manufacturers, but arise for third-party businesses as well.
For a consumer advocacy organization, for example, it is very at-
tractive to “link” a review directly to a physical product, thus
making it easily accessible when a buying decision is made in a
brick and mortar store. Similar benefits can be reaped by other
businesses that currently offer product-related information on the
internet. A price comparison service, for example, can greatly
benefit from the fact that users can access its data directly at the
point of sale and without manually typing the product name into
a search form.

• For customers, these developments lead to a host of new services
for physical products, with their main benefits lying in easier acces-
sibility, higher transparency, and more convenience. For example,
users could now use their mobile phones to control electrical ap-
pliances instead of relying on the sometimes confusing haptic user
interface of devices, such as vending machines, coffee makers, or
washing machines. Since user interfaces on the mobile phone can
easily be tailored to users’ specific preferences and needs (such as
their native language or output for the visually impaired), they
are assumed to simplify the interaction with appliances. Better
accessibility is, however, not limited to appliance control. In a
shopping environment, for example, consumers can now easily re-
trieve detailed reviews and other background information on a
product without the cumbersome step of typing its name into a
search form. While reviews have been available on the internet for
quite some time, a considerable effort was required in order to ac-
cess them in a store, i.e., at the moment when they are most useful.
Ultimately, easier accessibility of such services can lead to more
transparency, since consumers will likely have better knowledge
of cheaper offerings, unhealthy product ingredients, or question-
able manufacturing practices. Finally, products can become more
convenient to use thanks to the digital services they provide. For
example, it should no longer be needed for a customer to keep pa-
per copies of certificates of warranty, since the electronic version is
accessible by simple touching the RFID tag of a defective product.
A possible “digital problem solving service” could even go a step
further and read an appliance’s error code, which is used together

1.3. Motivation 5

with the phone’s GPS sensor values to locate the nearest repair
center.

In summary, the paradigm of digitally augmenting physical objects
has the potential to transform business around physical products in
several ways. It allows companies to improve their customer relation-
ships by offering new channels for accessibility, new ways for achieving
awareness, and new techniques for responding [38]. Applying these
principles can help pure product vendors make their offering “smart”
and position themselves as service providers [5]. In addition, tagging
technologies pave the way for mobile “interactive decision aids” that
can simplify the shopping experience, which in the eyes of many has
become too complex due to the myriad of alternative offerings available
today [57]. What starts out as a way for some businesses to differentiate
themselves could become an inevitable reality for others, as products
that are unable to actively provide information outside the store could
soon be perceived as “dumb” and unattractive [40].

1.3. Motivation

While these seem to be promising opportunities, the reality for those
who consider to implement such offerings is less clear-cut today. There
is no conclusive evidence that mobile phones with their small form
factor and still fairly rigid interaction possibilities are in fact suitable
tools for all the scenarios that are being discussed. For example, it
remains unclear whether they can serve as an adequate replacement for
some of the traditional haptic user interfaces that we use in everyday life
today. While many of the scenarios that are often cited in the research
community sound appealing, it is disputable whether they can stand
the proof of broad and regular use. Apart from these open issues in
the field of human-computer interaction, there are a number of purely
technical problems that hinder the adoption of services based on tagged
objects:

Lack of abstraction The programming of mobile devices has become
considerably simpler in the past few years. However, in the light
of software development techniques that are widely used in web
programming, and that have kicked off a wave of innovative new
applications in the internet world, mobile phone programming still
has a long way to go. Creating services for the mobile phone is

6 Chapter 1. Introduction

often a time-consuming, tedious, and error-prone task. A lack of
abstraction forces developers to deal with the intricacies of the
underlying platform (e.g., its specific GUI framework), the vari-
ous communication technologies that are available (e.g., GPRS,
WiFi, Bluetooth, or NFC), as well as specific sensor APIs (e.g.,
for auto-id tags, location, or acceleration). The current situa-
tion essentially requires service providers to develop a bespoke
implementation for every single target platform, such as Nokia’s
Symbian S60, Google’s Android, Microsoft’s Windows Mobile, or
Apple’s iPhone OS. This incurs longer development cycles, higher
costs, and limited agility.

Monolithic applications Mobile phone applications are mostly mono-
lithic today. Much like in the traditional desktop computing world,
they are self-contained packages that need to be downloaded, in-
stalled, and updated manually. As a result of this, users have to
start an application when they actually wish to access a service
that is offered by a tagged product. While this may initially ap-
pear to be a minor inconvenience for users, it constitutes a rather
fundamental problem as the number of available services grows.
At a certain point, users will already have a sizable number of
applications installed and will be reluctant to consider any new
services. This prevents the whole idea of digitally augmenting
tagged products from scaling.

Lack of infrastructure There is currently no backend infrastructure
that allows for the discovery and exchange of information and ser-
vices pertaining to tagged objects. Existing solutions are rooted
in the logistics industry and closed by design. Consequently, every
service provider will need to define its own data format to struc-
ture, describe, and exchange product-related information and ser-
vices. Not only does this come at a significant cost, but the lack
of support for publishing and discovering product-related services
also leads to users not finding the resources they look for.

1.4. Objective

As outlined in the previous section, there are a number of specific ob-
stacles for augmenting tagged objects with digital services. The goal
of this thesis is to identify factors that help overcome these barriers in

1.5. Contributions 7

order to leverage the potential of phone-based interaction with tagged
objects. Our approach is twofold: On the one hand, we seek to answer
the question of when it makes sense to use the mobile phone as an
interaction device and when it does not. In particular, we investigate
the degree to which interaction with physical objects can be shifted
from traditional, real-world user interfaces to virtual user interfaces on
the mobile phone. On the other hand, we analyze how the creation
of such services for tagged objects can be facilitated. More precisely,
we propose both infrastructure components and a software framework
that address the challenges presented above by enabling the rapid and
lightweight development and deployment of mobile phone-based ser-
vices for tagged objects.
We pursue a dual approach that comprises both a human-computer

interaction perspective as well as an infrastructure perspective because
both represent crucial factors for driving adoption today. A solution
will not be successful unless it is usable by mobile phone owners, and
it will not be offered unless it is economical for implementers.

1.5. Contributions

In the previous sections, we highlighted some of the challenges that
arise for those who consider augmenting tagged objects with digital
services on the mobile phone. In this section, we present the main
contributions that are made by this thesis in order to address these
challenges:

1.5.1. Usability evaluation

We investigate the specific case of using mobile phones to operate phys-
ical everyday electrical appliances, such as, for example, printers, coffee
makers, or washing machines. Traditional interaction based on haptic
user interfaces is compared with phone-mediated interaction. A user
study is carried out to test a set of hypotheses regarding the value of
mobile phones in this area. In contrast to similar work that is based on
paper prototypes, our evaluation uses actual physical appliances and
mobile phones. In particular, our evaluation shows that:

• in situations that are not encountered on a daily basis, offloading
the user interface from the physical appliance onto the mobile
phone results in faster and less error-prone interaction;

8 Chapter 1. Introduction

• in such situations, phone-based user interfaces are preferred by
users over traditional haptic user interfaces;

• troubleshooting an appliance in an erroneous state is faster when
it is assisted by a mobile phone instead of a paper-based user
manual;

• mobile phones do not represent suitable interaction devices for
carrying out everyday tasks with an appliance.

1.5.2. Infrastructure for publishing and discovering
information and services for tagged objects

This thesis also provides an open lookup infrastructure that allows any
interested party to publish and advertise information and services for
tagged products. The open lookup infrastructure offers a simple way
to describe such information and services and to integrate third-party
data. It supports the retrieval of relevant information based on the
user’s context. Its design is “open” in the sense that it is not central-
ized and possibly under the control of a single entity. Instead, any
stakeholder can link its own information and services to any tagged
object available.
A prototypical implementation of the open lookup infrastructure is

presented to validate its concepts. Through several demonstrators that
we built on top of it, we show that the open lookup infrastructure is
well suited to facilitate the development of applications around tagged
products.

1.5.3. Concepts and framework for the development of
mobile services for tagged objects

As a third contribution, this thesis provides a framework that facili-
tates the development of services for tagged objects that run on a mo-
bile device. This framework offers a number of abstractions that free
developers from dealing with many aspects of applications that are usu-
ally not a main concern in services for tagged objects. It is lightweight
and supports the on-the-fly discovery and installation of new services.
Comparing to the current state of the art in software development for
mobile phones, our framework offers a considerably faster development
process, is easier to learn by developers, and allows for the creation of
services that are portable among different mobile phone platforms.

1.6. Thesis Outline 9

This thesis also presents BIT, a browser for the Internet of Things.
BIT is a browser application that runs on a user’s mobile device and
provides a prototypical implementation of our framework. From a
user’s perspective, BIT is a “single point of interaction” that offers
unified access to all information and services that are available for a
tagged object at hand. In order to do so, it leverages the second con-
tribution, the infrastructure for publishing and discovering information
and services. We illustrate the value of our framework by implementing
several example services of different types. By comparing a traditional
software development approach on mobile phones with the creation of
services for BIT, we show in these case studies that our framework
offers significant benefits.

1.6. Thesis Outline

This dissertation is structured as follows:
In Chapter 2, we will provide an overview of mobile device-mediated

interaction with appliances. We will review existing work and ask which
of the many proposed technical solutions are actually desirable from
a user’s perspective. We will then propose a classification of types
of interaction tasks and form hypotheses regarding the suitability of
mobile device-mediated interaction for the different task types. Finally,
we will present the results of a user study that we conducted to confirm
or reject these hypotheses.
In Chapter 3, we will begin by discussing scenarios that call for the

standardized advertisement and lookup of information and services for
tagged products. From these applications, we derive requirements and
present the architecture of an infrastructure to meet them. We then
outline a prototypical implementation of this infrastructure as well as
example applications that exploit the advantages offered by the sys-
tem. We conclude the chapter with a review of existing work in the
field and investigate how the proposed infrastructure compares to these
approaches.
In Chapter 4, we will start with an analysis of problems and chal-

lenges that arise when services for augmenting tagged objects are im-
plemented and deployed on mobile phones — both from a developer as
well as a user perspective. We then introduce the concept of a dedicated
browser along with an underlying software framework to address these
issues. After discussing its requirements, we present the framework’s

10 Chapter 1. Introduction

core concepts and show how they can be applied to developing services.
We then present the architecture and implementation of a prototypi-
cal browser and nine example services. We contrast the development of
these services with traditional approaches and show that our framework
offers significant benefits. We also highlight the limitations of BIT and
conclude with a review of related work.

2. Usability of Mobile Phones for
Operating Appliances

2.1. Introduction

As we saw in the previous chapter, personal mobile devices, such as
mobile phones and PDAs, have effectively become powerful general
purpose computing platforms that are often equipped with different
sensors. This allows their users to interact with an augmented, or
“smart” environment. Scenarios involving personal mobile devices in-
clude attaching digital annotations to physical objects [19, 137, 124],
sharing public displays [99, 9], and interacting with appliances of all
sorts [10, 98].
Using mobile phones and PDAs to query and control smart envi-

ronments and artifacts is attractive due to four main aspects of these
devices:

• Wireless communication: Apart from the continuously expanding
wide-area coverage, packet-switched communication services, such
as GPRS, EDGE, or UMTS, have become commonplace and can
provide fast, reliable, and economic device communication from
almost anywhere in the world, both indoors and outdoors. More-
over, short-range communication protocols, such as Bluetooth, al-
low for local ad-hoc communication between similar devices.

• Tag detection: The recent addition of Near Field Communica-
tion (NFC) technology not only improves intra-phone communi-
cation (i.e., simplifying the often complicated Bluetooth setup pro-
cess), but also allows mobile devices to detect and read out passive
(NFC-compatible) RFID tags. Moreover, camera phones can use
barcodes to allow even printed paper to “send” information to a
mobile device.

• Computational resources: Mobile phones have become powerful
computing devices, often featuring processors with hundreds of

12 Chapter 2. Usability of Mobile Phones for Operating Appliances

megahertz and considerable RAM and Flash memory. Given their
energy demands for sustained wide-area communication provision,
their powerful batteries can often easily support substantial cal-
culations and short-range communications without significantly
affecting the primary usage (e.g., telephone or organizer) of the
device. Users are also accustomed to recharging their devices pe-
riodically, thus providing a virtually unlimited energy supply for
locally installed applications.

• Programmable screen and keyboard: Many devices feature large
color displays and programmable soft keys, 5-way navigation but-
tons, click wheels, or touchscreens, allowing system designers to
quickly build a wide range of attractive and versatile interfaces.
Built-in microphones and speakers can additionally support the
use of speech commands and audio cues.

While it is obvious that personal mobile devices can provide the tech-
nical functionality needed to control smart environments, we believe
that, from a user-centric perspective, their use cannot be justified in
some of the commonly cited ubicomp scenarios. In particular, we chal-
lenge the notion of using personal mobile devices for universal appli-
ance interaction, i.e., controlling technical equipment, such as vending
machines, thermostats, or answering machines, through mobile phones.
We contend that mobile phones offer benefits only in specific situations,
but not in everyday use.
In this chapter, we discuss arguments supporting our claim and seek

to answer the question under which circumstances it is appropriate to
use a mobile phone for appliance interaction. We do so by presenting
a user study that we conducted in order to assess the value of mobile
phones as interaction devices for operating appliances.
This chapter is structured as follows: We begin with a review of

related work that has suggested to use mobile devices for appliance
control. In Section 2.3, we continue with a critical discussion of the
usability of such scenarios and outline a pre-study that we conducted
to gain experience with a specific scenario (Section 2.4). Section 2.5
presents our main study in detail, starting with the experimental design
and participants, describing our apparatus and materials, and outlining
our procedure. Section 2.6 contains the results of our study, both ana-
lytically and anecdotally. We close with a discussion and conclusions.

2.2. Related Work 13

2.2. Related Work

The use of handheld devices for controlling the environment has already
a long tradition, based on the (usually infrared-based) remote controls
that provide access from afar to audio/video equipment such as TVs
and stereos, but also lights, shades, garage doors, or even cars. Given
the many remotely controllable appliances found in today’s households,
however, it is becoming less and less practical to have a separate remote
control for each of them. Also, users increasingly need to carry out tasks
that involve more than a single appliance, e.g., switching on the DVD
player while also turning on the TV at the same time. Last but not
least, many of today’s remote controls are overloaded with functionality
that users hardly ever need, resulting in large, unwieldy devices and
hard-to-use interfaces.
A number of research projects (e.g., [60, 114, 110]), as well as com-

mercial products (e.g., Philips Pronto1 and Logitech Harmony2) have
grown out of these needs. The simple approach taken by commercial
products provides users with a conventional desktop application that
allows them to design their own remote control by placing button wid-
gets on a canvas mimicking a traditional remote control. The resulting
user interface is then downloaded to a PDA-like, pen-based handheld,
which uses traditional infrared transmission to communicate with the
target device.
The approaches generally proposed in many research projects rely on

the appliances providing a software interface that is rendered on the
PDA’s display for the user to interact with. The handheld is there-
fore self-programming. Using its wireless communication module (e.g.,
Bluetooth), the handheld transmits the user’s commands to the appli-
ance itself, or a proxy that in turn controls the appliance. Systems of
this sort are presented by Hodes et al. in [60] and by Ponnekanti et
al. with the ICrafter [114]. However, they are still based on laptops
as interaction devices. The XWeb [110] infrastructure is similar, but
the authors mention an implementation for pen-based devices without
going into details. Common to these systems is the notion of abstract
user interfaces to allow for device heterogeneity. By combining the ab-
stract user interface description and a design template (a “stylesheet”),
the handheld generates a platform-specific user interface that is pre-

1www.pronto.philips.com
2www.logitech.com/harmony

14 Chapter 2. Usability of Mobile Phones for Operating Appliances

sented to the user. The concrete user interface is thus decoupled from
the appliance.
Nichols et al. developed the idea further in the Pebbles project, where

the authors use a PDA as a personal universal controller [105]. A sim-
ilar, PDA-based system termed the universal remote console was pro-
posed by Zimmermann et al. [147]. Contributions from both projects
led to the standardization of the universal remote console framework
within the INCITS V2 technical committee [77, 44]. The standard3

aims to ensure interoperability between devices from different manu-
facturers.
Other projects have examined how interaction with household appli-

ances can be extended to support natural language. An example is
presented by Yates et al. [146], who propose a system that is based on
speech recognition. Lieberman and Espinosa [83] build appliance inter-
faces around goals of users. They leverage knowledge mined from the
OpenMind Commonsense knowledge base [136], a collection of 770,000
English sentences describing everyday life. Appliances sense the user’s
interaction (e.g., opening the microwave oven) and create a correspon-
sing English sentence (e.g., “I open the microwave”). Using the knowl-
edge base, possible goals are inferred and offered to the user to choose.
The selected goal is sent to a planner, which presents to the user all
steps needed to satisfy the goal.
Another issue in this field is the selection of the active device. In

environments with many remotely controllable appliances, it would be
desirable if the system automatically detected the most likely target the
user wants to interact with. Kaowthumrong et al. [67] use a Markov
model to predict a likely appliance and present the corresponding user
interface. This work is extended by Isbell et al. [64]. They try not
to predict a single appliance, but to determine the task a user wants
to accomplish. Using k -means clustering and Markov prediction, their
system is able to adapt the presented user interface accordingly. The
personalized user interface resulting from this approach is evaluated
in a separate user study [111]. The authors compare it with interfaces
that users have created manually in order to make them suit their needs
best. Users could freely combine buttons from any device and also cre-
ate special macro buttons that would trigger a sequence of actions, such
as switching on both TV and DVD player at the same time. The study
revealed that both approaches have weaknesses. While the interfaces

3www.incits.org/tc_home/v2.htm

2.3. Usability Benefits 15

manually designed by users often missed important buttons because
people have incorrect models of their own behaviour, the machine learn-
ing approach requires a lengthy observation period to discover accurate
models. A similar system is UNIFORM by Nichols et al. [106], which
aims to generate user interfaces that look familiar to users by customiz-
ing their appearance based on heuristics as well as previously generated
interfaces for the same user. Like the previous systems, SUPPLE by
Gajos and Weld [48] aims to automatically generate user interfaces to
control appliances. However, they treat the necessary user interface
adaptation as an optimization problem to find the best arrangements
of controls on the device available.
Finally, another line of research explores how a flexible configura-

tion of multiple home appliances can be integrated. Examples of such
projects are HUDDLE by Nichols et al. [107] and OSCAR by Newman
et al. [101]. While these projects again mainly investigate the user in-
terface aspect of such scenarios, others, such as InterPlay by Messer et
al. [88] are more geared towards middleware aspects.

2.3. Usability Benefits

Virtually all of the papers cited in the previous section name a more or
less similar set of appliances that are considered controllable through
personal mobile devices. Among the often mentioned appliances are
video recorders, DVD players, TVs, video projectors, stereos, answering
machines, light switches, home security systems, ATMs, elevators, copy
machines, cars, vending machines, heating control systems, microwaves,
ovens, and washing machines.
Researchers have recently begun to look at the suitability of different

possible interaction techniques for such scenarios, such as scanning a
barcode, pointing with a laser beam, or touching an RFID tag [130, 4].
However, there is surprisingly little work addressing the question of
which appliances are actually suitable for this new paradigm of inter-
action, and under which circumstances they are so. Koskela et al. [73]
have studied the use of mobile phones, PCs, and media terminals in a
household over six months. However, the handheld device could only be
used to control lights and curtains in their setting. Rode et al. [121] con-
ducted an ethnographic study to find out which household appliances
users choose to program. Their research gives, however, no indication
for which appliances a personal mobile device may be an appropriate

16 Chapter 2. Usability of Mobile Phones for Operating Appliances

interaction tool. Moreover, they do not consider spontaneous interac-
tion with an appliance, but focus on the programming of actions for
the future and the creation of macros to facilitate repeated tasks.
User studies investigating the performance of personal mobile de-

vices for the spontaneous interaction with appliances were carried out
by Nichols et al. [98, 104] as part of the evaluation of their personal
universal controller [105]. They studied the use of a PocketPC to con-
trol a stereo and a telephone/digital answering machine. In particular,
they compared the performance of 12 subjects when accessing the ap-
pliance either using the PDA interfaces, or the interface on the actual
appliance. They used three metrics in their evaluation: time to accom-
plish a task, the number of errors made, and how much external help
users asked for. For both the stereo and the phone, a list of tasks was
created that had to be completed by each of the subjects. About two
thirds of the tasks on both lists were chosen to be easy, i.e., requiring
no more than one or two buttons pressed on the actual appliance. The
more complex tasks involved five or more button presses. The time to
accomplish a task was defined as the total time users needed to work
through the complete task list. The authors found that, compared to
the user interface on the PocketPC, interaction based on the physical
appliance’s interface took twice as long, entailed twice as many errors,
and required five times more external help.
While these results seem very encouraging and supporting the vision

of using mobile phones as universal interaction devices, they might
strike one as somewhat counterintuitive: Why would a softkey-based
interface of a generic PDA be more efficient for playing back voice
messages of a real answering machine than the machine’s own buttons?
Why wouldn’t the direct interaction with the physical machine help
users with understanding and operating the device, by making use of
the machine’s perceived affordances [108]?
Obviously, using a PDA or mobile phone as an interaction device will

be greatly beneficial when this represents the only way to access an oth-
erwise invisible device, e.g., for information services such as voicemail
systems or online media libraries [51]. Similarly, a universal interac-
tion device might be the only means for users to discover the invisible
information services available in a smart room or attached to a smart
object. And obviously, as the success of the TV remote control has
shown, handhelds should be well suited to control appliances where in-
teraction at a distance is desirable, such as a heating control system.

2.3. Usability Benefits 17

However, it is less clear whether personal mobile devices are beneficial
for interacting with physical appliances that require the user’s presence
to operate, such as ATMs, elevators, or microwave ovens.
We believe that, for many of the appliances mentioned in typical

ubicomp papers, including the ones listed before, it is not advisable to
use handhelds as interaction devices in order to replace existing physical
user interfaces. In most everyday situations, direct manipulation of
the appliance is easier, faster, and more convenient than handheld-
mediated interaction.
In special situations, however, this approach can be of great value. By

special situations we mean processes that are performed irregularly and
rarely. In these cases, users often face one of the following problems:
First, they lack the practice needed to remember the individual steps
that have to be performed in order to achieve a specific goal. Second,
functions that are not accessed on a regular basis are often not present
on an appliance’s main user interface, both to simplify the interface for
common tasks, as well as to save costs. Interaction is often difficult,
as keys change their meaning in special contexts, or special functions
are accessible only by a hard-to-remember combination of keys. As the
following examples illustrate, we face this problem with several devices
in our daily lives:

• Many ovens can be programmed to start cooking a meal at a user-
given time. However, as this function is rarely accessed, it is hard
for users to remember the programming procedure.

• Many washing machines offer several programs for a given tem-
perature. It is often difficult for users to remember the exact
semantics of buttons labeled “40◦”, “40◦S”, and “40◦E”, for exam-
ple.

• Many appliances, such as laser printers or VCRs, show an error
code on a small display when a problem (e.g., a faulty network
interface) occurs. Without consulting the appliance’s long-since
lost manual, this error code (e.g., “F602”) is incomprehensible and
of little value for a user.

In contexts that users encounter infrequently, just like the ones out-
lined above, a personal mobile device can facilitate the user’s interac-
tion with the appliance in two ways. The handheld can either provide
information or provide a user interface.

18 Chapter 2. Usability of Mobile Phones for Operating Appliances

Information provision When an exceptional situation occurs, the ap-
pliance can support the user by providing detailed information on
his or her personal mobile device. For example, by opening the
relevant section in the appliance’s manual on the user’s mobile de-
vice, a laser printer can instruct him or her to check the network
cabling instead of just showing an error code on its integrated
display.

User interface provision Functions that are rarely needed and are
thus not easily accessible through the actual appliance’s user in-
terface are offloaded onto the mobile device, without completely
replacing the traditional user interace. In this way, a GUI based
on familiar widgets can be built to, for example, program an oven’s
timer, while keeping the haptic user interface for the everyday task
of switching the oven on and off.

2.4. Pre-Study

With this in mind, we set out to conduct a user study exploring the
benefits and limits of using a mobile phone to operate physical appli-
ances, i.e., devices that would typically not benefit from being remotely
controllable. Our aim was to identify in particular the conditions un-
der which devices like coffee makers, printers, or microwave ovens would
benefit from being operated not directly, but through a mobile phone,
or, conversely, when it would be a hindrance, rather than an advantage,
to have such a separate interaction device.
Our user study was conducted in two parts. The main study was

preceded by an exploratory phase that was concluded by a small pilot
study to test and improve the planned study design. We began this
exploratory phase by developing a series of scenarios for the use of
mobile phones to operate everyday appliances. We then broke down
these scenarios into smaller use cases and also involved a student of the
Zurich University of the Arts (ZHdK) who provided valuable design
prototypes of possible user interfaces (see Figure 2.1 for an example).
From the many possible appliances, we finally selected a coffee maker
for our pilot study, since we felt it was an ideal example to communicate
the benefits of mobile phone-mediated interaction to our study subjects.
We then implemented several versions of devices that could be used

to control the coffee maker:

2.5. Main User Study 19

• A version based on Adobe’s Flash Lite technology for the Nokia
6630 mobile phone that explored the design possibilities offered by
the platform and focused on an appealing visual appearance (see
Figure 2.1).

• A version based on Java ME for the Nokia 6630 mobile phone that
included Bluetooth connectivity to a simulated coffee maker.

• A second version based on Java ME for the Nokia 3220 NFC mo-
bile phone that made use of the device’s integrated Near Field
Communication (NFC) module (see Figure 2.2). This allowed us
to read RFID tags that we attached to the coffee maker to im-
plement the touch me paradigm [113], through which users can
interact with appliances in their proximity in a very intuitive way.
Also, NFC can be used to transmit status information directly
from the appliance to the mobile phone. However, we did not em-
ploy this feature, but relied on NFC merely for the identification
of the appliance.

The pilot study involved 7 participants, aged between 24 and 33 years
(5 males, 2 females) and required the subjects to interact with a Jura
Impressa S70 coffee maker through our software running on a Nokia
3220 NFC phone. Subjects were asked to complete a series of five tasks,
such as brewing a “latte macchiato” or replacing the water filter, and
to provide feedback. The pilot study revealed some misunderstandings
on behalf of our test users as well as measuring and interpretation
problems. We used these learnings to prepare an improved design for
our main study, which will be presented in the next few sections.

2.5. Main User Study

Based on the preliminary experiences and observations gained in the
exploratory phase, we proceeded with the main study. Our main study
tried to assess the benefits and limits of handheld devices in appliance
operations by asking study participants to use not just one, but several
different appliances in a variety of situations, both traditionally through
the appliances’ physical interface, and with a specifically developed
universal interaction device. We then obtained quantitative data by
measuring the time it took a test subject to complete a specific task, as
well as qualitative data by observing and recording the users’ actions,

20 Chapter 2. Usability of Mobile Phones for Operating Appliances

(a) User interacting with coffee maker. (b) Brewing a “latte macchiato”.

(c) Instructions for filter change. (d) Changing the filter.

Figure 2.1.: Flash Lite-based design prototype developed in exploratory phase [49,
96].

Figure 2.2.: NFC-based prototype developed in exploratory phase.

2.5. Main User Study 21

thoughts (through think-aloud techniques [82]) and opinions (through
a post-test questionnaire). This section presents the hypotheses, tasks,
and procedure of our study, including a description of our prototypical
universal interaction device, the AID (short for “Appliance Interaction
Device”).

2.5.1. Hypotheses

We began our main study with a set of three hypotheses, which together
would either support or weaken our intuitive notion that the use of
universal interaction devices has limits. Specifically, we hypothesized
as follows:

• For controlling an appliance in exceptional situations, interaction
based on a mobile phone would be faster than interaction based
on the traditional user interface.

• Looking up context-dependent information on the handling of an
appliance would be faster using a mobile phone than using tradi-
tional means (e.g., printed user manuals).

• To carry out everyday tasks, the use of an appliance’s traditional
user interface would be faster than mobile phone-based interaction.

2.5.2. Appliances and tasks

We used four typical appliances (see Table 2.1) for which we found a
number of use cases where mobile phone-based interaction might be
beneficial: a dishwasher (V-ZUG Adora S 55), a coffee maker (Jura
Impressa S70), a printer (HP LaserJet 4050tn) and a radio (Sangean
ATS-505). By not relying on a single model or appliance type, we aimed
to minimize a possible bias arising from poor user manuals and haptic
user interfaces. When selecting the concrete models of appliances for
our study, we made sure to only consider devices that seem reasonably
well designed from a usability point of view. This is emphasized by
the fact that the majority of devices used in the trial are products of
well recognized manufacturers with a proven track record in appliance
design.
For each appliance, we defined a number of tasks for participants to

work through – once using the appliance’s native controls, once using
our AID device. We grouped these tasks (18 in total, listed in Table 2.2)
into the following four categories:

22 Chapter 2. Usability of Mobile Phones for Operating Appliances

Coffee maker
Jura
Impressa S70

This coffee maker model is common in
households as well as small offices. The
grinding and brewing processes are fully
automated. Status information is shown
in a small display of 2 × 8 characters.
Apart from the controls for daily use, this
coffee maker has eight buttons for con-
figuration that are covered by a bezel in
normal operation.

Laser printer
HP
LaserJet 4050tn

This black-and-white laser printer can be
found in many small and medium of-
fices. It can be controlled through a four-
button panel (“Menu”, “Option”, “Value”,
“Select”) and a display that is capable of
showing two lines of 16 characters each.

Dishwasher
V-ZUG
Adora S 55

The V-ZUG Adora S 55 is a widely used
dishwasher with a 4-digit seven-segment
display. Users can navigate the settings
menu by pressing the “start program” and
“end program” buttons.

Radio
Sangean
ATS-505

This portable radio is able to receive ra-
dio programs in several frequency bands.
The current frequency is shown numer-
ically on the LC display. The device’s
functions are accessed through a number
of buttons.

Table 2.1.: Appliances used in the user study.

2.5. Main User Study 23

• Control tasks involve the adjustment of a special device setting
(e.g., setting the water hardness for the coffee maker) or the in-
vocation of an unusual operation (e.g., create a printer cleaning
page). Theses tasks reflect the use of a mobile phone for user
interface provision.

• Problem solving tasks confront users with an abnormal situation
(e.g., a malfunctioning dishwasher displaying an error code) that
must be dealt with. These tasks correspond to the use of a mobile
phone for information provision.

• Everyday tasks are control tasks that are most typical for an ap-
pliance (e.g., brewing a coffee) and are performed very often.

• Repeated control tasks are control tasks that a user has performed
very recently and is still very familiar with.

When we identified the tasks to be included in our study, we made
sure to consider only those suitable for comparison. For example, the
coffee maker’s manual contained instructions on how to brew a latte
macchiato, which required the user to adjust various settings in no less
than 10 steps. Obviously, brewing a latte macchiato could simply be
offered on the mobile device as a single menu item. As this would have
drastically favored the AID device, we took care to select only tasks
that would require a comparable degree of interaction when executed
directly on the appliance and on the mobile interaction device. Simi-
larly, we omitted tasks that were so poorly supported by the appliance
manufacturer that they proved very difficult and lengthy when tested in

Table 2.2.: Appliance tasks in the user study. Participants were asked to complete
18 tasks distributed among the four available appliances. Not all appli-
ances had suitable tasks in all four categories.

Control Problem
solving

Everyday Repeated con-
trol

Dishwasher adjust water hardness,
activate child safety
lock

fix error “F2”,
white film on
dishes

start program —

Coffee maker adjust water hardness,
set switch-on time

— brew coffee adj. water hard-
ness

Printer change paper type,
print cleaning page

fix faded print cancel print job change paper type

Radio set clock,
store preset station

— change channel set clock

24 Chapter 2. Usability of Mobile Phones for Operating Appliances

Age
504540353025201510

Fr
eq

ue
nc

y
4

3

2

1

0

Mean =29.78
Std. Dev. =6.127

N =23

Normal

Figure 2.3.: Distribution of participants’ age.

our pilot study, e.g., changing the coffee maker’s water filter. As these
tasks could be improved easily (e.g., through better documentation),
we did not consider them for our main study.

2.5.3. Participants

We tested a total of 23 participants,4 10 (43%) of which were male and
13 (57%) of which were female. Most of them were undergraduate or
graduate students recruited through mailing lists from different uni-
versities. There were 10 participants with a background in sciences or
engineering, 10 participants from the humanities or social sciences, and
3 participants with no academic background. All of them spoke Swiss
German as their native language and owned a mobile phone. Except
for two subjects, all participants used their mobile phone on a daily
basis. The average age of participants was 29.8 years, ranging from 21
to 50 (SD=6.1) years (see Figure 2.3). None of them had any relevant
previous experience with the appliances used in our experiment. Par-
ticipants were compensated for their time with a USB memory drive
or a cinema voucher, according to their preferences.

2.5.4. Apparatus

In order to evaluate the usefulness of a universal interaction device,
we had to provide our test subjects with a corresponding mobile unit
that would let them properly experience the use of such a control unit.

4None of these subjects had participated in our earlier pre-study.

2.5. Main User Study 25

(a) Radio main menu. (b) Adj. water hardness.

(c) Dishwasher user manual. (d) Printer troubleshooter.

Figure 2.4.: AID prototype implementation. The screenshots show examples of the
AID user interface for each of the four appliances used in the study. Ap-
pliance functions could either be selected by traversing the main menu
(a) or by having the AID automatically (i.e., simulated, see Section
2.5.4) detect the appliance’s state (d).

Our AID prototype system supports mobile phone-based interaction
for all of the tasks outlined above. Our system is implemented as a
Java MIDlet that we deployed on a Nokia 6630 mobile phone. This
mobile phone features a color display with a resolution of 176 × 208
pixels. Unlike the devices used in other evaluations (see Section 2.2
above), the Nokia 6630 does not offer pen-based input capabilities, but
features only a simple keypad.
While the mobile phone used in our pilot study was an NFC-enabled

Nokia 3220 that actually performed a true wireless identification of each
appliance, we did not stick with this device for the main study. Our

26 Chapter 2. Usability of Mobile Phones for Operating Appliances

earlier experiences had shown that the computational resources of the
Nokia 3220 were too limited in comparison with the Nokia 6630. Also,
the 6630 allowed us to take advantage of its larger screen estate.

Instead of actually coupling the AID with our four appliances, we
simulated both appliance identification as well as the transmission of
appliance status by having the user press the phone’s main navigation
button. As users performed the tasks in separate steps, the experi-
menter had time to use an undocumented button combination on our
AID to quickly select the proper context-dependant reactions for the
upcoming task, thus giving users the illusion of having our AID actu-
ally detect and read out the appliance. Obviously, this setup made it
impossible to really control the appliance in any way through the AID
– a shortcoming that we pointed out to participants, indicating that
we were only interested in seeing the right buttons being pressed, not
an actual appliance being controlled.

Figure 2.4 shows four example screenshots of the AID during the
study, one for each of the four appliances. Invoking our AID device
on an idle appliance brings up the appliance’s main menu, as shown
in Figure 2.4(a). For each appliance, this main menu would offer all
tasks that are available through the appliance’s physical interface (in
a hierarchical menu). The user interface for a typical task is shown
in Figure 2.4(b). We also included a “troubleshooting” menu entry for
each task, which would contain the contents found in the corresponding
section of the appliance’s user manual. Figure 2.4(c) shows such a list
of common problems that might occur with the dishwasher. Finally, we
provided several step-by-step assistants that help users with physical
appliance manipulations. The assistant supporting the task of clearing
a paper jam at the laser printer is illustrated in Figure 2.4(d). For each
step, the system highlights the part of the printer the user must operate
next. When the user pushes the right arrow on the phone’s keypad,
the assistant advances to the next step. Assistants and troubleshooting
tips can either be accessed manually through the menu, or they are
displayed automatically when the appliance is in a state where such
help is needed.5

2.5. Main User Study 27

Figure 2.5.: Participants interacting with appliances. The images above show three
of our participants carrying out tasks: using the AID device to operate
the coffee maker, troubleshooting the printer using the printed manual,
and using the AID device to operate the radio.

2.5.5. Procedure

The experiment began for each participant with a brief introduction to
the concept of the AID, our user study, and its goals. Participants were
then asked to fill out a profile questionnaire that allowed us to gather
information on their background (age, education, previous experience
with devices used in the experiment, etc.). We explained the basic con-
cepts of the AID (i.e., the user interface provision and the information
provision) and demonstrated it interactively using example tasks that
did not reoccur in the course of the study. We also told participants
explicitly not to think of the AID as a remote control, and that they
would only be able to use it on an appliance after they had touched it,
followed by pressing the phone’s main navigation button. We finally
handed them the AID device and guided them through a number of
simple preparation tasks in order to familiarize them with the phone’s
controls and user interface.
The beginning of the study was conducted in a semi-public lounge in

our university, as it offered a dishwasher that we could use. There were
only few distractions here, and for the rest of the study we moved to a
quiet office where we had set up the coffee maker, the laser printer, and
the radio. The introduction and initial explanations described above
were also conducted in this office. All devices where ready to use and
equipped with the corresponding user manual in German language.
For each of the four appliances, we handed the test subjects small

5As pointed out previously, this appliance state detection would be set up secretly by the exper-
imenter prior to giving out a particular task to the user (as no communication between the
appliance and our AID device takes place).

28 Chapter 2. Usability of Mobile Phones for Operating Appliances

(a) User enters the menu
by pressing and holding the
“P” button for 2 seconds.

(b) User selects the desired
menu item by pressing the
“+” button repeatedly.

(c) User opens the menu
item to adjust the value.

(d) User presses the “-” but-
ton to set the water hard-
ness to level 2.

(e) User presses the “P”
button to save changes.

(f) User presses the “N”
button to leave the menu.

Figure 2.6.: Example of traditional task solving. At one point, study participants
were asked to change the level of water hardness in the coffee maker.
The above pictured steps usually required an extensive study of the
printed manual.

2.5. Main User Study 29

cards with their assignment printed on (see Appendix A). They were
asked to work through each task twice. One time, users should use the
traditional method to solve the task, i.e., they should interact directly
with the device using the physical interface. The other time, they
should use the AID device. Users were explicitly told that they could,
but would not have to use the user manual when completing a task in
the traditional way.
In order to minimize potential learning effects, we used counterbal-

ancing, i.e., participants were divided into two subgroups that worked
through the cards in different orders. Group A was asked to complete
every task first with the traditional method, and then again with help
of our AID device. Group B was asked to begin with the AID device
and then use the traditional interface afterwards. To get comparable
results, the order of the tasks was the same for all participants. The ac-
tual task order can be found in Table 2.2: for each device, the control,
problem solving, and everyday tasks were performed (in this order).
Finally, the column “repeated control” was tested from top to bottom.
Learning effects were compensated for by letting the users perform the
first task of each appliance again at the end of the study. For practical
reasons, we did not move back to the lounge area again to test the
dishwasher a second time.
We measured the time needed for each task and then asked users

whether it was easy or difficult for them to solve the task, as well as
which method they liked better. For tasks that required users to find a
solution to a problem and telling us about it, time stopped with their
first utterance. Figure 2.5 shows some of our participants carrying out
tasks, Figures 2.6 and 2.7 show an example of an entire task (adjusting
the water hardness in the coffee maker) being carried out using the
traditional method and using the AID device, respectively.
The final part of our study asked our participants to complete seven

different tasks in a row (see Figure 2.9 on page 35 for a list), which
they had to perform as fast as possible. They were, however, free to
choose any method to operate the appliances, i.e., they could pick up
the AID, consult the printed manual, or directly operate the physical
appliance interface to accomplish the assignment. We then recorded
their individual choices for each of the seven tasks. In order to get
participants to truthfully choose the methods they thought would be
most effective, we offered a portable MP3 player to the user with the
fastest time.

30 Chapter 2. Usability of Mobile Phones for Operating Appliances

(a) User touches the appli-
ance with mobile phone.

(b) Menu shows up au-
tomatically. User selects
“Settings”.

(c) User selects “Water
Hardness”.

(d) User selects the desired
value and saves changes
with “OK”.

(e) Setting is changed on
the appliance.

Figure 2.7.: Example of task solving using the AID. The water hardness can be
changed more easily using the hierarchical menu of the AID, typically
without consulting the user manual.

2.5. Main User Study 31

The study ended for each participant with a final questionnaire that
collected her or his opinion and suggestions on the AID device.
A single session typically lasted about 80–120 minutes. The protocol

followed in all sessions is summed up by the following list:

1. Welcome and introduction to the idea of an AID device as well as
to the user study and its goals.

2. Consent form and profile questionnaire.

3. Demonstration of how AID can be used to control appliances.

4. Preparation tasks carried out by participant for getting to know
mobile phone and user interface.

5. For each appliance, i.e., dishwasher, coffee maker, laser printer,
radio (in this order):

a) Hand the participant a small card describing a new task (see
Appendix A).

b) Tell the participant to carry out the task using the traditional
user interface (for participants in group A) or the AID (for
participants in group B).

c) Measure time to complete task.

d) Ask participant to rate the difficulty on a five-point Likert
scale.

e) Tell the participant to carry out the same task again, using
the other interaction method (AID for group A, traditional
user interface for group B).

f) Measure time to complete task.

g) Ask participant to rate the difficulty on a five-point Likert
scale.

h) Ask participant which method she or he liked better.

i) Next task (order according to Table 2.2).

6. Tell the participant to again carry out the first task for each ap-
pliance (repeated control task).6

7. MP3 player contest with free choice of interaction method.
6For practical reasons, this step was omitted for the dishwasher, as this appliance was located
in a different area of the building in which we conducted our study.

32 Chapter 2. Usability of Mobile Phones for Operating Appliances

Repeated
control

EverydayProblem solvingControl

180

150

120

90

60

30

0

M
e

a
n

 t
im

e
 (

s
)

Error bars: +/- 2 SE

AID

Traditional

Interaction method:

Task type Traditional AID

µ σ µ σ

Control 162 112 24 21

Problem solving 121 131 27 16

Everyday 2 4 8 12

Repeated control 28 24 12 6

Figure 2.8.: Mean time (in seconds) and standard deviation for task completion.
While the use of the AID device significantly cut down the execution
time for exceptional control and problem solving tasks, it was two to
four times slower for everyday tasks.

8. Post-test questionnaire.

9. Handing over of present to compensate for time.

2.6. Results

We collected both qualitative and quantitative results. Qualitative re-
sults used both the explicit answers from a post-test questionnaire ad-
ministered after all tasks were completed (reported in Section 2.6.2),
as well as notes and recordings taken during the tasks that captured
the participants’ thoughts through a think-aloud technique, which they
were instructed to employ (see Section 2.6.3). The quantitative results
simply measured the time between the start and completion of a task,
though for tasks involving an answer rather than asking the user to
operate an appliance (i.e., the problem solving tasks, see Table 2.2 on
page 23), the time until the user started to reply was measured. This
data is reported in the following section.

2.6. Results 33

2.6.1. Quantitative results

Figure 2.8 shows the average task completion times we measured in each
condition. As predicted, the mean time of task completion decreased
for control tasks and problem solving tasks, whereas it increased for
everyday tasks.
We further examined the collected data using analysis of variance

(ANOVA). We ran a two-way ANOVA with factors interaction method
and task type, which confirmed a significant main effect of interac-
tion method (p < .001, F1,736 = 100.23). Also, a significant main
effect of task type (p < .001, F3,736 = 661.18) and a significant in-
teraction effect between task type and interaction method (p < .001,
F3,736 = 218.68) was found. Focusing on this interaction effect, we
continued by analyzing the effects of interaction method for each of the
four task types. For each task type, an ANOVA showed that there was
a significant difference between interaction methods (control tasks: p <
.001, F1,366 = 600.1; problem solving tasks: p < .001, F1,64 = 34.823;
everyday tasks: p < .001, F1,182 = 198.302; repeated control tasks:
p < .001, F1,124 = 44.851). We therefore find our hypotheses confirmed
that mobile phone-based interaction significantly reduces completion
times for control and problem solving tasks, while significantly slowing
down everyday tasks. Interestingly, controlling an appliance with the
mobile phone was significantly faster even after participants had famil-
iarized themselves with the task and could be considered experienced
users of the respective appliance.
We also studied the effects of other factors, namely age, gender, and

experience with advanced phone features. We did not find an interac-
tion effect with interaction method for any of these factors. We there-
fore conclude that, for the 23 participants in our study, the use of the
AID was beneficial irrespective of their gender, age, or previous mobile
phone experience.
An individual analysis of our 18 tasks showed a consistent pattern.

For each of the everyday tasks, traditional interaction proved faster,
while users were faster using the AID in all other cases. However, there
was a single exception from this picture, namely the repeated control
tasks performed on the printer. While interaction with the AID took
slightly less time (MAID = 16.9s,Mtrad = 21.6s), this difference fell
short of significance at the .05 level (p = .177, F1,40 = 1.885). We
presume that this is due to the well designed user interface of the printer

34 Chapter 2. Usability of Mobile Phones for Operating Appliances

used in our study. Several users made the informal comment that they
liked the layout of the printer’s control panel and that it was relatively
easy to navigate in its menu because buttons were labeled in a helpful
and familiar way.
Apart from the repeated control tasks, we found the results of the

problem solving tasks particularly interesting. While in one task the
appliance supplied context (i.e., an error code) that the AID used to
automatically show the relevant instructions, it did not do so in the two
other repeated control tasks. We merely gave participants some unspe-
cific information about a problem that they had to find manually using
either the printed user guide or the AID. Even though we made sure the
AID covered all the topics we had found in the printed documentation,
participants were significantly faster when they used the AID (printer:
Mtrad = 253s,MAID = 25s; dishwasher: Mtrad = 91s,MAID = 29s).
This is surprising especially for the dishwasher, as its user manual is
very compact and, as we find, well made. However, the mobile phone’s
menu hierarchies that allow for the structuring of content seem to prove
beneficial for this task.

2.6.2. Qualitative results

Figure 2.9 summarizes the results of the final contest, in which partic-
ipants had to solve a list of tasks in the shortest possible time, but for
which they could freely choose the interaction method. Overall, the
AID was used in 69% of the control and problem solving tasks, even
when participants had previously used the traditional user interface in
similar situations just as effectively as the AID. Most of the participants
stated that already slightly different tasks would make them insecure,
fearing that they would not know where to find it in the appliance’s
menu structure. They would therefore opt for the AID, as it “gives me
a better overview than the printer’s two-line display and allows me to
complete the task faster ”, as one participant explained. On the other
hand, participants hardly used the AID to store or select a station in the
radio’s preset memory, stating that they didn’t even think of using the
AID, as it was “just more natural ” to interact with the radio directly.
In the post-test questionnaire, we asked users to rate a number of

statements on a five-point Likert scale. The statements and participant
responses are shown in Figure 2.10. We also asked users to rate the
value of the AID in some given situations. The results of this question

2.6. Results 35

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Printer: Clear paper jam

Radio: Store preset station

Printer: Cancel print job

Coffee maker: Adjust water hardness

Printer: Fix error 64

Radio: Select preset station

Printer: Activate EconoMode

AID
Traditional
Both
Neither

Figure 2.9.: Interaction method usage during contest. For the final contest, partici-
pants were free to use any method that they felt most comfortable with
for each taks. Out of the seven tasks, four were previously completed
tasks, while three (“Activate EconoMode”, “Fix error 64”, “Clear paper
jam”) were new tasks.

are depicted in Figure 2.11.
Finally, every participant was asked to answer three concluding ques-

tions. At the outset, we asked them: “Do you use appliances for which
you would like to have the AID? If so, please name these appliances.”
22 participants (96%) replied positively and listed both devices from
our study, as well as microwave ovens, TVs, DVD players, car radios,
heating systems, and “appliances that you change often, such as rental
cars”. Only 1 participant (4%) would not want our AID. We also asked:
“If you owned an AID for an appliance, would it be ok if you could ac-
cess rarely used functions only through the AID? Why / why not? ” 18
(78%) of our users agreed, 4 (17%) disagreed, and 1 participant was not
sure. Some participants expressed concern that they would no longer
be able to interact with their appliances in case their mobile phone or
PDA was unavailable.
We ended our questionnaire with the following question: “Could you

imagine accessing all functions offered by an appliance only through
the AID? Why / why not? ” While some participants could imagine
giving up the traditional interface (4 users, i.e., 17%), most replied
that a software-only user interface was not an option for them (17 par-
ticipants, i.e., 74%). 2 participants were unsure. Most users answered
that they would rather not use the AID for simple tasks. However, two
respondents stated that they might be willing to accept an appliance
without a traditional user interface if its price were lowered in turn.
Two participants added that they could think of appliances that would
benefit from a full replacement of the user interface, as this would make

36 Chapter 2. Usability of Mobile Phones for Operating Appliances

"Better user manuals
would render the AID

unnecessary."

"If I had an AID for my
appliances, I'd use

functions that I find too
complicated today."

"The AID made me feel
more confident when I
used the appliances."

"I liked using the AID."

4

3

2

1

0

A
gr

ee
m

en
t

Figure 2.10.: Subjective Likert scale responses. Participants rated the usefulness of
the AID device after they finished all tasks (0 = strongly disagree, 4
= strongly agree) — Error bars: +/- 1 SD.

ugly control panels redundant and improve visual appearance.

2.6.3. User feedback

In the course of the study, there were a number of issues that were
brought up by the participants. In this section, we review these infor-
mal comments.
The biggest concern that users expressed was that of increasing de-

pendence on technology, and in particular the mobile phone, through
the use of an AID device. Most often, participants wondered how they
would use their appliances if their phone was misplaced, lost, stolen,
malfunctioning, without network coverage, or had simply run out of
battery. Two participants also mentioned that they did not want to
always carry their phone with them, just to be ready to use their ap-
pliances. Other concerns were more diffuse: “I don’t fully trust the
mobile phone and would like to have the buttons on the device. Just
in case. . . ” Someone else perceived the AID as yet another burden in
everyday life: “We’ve got so many devices around us already, so I don’t
think we need another one just for rarely used functions.”
What most participants pointed out as the AID’s biggest advantage

over traditional interfaces was its menu structure. It was described
as “easy to use”, “well structured ”, “clearly laid out ”, and “intuitive”.
Many participants felt that this was mainly due to the larger display
size, especially when compared to a small appliance LCD. Several par-
ticipants explained that they would hardly get lost in the menu, thus
enabling them to easily find even previously unknown functions. One

2.6. Results 37

Looking up arbitrary
information (user
manual on AID)

Explanation of
error codes

Adjusting settingsAccessing
everyday functions

3

2.5

2

1.5

1

0.5

0

Pe
rc

ei
ve

d
va

lu
e

Figure 2.11.: Concluding questions. Participants were asked to rate the perceived
value of the AID device in various situations (0 = no value, 3 = great
value) — Error bars: +/- 1 SD.

participant said: “If I had an AID, I could forget about how I did some-
thing and still be able to do it a few months later without any problems.”
Another participant explained how the AID’s menu system allowed her
to interactively explore the full range of functions: “I always like to
gain an overview of all available functions of my appliances. The AID
would be ideal for that.”
While they liked our prototype implementation of an AID, some par-

ticipants expressed doubt if an actual appliance manufacturer would
be able to come up with an equally user-friendly piece of software
for their own products. One participant suggested that “every man-
ufacturer should include a menu item called ‘troubleshooting’, just like
all Windows applications have a ‘Help’ menu.” Many users especially
liked the immediate reaction of the AID to special situations, e.g., by
displaying helpful instructions instead of just a status code. As one
participant put it: “It is also extremely convenient that I’m immedi-
ately told what the cause of an error is.” However, there were also cases
where context-sensitive behavior confused people more than it helped,
as they expected the normal menu to show up.
Most participants expressed their frustration with user manuals. As

one user said: “[Most handbooks contain] too much information that
I don’t actually want to read.” They therefore found it very helpful
to have the essential problem- or task-oriented information available
on the AID and were not bothered by its relatively small display size.
We asked some participants if a well made quick-reference guide could
make this content obsolete on the AID. Most of them agreed that this
was not the case: “I don’t want to go find a manual that I anyway

38 Chapter 2. Usability of Mobile Phones for Operating Appliances

may have thrown away.” Two participants also said that the AID could
be improved by adding search capabilities because “then I can search
for keywords with CTRL+F just like when I read a manual in PDF
format.”
Overall, while having some concerns on the ever-increasing depen-

dence on technology, participants generally liked the AID and gave very
positive feedback on its use. In one participant’s words: "In the begin-
ning I was sceptical, but now I’m very excited."

2.7. Discussion

At first sight, our measurements seem to disagree with the results of the
user study by Nichols et al. [104], which showed that their participants
took twice as long interacting with the actual physical interface even
for those everyday tasks that required only “one or two button presses
on the actual appliance”. Nichols et al. attribute this superiority of
the handheld approach to the “poor labeling, insufficient feedback, and
overloading of some buttons with multiple functions” of the appliances
under test. With respect to the AT&T phone they used for some of their
experiments, Nichols et al. mention that “this phone has several but-
tons that can be pressed and held to activate another function. There
is no text on the telephone to indicate this”. Nichols et al. specifically
addressed these drawbacks of the physical interface in the handheld
implementation by providing an intuitive virtual interface, which ex-
plains the superiority of the handheld approach. In our experiments,
the physical user interface on the four appliances is very intuitive and
convenient for all four different everyday tasks. In the paper by Nichols
et al. there is also little information on the actual tasks that were per-
formed. The result is that we cannot compare the “one or two button”
tasks mentioned by Nichols et al. with the everyday “one button” tasks
we studied.
In our opinion, the value of the mobile phone to complete exceptional

tasks stems from the shortcomings of the physical user interfaces and
the corresponding manuals. User interface designers commonly have
to deal with the conflicting constraints of cost, size, and usability. On
the one hand, expensive high-resolution displays with many buttons
help to build a user interface that is convenient and intuitive even for
uncommon tasks. On the other hand, the cost and size restrictions
typically limit the number of buttons available and the size and res-

2.7. Discussion 39

olution of displays. For most appliances, the result is that interface
designers are forced to implement uncommon tasks through a combi-
nation of buttons. The corresponding instructions are then listed in a
complementary manual. This requires a significant effort from the user,
however. The manual might not even be close-by, there is no direct link
to the corresponding section in the manual, and the limited expressive-
ness of a manual makes the association of the printed instructions with
the actual physical interface of the appliance non-trivial. The AID ad-
dresses all of these shortcomings, since it represents a cost-effective
way to equip any appliance with a high-resolution display and a mul-
titude of buttons. It thus enables user interface designers to address
the conflicting constraints of usability, cost, and size associated with
user interface design by leveraging the external mobile phone with its
significant display and input capabilities.

The AID provides not only a high-resolution display and input ca-
pabilities, it also permits the personalization of the user interface due
to the personal nature of the mobile phone. While designers usually
have to develop an interface for the average user, the AID concept al-
lows them to build a software interface that automatically adapts the
language, adjusts the features available according to the capabilities of
the user, and lists the history of recently performed tasks. The user
interface designer would also benefit from the availability of well sup-
ported software development platforms, such as Java ME, Symbian,
Android, and others. The long range communication capabilities of
the mobile phone might also facilitate software maintenance, since the
user interfaces can be updated remotely.

In our study, the AID software was preloaded on the mobile phone,
and we simulated the appliance identification with a mobile phone.
The rationale for simulating the identification was the limited display
and computing capabilities of today’s NFC-enabled mobile phones and
the fact that our pilot study indicated that there was no discernable
difference between real and simulated NFC action. As NFC technol-
ogy becomes available in mobile phones with high-resolution displays,
future user studies could incorporate the appliance identification and
possibly also the downloading of the software. While we do not believe
that this will have an impact on the findings of our study, it would
make the overall application scenario even more realistic.

40 Chapter 2. Usability of Mobile Phones for Operating Appliances

2.8. Summary

The goal of our study was to assess the benefits and limits of using
mobile devices, such as PDAs or mobile phones, for appliance control.
While the idea of a universal remote control is an appealing one, given
the technical capabilities and prevalence of such devices, we questioned
the sheer limitless uses that today’s designers and researchers often
envision for them. Hypothesizing that universal appliance controllers
might be superior to traditional, physical appliance interfaces in ex-
ceptional situations only, but not for carrying out everyday tasks, we
had our 23 test subjects perform a series of 18 tasks distributed among
four appliances. By collecting quantitative measurements, we could
confirm that our users were significantly faster when having to solve
exceptional tasks with our AID (our prototypical universal appliance
controller), but slower when performing everyday tasks. Our qualita-
tive methods further confirmed that users would often prefer using the
AID, but still liked the “natural interaction” with a device if a simple,
straightforward task was to be solved and the tasks required them to
be in the vicinity of the appliance anyway.
These findings seem to suggest that hybrid approaches that combine

traditional, haptic user interfaces with extended user interfaces on a
mobile device offer the best of both worlds. Users could continue to
directly interact with appliances, which is both faster and more conve-
nient in most everyday situations. However, in special situations where
users would have to remember complex and clumsy sequences of push-
ing buttons or manipulating the appliance, it is much more intuitive
to use a mobile device with its powerful and versatile user interface for
interaction. The results thus suggest that the proliferation of mobile
phones with high-resolution displays and short-range communication
capabilities will enable appliance manufacturers to overcome the con-
flicting constraints on cost, size, and usability of the user interface, by
leveraging the user’s mobile phone.

3. Publishing and Discovering
Services for Tagged Objects

3.1. Introduction

As we have seen above, research in ubiquitous computing has come
up with a wide variety of applications for the paradigm of augmenting
physical tagged products with digital information and services. De-
spite the diversity of the proposed scenarios, most of them assume
monolithic, centrally administrated services — such as calling up an
online dictionary when putting a bound dictionary on the desk [145],
opening a product’s web page [72], or launching an application-specific
user interface [123].
However, the general availability of information tags and correspond-

ing reader devices opens up the possibility for novel and innovative
services that go beyond such isolated application domains. In order to
leverage the potential of such applications, the underlying data that
is linked to tagged objects should be available in a standardized form
that eases exchange and use within different domains. While it is unre-
alistic to assume that a general-purpose data format can be designed,
agrement on basic techniques to publish and exchange product-related
information is needed for two main reasons: First, such an infrastruc-
ture is a necessary condition for the ability to find relevant information
across application boundaries. Second, it removes the need for devel-
opers to design and implement afresh a custom solution for a generic
problem.
Ideally, such an infrastructure would allow any party (e.g., manu-

facturers, consumer interest groups, governmental agencies, or even
enthusiastic end-users) to dynamically add information and services to
a specific product or product group, which could then be presented to
and selected by users right when they scan a product.
In this chapter, we propose an open lookup infrastructure for tagged

items, which allows

42 Chapter 3. Publishing and Discovering Services for Tagged Objects

1. manufacturers, third parties, and individuals to publish product-
specific resources (i.e., information and services), and

2. users to dynamically find and use these resources.

We begin by describing a set of envisioned scenarios and an analy-
sis of the corresponding requirements for our lookup infrastructure in
Section 3.2. The overall architecture of our system is presented in Sec-
tion 3.4, and a prototypical implementation is reviewed in Section 3.5.
Section 3.6 concludes with a discussion of three prototype applications
that we built on top of our infrastructure, demonstrating the value and
feasibility of our approach.

3.2. Application Scenarios

Augmenting physical products for end-user lookup is an attractive op-
tion, especially for manufacturers. A frozen food company could, e.g.,
differentiate its frozen spinach by providing an instant “recipe of the
week” suggestion, which customers would be able to access simply
by pointing their mobile phone at the product. At the same time, a
consumer interest organization could provide background information
about the product’s health benefits, e.g., praising it for the organic fer-
tilizer that was used for it, or maybe warning consumers of genetically
modified ingredients. Another example scenario for end-user lookup
could be a faulty appliance, such as a printer or a coffee maker, which
would provide a diagnostic code over an integrated NFC interface. By
touching the appliance with a mobile phone, users could pick up this
diagnostic information and receive instructions on how to resolve the
problem. Alternatively, a list of nearby repair centers could be dis-
played. For missing consumables (e.g., printing paper, coffee capsules,
or filter units), third party stores could offer users one-click reorder-
ing options. Last but not least, tagged products could also provide
machine-readable instructions for other appliances, which would, e.g.,
allow a microwave oven to prepare a frozen meal, or a washing machine
to warn users when the wrong temperature for a certain garment is
selected.

3.3. Requirements 43

3.3. Requirements

Based on these scenarios, we can derive a number of high-level re-
quirements for an infrastructure that should facilitate the discovery
of resources (i.e., information and services) associated with a physical
product.

Publication, search, and retrieval of resources In general, there
can be many resources that are linked to a single tagged product
at the same time. Our infrastructure must therefore provide mech-
anisms to store, structure, and find these resources. At the same
time, an application might want to limit or focus the resources re-
turned when looking up information and services associated with
a given tagged product. Such search restrictions could be based on
certain topics (e.g., “health aspects”) or certain types of resources
to look up (e.g., “expiration date”). In addition, the notion of con-
text [29] should be supported as a search criterion. The inclusion
of context allows an application to generate a meaningful ranking
of relevant resources as well as to remove resources that are not
considered relevant. Typical examples are the user’s location when
looking up a nearby repair center for a broken appliance or the ap-
pliance’s error status to find the matching online troubleshooting
guide.

Openness As the above example scenarios illustrate, a number of dif-
ferent and possibly dissenting stakeholders can have an interest
in associating their resources with a given product. We therefore
want to allow both product manufacturers and third parties (such
as advocacy organizations, competitors, or individuals) to be able
to publish resources for a particular product. Control over the
system should not be concentrated, and a party should not rely
on another party’s cooperation when publishing a resource. Along
the same lines, our system should also allow for the sharing of
publicly available resources. We expect the general availability of
resources and a supporting infrastructure to prompt the develop-
ment of numerous innovative applications [79], just like it has been
the case with web technology and the aggregation of diverse data
sources in mashups.

Extensibility and flexibility In our application scenarios above, re-
sources can be of very different types. Our infrastructure should

44 Chapter 3. Publishing and Discovering Services for Tagged Objects

thus not try to define a limited set of foreseen resource types and
their uses. Rather than setting detailed standards that have a
tendency of being either fairly rigid or overly complex, it should
embrace evolution and change by defining “just enough” for partic-
ipants to interoperate. Our infrastructure should therefore provide
extension points that allow third parties, be it individuals or entire
industries, to come up with their own resource types that can be
shared through our system.

Interoperability Our infrastructure should be interoperable with ex-
isting information systems that already hold data. It should be
easy to integrate such data, for example from an enterprise re-
source planning (ERP) system, and make them accessible as re-
sources. In addition, it should also be interoperable with different
numbering schemes, both current and future. There are already
several product identifiers, such as the Electronic Product Code
(EPC) [34], mainly used in the RFID domain, or the Global Trade
Item Number (GTIN) [55], which is encoded in the majority of
today’s product barcodes. Future products may be known un-
der several identities, such as an IPv6 address in addition to an
EPC, or they may be labeled with entirely new identifiers. Our
infrastructure should therefore be able to accommodate emerging
numbering schemes.

Lightweight and secure architecture Most of the discussed appli-
cations run on either mobile devices or embedded systems. Due
to the resource constraints typically found on these platforms, we
need to employ lightweight protocols in our lookup infrastructure.
The open nature of our system mandates the use of security mech-
anisms. For example, in certain applications users must be able
to determine the authenticity of a party providing a resource.

3.4. Architecture

In this section, we discuss the architecture and the four core concepts
of our lookup intrastructure (see Figure 3.1):

• resources and their descriptions

• resource repositories

3.4. Architecture 45

Resource Consumers

Resource
Repository

Resource
Repository

Resource
Repository

Resource
Repository

Manufacturer
Resolver Service

Manu-
facturer

Third Party

Third Party

S
ea

rc
h

S
er

vi
ce

Figure 3.1.: Open lookup infrastructure. The center of our architecture are resource
repositories containing resource descriptions. In order to find one or
more repositories, given a particular product tag, mobile devices or
stationary appliances either access a known repository (e.g., of their
favorite consumer interest group), use the manufacturer resolver ser-
vice, or query generic search services.

• a manufacturer resolver service

• search services

3.4.1. Resources and resource descriptions

Resources are at the core of our system. They offer information on, or
services for, a physical product. Typical examples of resources range
from a simple web site to complex web services. Resources can be
provided by the original product manufacturer or any other party. Re-
source consumers can be product owners, business partners, or appli-
ances. For every resource, a resource provider must create a resource
description that specifies all the metadata that is needed to find and
consume the information or service. The relation between resources
and resource descriptions is illustrated in Figure 3.2.
Figure 3.3 shows an example of a resource description. A resource

description includes the following main elements:

Resource ID The resource ID element is a pseudo-random value that
serves as a globally unique identifier (GUID) for the resource.

46 Chapter 3. Publishing and Discovering Services for Tagged Objects

User Manual
For: 7610200337481
At: http://www...

Product Review
For: 7610200337481
At: http://reviews...

Re-ordering Service
For: 7610200337481
At: http://www...

Resources Resource Descriptions Tagged Product Res. Consumer

Figure 3.2.: Resource descriptions are used to establish a link between physical
objects and resources.

Tag ID The tag ID element denotes the identifiers of those tags on
physical products that a resource is associated with. The tag ID
can specify a product at an item- or class-level. Different num-
bering schemes, such as EPC and GTIN (i.e., EAN/UPC), are
supported. Note that a resource can carry several tag IDs at the
same time and thus apply to several products. This can be helpful,
e.g., when the same (or a similar) product is sold under different
identifiers.

Profile The profile element can be used to express that the resource
adheres to the syntax and semantics that are defined in a cer-
tain profile. Typically, a profile will be defined by an industry
(e.g., in a standardization group). The food industry could, for
example, specify in a profile how the expiration date of a product
is to be represented in a resource. Profiles are essential in cases
where a resource is not interpreted by humans, but processed by
an appliance. Note that this element does not actually contain
a syntactical or semantical description, but merely serves as an
identifier for a format agreed upon by participants, similar to the
Content-Type field in HTTP.

URL The URL element points to the actual resource (e.g., a web site).
Alternatively, the resource can be stored directly in the data el-
ement if it is relatively small (e.g., a product’s expiration date),
which avoids an additional round trip. The syntax and seman-
tics of the data available via either the URL or data element are

3.4. Architecture 47

resource id: f5f7305bf097af39c68b790d817d7889f788f222
tag id: urn:epc:id:sgtin:0614141.100734.1245

profile: http://foodindustry.org/profiles/expiration-date/
url: (empty)

data: 2010-05-31
context: (empty)

title: Expiration date
description: Expiration date for OrganicMilk, 1 liter

signature: (empty)

Figure 3.3.: Example resource description. Descriptions can be expressed in var-
ious formats, e.g., XML or even binary, depending on the particular
communication and storage needs of a product (example given in an
abstract format).

defined by the resource’s profile as indicated in the profile element.

Context If specified, the context field defines in which situations the
resource is considered relevant. In order to enable interoperability,
we predefine the following context elements that can be used to
restrict a resource’s applicability:

• time (date, time, weekday)

• location (coordinates, city, country)

• status of the appliance the user interacts with (expressed as
a simple string)

Note that this list is easily extensible by resource providers. Exact
values, value ranges, and regular expressions are supported for
each context element.

Title The title element assigns the resource a short title in natural
language.

Desciption The description element describes the resource in natural
language.

Signature The resource provider can digitally sign the resource de-
scription using the optional signature element.

Figure 3.3 shows an example of a resource description, in this case
describing the expiration date of a particular bottle of milk. Note that
the example is given in an abstract format, which in practice can be
instantiated in a number of formats, such as XML or even binary form,

48 Chapter 3. Publishing and Discovering Services for Tagged Objects

depending on the particular use case. Also, resource descriptions for
food products might equally well be entire data sets (e.g., expiration
date, allergy information, country of origin) instead of just a single
data item (e.g., expiration date) as in the above example — this can
be standardized as needed by the various standard bodies.

3.4.2. Resource repository

The resource repository is responsible for storing resource descriptions
and making them available to resource consumers. Resource reposito-
ries can be deployed by any party interested in offering resources, such
as a manufacturer or an advocacy group. In this way, a single resource
repository typically contains the descriptions of resources that are the-
matically related. Operators can flexibly configure access restrictions
to their resource repositories. For example, a manufacturer will in most
cases run a read-only repository, while a community-operated product
reviews repository might allow anyone to add or even update resource
descriptions (very much like a wiki system). The same applies to the
querying side, where a consumer reviews publisher might limit access
to its repository to paying customers only.
The three basic operations offered by a repository are Register

Resource to publish a resource description, RemoveResource to delete
a published description, and LookupResource, which returns the de-
scriptions of those resources matching the query conditions provided
by the caller. A query can consist of up to four elements:

Tag ID The tag ID element must be provided to denote the product
for which resources are looked up. A lookup can be performed at
both class- and item-level.

Profile This element indicates that only resources adhering to the
given profile should be retrieved.

Search term A search term element can be specified to restrict the
resulting resources based on their textual description.

Context Using the context element, the caller can specify an arbi-
trary number of context values. Each value must be marked as
either a hint (favoring resources with a matching context element)
or a requirement (excluding resources with no matching context
element).

3.4. Architecture 49

tag id: urn:epc:id:sgtin:0652642.800031.400
profile: http://appliances.org/troubleshooting-hints/

search term: (empty)
context: status=E683[hint]

Figure 3.4.: Example lookup request sent to a resource repository. Based on the
printer’s status that was retrieved via its NFC interface, a user could
query directly for information pertaining to the particular printer in
the context “status=E683”.

A typical lookup request is depicted in Figure 3.4. It shows a request
as it could, for example, be sent to a printer manufacturer’s resource
repository in order to obtain troubleshooting instructions when the
printer is in a malfunctioning state. The printer’s status code is read
by the mobile phone’s NFC module and used as context information to
narrow down the lookup.
A resource repository can also be configured to allow user feedback

on resources. The incorporation of feedback allows community-based
applications where the quality of content is controlled by users submit-
ting confidence values for resources. At the moment, only a SendBinary
Feedback operation is provided, which can be called by users to express
their approval or disapproval of a resource. The order in which resource
descriptions are returned by the repository depends on these ratings.
Finally, the resource repository can be configured to synthesize resource
descriptions of a specific profile through custom-built wrappers. Wrap-
pers can be used to integrate existing information systems, such as an
ERP, into the lookup infrastructure.
Note that resource repositories are in principle no different from tra-

ditional web servers. Therefore, the same well-established mechanisms
for achieving security, reliability, and scalability can be used. For ex-
ample, a repository could be replicated and made accessible through a
load balancer that routes traffic according to the individual repositories’
availability and load.

3.4.3. Manufacturer resolver service and search service

In order to make use of resource descriptions, users must be able to
locate the resource repositories containing them. This is the task of
the manufacturer resolver service and search services. They connect

50 Chapter 3. Publishing and Discovering Services for Tagged Objects

a product tag ID to a resource repository where resource descriptions
pertaining to the product can be found.
The use cases in which the various deployed resource repositories

are accessed by potential resource consumers can be divided into four
groups:

1. In the first group, only the product manufacturer’s repository is
of interest. An example for such a case is a washing machine that
checks the handling instructions of every garment put into it.

2. In the second group, there is a single repository that is used for
every lookup. An example for this case is a service that aggre-
gates prices from several stores and lets a user check whether the
physical product at hand could be obtained from a cheaper source.

3. In the third group, a lookup is performed in several repositories at
the same time. An example for such a case is a browser application
that lets users specify a number of repositories operated by interest
groups (e.g., environmental, political, etc.) they care about. The
browser would then, for example, display all reviews regarding a
product that can be found in the repositories relevant to the user’s
interests. We envision repository directories similar to the Dmoz
Open Directory Project1 from which users can pick the repositories
they find interesting.

4. In the fourth group, a user wants to search all repositories for
resources associated with a given product. This case comes into
play when no relevant resources can be found in the repositories
the user has registered in his or her browser. In this case, the
consumer would simply query his or her favorite search service for
relevant repositories.

It is clear from these considerations that the architecture needs to
include both a manufacturer resolver service that links a tag ID to the
manufacturer’s resource repository as well as a search service to find
resources across the boundaries of single repositories.
Why is there only a resolver service for manufacturers? Why not

for distributors, vendors, or consumer interest groups? After all, the
example scenarios in Section 3.2 above illustrated that a wide variety of
parties might want to offer their descriptions to consumers, each for an

1www.dmoz.org

www.dmoz.org

3.4. Architecture 51

equally valid reason. The question of who gets to supply information
to a product, i.e., who gets to “define” its properties, is actually highly
political. The open lookup infrastructure uses a pragmatic approach,
inspired both by technology and legal realities. Manufacturers already
play a special role in the life of a product. They are responsible for its
safety, they supply manuals, organize warranty and repair, and often
also handle its recycling. In many scenarios, manufacturers thus will be
legally the main, if not the only, authoritative source for information.
From a technical point of view, manufacturers are also much easier to
localize, given the product’s identifier. This is because the current EPC
standard (and, to some extent, also the EAN/UPC standards) contain
special mechanisms to quickly identify a product’s manufacturer from
an EPC or GTIN code. Our manufacturer resolver service makes use of
this mechanism (see Section 3.5.2 below for details), thus ensuring that
users can always locate the repository of a product’s manufacturer.
All other information and service providers are harder to identify and

find. While one could conceive a central registry where all repositories
would be registered, this would violate our openness and extensibility
principles set forth in Section 3.2. Instead, we decided to complement
our manufacturer resolver with an orthogonal, decentralized, search-
based approach, building on existing web search technology. Just as
today’s web spiders and robots, specific resource search services would
crawl repositories, create an index, and answer search queries (see Fig-
ure 3.5). A query passed to a search service’s Search operation consists
of the same four elements (tag ID, profile, search term, context – see
above) as a LookupResource request sent to a single resource repos-
itory.2 Of course, users can also directly access repositories (e.g., of
their favorite product review magazine) by manually entering its ad-
dress, by receiving the address via Bluetooth or SMS, or by finding it
in a directory of resource repositories.

3.4.4. Deployment and use

How would these architectural parts be used to deploy and/or make
use of individual product descriptions? This depends on the individual
stakeholder.

2While this mechanism could in principle be also applied to the manufacturer’s repository, thus
eliminating the need for a special manufacturer resolver, we decided to make use of existing
resolution mechanisms in order to guarantee users that at least the manufacturer information
can be located.

52 Chapter 3. Publishing and Discovering Services for Tagged Objects

Web
serverResource

repository

Search
service

Resource
consumer

Resource
repository

Web
server

Web
server

Index

Crawl web sitesIndex

Query

Figure 3.5.: Search service and its sources, including resource repositories and tra-
ditional web sites.

A manufacturer would begin with setting up a public, read-only re-
source repository, e.g., using an add-in to a standard web server. It
would then create resources for each of its products – either informa-
tional resources such as web pages or user manuals, or service resources,
such as a recipe service or a diagnostics program – and prepare cor-
responding resource descriptions for each of these resources. These
would be entered into its resource repository, which in turn would be
registered with the manufacturer resolver service.3

A third party wishing to provide information for a certain product
(e.g., an advocacy organization or even a government agency) would
start out similarly. After setting up a repository, creating a number of
resources and publishing their descriptions in the repository, however,
a third party would need to advertise this repository to potential users,
as it cannot make use of the manufacturer resolver service. Instead, it
would register its resource repository with a search service or repository
directory (similar to the early Yahoo! or the Dmoz Open Directory
Project), and/or communicate its repository URL to end-users through
traditional advertising (e.g., TV, SMS, and print media).
Without any special configuration, end-users can always contact the

manufacturer’s resource repository, which can be found via the manu-
facturer resolver service, in order to retrieve a list of “official” resources
offered for a product. Similarly, they can use a search service to find
resources available from third parties that have registered their reposi-
tory with the search service. Alternatively, they can manually configure
resource repositories that they find particularly interesting, using the
above mentioned out-of-band advertising mechanisms.
As with the World Wide Web, the cost of running our infrastructure is

3See Section 3.5.2 for details on how the manufacturer’s resolver service is registered.

3.5. Implementation 53

borne by those publishing resources. Parties interested in participating
must either set up their own resource repository (i.e., a dedicated server
operating on a 24/7 basis), or find someone to do so on their behalf (e.g.,
a hosting company). Just like the web, our repository infrastructure
can be built gradually and without central coordination.
Since anyone can publish arbitrary resources, data quality will be-

come an issue. Until sophisticated search engines that can provide
ranked results are available, we expect that word-of-mouth recommen-
dation and independent editorial review (e.g., popular press) will lead
to the emergence of a set of resource repositories that are known to
provide quality content. Just as it has become standard with web sites
today, manufacturers and third parties will eventually run and adver-
tise their repositories in both print and electronic media, treating them
as yet another means for differentiating their products and services.

3.5. Implementation

Based on the concepts described above, we implemented a prototype
of our resource lookup infrastructure. For each of its three building
blocks, the implementation is reviewed in this section.

3.5.1. Resource repository

Resource repositories are implemented using Java Servlets using the
Spring framework4 and a relational database for resource, feedback,
and user management. Fulltext search capabilities are implemented
using the Apache Lucene5 search engine. The implementation provides
bindings to SOAP, XML-RPC, and REST [41]. Optionally, TLS can
be used for increased security.

3.5.2. Manufacturer resolver service

Resolving the manufacturer’s resource repository is implemented using
the Object Naming Service (ONS) [33]. ONS is a global infrastruc-
ture that is used as part of EPCglobal’s EPC Network to find the
EPCIS repository6 of a product’s manufacturer. It resolves a prod-

4www.springsource.org
5http://lucene.apache.org
6EPCIS stands for EPC Information Services and is an integral part of the EPC Network.
EPCIS holds logistical information on a product in the EPC-enabled industrial supply chain.

www.springsource.org
http://lucene.apache.org

54 Chapter 3. Publishing and Discovering Services for Tagged Objects

uct’s identifier (its EPC number) to a URL pointing to the correspond-
ing EPCIS repository by leveraging the existing Domain Name Sys-
tem (DNS) infrastructure. The basic principle of ONS is to append
“.sgtin.id.onsepc.com” to the EPC’s string representation with the item
reference stripped. Using the standard DNS infrastructure, the re-
sulting domain name (e.g., 000024.0614141.sgtin.id.onsepc.com)
is then queried for “NAPTR” records (a type of record as defined by
the DNS specification [87]), which contain the URL to the manufac-
turer. We use a custom value (EPC+ResRep) in the service field of the
NAPTR record in order to distinguish our URLs pointing to the man-
ufacturer’s resource repository from other data in the ONS (typically
URLs pointing to an EPCIS repository).

3.5.3. Search service

We believe that indexing of resource repositories is a task that could
be best done by already existing web search services. In our prototype
system, we developed a simple search service based on the Apache
Lucene search engine. Our search service crawls all registered resource
repositories, creates an index, and can be queried using the Search
operation.
In addition to this, we extended our search service implementation

beyond crawling resource repositories. The internet is full of stan-
dard web pages containing information that pertain to physical prod-
ucts. Such information ranges from product reviews to user guides
and blog entries. If we consider such standard web pages as poten-
tial resources linked to physical products, we can easily build a search
service for these particular resources. Similarly to the Technorati blog
search service, we use an empty “anchor” tag (i.e., an <a/> HTML
element) to mark a web page as being a resource belonging to a cer-
tain physical product. A weblog author could for example link a post-
ing to a physical product with EAN number 7610200337481 by in-
cluding the element <a href="http://tagged.example.org/gtin/
7610200337481"/> as a marking into the HTML source code. Note
how this link does not enclose any text, which is how traditional hy-
perlinks work. Instead, this singular anchor indicates that the entire
page applies to the referenced resource while remaining invisible to users
viewing the page in a traditional web browser. Similarly, an author can
indicate the context in which the web page is considered relevant. An el-

http://tagged.example.org/gtin/7610200337481
http://tagged.example.org/gtin/7610200337481

3.5. Implementation 55

Figure 3.6.: Web page with marking for search service. By including the two <a>
elements (printed in red), the author of this web page indicates that
it pertains to tagged products with the EPC manager set to 0614141,
the EPC class set to 100932 and a device status code of “JAMA1”. In
other words, the page is relevant to a particular printer model in a
particular device status. Note that the <a> tags are not usually visible
and are printed for illustrative purposes only.

ement of <a href="http://tagged.example.org/context/status/
JAMA1"/> would indicate that the containing web page applies to sit-
uations where the tagged object’s error status is “JAMA1”. Figure 3.6
illustrates the use of such markings in traditional web pages.
As most search engines support a link operator to find all web pages

linking to a given URL, it is possible to leverage these systems to easily
find pages marked with such an <a/> element. Our original intention
was to implement the search service around one of the large internet
search engines. However, as this turned out not to work reliably, we
again used Apache Lucene as the underlying search technology. When
the search service receives a Search request, it internally queries the
Lucene search engine, converts the search results into resource descrip-
tions with the profile element set to “webpage” and the URL element
set to the respective web page’s address, and returns these resource

http://tagged.example.org/context/status/JAMA1
http://tagged.example.org/context/status/JAMA1

56 Chapter 3. Publishing and Discovering Services for Tagged Objects

descriptions to the caller.
Depending on the client’s request, matching resource descriptions

found in resource repositories and synthesized from web pages are re-
turned either separately or in aggregated form. Our search service
implementation provides bindings to both XML-RPC and REST.

3.6. Prototype Applications

(a) Results overview (b) Rate (c) Add resource

Figure 3.7.: “Calorie Tracker” application. An example for a community-built and
-maintained product repository.

To demonstrate the use of the open lookup infrastructure by devel-
opers of applications around tagged products as well as to validate our
architectural design choices, we built three prototype applications. All
demonstrators were implemented as Java MIDlets on a Nokia 3220 mo-
bile phone. The MIDlets use the REST binding to connect to both the
resource repositories and the search service. XML parsing of service
responses is implemented using kXML7, a lightweight parser for J2ME
with minimal memory footprint. Our demonstrators rely on the Nokia
3220’s integrated NFC reader, even though conventional EAN/UPC
barcode symbols could be equally used as tagging technology.

3.6.1. Calorie tracker

The first demonstrator allows users to track their daily calorie intake
(see Figure 3.7). Calorie information on products is fetched from a
user-extendable resource repository. The application demonstrates the
possibility of a community-built and -maintained resource repository,
by creating new resources and adding feedback to them directly on

7http://kxml.sourceforge.net

http://kxml.sourceforge.net

3.6. Prototype Applications 57

a mobile phone. To ensure basic quality control, we borrow a con-
cept from community websites and let users approve or disapprove of
resources created by other users. For every resource, the number of
positive and negative votes is recorded and taken into account when
resources are ranked in response to a query. If there are no entries for
a product, or if a user does not agree with any of the returned values,
a new resource can be created. When a user touches a product with
the NFC phone, a LookupResource request with the acquired tag ID
is performed on the “calories repository”. The result contains a list of
resource descriptions, consisting of the textual description, the calorie
number, and feedback, as partly shown in Figure 3.7(a). While brows-
ing through the results, the user has the possibility to rate a result.
Figure 3.7(b) shows the form for entering a rating for a resource. If
none of the suggestions are correct, the user can add a new resource as
shown in Figure 3.7(c).

Table 3.1.: Resource repository queries. Three examples for a shopping assistant
(see Section 3.6.2), trying to find information pertaining to an identified
product.

Repository LookupResource elements

manufacturer tagid=urn:epc:id:sgtin:0614141.749126.8372,
profile=allergy

price information tagid=urn:epc:id:sgtin:0614141.749126.8372,
profile=price

env. information tagid=urn:epc:id:sgtin:0614141.749126.8372,
profile=review

3.6.2. Shopping assistant

A second example application provides users with background infor-
mation on products. Upon scanning a tagged product, the “shopping
assistant” contacts three resource repositories: First, the manufacturer
to obtain allergy information according to the “allergy” profile that we
assume has been defined by the food industry. Second, a repository
implementing a wrapper to the product’s price information at Ama-
zon.com. Third, a repository offering information on environmental
issues of a given product. Based on the resources obtained from these
repositories, the assistant informs the user if the product conflicts with
his or her allergy profile, if it is available from Amazon and for what

58 Chapter 3. Publishing and Discovering Services for Tagged Objects

<resDescriptions repository="http://repos.allergy.org/">
<item resId="b5fe3a5bf077af32c68b790d817d7339f724f209">
<profile>allergy</profile>
<title>Allergy Information</title>
<data><almonds/></data>

</item>
</resDescriptions>

<resDescriptions repository="http://repos.envprot.org/">
<item resId="73cd125bf097af69c64b790d817d7899f788ffa7">
<profile>review</profile>
<title>Environmental Information</title>
<data>Acme Crop. has repeatedly distributed its toxic waste...</data>

</item>
</resDescriptions>

Figure 3.8.: Responses from resource repositories. These (abbreviated) replies il-
lustrate possible responses to the queries shown in Table 3.1.

(a) Overview (b) Details

Figure 3.9.: “Shopping assistant” application.

price, and if there are any environmental issues known about it. Ta-
ble 3.1 shows queries for an example product sent to the three reposito-
ries, while Figure 3.8 illustrates two received responses. All results are
aggregated and displayed as shown in Figures 3.9(a) and 3.9(b). The
Amazon book price resources are automatically created by a custom
wrapper that leverages the Amazon Web Services to fetch the current
price of books.

3.6.3. Appliance support

Our last application uses context in the form of a status code obtained
from a malfunctioning appliance, such as a printer, to find informa-
tion that can help solve the problem. We use the search service to
locate web pages, blog entries, or other sources of information that are

3.7. Related Work 59

(a) Printer help (b) Help details

Figure 3.10.: “Appliance support” application.

marked as relevant to the product at hand in the status encountered.
Figure 3.10(a) shows an overview of the results found for a printer in
a certain status. By selecting “Goto”, the user can launch the device’s
web browser and open the web page (Figure 3.10(b)).

3.7. Related Work

Resource discovery, i.e., finding resources by specifying a set of de-
sired attributes in a distributed environment, has been an active field
of research. However, many of the protocols in this domain, such as
Jini [138, 144], UPnP [142], SLP [56], and Konark [58], focus on ad-hoc
networks and, often relying on multicast, cannot easily be used outside
a single administrative community. Even though some (notably SLP)
scale better, these protocols are not suited for scaling to the extent
required by the application scenarios outlined above, which span many
administrative communities (i.e., the internet).
Another widely known protocol for automatic service discovery is

UDDI [141], which is used in the Web Services domain. Our approach
differs from UDDI and the earlier, but similar E-Speak [69, 68] proto-
cols. These systems are strongly oriented towards enterprise applica-
tions and should in principle scale well. They are part of a compre-
hensive framework that offers a rich feature set, including, for example,
replication, access control mechanisms, and comprehensive matchmak-
ing capabilities. However, they tend to be fairly complex and incur a
significant overhead with respect to both communication protocols and
software development. They are thus not ideal candidates for the sce-
narios we have in mind, where lookup operations should be lightweight

60 Chapter 3. Publishing and Discovering Services for Tagged Objects

and normally result in the exchange of small bits of information only.
Several systems have aimed to address the shortcomings of the above

procotols in a ubiquitous computing environment:
Friday et al. [46] propose a solution that extends the above proto-

cols by supporting arbitrary metadata (according to an application’s
needs) and integrating the various existing protocols. In a heteroge-
neous environment that relies on different discovery standards, they
deploy a “service interpreter” for every protocol used. An interpreter
collects all service announcements of the respective discovery proto-
col. Whenever an announcement is observed, it is converted into an
SQL “INSERT” statement that is submitted to a database. To find a
service, a client sends an SQL “SELECT” query to the database that
returns the matching services. This architecture has two main advan-
tages: First, a client can find a resource irrespective of the underlying
discovery protocol that is used to publish it. Second, custom attributes
to describe services can be supported by simply storing them in the
SQL database. This architecture is related to our open lookup infras-
tructure because both systems share the idea of a lightweight system
and support for arbitrary meta-data. However the main advantage of
Friday et al.’s approach is the integration of different protocols. Sev-
eral other aspects that are part of our open lookup infrastructure, such
as a possible data model to allow for custom extensions, context, or
discovery across database boundaries, are not discussed in their work.
Castelli et al. [20] present a data model and infrastructure for the

management of “contextual information” on the real world. Their data
model is based on “knowledge atoms”, four-field tuples that describe
the who, what, where, and when of facts inferred from sensors, such
as RFID readers. These knowledge atoms are stored in tuple spaces
that can be local or remote. As a typical example application, the
visualization of tuples in Google Maps is described. The idea of us-
ing several tuple spaces or repositories to store contextual information
resembles the one used by our infrastructure. Also, both systems ex-
plicitly support context-based lookup operations. However, Castelli et
al. do not discuss how such an infrastructure would actually be de-
ployed and scaled. Also, their work is strongly focused on RFID read
events (expressed by the “who, what, where, when” dimensions of their
data model) and is not suitable for associating other resources with a
tag.
Schmitt et al. [134] discuss an “Open Object Information Infrastruc-

3.7. Related Work 61

ture (OOII)”, which shares the same vision as our open lookup infras-
tructure: To provide an environment where innovative services, build-
ing around information on smart objects, can thrive. However, their
focus seems to lie on how raw RFID read events can be transformed
into semantically enriched events. While they explore the benefits of
such an infrastructure, their work is at a fairly high level of generality
and does not come up with a specific system or architecture proposal.
What is common to the three projects by Friday et al., Castelli et

al., and Schmitt et al. is that they are designed for an environment
that is rather dynamic. They are concerned with the collection, stor-
age, and distribution of automatically generated data. Often, the data
source is a sensor whose output needs to be interpreted before further
processing. This can result in a relatively high data volume that must
be absorbed by these systems in a short time. These characteristics
make them different from the open lookup infrastructure. Our infras-
tructure is concerned with the management of fairly static resources,
such as reviews, prices, or instructions. Many of them are generated by
humans, rather than a sensor, which makes updates significantly less
frequent. This allows us to rely on search services that crawl reposito-
ries only occasionally. While this means that timely updates are not
always available, it is an acceptable trade-off in the scenarios we have
in mind.
Another related project is the Context File System (CFS) developed

by Hess and Campbell [59] in the context of the Gaia middleware [125].
CFS allows for the storage of data in such a way that relevant material
can be located by users and applications based on context information,
user preferences, and device characteristics. It is similar to our open
lookup infrastructure in that resources can be organized and returned
based on the context in which they are relevant. Like our system, it
is also extensible and supports user-defined context types. However,
Gaia’s CFS is monolithic. It is deployed by a single organization and
does not allow content providers to retain full control over their re-
sources. Also, CFS does not support result collections in response to
a query to be ranked according to a user’s preferences. This is par-
ticularly important, since we expect result collections to be potentially
large. Finally, CFS has no provisions to include external data.
INS/Twine by Balazinska et al. [7] is a resource discovery infrastruc-

ture for ubiquitous computing applications that leverages distributed
hash tables as its underlying data structure. It therefore shows good

62 Chapter 3. Publishing and Discovering Services for Tagged Objects

scalability properties and is well suited for large networks. However,
it gives resource providers no control over where their resources are
stored, which would be a problem for tagged product resolving, as it
gives resource providers no control over service quality and cost sharing.
In both the Context File System and INS/Twine, the publisher of

a resource has to give up ultimate control over it. It is stored in and
advertised by a system that is operated by another party. In addition,
it is not possible for resource publishers to switch to another supplier in
case they are not satisfied with the service level that is provided. In the
commercial scenarios that we have in mind, such properties are crucial.
The open lookup infrastructure thus ensures that resource publishers
have a choice of a) either running their own resource repositories and
ultimately retaining control over their content, or b) delegating the task
to any of the third parties offering such services.
IBM Research’s Project Celadon [86] is a framework for providing

shoppers with relevant commercial information as they move around in
a public space, such as a shopping mall. In the scenario addressed,
it resembles the Shopper’s Eye application proposed by Fano [39].
Celadon allows the environment as a whole, applications in this en-
vironment, or users themselves to offer services. Users are the core
entities of the framework. Their location is monitored by the system,
they can take logical roles (such as “shopper”, “premium shopper”, or
“employee”), and they can receive offers made by the environment’s
applications. Celadon shares with our open lookup infrastructure a
similar data model as well as a fairly simple and lightweight API built
upon web standards. However, tagged objects (i.e., physical products)
play no role in the Celadon framework, and it is therefore not possible
to associate services with them. As interaction in Celadon cannot be
initiated by reading a physical object’s tag, it relies on DNS multicast
for bootstrapping before information can be sent to a user entering a
new environment. Overall, Celadon’s focus is more on location track-
ing, matching of customers’ interests with services offered by shops, as
well as leveraging the environment’s infrastructure (e.g., large public
displays).
Very much related to the open lookup infrastructure is EPCglobal’s

EPC Network [139, 35], and in particular the EPC Information Services
(EPCIS) [32]. The EPC Network is perhaps the most prominent ar-
chitecture that addresses the need to collect and share product-related
information based on auto-id technology. However, the EPC Network

3.8. Summary 63

was designed with logistics and enterprise applications in mind. It does
not currently provide any means for end-users to access a product’s data
trail. Like UDDI, it makes heavy use of Web Services standards, which
are not an ideal fit for the scenarios addressed by the open lookup
infrastructure (see above). Most of all, however, the focus of EPCIS
lies on product event data rather than master data. In the EPCglobal
framework, event data grows as business is transacted (e.g., when a
shipment arrives), whereas master data does not grow and is not tied
to a specific moment in time. Of these two categories, the information
and services discussed above fall into the latter one. As EPCIS only
provides an API for querying, but not for collecting master data, it is
different from the open lookup infrastructure.

3.8. Summary

The idea of linking information and services with physical objects is
a powerful concept, especially when we are able to augment millions
of everyday products with such resources. Realizing the vision of ev-
ery product being augmentable raises the question of how interested
parties can flexibly associate information and services with a product.
This chapter addressed this issue by presenting the concept and archi-
tecture of an open lookup infrastructure that fulfills the requirements
derived from a range of example application scenarios. We validated
the infrastructure by implementing its key components prototypically.
We also implemented three demonstrator applications to illustrate how
it facilitates the development of novel applications involving digitally
augmented, tagged products.
In summary, the open lookup infrastructure offers four key benefits

to the various stakeholders involved. Firstly, it allows users to find
out what information and services are available for a physical prod-
uct. Secondly, it gives resource providers access to potential consumers.
Thirdly, it enables manufacturers to increase the value of their products
by adding information and services to them. And finally, it provides
application developers with concepts and services that facilitate the
implementation of novel applications.

4. Facilitating Service
Development – A Browser for
the Internet of Things

As we saw in Chapter 2, personal mobile devices can serve as an intu-
itive tool for end-users when controlling physical appliances. In Chap-
ter 3, an infrastructure was presented that can be used to link all kinds
of information and services to physical objects that are equipped with
some sort of tag, such as a barcode or an RFID label. In this chapter,
we will present BIT, a browser for the Internet of Things. BIT pur-
sues two objectives. On the one hand, BIT aims to be a “single point of
interaction” for users by integrating both appliance control and the var-
ious other services that can be linked to a tagged object. On the other
hand, BIT provides a software framework that considerably facilitates
the development of mobile phone-based services for tagged objects.

This chapter is structured as follows: We will begin by briefly high-
lighting some earlier ideas of how users can retrieve information and
services from physical products. In Section 4.2, we analyze the prob-
lems that developers face when creating mobile services for tagged ob-
jects today. Section 4.3 present a scenario that illustrates how BIT
is used, and from which we derive our requirements in Section 4.4.
In Section 4.5, we discuss the implications of these requirements for
the design of our system. Based on these findings, Section 4.6 details
the core concepts underpinning our framework. Section 4.7 shows how
these concepts and our framework are applied to service development.
In Section 4.8, we present the architecture and implementation of a BIT
prototype that provides support for our framework. In Section 4.9, we
demonstrate the applicability of our system and its practical value for
developers by implementing nine diverse services. After a discussion
of its strengths and weaknesses in comparison with traditional devel-
opment techniques, we conclude by contrasting BIT with other related
projects in Section 4.10.

66 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

4.1. Introduction

The idea of a personal and portable device that would allow its users
to retrieve background information on consumer products has been
discussed for a while. An early example is the “personal shopping as-
sistant” [6]. It was proposed in 1994 as a mobile device of the “size of
a walkman” with an integrated barcode scanner that could be carried
around a retail store by shoppers. It would show product informa-
tion and also keep a running total of all items purchased. The Pocket
BargainFinder [14] later implemented some of these ideas, using a PDA
combined with a barcode scanner as its hardware platform. The system
allowed users to scan the UPC codes of books and would subsequently
check prices and product availability from online resellers.
Due to the obvious commercial potential, the use of mobile devices

to provide product-related services was later explored by several other
projects, often seeing “m-commerce” as an extension of the e-commerce
boom at the time.
Safeway UK and IBM tried out an application for PDAs that would

assist shoppers in creating orders for grocery products while at home [11].
These orders would then be transmitted to a store, which would pre-
pare the order for later pickup. Shopping recommendations based on
data mining were later added [78]. In another project [100], such appli-
cations were investigated from a usability perspective. In a user study
taking place in an actual retail store, a number of different possible
use cases for mobile devices were analyzed. The system used in the
trial, running on a PDA, would let users prepare their shopping lists,
display the most efficient route through the store, and offer recipes or
coupons. While these projects were built around physical products and
mobile PDAs, none of them made use of electronic labels to recognize
products.
In the context of the proliferation of RFID into the supply chain,

the technology’s potential to enable interaction with products in retail
store environments was also studied. An example of such a project
is MyGrocer [127, 74], which analyzed the use of a tablet PC to offer
self-checkout and product information in a brick and mortar store.
These projects have all explored the potential value that mobile

devices can offer for applications around consumer products. Some
of them have used tagging technologies, others have not. However,
all these systems have been standalone applications. None of these

4.2. Limitations Today 67

projects have investigated how the many application ideas can be in-
tegrated in a consistent, unified framework. Neither have they looked
into the specific needs that arise when all these applications are to run
on the end-user’s own mobile device that cannot be assumed to be
available for exclusive use by these services.

4.2. Limitations Today

While the scenarios outlined above are likely to be appealing to most
end-users, developers of such services face a number of challenges due
to the limitations of the technology that is available today.
Application development for mobile phones is still a cumbersome

process [53]. Toolchain and framework support is generally poor. At
the same time, the applications that implement the services described
above are often very small and do not offer extensive functionality. Ac-
quiring deep skills in mobile application development and going through
the process of setting up a full-fledged development environment is
hardly justified. Moreover, many applications are provided by prod-
uct manufacturers with no expertise in software development. While
application development can certainly be outsourced, this is not the
preferred way, since it makes solutions static and hard to adapt as
the underlying physical products evolve. Manufacturers need a way to
quickly deploy new services as they, e.g., launch new marketing cam-
paigns. The same applies, of course, to traditional web sites accom-
panying a physical product. Unlike mobile application development,
however, the programming of an interactive web site is a considerably
simpler task, which requires skills that are much easier to acquire.
The problem is further complicated by the fact that today’s mobile

phone market is still fragmented into a number of different, incom-
patible platforms, such as Java ME, Symbian, iPhone, Android, Palm
webOS, and others. Every mobile application thus needs to be ported
to all major platforms. As an obvious answer to this dilemma, manufac-
turers may opt for web-based solutions. The downside of this approach
is that a mix of HTML, JavaScript, and server-side applications does
not enable developers to access phone-specific hardware, such as bar-
code or RFID readers as well as GPS receivers. Another problem arises
from the relatively high latency in today’s mobile networks. Applica-
tions based on web technology require frequent request-response cycles
that are triggered by simple user input. Given the latency commonly

68 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

observed, this has a negative impact on user experience. Finally, there
are still some places without network coverage, such as subway stations.
Even without network coverage, a physical object may offer information
or services directly to the mobile phone through, e.g., NFC technology
or Bluetooth.
From a usability perspective, another challenge stems from the neces-

sity to integrate the various services into a single interaction framework.
While services can easily be created and deployed as independent appli-
cations, this results in the user’s phone being littered with a large num-
ber of small programs. Worse yet, the execution of these applications is
not automatically coordinated. In order to use a service, the user first
needs to manually start the corresponding application before a product
can be scanned. Since many objects will not be associated with a given
service, scanning will not render a result in many instances, which will
discourage users from further interaction. A user’s need to simply see
“everything my favorite services offer for this product” cannot be ad-
dressed in current architectures. A user would have to manually launch
one application after another to check whether it offers a service for a
given product — an approach that is simply not feasible. Finally, in-
teraction with physical products often happens spontaneously as users
are on the go. Users will often discover that a product offers a new ser-
vice that was previously not known to them. In such a situation, going
through the process of installing an application that supports the new
service is not desirable. If new software is needed on the mobile phone,
it should be deployed on the fly and without disturbing the interaction
flow between the user and the physical object.
We believe that the majority of these challenges can be best addressed

by a Browser for the Internet of Things (BIT). Such a browser, offering
a single runtime environment that is home to all sorts of services as
described above, addresses two distinct needs (see Figure 4.1):

1. From a user’s point of view, BIT represents a one-stop shop for
the digital services of a physical product by offering a single point
of interaction.

2. From a developer’s point of view, BIT provides a software frame-
work that facilitates the creation of product-related digital ser-
vices.

Several other projects have explored frameworks to facilitate the
creation of services that allow users to interact with physical objects

4.2. Limitations Today 69

Single Point of Interaction

Framework

Service ServiceService

U
se

r
BI

T
Ph

ys
. O

bj
ec

t

Figure 4.1.: Browser for the Internet of Things (BIT) overview. BIT addresses two
distinct needs: On the one hand, it represents a “single point of interac-
tion” for users. BIT frees users from the burden of manually executing
individual applications and coordinates the many possible services on
their behalf. On the other hand, BIT provides a software framework
that simplifies the development of services for tagged objects.

through mobile phones. The Physical Mobile Interaction Framework
(PMIF) [129] provides developers with a generic framework to write ap-
plications that support different interaction techniques, such as touch-
ing, pointing, and scanning. It frees developers from the need to deal
with the specific technologies used to implement these techniques. The
PERCI (PERvasive ServiCe Interaction) project [16] also aims at fa-
cilitating physical mobile interaction, however, the focus lies on the
automatic generation of user interfaces from service descriptions based
on Semantic Web Services. The REACHeS (Remotely Enabling and
Controlling Heterogeneous Services) project [120], finally, proposes a
system that implements the universal remote control paradigm. NFC
tags are used to enable users to physically interact with their environ-
ment.
While all of these projects, which will be revisited in Section 4.10,

are related to our work, our focus is more on single, low-value physical
products than on smart environments. We aim at providing a runtime

70 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

environment in which services offered by a large number of interested
parties can be deployed and executed. In contrast to many other sce-
narios discussed in the ubiquitous computing community, the physical
objects tend to be more inexpensive in our examples, and both tagged
products as well as interaction devices are highly mobile. The emphasis
of our research is thus on a lightweight approach that allows for the fast
and easy creation of new services in this specific domain.

4.3. Scenario

We start our discussion of BIT by defining a concrete scenario of use
that forms the basis of our further analysis. The framework that we will
present later in this paper will be designed to meet the requirements
that can be derived from the use cases in this scenario. For the purpose
of this brief description, we consider a character which we name Alex.
As Alex enters his kitchen in the early morning, he realizes that there

must have been a power cut last night: Instead of having started up
automatically and being ready to brew a coffee, his coffee maker is
showing a blinking time indicator only. Alex reaches for his mobile
phone and touches the coffee maker. The coffee maker service provided
by the manufacturer launches immediately. Alex chooses the “set clock
to current time” menu item and touches the device again.
After browsing the newspaper, he heads off to the local grocery store,

which has recently introduced a new self-checkout system. He picks up
a shopping basket and uses his mobile phone to touch the NFC tag
attached to its handle. He proceeds to the dairy products, where he
realizes that the store is out of his favorite cheese. There is another
one that piques his interest, but since he does not tolerate lactose well,
Alex has to watch out when buying cheese. As he scans the package’s
barcode with his phone’s built-in camera, a number of facts, tips, and
notes appear on the screen. The topmost item is the familiar green
check mark symbol, indicating that the product suits his dietary re-
strictions. Alex places the cheese in his basket and confirms this action
on his phone, which now shows him the running total of the items to
be purchased.
In the next aisle, there is a promotional display advertising a new

razor. Alex is sceptical, but the introductory price seems attractive.
He scans the package’s barcode and is surprised to find a rave review
by one of his friends who is on the same social networking site like

4.3. Scenario 71

Alex. But he is also surprised to see that the “introductory price” is
not all that low. Another store that is just 200 meters from his current
location offers the same product for 20% less, and directions for getting
there are shown on a map.
Alex adds a few more products to his basket, always scanning them

to keep the running total up to date. Once he is done, he proceeds
to the self-checkout station. He completes the transaction by touching
the “pay” symbol with his mobile phone, which automatically charges
his credit card with the amount due.
Before going back home, Alex decides to visit the public library to

find a good book for the weekend. He is an avid reader and a member
of three online reading communities. As he browses the collection, he
finds an interesting-looking book and wonders what others in his com-
munities think about it. His phone is set up to show their discussions
as soon as the corresponding book is scanned. However, he realizes
that the “shopping” profile is still active and causes price comparison
information to appear as well. Because he does not want to be dis-
turbed by such content, he switches his phone to the “library” profile,
which he set up a few months ago to only include the three reading
communities.
A little later, he has checked out a new book and is now on his way

home. In the bus, he sees a poster advertising a new movie. He is
curious and scans the barcode in the corner of the poster. A trailer
starts playing on his phone. But Alex decides not to watch it now. To
save it for later, he selects the “bookmark” option on his phone, which
adds the movie to his collection of remembered products.
Once he arrives back home, he realizes that the trip has made him

hungry. He takes a pizza out of his freezer and puts it in the oven.
To set the oven to the right temperature and time, he touches it with
his mobile phone, selects “read preparation instructions”, and scans the
barcode on the pizza box. While waiting for the pizza, he sits down
at his computer to check his mail. There is a message from a friend
recommending a new gadget for his phone. He opens the site in his
computer’s web browser and finds that it is actually a campaign to
encourage people to reduce their carbon emissions. The site says that
it offers a “carbon footprint calculator” for the mobile phone, which
lets you see how much carbon dioxide was created during an item’s
production process. And by adding these numbers up, it also lets you
keep track of your carbon personal footprint. Alex is intrigued and

72 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

decides to have a go. The web site now displays a barcode and asks
him to scan it with his mobile phone. He does so and selects “shopping”
when prompted to select the profile to which he wants to add the carbon
footprint calculator.

4.4. Requirements

Based on the above considerations, we can derive a number of require-
ments that BIT needs to fulfill in order to support the wide array of
services that can be implemented for tagged products.

Navigation of services In order to represent a single point of inter-
action as outlined above, BIT must allow users to navigate the
different services that are available. For example, in a retail store
context, users often interact with several services at the same time.
In this situation, users deal mainly with the store’s self-checkout
service. Intermittently, however, their interest shifts to other ser-
vices, such as a third-party price comparison or product review
service. Such changes of focus can occur frequently and must be
supported accordingly.

Responsiveness As we expect the switching from one service to an-
other to occur frequently, the user interface should be responsive
and latency should be minimized.

Coordination of services As we saw before, it is not unusual that a
single barcode scan can trigger the activation of multiple services.
BIT must coordinate the execution and presentation of the many
services that a user deems interesting. In particular, it must ensure
that tag reads are made available to all relevant services. By the
same token, it must provide mechanisms that prevent services from
accessing a shared resource (e.g., the RFID reader), at the same
time.

Use without physical object BIT must allow for the use of services
even when no tagged object is present. An instance where this is
neccessary concerns the configuration of a service. In the scenario
outlined above, it should be possible for users to adjust their di-
etary restrictions without scanning a product. Another example
is the movie poster mentioned in the scenario. In some situations,
users may scan an object and discover a service they do not want

4.4. Requirements 73

to access instantly. BIT should allow them to remember this con-
text in order to allow for later service access without the physical
object being present.

Service invocation types The above scenario describes two different
types of service invocation: direct and indirect invocation. In the
example of an in-store service that is offered by a retailer, the ser-
vice should be presented to the user as soon as the tag attached to
the shopping basket is scanned. Its invocation is the direct result
of the physical interaction. Different examples are the price com-
parison or review services. When a user scans a tag, he or she is
notified that these services have information available concerning
the product. A subsequent service invocation takes place only if
the user expresses an interest by manually selecting the service.
In other words, the invocation is not the direct result of the phys-
ical interaction. BIT must provide mechanisms to support both
invocation types.

Discovery Users must be able to discover newly available services by
physically interacting with objects. An example from our scenario
is the carbon footprint calculator that was advertised through a
barcode symbol on the computer screen.

Appliance status recognition When users interact with appliances,
it is not enough to simply identify the object. BIT must also be
able to retrieve status information from the appliance, such as its
current settings or an error code.

Appliance control In addition to recognizing the status of an appli-
ance, BIT must also be able to control the device to, for example,
adjust its settings. In the scenario above, this is necessary to up-
date the coffee maker’s clock settings. Appliance control requires
bidirectional communication between BIT and the appliance and
can be implemented using different technologies, such as Bluetooth
or NFC. BIT must make these different communication technolo-
gies available in an easy-to-use way and free developers from the
need to deal with low-level connection handling.

Acquisition of context information Many services depend on con-
text information to adapt their behavior. This is not limited to the
recognition of an appliance’s status, but also includes the user’s

74 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

location and, in a somewhat relaxed use of the term, users’ lan-
guage and phone settings. Access to such context information
from different sources must be made available in a uniform way.

Integration with backend infrastructure In most cases, product-
related information and services that are presented by BIT are
stored in a backend infrastructure. The open lookup infrastructure
discussed in the previous chapter represents such a backend infras-
tructure. In order to discover and retrieve product-related data,
BIT must seamlessly integrate with the open lookup infrastruc-
ture. Developers must be freed from the need to manually contact
resource repositories, fetch resource descriptions, and parse the
replies obtained from repositories. In order to make these steps
transparent for developers, BIT must wrap them in methods that
are easily and locally accessible by service developers.

Persistent storage Certain services need to store data that must be
available during subsequent invocations of the same service. In
the above scenario, the allergy checking service must be able to
persistently store the user’s dietary restrictions, and the carbon
footprint calculator needs to keep track of the user’s accumulated
emissions. On top of this, BIT must also be able to persistently
store browser-wide data, such as user settings.

Tagging technology-agnostic A service is usually indifferent to the
precise reading capabilities that are available on a device and to
the reader that originally generated a read event. Instead, it
should be possible for developers to simply process reads of phys-
ical objects, irrespective of the tagging technology used.

Platform and device independence As services should run on any
platform for which a BIT implementation is provided, device and
platform idiosyncrasies must be abstracted. For example, device-
specific APIs for the use of RFID or barcode readers as well as
location information should be wrapped. Also, it should be possi-
ble to deploy a service without needing to create a separate GUI
for every available toolkit, form factor, or screen size of the tar-
geted devices. The same applies to other output modalities, such
as phone vibration.

Easy-to-learn and rapid service development Many of the peo-
ple who could create valuable services for physical objects do not

4.4. Requirements 75

have much background in software development, and even less so
on mobile devices with their specific intricacies. The development
of services for BIT should thus be easy to learn. Ideally, syn-
tax, semantics, and concepts used in BIT should build on what is
already familiar to many developers from other domains. In addi-
tion, the lifetime of some services which are more of a promotional
nature may be limited. Other services require frequent changes.
BIT should therefore support rapid prototyping, short develop-
ment cycles, and iterative design, which will also be beneficial for
the usability of services [80].

Design for low attention BIT is used in situations with a very dif-
ferent context than many other programs, even on mobile phones.
In virtually all of these situations, the user’s attention is split be-
tween the physical product, the mobile device, and an environment
that abounds with stimuli (such as announcements in a retail store
or a chit-chat with a fellow shopper). The design of BIT should
consider these factors and minimize the effort that is needed for
interaction.

Unified user experience In order to ease interaction with the plethora
of services that may be provided, BIT must enforce some restric-
tions with regard to user interface design. For example, the steps
needed to stop the use of a service should always be the same, no
matter how the service is implemented. BIT should also facilitate
the implementation of common user interface patterns that are
shared by most services, in order to save developers the trouble of
repeating themselves when writing code.

Security and privacy As we envision BIT to be a single tool that me-
diates all interaction between a user and every physical product’s
digital offerings, it would be easy to track nearly every move of a
user. Privacy is thus a major concern, and BIT must support users
in revealing as little as possible about themselves if they wish to
do so. BIT must also ensure that a service can only access those
resources for which it is authorized. For example, a service must
be constrained to read and write its own storage area only. Like-
wise, access to context information must be controlled. Finally,
BIT must mitigate potential threats originating from malicious
services in order to protect the mobile phone itself.

76 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

4.5. Implications

From the requirements listed above, we can derive a number of implica-
tions that will guide the design of the framework and the architecture
of BIT that we will present in the next sections.

4.5.1. Services provided by mobile devices

There are two main architecture blueprints that could be used for the
implementation of BIT. In the first architecture, the user’s client device
can be seen as a terminal to a service running on a remote server.
Such an architecture is consistent with the traditional notion of a web
browser that gathers user input, forwards it to a remote server, and
renders the response received. All application logic is located in the
backend. In the second architecture, the client device is not just a
terminal, but also the runtime environment for the application logic.
In this latter style, the service is entirely provided by the client device
and does not rely on any backend infrastructure.
Many systems today mix elements from both architectures and do

not clearly fall into one of the two categories. However, the use of Ajax
(asynchronous JavaScript and XML) techniques has shown a trend to
move the parts of an application that are concerned with user inter-
action closer to the client device. This trend has been motivated to
a great extent by the improved user experience that can be achieved
due to better responsiveness. By executing a significant part of the
application on the client device, both the amount of data transferred
as well as the number of roundtrips required can be reduced.
In the previous section, we demanded that services be responsive and

easy to navigate. This indicates that the second architectural style, in
which services are entirely provided by the mobile device, is more suit-
able for BIT than the first one. This choice is further reinforced by the
many device capabilities, such as barcode readers and GPS, NFC, or
vibration modules, that must be accessed by services. While it is cer-
tainly possible to make such capabilities available to a service running
on a remote host, latency and responsiveness can again suffer, and it
becomes less straightforward to control appliances. Finally, providing
services directly on the mobile device has the advantage that they can
be accessed even when no internet connectivity is available (e.g, in the
subway).

4.5. Implications 77

4.5.2. Mobile code rather than built-in protocols

In order for BIT to be able to control an appliance, there must be
agreement on the syntax and semantics of communication. One ap-
proach to create such agreement is to standardize protocols that all
participants (i.e., all appliances and mobile devices) must implement.
Another approach is to use mobile code [47] in order to enable interop-
erability between devices that have very limited prior knowledge about
each other [30].
The requirement for BIT to be able to control previously unknown

appliances mandates the latter approach, i.e., the use of mobile code. It
is very hard to imagine that a large number of very different appliances
would allow for control through the same standard protocol. Even if
such a protocol was available, it would severely limit flexibility and
leave little room for innovation. Instead of relying on a few common
protocols, BIT leverages mobile code in order to implement the services
offered by tagged objects.
As a consequence, the service management mechanisms incorporated

in BIT must be designed accordingly. As soon as users indicate that
they want to invocate a service, BIT needs to obtain and execute the
corresponding code. Since many services will be invoked more than
once, their code should be cached on the phone. Finally, BIT must
regularly check if updates are available for a given service.

4.5.3. Full programmability

For the implementation of services, BIT uses a combination of both a
declarative markup language to describe the user interface as well as
a full-fledged scripting language. In an earlier prototype of BIT [18],
we explored ways to implement services based on a custom markup
language only. However, it became quickly apparent that this approach
did not offer the flexibility needed. For example, services such as self-
checkout or the carbon footprint calculator outlined in our scenario
could not be implemented based on a purely declarative approach.
We chose a scripting language because it is easy to learn and be-

cause it ensures a rapid development process with short iteration cy-
cles where changes are visible immediately. We decided to leverage
Lua [62, 61], an existing and comprehensive language, rather than in-
troduce our own scripting language in an effort to provide a simpler,
stripped-down language that supports a minimum feature set only. As

78 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

Myers et al. note [97], previous attempts at “simplified” scripting lan-
guages for writing interactive applications have mostly failed due to a
lack of full programmability offered by general-purpose control struc-
tures, such as variables, loops, and conditionals.

4.5.4. Minimal attention user interface

We stipulated in the previous section that BIT should be designed for
low attention. We will take this requirement into account by building
a minimal attention user interface as proposed by Pascoe et al. [112].
BIT must follow this principle by, for example, allowing users to access
frequently used functions without fixing their eyes on the display first
and hiding less relevant information whenever possible.

4.6. Framework Core Concepts

The BIT framework is built around a number of concepts. In this
section, these concepts will be presented.

4.6.1. Open lookup infrastructure

BIT leverages the open lookup infrastructure described in the previous
chapter. Services offered by the browser will normally retrieve product-
related information from one or more resource repositories. Typically,
a service provider will maintain its own resource repository, which is
used as a data source for the service offered within the browser.
Product manufacturers who wants to fully support services based on

BIT should set up their own resource repository and publish a resource
description adhering to the “basic” profile for every product. This re-
source description contains some basic information on a product:

• product name

• manufacturer name

• small product image

• product’s bidirectional communication capabilities (e.g., Bluetooth
address), if any

The browser uses these data to display the product’s name and pos-
sibly its image as soon as it is recognized through an auto-id tag. Also,

4.6. Framework Core Concepts 79

Figure 4.2.: Browser aggregation perspective showing overview of information and
services available for a tagged object.

information regarding communication capabilities is used when a ser-
vice needs to exchange data with an appliance (e.g., to adjust a coffee
maker’s time settings in the scenario above).
However, the “basic” resource description is not mandatory, and a

browser can easily handle objects for which it is not provided. In this
case, the only restriction is that the browser itself cannot display the
product’s name and image or communicate with the object. A partic-
ular service may still be able to display such content, which it obtains
through some other resource repository.

4.6.2. Perspectives

BIT’s user interface is divided into two major parts: the aggregation
perspective and the exclusive perspective. In response to scanning a
tagged product, the aggregation perspective provides an overview of
information and services that are available. As its name suggests, this
perspective aggregates data from various sources in a single view. Fig-
ure 4.2 shows an example of BIT’s aggregation perspective.
In addition to listing the information and services that are available,

the aggregation perspective also displays basic data on the tagged ob-
ject, such as its name, its manufacturer, as well as a small image of the
product (see Section 4.6.1).

80 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

As soon as a user selects an item in the aggregation perspective,
the corresponding service is opened in the exclusive perspective for a
more detailed view. In this perspective, the service can exclusively use
the full assigned screen area to display more detailed information (e.g.,
directions to another store selling the same product for less). Unlike
the aggregation perspective, the exclusive perspective also offers the
possibility for user interaction and, for example, to collect user input.
A perspective is either active or inactive, and, at all times, there is

exactly one perspective which is active. While the fairly small screen
estate of mobile phones does not usually permit several perspectives to
be shown at the same time, a browser implementation may opt to do
so.

4.6.3. Applets

Services and information regarding a physical product are provided
through applets, i.e., small programs that are executed within BIT. The
functionality offered by an applet can range from the very simple task
of displaying some information on a physical object to more complex
procedures, such as gathering user input and communicating with a
physical appliance.

4.6.4. Runlists

Applets can be part of a runlist. A runlists groups a number of applets
that a user considers relevant in a certain everyday context. For exam-
ple, while users may be interested in product reviews during a shopping
trip, they may prefer not to see such information while at home.
A runlist is an ordered list of applets and is executed when a tagged

object is detected. Upon execution of the runlist, BIT invokes all ap-
plets constituting the runlist, passing the tag read to every applet. The
applet is expected to generate a terse output (e.g., “Caution: contains
peanuts”) that can be empty optionally. Based on all collected non-
empty output returned by the applets, BIT generates a list of results
that is organized according to the order defined in the runlist. The re-
sults list is then displayed in the aggregation perspective as depicted in
Figure 4.2. The example in said figure has been generated by a runlist
with an “Allergy Checker” applet placed at its top. By assigning this
applet a prominent position in the runlist, the user ensures to immedi-
ately grasp the information that is most important to her or him. If the

4.6. Framework Core Concepts 81

applet does not return any output (e.g., the product does not contain
allergy-causing ingredients), it is omitted from the results list.
Users can define any number of runlists with an applet being part

of several runlists at the same time. Runlists have a name and are
typically defined for situations such as “home”, “shopping”, or “work”.
Existing work in the field of activity recognition could be leveraged to
automatically select the runlist reflecting a user’s momentary situation.
This, however, is beyond the scope of this thesis. Exactly one runlist
must be enabled at all times.

4.6.5. Applet dimensions

Applets can be characterized in three dimensions: mode, type, and
state.

Mode: aggregation vs. exclusive

Applets can be executed in two different modes: aggregation mode or
exclusive mode. An applet that is invoked in aggregation mode is ex-
pected to produce a terse output that can be included in the results list,
which is assembled during the execution of a runlist and displayed in
the aggregation perspective. This output consists of a title, a short de-
scription, as well as an image (see Figure 4.2). If an applet chooses not
to return any output, it is omitted from the aggregation perspective.
By contrast, an applet running in exclusive mode has access to the

entire exclusive perspective as described in Section 4.6.2. Unlike in
aggregation mode, it is not limited to producing output, but can also
collect user input.

Type: permanent vs. transitory

While some applets can be used in connection with any tagged object,
others can provide a meaningful service only in connection with a spe-
cific one. An example of the first kind is an applet that offers product
reviews. It can show reviews for a potentially large number of prod-
ucts and should be invoked whenever the user scans a tagged object.
This is ensured by including the applet in a runlist, which requires it
to be downloaded and installed in the browser for frequent use. In
BIT, such applets are called permanent because of their long lifetime
in the browser. In fact, permanent applets remain installed until they
are manually uninstalled by the user.

82 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

An example of the second kind is an applet to control an appliance.
This sort of applet can provide a service only for a specific tagged
object, such as a particular coffee maker. Including it in a runlist makes
little sense, since it cannot react in a meaningful way in response to
the recognition of any other object. On the other hand, such an applet
should start automatically as soon as the user interacts with the tagged
object, even if the appliance is encountered for the first time. In order to
permit such spontaneous interaction, BIT must download and execute
the applet immediately without requiring its installation first. Because
it is not installed, the applet is disposed of as soon as interaction ends,
i.e., when it is closed by the user. As the lifetime of such applets within
the browser is very limited, they are called transitory.
Permanent applets do not have an association with a particular tagged

object,1 since they can be run following the scan of an arbitrary object.
For transitory applets, however, there is an association with a partic-
ular tagged object. This association can be seen as privileged, as it
causes the browser to automatically launch an applet in response to a
scan. Because of this privileged access to the browser, only a product’s
manufacturer can provide a transitory applet. This avoids the risk of
unsolicited applets popping up as soon as an object is scanned.2

Unlike permanent applets, transitory applets cannot persistently store
data in order to have them available during a subsequent execution.
After a transitory applet is stopped, it is removed entirely from the
browser without leaving any traces behind. This restriction represents
a safeguard that enables spontaneous, possibly one-off interaction with
services whose source cannot necessarily be trusted.
In summary, permanent applets must be installed in the browser at

the user’s explicit request prior to their use. They remain in the browser
until they are uninstalled. All applets that are part of a runlist are
of the permanent type. A transitory applet, by contrast, will not be
installed in the browser. It is downloaded and started automatically by
BIT in a direct response to the user’s interaction with a tagged object.
Transitory applets cannot be part of a runlist and, as a result of this,
can only be executed in exclusive mode.
The main differences between the two types are summed up in Ta-

ble 4.1.
1Tied applets, which are discussed below, represent an exception from this rule.
2This does not prevent arbitrary third parties from providing information on a tagged object,
which is still possible through permanent applets as well as the search service discussed in the
previous chapter. The integration of search services in BIT will be further detailed below.

4.6. Framework Core Concepts 83

Permanent applets Transitory applets

Installation necessary not necessary

Inclusion in runlist possible not possible

Execution in aggregation mode possible not possible

Execution in exclusive mode possible possible

Coupled state possible possible

Uncoupled state possible not possible

Tying to tagged object possible not possible

Storage read access allowed not allowed

Storage write access allowed not allowed

Can be provided by any party manufacturer

Open lookup infr. profile name “permanent-applet” “transitory-applet”

Table 4.1.: Differences between permanent and transitory applets.

State: coupled vs. uncoupled

As we saw before, the results shown in the aggregation perspective are
the result of a user-initiated scan. If one of the items is selected, the
corresponding applet is executed in exclusive mode. In this case, the
applet is said to run in coupled state because it is logically “coupled”
with the tagged object that was recognized earlier.
However, permanent applets can also be started manually by the

user, i.e., without scanning an object first. This is the case, for exam-
ple, when a user wants to adjust the dietary restrictions in an “allergy
checker” applet. In this situation, the applet runs in exclusive mode
and, since the execution is not the result of an object being recognized,
in uncoupled state.
The relations between these three dimensions of an applet — mode,

type, and state — are visualized in Figure 4.3. Note that the type
dimension is a static property of an applet, while the other two dimen-
sions can change during its lifetime.

4.6.6. Tying applets to tagged objects

BIT allows users to “tie” a permanent applet to a specific tagged object.
If an applet is tied to a tagged object, it will be started automatically
in exclusive mode whenever the object is recognized by BIT. The effect
is the same as if the user had manually selected the applet in the

84 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

tra
ns

ito
ry

pe
rm

an
en

t

coupled

uncoupled

type

state

mode

Figure 4.3.: Relations between the three dimensions of an applet. Only the combi-
nations that are visibly highlighted can occur.

aggregation perspective after the object was scanned.
This feature is somewhat similar to the automatic startup of tran-

sitory applets. However, the two differ in that the option of having
applets launched automatically by making it transitory is only avail-
able to the manufacturer of a tagged object. In addition, a tied applet
has unrestricted access to storage provided by the browser, which is
not the case for transitory applets.
While an applet can be tied to any number of tagged objects, a tagged

object can have at most one applet tied to itself.

4.6.7. Virtual reads through bookmarks and history

Similar to a web browser, BIT allows users to bookmark tagged ob-
jects. It also keeps a history of all tagged objects that were scanned.
With these features, users can access the services provided by a tagged
object without actually having the physical product at hand. When a
bookmark or history item is selected, BIT internally creates a virtual
read, which is processed as if the physical object had been recognized.
For an applet, a virtual read is thus indistinguishable from a physical
read.

4.6.8. Handling of tagged object reads

As we saw in Section 4.6.4, the browser handles the recognition of a
tagged object by executing the currently active runlist and passing the

4.6. Framework Core Concepts 85

tag read to all applets contained in the runlist. We further saw in
Section 4.6.5 that transitory applets, which cannot be part of a runlist,
are started immediately as a tagged object is recognized.
In this section, we will present in detail how BIT proceeds when the

user scans a tagged object. As we will see, BIT is tightly integrated with
the open lookup infrastructure described in Chapter 3 and leverages
resource repositories to locate applets during the processing of reads.
The exact steps taken by the browser in this phase depend on whether
the tagged object was recognized while the aggregation perspective or
the exclusive perspective was active.

Aggregation perspective

When a tagged object is recognized while the aggregation perspective
was active, BIT starts two threads (see Figure 4.4). In the first thread,
the runlist is executed and the aggregation perspective is updated as
described in Section 4.6.4. In the other thread, the browser first checks
whether there is an applet that is tied to the tagged object that was
recognized. If this is the case, BIT starts the applet in exclusive mode
and switches from aggregation perspective to exclusive perspective.
If there is no tied applet, BIT checks whether the manufacturer of

the recognized tagged object provides an applet for it. Since applets
themselves are considered resources in the sense of the open lookup
infrastructure, BIT must contact the product manufacturer’s resource
repository for this check. The resource repository is located through the
open lookup infrastructure’s manufacturer resolver service as described
in Section 3.4.3. Note that in this context, the term “manufacturer” has
a somewhat broader meaning. It simply refers to the party that com-
missioned (i.e., reserved) an auto-id identifier for the physical object.
In the case of a movie poster, for example, the “manufacturer” would
typically be an advertising company, a movie distributor, or a similar
entity. Once the repository is located, BIT submits a query consisting
of the tag id that was read as well as the profile names “permanent-
applet” and “transitory-applet”. If a resource description is returned,
indicating that an applet is available, the browser proceeds as follows:

• For transitory applets: The applet is downloaded and executed
immediately in exclusive mode.

• For permanent applets: The applet is downloaded, installed, and

86 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

[Tagged object (TO) recognized]

Update aggregation
perspective

Check if TO is tied to an appletExecute active runlist

Contact resource repository
of TO manufacturer

Check if repository
offers applet for TO

[none]

[not tied]

Run applet in exclusive mode

[tied]

Check if runlist is
configured to consider

new permanent applets

Notify user and
offer installation

[consider]

Check if runlist is
configured to consider
new transitory applets

["transitory"]["permanent"]

[start w/o asking]

[ask]

Notify user and
offer start

[start]

[ignore]

[ignore][ignore]

Install applet

[ignore]

[install]

Figure 4.4.: UML activity diagram showing the steps taken by the browser when a
tagged object is recognized while the aggregation perspective is active.

4.6. Framework Core Concepts 87

[Tagged object recognized]

Update aggregation
perspective

Execute active runlist

Pass read to active applet

Figure 4.5.: UML activity diagram showing the steps taken by the browser when a
tagged object is recognized while the exclusive perspective is active.

becomes part of one or more runlists, depending on the user’s
choice. It is not executed at that time.

Whether download and installation / execution actually take place
depends on the configuration of the runlist and possibly the user’s
choice. For convenience, runlists can be configured to always proceed
with the installation / execution, to prompt the user first, or to entirely
ignore permanent and transitory applets that are associated with a tag.

Exclusive perspective

Like in the aggregation perspective, BIT starts two threads when a
tagged object is recognized while the exclusive perspective is active
(see Figure 4.5). Again, the first thread is concerned with executing
the runlist and updating the aggregation perspective with the resulting
items.3 The other thread, however, simply passes the tag read to the
applet running in the exclusive perspective.

3The aggregation perspective is updated to ensure that the output produced by other applets
is available immediatly when the user switches from exclusive to aggregation perspective.

88 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

4.6.9. Endpoints

BIT provides applet developers with the abstraction of communication
endpoints. An endpoint represents a logical connection to a physi-
cal object that offers bidirectional communication through Bluetooth,
TCP/IP, HTTP, NFC, or a similar technology. It allows developers
to write applets that can communicate with physical objects without
needing to worry about the concrete underlying communication tech-
nologies.
When a physical object is recognized, the browser detects whether the

object has bidirectional communication capabilities or not. It does so
by inspecting the “basic” resource decription, which is available through
the object manufacturer’s resource repository (see Section 4.6.1). If
the object was originally recognized via the phone’s NFC reader, the
browser also initiates the NFC connection handover protocol [103] to
probe for additional communication capabilities.
If the object is found to offer bidirectional communication, an end-

point is created and passed to the applet. As soon as the applet decides
to send or receive a message to or from the endpoint, the browser auto-
matically establishes a physical connection to the device through one of
the communication technologies that were discovered when the physical
object was originally recognized.

4.7. Service Development

After having reviewed the core concepts of the BIT framework, in this
section, we will present the tools that BIT provides for developers to
implement services. The major building blocks are:
• the BIT markup language (BITML) for the definition of services’
user interfaces;

• a scripting language for the implementation of the dynamic be-
havior of services;

• the BIT API, which allows services to access the functionality
provided by the browser.

4.7.1. BIT markup language (BITML)

As we saw in Section 4.4, BIT services must be available on different
mobile platforms, which usually include a proprietary GUI toolkit. To

4.7. Service Development 89

ensure the portability of services across platforms, BIT relies on its
own user interface description language named BITML (BIT markup
language). BITML is based on XML and defines a number of GUI
widgets which are commonly used in user interface design (e.g., text,
images, input fields, lists, etc.). The presentation of these widgets
can be customized using Cascading Style Sheet (CSS) [12] formatting.
When BITML is processed by the browser, it is rendered using the
platform’s native GUI controls.
Researchers have proposed a plethora of user interface markup lan-

guages, with the User Interface Markup Language (UIML) [2] and the
Extensible Interface Markup Language (XIML) [115] perhaps being
the best-known examples. Mozilla’s XML User Interface Language
(XUL) [52] and Microsoft’s Extensible Application Markup Language
(XAML) [90] are widely used examples from the industry. BITML
shares many similarities with such languages, even though it is much
simpler, but also less powerful. BITML does not aim to reinvent the
wheel and is part of BIT because of its simplicity. In fact, it could be
easily replaced with another language, such as XUL. However, as the
focus of this thesis does not lie on portable user interfaces, we did not
implement such an extensive standard.

4.7.2. User interface organization and GUI widgets

In BITML, an applet’s user interface is structured into views. Each
view occupies the entire screen estate that is available to the browser’s
exclusive perspective, which, in our implementation (see below), is iden-
tical with the device’s full screen. Views can have a title, a body, and
a menu. The body of a view must be either a list, a form, or media
content, i.e., text and images. Figure 4.7.2 shows the source code of an
example view along with the resulting user interface. The view shows
the items in the shopping cart of a self-checkout applet. It has a list as
its body and contains two menus. One menu relates to the view itself,
while the other menu relates to the list. In other words, the second
menu represents a context menu for the list items.
BITML offers a number of GUI widgets through the following XML

elements:

• <view>

This element represents a view, i.e., the main container for GUI

90 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

<view title="Cart">

<list>
<list_item description="Qty: 1, $4.00">Penne Rigate Nr73, 1kg</list_item>
<list_item description="Qty: 2, $4.00 ($2.00 each)">Hirz Joghurt Kiwi

Tropicana</list_item>
<list_item description="Qty: 1, $2.00">Colgate Fresh Gel, 75ml</list_item>
<menu>
<menu_item action="change_quantity(index)">Change quantity</menu_item>
<menu_item action="delete(index)">Remove from cart</menu_item>

</menu>
</list>

<menu>
<menu_item action="bit.show_view(’total’, {})">Show cart total</menu_item>
<menu_item action="checkout()">Checkout</menu_item>

</menu>

</view>

Figure 4.6.: Example view. Source code and rendered output.

widgets. All other BITML elements must be — directly or indi-
rectly — enclosed in a view.

Can contain: <menu>, <list>, <form>, <media>

Is child of: —

Attributes:

– title: An optional title for the view.

– action: Scripting code to be executed when the view is no

4.7. Service Development 91

longer needed (e.g., user has aborted or form has been com-
mitted).

• <menu>

Adds a menu to a view or a list. No more than one menu is allowed
per view or list.

Can contain: <menu_item>, <submenu>

Is child of: <view> or <list>

Attributes: —

• <menu_item>

Adds a menu item to a menu.

Can contain: —

Is child of: <menu>

Attributes:

– action: Scripting code to be executed then the menu item is
selected.

• <submenu>

Adds a submenu to a menu.

Can contain: <submenu_item>

Is child of: <menu>

Attributes: —

• <submenu_item>

Adds a menu item to a submenu.

Can contain: —

Is child of: <submenu>

Attributes:

– action: Scripting code to be executed then the menu item is
selected.

• <list>

Fills the view with a list.

Can contain: <list_item>

92 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

Is child of: <view>

Attributes: —

• <list_item>

Adds an item to a list.

Can contain: —

Is child of: <list_item>

Attributes:

– description: Optional description for a list item, which will
be displayed by the browser.

– selected: Can be set to “true” to preselect a list item. De-
fault value is “false”. No more than one item can be set to
“true” in a list.

• <form>

Fills the view with a form.

Can contain: <form_item>

Is child of: <view>

Attributes:

– action: Scripting code to be executed when the form is com-
mitted.

• <form_item>

Adds an item to a form. An item has a value that can be entered
/ modified by the user. An initial value can be provided as the
element’s content.

Can contain: <radio_item, <checkbox_item>

Is child of: <form>

Attributes:

– type: Defines the type of the item and can be “text” for a
text field, “integer” for an integer field, “float” for a float field,
“date” for a date field, “time” for a time field, “radio” for a
group of radio buttons, and “checkbox” for a group of check
boxes.

4.7. Service Development 93

– label: Can be set to a string that is used as a caption for the
form item.

• <radio_item>

Adds a radio button to a radio button group (i.e., a form item).

Can contain: —

Is child of: <form_item>

Attributes:
– selected: Can be set to “true” to preselect the radio button.

The default value is “false”.

• <checkbox_item>

Adds a check box to a check box group (i.e., a form item).

Can contain: —

Is child of: <form_item>

Attributes:
– selected: Can be set to “true” to preselect the radio button.

The default value is “false”.

• <media>

Fills the view with media content, i.e., a mix of text and images.

Can contain: <text>, <image>

Is child of: <view>

Attributes: —

• <text>

Renders a text section.

Can contain: <break>

Is child of: <media>

Attributes: —

• <break>

Creates a line break in a text section.

Can contain: —

Is child of: <text>

Attributes: —

94 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

• <image>

Renders an image.

Can contain: —

Is child of: <media>

Attributes:

– source: URL or local file name of image to be rendered. The
PNG, JPEG, and GIF formats are supported.

4.7.3. Presentation

BITML itself allows developers to describe the content and structure of
their user interfaces. However, it does not provide any means to define
their visual presentation. Like many other systems (including HTML,
XUL, and UIML), BITML relies on stylesheets to specify the presenta-
tion characteristics of the user interface. BITML supports Cascading
Style Sheets (CSS) [12] as defined by the W3C. The following listing
illustrates the use of CSS and BITML:
<view>
<media>
<text style="text-align: center; font-weight: bold">
This text will be bold and centered.

</text>
</media>

</view>

4.7.4. Scripting

For the implementation of the dynamic behavior of services, BIT lever-
ages the Lua scripting language [61, 62]. The browser incorporates a
complete Lua interpreter, which supports the local execution of applets.
With respect to the requirements set out in Section 4.4, this has several
advantages:

• Services can be executed locally and can handle user actions with-
out communicating with a remote server.

• The Lua interpreter represents an additional layer between the
service and the underlying mobile phone platform, which can be
leveraged to implement security controls.

4.7. Service Development 95

• As the browser ships with its own built-in interpreter, applets do
not rely on a specific programming language provided by the un-
derlying mobile phone platform and are thus platform-independent.

The browser uses Lua for a number of reasons. As a lightweight lan-
guage, it is well suited to run on mobile devices with limited resources.
Moreover, Lua was explicitly designed to be embedded in other applica-
tions, such as our browser. Finally, Lua is available in ANSI C, which
makes it readily portable to various mobile phone platforms. Lua is
free and open source software.
In the next few paragraphs, we will give a very brief overview of the

Lua language in order to provide the background needed to follow the
examples discussed below.
Lua is a dynamically typed language. The main types provided are

string, number (accommodating both integer and floating point val-
ues), boolean, and table. Tables play a major role in Lua. Tables
implement associative arrays and can be used to store key/value pairs,
values only (i.e., act as an array), or a mix of the two. The following
example illustrates this:4

-- Use table as an array:
fruits = {"apple", "pear", "orange"}
print(fruits[1]) -- output is "apple"

-- Use table as an associative array:
tastes = {strawberry = "sweet", lemon = "sour"}
print(tastes["lemon"]) -- output is "sour"

-- Syntactic sugar:
print(tastes.lemon) -- output is "sour"

Variables in Lua are generally global unless they are explicitly de-
clared as local. Before the first assignment to a variable, its value is
nil. Lua’s operators include == to test for equality, ˜= to test for in-
equality, and .. to concatenate two strings. Lua also uses # as a unary
operator which returns the length of a string or a table (e.g., #fruits
in the above example would return 3). Indexes in Lua are based on 1,
i.e., the first element of array a can be found at a[1].

4.7.5. Scripting in views

Like in many web development frameworks (e.g., Ruby on Rails, PHP,
JSP), markup and scripting code can be mixed to create a dynamic

4A double hypen (--) is used in Lua to introduce a comment.

96 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

user interface. BIT uses XML processing instructions to wrap scripting
code that can be inserted anywhere in the markup code. The following
listing provides an example:
<view>
<list>
<?
items = {"apple", "pear", "orange"}
for i = 1, #items do
bit.out("<list_item>" .. items[i] .. "</list_item>")

end
?>
</list>

</view>

Before this BITML code is rendered, the scripting fragment in the
processing instruction (<? . . . ?>) is executed. The script uses the
bit.out function to collect its output. BIT replaces the processing
instruction in the original BITML code by this output and renders
the resulting code in a second step. The above example results in the
following BITML code to be rendered:
<view>
<list>
<list_item>apple</list_item>
<list_item>pear</list_item>
<list_item>orange</list_item>

</list>
</view>

Additionally, scripting code is expected by the action attribute of
some BITML elements, such as <menu_item>. The following example
illustrates its use:
<view>
<menu action="bit.show_note(items[index], ’info’)">
<?
items = {"apple", "pear", "orange"}
for i = 1, #items do
bit.out("<menu_item>" .. items[i] .. "</menu_item>")

end
?>
</menu>

</view>

When a menu item is selected in this example, the Lua code in the
action attribute is executed, which shows the menu item’s name (i.e.,
“apple”, “pear”, or “orange”) on the screen.5 Note the use of the special

5The bit.show_note function is part of the BIT API, which is discussed in Appendix B. When
it is called, it causes the browser to show a simple message (passed in as the first argument)
on the screen. The second argument specifies the type of message and is “informational” in
the example here.

4.7. Service Development 97

variable index. Before the script in the action attribute is run, the
index variable is set to the numerical index of the selected menu item.

4.7.6. Applet organization

As we have seen above, views in BIT are described using BITML, and
Lua scripting can be embedded into views. We will now review all
constituents of an applet and describe how they are bundled into a
single entity that can be deployed into the browser.
Technically, an applet is a ZIP file that follows a fixed structure. An

applet’s ZIP file must contain the following three directories:

• “views”. This directory contains all views of the applet. For
every view, a separate file must be created. File names must end
in “.bit”, with the part before the “.bit” suffix defining the view’s
name.

• “scripts”. This directory can contain Lua scripts. These scripts
must contain pure Lua code and can be executed by BIT before
any view is rendered. The purpose of these scripts is to allow
developers to set up functions and variables that can be used by
the Lua scripting embedded in views. While it is possible to define
function declarations directly in a view (by embedding them just
like any other Lua code as shown above), placing such code in
separate files is preferable in order to keep views lean. If this
directory contains a file named “main.lua”, it will automatically
be executed before the processing of any views. Other scripts that
are placed in this directory are not executed automatically, but
can be manually included from within the main script.

• “resources”. This directory can contain any additional files that
the applet may need, such as images that can be referenced by a
view.

The following listing shows the structure of a basic applet consisting
of two views named “overview” and “details” as well as a single Lua
script to set up functions and variables:
views/:

overview.bit
details.bit

scripts/:
main.lua

resources/:

98 Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

4.7.7. Callback functions and applet startup

During an applet’s lifetime, the browser invokes callback functions to
allow it to react to a number of events. BIT offers five callback functions
which can be implemented by applet developers:

• run_aggregation_mode(tagged_object)
This function is used to notify the applet that the object repre-
sented in tagged_object was recognized (a detailed description
of this object is given in Section 4.7.8). By calling this function,
the browser also asks the applet to produce some terse output
for inclusion in the result list that is shown in the aggregation
perspective.6

• start_exclusive_mode_coupled(tagged_object)
This function is called when the applet is to be invoked in exclusive
mode after the detection of a tagged object (hence the reference
to “coupled” in the function name). An implementation of this
function typically consists of two steps: First, it prepares some
information based on tagged_object, i.e., the recognized object.
Second, it calls the bit.show_view(view_name) function, which
asks the browser to show the view indicated by view_name. The
view will then display the information prepared before. In sum-
mary, this function can be likened to a controller in the model-
view-controller (MVC) pattern.

• start_exclusive_mode_uncoupled
This function is called when the applet is to be invoked in exclusive
mode without a tagged object having been recognized. A typical
implementation of this function calls bit.show_view(view_name)
to display a view that allows users to configure the applet.

• finish_exclusive_mode
The browser calls this function to notify the applet that the user
has requested for it to be closed. Typically, this function’s im-
plementation performs clean-up tasks, such as storing data persis-
tently.

• process_read(tagged_object)
6The applet can return its output by calling the set_aggregation_text and set_aggregation_
image functions described in Section 4.7.9.

4.7. Service Development 99

Function Perm. applets Trans. applets

run_aggregation_mode mandatory n/a

start_exclusive_mode_coupled optional mandatory

start_exclusive_mode_uncoupled optional n/a

finish_exclusive_mode optional optional

process_read optional optional

Table 4.2.: This table shows the callback functions that can or must be imple-
mented by the two applet types. Two functions are only available to
permanent applets.

This function is invoked to notify an applet that is already running
in exclusive mode about the recognition of a new tagged object.
The applet is free to react to such notifications in any way or to
simply discard them.

A typical applet implements at least the run_aggregation_mode(
tagged_object) and start_exclusive_mode_coupled(tagged_
object) methods by placing them into the applet’s “main.lua” file.
While some callback functions can be implemented in both transitory

and permanent applets, others can only be provided for either type.
The differences between the two are summed up in Table 4.7.7.

4.7.8. The “tagged object” argument

As we saw in Section 4.7.7, some callback functions accept an argument
named tagged_object. This argument is used by the browser to pass
in a Lua table containing information on the recognized object that
caused the invocation of the function. The table has the following
fields:

• Tag ID. This field represents the tagged object’s identifier, such
as its GTIN number or its EPC. It corresponds with the identically
named field from Section 3.4.1.

• Context. This field is itself a Lua table that contains all context
elements that were supplied by the physical object upon recogni-
tion. An example for such a context element is the status code
of an appliance that is transmitted over NFC. This field again
corresponds with the identically named field from Section 3.4.1.

100Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

• Endpoint. This field represents an endpoint object that can be
used to communicate with the physical object as described in Sec-
tion 4.6.9.

4.7.9. BIT API

In addition to BITML for the creation of user interfaces and Lua script-
ing for the implementation of an applet’s dynamic behavior, BIT also
offers an API. This API provides a range of functionality including the
following areas:

• User interface. As briefly discussed above, the API provides
functions to switch between views and set the output of an applet
running in aggregation mode. On top of this, it also contains
functions to show basic dialogs that can optionally prompt users
for simple input. These functions can be used instead of a view if
only basic information needs to be communicated or collected (e.g.,
to show an error message). Finally, the API offers functionality to
show a URL in a web browser and to access the phone’s vibration
module, if available.

• Persistent storage. The API provides functions for an applet
to persistently store data.

• Data exchange. In order to facilitate data exchange with vari-
ous backend services, the API offers functionality to invoke HTTP
requests and to serialize and deserialize Lua tables to and from the
XML and JSON [24] formats. This frees applets from implement-
ing their own parsers.

• Open lookup infrastructure. The API contains a number of
functions that allow applets to find resources through the open
lookup infrastructure. Its entire functionality is available through
the API, which wraps the open lookup infrastructure’s protocol.

A complete description of the BIT API including a list of all functions
can be found in Appendix B.

4.7.10. Example applet

We conclude this section by presenting the example of a product review
service. This practical example along with its full source code will

4.7. Service Development 101

illustrate how the different aspects discussed above fit together in applet
development.

(a) Output in aggregation perspective.

(b) Exclusive perspective showing “overview”
view.

(c) Exclusive perspective showing “details” view.

Figure 4.7.: Example applet implementing a product review service.

The main functionality of the example applet is illustrated in Fig-
ure 4.7. The applet consists of the following files:

• scripts/main.lua contains the Lua callback functions.

• views/overview.bit contains the BITML code for a view named
“overview” (see Figure 4.7(b)).

• views/details.bit contains the BITML code for a view named
“details” (see Figure 4.7(c)).

102Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

• Several image files in the resources directory.

The main script file is shown in Listing 4.7.10. If the applet is part
of the active runlist, the browser invokes the run_aggregation_mode
function whenever the user scans a tagged object in the aggregation
perspective. In this function, the applet sends two queries to a single
resource repository. The first query is for resource descriptions that
match the tagged object’s tag id as well as the “score” profile. The
second query is for resource descriptions that again match the object’s
tag id, but have their profile set to “review”. If the first query yields
a result with at least one resource description (line 18), the content
of the first resource description’s “data” field is extracted. It contains
a numerical rating of the product. The second query returns a list of
resource descriptions that each contains a textual product review. The
number of resource descriptions (#reviews) is calculated and appended
to the output.
As soon as the user selects the applet in the aggregation perspec-

tive (Figure 4.7(a)), the browser invokes the start_exclusive_mode_
coupled function. This function again fetches all reviews from the re-
source repository and stores the resulting list of resource descriptions
into a global variable named review_resources (line 38). The script
then asks BIT to display the view named “overview”, whose definition
is shown in Listing 4.7.10.
The view iterates through all resource descriptions (line 5) and parses

the JSON string in their “data” fields. In this example, resource descrip-
tions following the “review” profile are expected to contain the review
(i.e., the actual resource) in the “data” field. The JSON parser returns
the review as a structured Lua table, which is saved into the global
reviews array. For every review, a list entry showing the review’s title
and numerical rating is created (lines 7–10).
When the user selects a list item, the code in the <menu_item>’s

action attribute (line 14) calls the bit.show_view function, asking
the browser to show the view named “details”. The function is given
an assoviative array as a second argument. This associative array is
accessible in the new view under the name args. The definition of the
“details” view is reproduced in Listing 4.7.10 and shows how the various
attributes of the review, which is available through the review key of
the args associative array, are displayed.

4.7. Service Development 103

Listing 4.1: Review applet’s main.lua file.
1 REPOSITORY_URL = "http://resource-repository.example.com/"
2 PROFILE_REVIEW = "review"
3 PROFILE_SCORE = "score"
4
5 function run_aggregation_mode(tagged_object)
6
7 local repository = bit.get_repository(REPOSITORY_URL)
8
9 -- BIT uses associative arrays to pass a variable number of

10 -- arguments to API functions. See API documentation for details.
11 local score = repository.lookup_resource(
12 {tag_id = tagged_object.tag_id, profile = PROFILE_SCORE})
13
14 local reviews = repository.lookup_resource(
15 {tag_id = tagged_object.tag_id, profile = PROFILE_REVIEW})
16
17 local output = ""
18 if #score > 0 then
19 output = "Rated " .. score[1].data.value .. " out of 5"
20 end
21
22 if (#reviews > 0) or (output ~= "") then
23 if output ~= "" then
24 output = output .. ", "
25 end
26 output = output .. #reviews .. " reviews available"
27 end
28
29 if output ~= "" then
30 bit.set_aggregation_image("icon.png")
31 bit.set_aggregation_text(output)
32 end
33
34 end
35
36 function start_exclusive_mode_coupled(tagged_object)
37 local repository = bit.get_repository(REPOSITORY_URL)
38 review_resources = repository.lookup_resource(
39 {tag_id = tagged_object.tag_id, profile = PROFILE_REVIEW})
40 bit.show_view("overview")
41 end
42
43 function start_exclusive_mode_uncoupled()
44 -- This applet does not run in uncoupled state.
45 end

104Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

Listing 4.2: Review applet’s overview.bit file.
1 <view title = ’ReviewCentral.com’>
2 <list>
3 <?
4 reviews = {}
5 for i = 1, #review_resources do
6 reviews[i] = bit.json_decode(review_resources[i].data.value)
7 bit.out(’<list_item description="Rated ’ ..
8 reviews[i].rating .. ’ out of 5">’)
9 bit.out(reviews[i].title)

10 bit.out(’</list_item>’)
11 end
12 ?>
13 <menu>
14 <menu_item action="bit.show_view(’details’, {review = reviews[index]})">
15 Show details
16 </menu_item>
17 </menu>
18 </list>
19 </view>

4.8. Browser Architecture and Implementation

As a part of this thesis, a prototype of a browser for the Internet of
Things was developed. In this section, we will first present the high-
level architecture of the browser and its main components. After briefly
discussing how applets are executed within the browser, we will also
highlight some privacy issues and a few basic mechanisms to mitigate
them. We will conclude this section with an overview of the actual
implementation of BIT and the technologies used.

4.8.1. Components

As a runtime environment for applets, BIT acts as an additional layer
between the mobile phone’s operating system and the services that
are available to users. BIT’s role on the mobile phone platform, its
interaction with the environment, as well as its main components are
illustrated in Figure 4.8.
The functions of these components are as follows:

Resource discoverer The resource discoverer connects the browser
to the open lookup infrastructure. It encapsulates the protocols
used to access resource repositories and provides a local interface
that allows both applets as well as browser components to find
resources, such as information on tagged objects or services (i.e.,

4.8. Browser Architecture and Implementation 105

Listing 4.3: Review applet’s details.bit file.
1 <view title = "ReviewCentral.com" action="bit.show_view(’overview’, {})">
2 <media>
3
4 <text style="font-weight: bold">Pros</text>
5 <text><? bit.out(args.review.pros) ?></text>
6 <text/>
7
8 <text style="font-weight: bold">Cons</text>
9 <text><? bit.out(args.review.cons) ?></text>

10 <text/>
11
12 <text style="font-weight: bold">Rating</text>
13 <image source="stars_<? bit.out(args.review.rating) ?>.png"/>
14
15 <?
16 if args.review.bottom_line ~= ’’ then
17 bit.out(’<text style="font-weight: bold">Bottom line</text>’)
18 bit.out(’<text>’ .. args.review.bottom_line .. ’</text>’)
19 bit.out(’<text/>’)
20 end
21 ?>
22
23 <text style="font-weight: bold">Full review</text>
24 <text><? bit.out(args.review.full_review) ?></text>
25
26 </media>
27 </view>

applets).

Applet manager The applet manager is responsible for the lifecycle
of applets and coordinates their execution. Whenever a tagged
object is recognized, it leverages the resource discoverer to find
and start applets as described in Section 4.6.8. It also manages
the installation of new applets and keeps track of runlist configu-
rations as well as tied applets. In addition to the resource discov-
erer, the applet manager relies on the reader manager to obtain
notifications on recognized tagged objects, the storage engine to
load already installed applets, as well as the scripting runtime to
execute applets.

Scripting runtime The scripting runtime provides the Lua interpreter
that is required to execute applets. It also makes sure that the
BIT API is available to applets at runtime.

BIT API The BIT API allows applets to use the functionality of re-
source discoverer, storage engine, reader manager, context grab-

106Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

Applet

Lu
a

Lu
a

BI
TM

L
BI

TM
L

BIT API

Scripting Runtime

En
gi

ne

et
 M

gr
.

ReaderResource

Security Manager

en
de

rin
g

E

Ap
pl

e

Context Grabber

BI
T

g
Reader

Manager

....

Storage EngineResource
Discoverer Re

Comm. Manager

Context Grabber

PC
, E

PC
, .

.
PC

, E
PC

, .
.

FC
, T

CP
, .

..
FC

, T
CP

, .
..

RE
ST

RE
ST Operating System

EA
N

/U
P

EA
N

/U
P

BT
, N

F
BT

, N
FRR

Mobile Phone

E t lExternal
Systems

Open Lookup Infrastructure Tagged Object

Figure 4.8.: Architecture of BIT (adapted from [36]).

ber, and rendering engine in a standard way that ensures portabil-
ity of applets across different browser implementations and mobile
device platforms.

Security manager The security manager controls an applet’s access
to the functionality provided through the BIT API. It makes sure,
for example, that an applet can only access its own data stored
in the browser. It also plays a role in protecting a user’s privacy,
which is further discussed in Section 4.8.3.

Rendering engine The rendering engine is invoked through the BIT
API and allows an applet to present its user interface on the screen.
It parses the BITML code of views, which are provided by an
applet.

Storage engine The storage engine provides means for both other
browser components and applets to persistently store data in the
browser.

Reader manager The reader manager is used by the applet manager
and, indirectly through the BIT API, applets to recognize tagged

4.8. Browser Architecture and Implementation 107

objects. It wraps the different tagging technologies that may be
available on a particular mobile device (e.g., barcodes, NFC, EPC,
etc.) and provides a simple interface that abstracts from the spe-
cific labeling standard used.

Communication manager This component is responsible for estab-
lishing and managing bidirectional connections with tagged ob-
jects that offer communication capabilities. It is used by the BIT
API to provide the endpoint abstraction discussed in Section 4.6.9.

Context grabber The context grabber allows applets to acquire infor-
mation about their context. This includes, for example, location
and status information on the last recognized object. Some of its
functionality is, together with that of the communication manager,
exposed through the endpoint abstraction.

4.8.2. Implementation

Based on the above architecture, we implemented a prototype of our
browser for Nokia S60, which is currently the most widely spread smart-
phone platform. The browser itself is written in Python, which we used
because it allows for the rapid development of applications for S60
phones. Python is available on the S60 platform through the PyS60
project, which extends a Python port with some S60-specific function-
ality [133]. This includes the creation of user interfaces or access to the
phone’s communication capabilities, such as Bluetooth.
PyS60 allows developers to access extensions. An extension is a bi-

nary module that is written in the platform’s native Symbian C++ lan-
guage. We used this mechanism to import the BaToo Barcode Recog-
nition Toolkit7, which offers fast and robust barcode recognition using
the phone’s built-in camera.
The same approach, i.e., a Python extension module written in Sym-

bian C++, was used for the Lua interpreter. Lua is not available in any
form on the S60 platform. We therefore ported the source distribution
of the Lua interpreter8 along with Lunatic Python9 to Symbian S60.
Lunatic Python provides a “bridge” between the Python interpreter and
the Lua interpreter. With the resulting S60 module, a PyS60 program,

7http://people.inf.ethz.ch/adelmanr/batoo/
8www.lua.org
9http://labix.org/lunatic-python

108Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

Figure 4.9.: Hardware platform (Nokia E61i) used for the prototype implementa-
tion of BIT.

such as BIT, can import and control a Lua interpreter from within
Python.
The hardware platform that we used was a Nokia E61i mobile phone

(see Figure 4.9). This phone features WLAN, Bluetooth, and a built-
in camera, and it has a screen resolution of 320 × 240 pixels. It does,
however, not provide an NFC module. Unfortunately, there is currently
no device available that offers NFC on the S60 platform. NFC-enabled
phones are based on the S40 platform, which can only be programmed
in Java ME, and are not considered “smartphones” or “feature phones”,
as they are considerably less powerful.
The particular phone that we used for our prototype had been mod-

ified by Nokia Research Center [132]. Its standard battery cover had
been replaced with a somewhat bigger one that contains an UHF RFID
reader based on EPCglobal’s Class 1 Generation 2 protocol [31], which
is today’s most commonly used RFID standard in logistics. The reader
can be controlled through a custom UDP-based protocol.

4.8.3. Security and privacy considerations

As applets contain Lua scripts, they represent mobile code, which poses
some risks to its host [128]. BIT mitigates these risks through the use of
the Lua interpreter as a sandbox. As a virtual machine that lies above
the operating system, the scripting runtime may offer some degree of
protection for the host [21]. Access to operating system functionality is
possible only through the BIT API and can be controlled by the secu-

4.8. Browser Architecture and Implementation 109

rity manager. Applets themselves are isolated from each other. Every
applet has its own state in the Lua interpreter, which is unavailable
during the execution of another applet.
The idea of using a single tool, a browser for the Internet of Things, to

interact with all sorts of physical objects in any conceivable situation
naturally raises the question of privacy. While a full analysis of the
privacy implications of such a tool would be beyond the scope of this
thesis, we will highlight some specific privacy aspects.
With our framework, one of the main reasons for privacy concerns

is that all permanent applets which are part of an active runlist are
notified about every single tagged object that the user scans. Whenever
the user scans a tagged object, these applets are executed in aggregation
mode and send a query to a remote resource repository. Similar to an
HTTP cookie, an applet could easily include a token in its requests,
which would allow the service provider to link consecutive requests
even when the client’s IP address changes. While the BIT framework
inherently relies on all applets being notified about reads and their
ability to communicate with remote hosts, this represents an alarming
idea to many users. In effect, it would allow all service providers to
gain detailed insight into a user’s everyday scanning activities — no
matter whether a specific service is actually used or not.
BIT mitigates this problem by limiting the information an applet can

transmit when it runs in aggregation mode. In order to prevent applets
from revealing any information that could be used to identify the user,
the security manager blocks all communication operations bar resource
repository lookups. As a result of this, applets can only use the tag
ID, profile, and context fields in lookup requests to share data with the
backend infrastructure. Since it would still be possible to encode an
identifying token in, for example, a specially crafted profile name, these
fields are futher filtered by the security manager:

• The tag ID field is always set to the tag ID that was last recognized
by the reader manager.

• For the profile field, only values from a list of known profiles are
acceptable. This list is distributed with the browser, but can be
extended as the browser is used.

• Like the profile field, the context field can contain well-known
context types only. In addition, only a context element’s name,

110Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

but not its value can be specified. Comparable to the tag ID, the
context value is automatically set to the value provided by the
context grabber.

Note that these restrictions apply in aggregation mode only. In exclu-
sive mode, an applet can communicate freely because, unlike in aggre-
gation mode, it is only notified about tagged objects that are recognized
while the user explicitly uses the service.
However, another problem arises as a consequence of this. Instead of

immediately transmitting tag reads to a remote host, an applet could
log them to the storage service while running in aggregation mode.
When it is later started in exclusive mode with full privileges, it could
read this log and share it with a backend server. For this reason, the
security manager also blocks write operations to the storage manager
while the applet runs in aggregation mode. Read operations are still
possible and necessary (e.g., for an allergy checker to fetch a user’s
dietary restrictions).

4.9. Example Services and Discussion

In order to validate both our framework design as well as our prototyp-
ical browser implementation, we created nine example services for BIT.
Our goal was to assess the practical value that our framework can pro-
vide for relevant services and to illustrate the range of different service
types that are supported. In keeping with this objective, we mostly
selected services that had been proposed or taken up and refined by
others [3, 143, 25, 28, 119, 140].
This section will start by presenting these applets and reviewing their

functionality. We will then discuss the experiences we made in the
process of their implementation. In particular, we aim to shed light on
both the benefits and shortcomings of our framework when compared
with a software development approach that is based on established and
widely used tools for mobile platforms.

4.9.1. Product reviews

The first applet that we implemented provides a product review service.
It allows users to browse other consumers’ written opinions regarding
a tagged product at hand. In addition, a numeric score for the product

4.9. Example Services and Discussion 111

(a) Overview with browser menu. (b) Details view.

Figure 4.10.: Example applet. Implementing a “political shopping” service.

is shown. The screenshots of this applet were already reproduced in
Figure 4.7 on page 101, and we also listed its source code there.
This example illustrates the use of mixed content in the <media>

element. It also relies on the wrapper functionality offered by the open
lookup infrastructure’s resource repositories. In this example, we use a
wrapper to calculate the average score of resources and another one to
include reviews from Amazon.com, which represents an external data
source.

4.9.2. Political shopping

This applet is similar to the product review applet (see Figure 4.9.2).
The service in this example is provided by an imaginary consumer pres-
sure group and illustrates how applets can be used for “political shop-
ping” [66]. Information is again fetched from a resource repository,
operated by the consumer pressure group. In addition to the overview
displayed directly in BIT, the applet also links to articles on external
web sites providing further background information.

4.9.3. Carbon footprint calculator

The carbon footprint calculator lets consumers keep track of the carbon
emissions produced by their shopping activities. It is an example of a
persuasive technology application [43] (sometimes also called “persua-

112Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

(a) Adding emissions to personal record. (b) Personal emissions record.

Figure 4.11.: Example applet. Implementing a carbon footprint calculator.

sive computing”), i.e., an interactive application which aims to change
a person’s attitudes and behavior.
In the aggregation perspective, the applet shows users the carbon

emissions produced by the product at hand (see Figure 4.2 on page 79).
When the applet is selected and displayed in the exclusive perspective,
it prompts users whether they want to add the product’s emissions to
their personal carbon record (Figure 4.11(a)). The exclusive perspec-
tive also shows a list of all entries in the user’s personal record (ordered
by date). Users can review their total carbon footprint (Figure 4.11(b))
and reset their personal record.
The carbon footprint calculator is an applet that relies on the browser’s

storage capabilities because it collects data that must be preserved for
use in subsequent invocations.

4.9.4. Allergy checker

The allergy checker notifies users when a tagged product should not be
consumed according to their dietary requirements. Users can configure
these dietary requirements after manually starting the applet in exclu-
sive mode. In order to manage these requirements, the applet again
leverages the browser’s storage engine to persist data.
The applet aims to not interfere with the user unless necessary. It

does so by not producing any output in aggregation mode unless a
tagged object does not match the user’s dietary requirements. A screen-

4.9. Example Services and Discussion 113

Figure 4.12.: Example applet. Implementing a price comparison service.

shot of the applet in aggregation perspective is provided in Figure 4.2
on page 79.

4.9.5. Price comparison

“You Save” is an imaginary location-aware price comparison service.
When the applet runs in aggregation mode, it queries the service pro-
vider’s resource repository for cheaper offerings of the same product.
The lookup request includes the mobile device’s current geolocation.
The most attractive alternative offering — depending on its price and
location — is then shown in the aggregation perspective along with its
distance, which is calculated by the applet. When the user selects the
entry, the applet opens in the exclusive perspective and shows a list of
potentially attractive offerings (see Figure 4.9.5). For every offering,
address information and opening hours are displayed. If an entry is
selected, BIT opens Google Maps in the mobile phone’s standard web
browser to provide users with detailed directions from their current
location to the selected store.

4.9.6. Shopping list

This applet allows users to prepare a personal shopping list on the
mobile phone by scanning the products that should be bought on one
of the next shopping trips. It would typically be part of a “home”
runlist. Upon every execution of the runlist, the applet creates an
entry in the aggregation perspective (see Figure 4.7(a) on page 101).

114Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

When the user selects this entry, the applet shows a form consisting of
a field for the product name and another one for the quantity that is to
be bought. The name field is pre-filled with the product’s name that
is retrieved from the manufacturer’s resource repository. Once the user
saves the form, a reminder is created and added to the shopping list.
The applet can also be started manually in exclusive mode to see all
list entries. In this mode, entries can be edited or checked off, and the
entire list can be cleared.

4.9.7. Search service

This example applet is based on the open lookup infrastructure’s search
service. We set up a search service that creates an index of standard
web sites on the internet (see Section 3.4.3), which allows users to
leverage BIT to also find relevant product-related information that is
published on standard web sites.
When the search applet is part of the active runlist, it queries the

search service whenever the user scans a tagged object. The query
includes context elements that are obtained from the browser’s context
grabber, such as the current location or status information provided
by the tagged object (if available). If resources are found, the applet
creates a notification that is listed in the aggregation perspective (see
Figure 4.7(a) on page 101). After selecting this entry, the applet is
started in the exclusive perspective and shows a list of resources found
by the open lookup infrastructure’s search service (Figure 4.13(a)). The
list is ordered by the search service based on the context elements
that were provided by BIT, so as to show more relevant entries first.
If a search result is selected, BIT opens the corresponding URL in
the mobile phone’s standard web browser. The example depicted in
Figure 4.13(b) shows a web site with troubleshooting instructions that
apply to a specific appliance condition. It was found by the search
service via the device status that was provided by BIT.

4.9.8. Coffee maker controller

Unlike the applets discussed so far, the remaining two examples are
of the transitory instead of the permanent type. That is, rather than
being installed by a user, these applets are started immediately with-
out the user’s explicit request when the corresponding tagged object is
recognized.

4.9. Example Services and Discussion 115

(a) Search results overview. (b) Troubleshooting instructions on a web page.

Figure 4.13.: Example applet. This example is based on the open lookup infras-
tructure’s search service.

(a) Some of the functions offered. (b) Instructions for changing filter.

Figure 4.14.: Example applet. Implementing a coffee maker controller service.

We created a “coffee maker controller”, which allows the user to op-
erate the appliance through BIT. The use cases we implemented are
identical with the ones we presented in the user study of Chapter 2.
In effect, this applet represents a BIT-based re-implementation of the
AID, which we discussed in Section 2.5.4. Some of its functions are
shown in Figure 4.14(a).
The controller applet relies on Bluetooth for bidirectional communi-

cation with the coffee maker. The applet itself does not contain any

116Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

code for connection handling. It uses an endpoint as described above,
which delegates all details regarding connection management to the
browser. As we did not have a coffee maker with Bluetooth communi-
cation capabilities available, we implemented a “coffee maker emulator”.
This Python based application runs on a desktop PC, where it emu-
lates the behavior and status changes of an actual coffee maker. It also
shows a display that is updated according to the commands that are
received from BIT over Bluetooth. The desktop application also sim-
ulates the coffee maker’s status, which can by changed directly in the
desktop application’s user interface. For example, if the emulator is set
to request a filter change, the coffee maker applet automatically shows
a corresponding assistant as soon as it is started (see Figure 4.14(b)).

4.9.9. Self checkout

The last example that we implemented is a self checkout applet as it
could be provided in a retail store. It is again a transitory applet be-
cause we picture shoppers scanning a dedicated “launch tag” as they
enter a store, which starts the applet automatically. While the applet is
active in the exclusive perspective, it immediately shows store-related
content as soon as an object is recognized. When, however, the ag-
gregation perspective is active, the applet is not notified about reads
because, as a transitory applet, it is not part of any runlist. This allows
users to easily switch back and forth between their own runlist, which
provides diverse, “neutral” product information, and the store’s applet,
which provides store-centric product information.
Figure 4.15(a) shows an example of an overview page that is provided

by the applet after a product is recognized. If users decide to put the
item into their physical shopping basket, they can selected the applet’s
corresponding function that places the item into their virtual shopping
cart (see Figure 4.15(b)). Once they have collected all items, users
can proceed to a payment point in the store to scan a special “pay”
barcode. This barcode signals the applet that the costumer is done and
ready to pay. The “pay” barcode provides an endpoint to the specific
payment point it is affixed to, which allows the applet to establish a
connection with the cash terminal built into the payment point. Like in
the previous example, we used Bluetooth to transmit the virtual cart’s
content to the terminal, which can then ask the customer to pay for
the purchase.

4.9. Example Services and Discussion 117

(a) Store-specific product information. (b) Shopping cart content.

Figure 4.15.: Example applet. Implementing a self checkout service.

Applet Views Views LOC Scripts LOC Total LOC

Product reviews 2 51 34 85

Political shopping 2 43 30 73

Carbon footprint calc. 1 26 124 150

Allergy checker 2 38 107 145

Price comparison 2 33 69 102

Shopping list 2 38 88 126

Search service 1 24 29 53

Coffe maker controller 13 216 44 260

Self checkout 4 60 98 158

Table 4.3.: Example applets metrics: number of views, source lines of code (LOC)
for views, LOC for script files, and LOC total.

4.9.10. Discussion

As shown by the nine example applets presented above, BIT supports
the development of a broad range of different services for tagged objects.
From a developer’s perspective, the above examples also illustrate the
framework’s main benefit: A considerable reduction of development
effort. Table 4.9.10 shows how many views and how many source lines
of code10 were needed to implement the services as described.
For illustrative purposes, we compared some of these numbers with

10We counted physical lines of code by using the UNIX wc -l command.

118Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

those of a comparable applet we had implemented earlier during the
work presented in Chapters 2 of this thesis. The Java ME-based coffee
maker controller that we built for the usability evaluation offers the
same functionality as the example applet discussed above. The only
difference between the two lies in their ability to communicate with
a coffee maker. While the Java ME MIDlet does not communicate
with a remote appliance, the BIT applet retrieves (and updates) the
coffee maker’s settings from our emulator using an endpoint provided
by the framework. Despite its more limited functionality, the MIDlet’s
implementation required 931 source lines of code, which is considerably
more than the 260 lines required by the BIT applet.
Lines of code are certainly not the most accurate metrics, and it is

to be expected that a scripting language like Lua requires fewer lines
of code than Java. Even so, these numbers give an impression of how
developing a service for the BIT framework differs from creating the
same service for another platform such as Java ME, which is a practical
alternative that is widely used and considered to be relatively easy.
In Section 4.4, we set out the requirements that our framework would

need to fulfill. In the remainder of this section, we will analyze how
BIT meets these requirements.

Navigation of services BIT satisfies this requirement by providing
an aggregation perspective that gives users an overview of rele-
vant services. At the same time, several applets can run in the
exclusive perspective at once. Users can easily switch back and
forth between the applets in the exclusive perspective.

Responsiveness Service execution and switching between different
services occurs sufficiently fast. However, BIT suffers from the
shortcomings of Python for S60, which has a number of problems
in its networking modules. The latency of requests varies greatly
and is dependent on the network’s characteristics in an often un-
predictable manner. Due to these issues, the current prototype
fails to be responsive at all times — even under very light load.
A solution to this problem would consist in implementing BIT di-
rectly in Symbian C++ (or another language) rather than Python
for S60.

Coordination of services Runlists are designed to execute a number
of services at the same time and to distribute tag reads to applets.

4.9. Example Services and Discussion 119

Use without physical object BIT provides both a bookmark and
history functionality, which allows users to access an object’s ser-
vices in its physical absence.

Service invocation types BIT meets this requirement by offering
transitory and permanent applets as well as the possibility to tie
applets to tagged objects.

Discovery Services themselves can be linked to a tagged object through
the open lookup infrastructure. It is thus possible to discover pre-
viously unknown services by interacting with the object.

Appliance status recognition An appliance can advertise its status,
which is made available to the applet through the tagged_object’s
context element.

Appliance control This requirement is addressed by endpoints, which
allow developers to transmit data (e.g., commands) to a remote
tagged object without dealing with the actual underlying commu-
nication technology.

Acquisition of context information Such information is available
through the BIT API.

Integration with backend infrastructure The BIT API provides func-
tions that allow applets to access the open lookup infrastructure.

Persistent storage Applets can persistently store data via the BIT
API.

Tagging technology-agnostic BIT meets this requirement by let-
ting applets implement callback functions that are used to de-
liver notifications about tag reads in a technology-independent
way through the tagged_object argument.

Platform and device independence As applets run entirely inside
the browser, which provides its own user interface markup lan-
guage as well as its own API, applets can be implemented in a
platform- and device-independent way.

Easy-to-learn and rapid service development BIT borrows some
of its ideas from web application frameworks. These include the
mix of scipting and user interface markup code as well as the MVC-
inspired distinction between views and controllers. Both BITML

120Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

as well as the BIT API are lean, and Lua is similar to many other
scripting languages. A developer who has some experience with
web application development should be able to write BIT applets
in a very short time. Finally, as we saw above, BIT applets are
small and can be implemented quickly.

Design for low attention Runlists are designed to hide those applets
from the aggregation perspective that do not produce any output.
They also provide a means to prioritize more important applets,
which allows users to ensure they do not miss critical information.
Finally, the navigation to access the features of BIT is laid out so
as to facilitate its use in a low-attention environment. Frequently
used functionality (e.g., switching between exclusive perspective
and aggregation perspective, turning on reader devices, etc.) can
be accessed with one or two easy-to-remember keystrokes that do
not depend on the applet’s implementation.

Unified user experience The browser itself is responsible for the main
user interface, which allows it to ensure a consistent appearance
and navigation of services. Functionality that is not unique to an
applet (e.g., closing the applet, turning on reading devices, etc.)
is always accessible in the same way.

Security and privacy Each applet runs in its own sandbox, which
mitigates threats to both the mobile phone platform as well as
other applets. To offer some degree of privacy protection, BIT’s
security manager limits the ability of applets to share potentially
sensitive data.

A weakness of the current prototype is its limited support for de-
signing custom user interfaces. For example, it does not implement
the full CSS specification, but provides support for a few basic features
only to format and align text elements. This is due to two factors: On
the one hand, Python for S60 does not offer all user interface features
that are available on the S60 platform. Among other issues, the ab-
sence of certain UI widgets makes it very difficult to offer the creation
of more flexible and appealing user interfaces through BITML. Again,
this problem could be mitigated by implementing the prototype based
on alternative tools rather than Python for S60.
Another question is whether BITML in combination with CSS is

expressive enough to meet the needs of all service providers. For ex-

4.9. Example Services and Discussion 121

ample, BITML is geared towards the traditional mobile phone form
factor consisting of a simple display and a separate keypad. It does not
specifically support touchscreen devices and the additional interaction
methods offered by them (e.g., dragging elements on the screen). How-
ever, the focus of this thesis was not on the development of an abstract
user interface description language. There is already much work in this
area. The main interest of this thesis was to develop a general frame-
work for the integration of many diverse services from different sources
and how they can be deployed and executed in a usable way. We see
existing work in the user interface domain as complementary, as it can
be leveraged in future implementations to extend BIT’s basic markup
language.

An important benefit from the use of an interpreted scripting lan-
guage is the platform independence of BIT. This can significantly re-
duce a developer’s effort because the same applet can run on all mobile
phone platforms for which BIT is available. However, this approach
may have a drawback for some service providers. Since applets are
distributed in source code form, it is easy for anyone to look into their
implementation, borrow ideas, or create derivatives. Appliance manu-
facturers, for example, effectively disclose the interfaces to their phys-
ical products by offering a controller applet. With this information,
it is not difficult to create a replacement for the manufacturer’s con-
troller, which may be perceived as a threat to their brand image by
some. On the other hand this transparency is not unique to BIT. The
bustling Web 2.0 community makes heavy use of technologies that dis-
close source code, which allows developers to learn from each other and
build new, innovative mashups.

Ultimately, however, the nature of most services for tagged objects
is different from many traditional (web) applications. Services tend to
add to the value of a physical product, rather than being a sellable
product themselves (e.g., a controller for a coffee maker). And in those
cases where a service can be marketed without an associated physical
product (e.g., a price comparison service), the service’s real asset is
not the applet, but its data collection. For these reasons, it seems
acceptable that the source code of BIT applets is not further protected.

122Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

4.10. Related Work

The need to make services available on mobile devices has been ad-
dressed in several research projects that are related to our BIT frame-
work. In this section, we will look into these projects and contrast
them with our work. Although boundaries are not always clear-cut,
our survey will touch on subjects such as user interface adaptation,
smart environment control, and information access.

4.10.1. User interface adaptation

A popular approach to the problem of providing services that can be
accessed from a range of different mobile device platforms has been to
run the service in the backend infrastructure and ship its user interface
to the mobile device, where it is adapted to the platform’s capabilities.
Perhaps one of the most often cited system in this area is UIML,

the User Interface Markup Language, by Abrams et al. [2] UIML is
XML-based and allows user interfaces to be specified using abstract in-
terface elements. These abstract interface elements are then mapped to
platform-specific widgets using stylesheets. UIML is purely declarative
and does not include a procedural scripting language. However, a user
interface can define events. Events can be used to update the values of
user interface attributes or invoke backend methods.
A similar system, also relying on abstract XML-based user interface

descriptions and stylesheets, is proposed by Müller et al. [95]. However,
the goal of this systems is to minimize the device’s workload by trans-
forming the abstract user interface into a concrete one in the backend.
Mori et al.’s TERESA and CTTE tools [92, 93, 94] are again based

on the idea of abstract user interfaces from which a concrete interface is
generated for a particular device. Their approach, however, introduces
explicit task models from which abstract user interfaces are derived.
A graphical tool is provided that assists developers throughout the
modeling phase in the specification of the task model.
An agent-based system is presented by Mitrovic and Mena [91]. In

their system, user interfaces are specified in XUL [52]. A suitable agent
“travels” to the mobile device for rendering the user interface. For user
input handling, a Java class must be written by the developer, which
is then deployed onto the client device.
Nylander et al. [109] propose another device-independent language for

describing service interaction. In their system, the final presentation,

4.10. Related Work 123

which is rendered by an interaction engine named Ubiquitous Interactor
(UBI), can be adapted through the use of “customization forms” that
map abstract “interaction acts” to platform-specific GUI widgets.
The PERCI (PERvasive ServiCe Interaction) project by Broll et

al. [16] relies on Web Services to automatically generate user inter-
faces for mobile phones. PERCI transforms Web Service descriptions
into abstract user interfaces that are then rendered on the mobile phone
by a Java ME client or further transformed to HTML pages that can
be viewed in the phone’s browser.
Finally, compared to the above projects, the W3C’s XForms Rec-

ommendation (i.e., standard) [13] is fairly simple, but also less pow-
erful. It allows for the definition of forms in a platform-independent
way. In XForms, a form consists of two parts: A data model that
specifies the data elements that are collected in the form as well as
a user interface that describes how these elements are collected. An
XForm user interface can be described by means of a set of device-
neutral, platform-independent form controls. Every data element from
the model is bound to an instance of a form control. When the form is
rendered, it is up to the browser to choose a concrete UI widget that
is most suitable to present the control on the specific platform. The
appearance of forms can be specified using CSS.
While the focus of our work was never on the development of an ab-

stract user interface description language, these projects are similar to
BIT in that they provide user interfaces that can be rendered on a num-
ber of of different mobile devices. Like these projects, the interaction
elements provided by BITML are not specific to a certain platform, and
the user interface’s appearance is separated from its functionality.
Even though some of the projects discussed are designed to also sup-

port the speech modality, they mostly concentrate on graphical user
interfaces. New interaction techniques, such as scanning with a bar-
code reader or touching an RFID tag, are not supported. Similarly,
adaptation of a service based on the user’s momentary context is not
considered by these solutions. Unlike in BIT, device-specific features
that are needed to gather context information are not accessible.
A drawback of purely XML-based approaches is the difficulty of im-

plementing even basic application logic. Some projects, such as the
Ubiquitous Interactor, delegate this task to the backend infrastructure.
This comes at the cost of frequent request/response cycles, which may
impair user experience. Others, such as UIML, provide a solution based

124Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

on specifying basic application logic in a custom XML-based format.
However, such declarative approaches can be much more cumbersome
for developers than general-purpose procedural languages. Unlike the
projects presented above, BIT offers a full-fledged scripting language,
which makes it relatively easy to glue together user interface elements
based on application logic.
Overall, the scenarios that we target with BIT require functionality

that cannot be provided by existing work in the user interface adap-
tion domain alone. At the same time, such projects have proposed
standards for the description of user interfaces that are more detailed
than BITML. Given the comprehensive body of work that exists in
this area, we decided to keep our own markup language fairly simple.
Future versions of BIT, however, could draw on these complementary
efforts (e.g., XForms).

4.10.2. Smart environment control

One of our framework’s goals is to support the development of services
for controlling physical appliances. In this section, we will review other
projects that leverage personal mobile devices to control individual ap-
pliances or a range of services embedded in a smart environment.
Olsen et al.’s XWeb [110] is a system that allows users to control

all sorts of physical appliances with a single device. The assumption
behind XWeb is that it is not a good solution to have a unique piece
of software for every appliance. XWeb therefore introduces XTP, a
“universal interactive service protocol”, that can be implemented by
appliances to ensure interoperability with any XTP-compliant client.
XTP builds on HTTP and allows clients to control a service by insert-
ing, updating, and deleting data in a tree that is made available by
the service using the URL notation — similar to what is called REST
today. User interfaces are designed using XViews, XML documents
that define which nodes of the tree should be presented to the user for
manipulation.
Within the Pebbles project, Nichols et al. developed the personal

universal controller (PUC) [105], which is very similar to XWeb. It also
introduces a communication protocol that appliances must support in
order to interoperate with PUC, and it also uses abstract user interface
descriptions that are rendered on the mobile device.
Comparing to both XWeb and PUC, BIT does not rely on a specific

4.10. Related Work 125

protocol that must be adopted by appliance manufacturers. As manu-
facturers may not be willing to support such a protocol, BIT’s ability
to automatically download an applet for an appliance has the benefit
of allowing for the implementation of custom protocols.
In [15], Broll et al. present Collect&Drop, a technique to interact

with services that is based on the idea of physically touching a number
of NFC tags. A typical use case example consists in a movie poster
that allows users to order tickets for a certain show of the movie by
touching NFC tags that represent show times and number of tickets.
When the user first touches an NFC tag, an “action item” is retrieved
from the tag, which specifies all other items (e.g., show time and num-
ber of tickets) that need to be “collected” by the user before a service
(e.g., a ticket vending service) can be invoked. Collect&Drop keeps
track of all tags that are then touched by the user. Once all elements
have been collected, the service is invoked by opening its URL, which
is encoded in the action item, and passing in the collected items as
arguments. As a result, the service can return a new element (e.g., the
movie ticket) that is collected and stored for future use (e.g., invocation
of a ticket validation service at the movie theater). In the BIT frame-
work, the same functionality can be implemented with an applet. The
applet’s script can require the user to perform the same actions that
are described in a declarative manner in Collect&Drop’s action items.
Other projects have emphasized the systems perspective more than

the interaction aspects. An example is the Universal Information Appli-
ance (UIA) by Eustice et al. [37], which aims to be able to interact with
any application and operate any electronic device in the user’s environ-
ment. The UIA uses its own XML-based language MODAL (Mobile
Document Application Language) to deploy applications on the mobile
device. In some ways, MODAL is similar to UIML. However, it uses
a tuplespace system as a communication middleware for the exchange
of messages with the environment. This is an additional infrastructure
requirement, and it remains unclear who would be willing to provide it
at a large scale.
AlfredO by Rellermeyer et al. [118] is a lightweight middleware archi-

tecture that aims to enable modular applications that can be dynami-
cally distributed among participating devices, such as touchscreens or
vending machines. AlfredO builds upon the R-OSGI middleware [117],
which extends the industry-standard OSGi specification to support dis-
tributed module management. AlfredO applications are structured in

126Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

a presentation tier, a logic tier, and a data tier. The presentation tier
resides on the mobile device, the data tier on the device to be con-
trolled, and the logic tier can be dynamically assigned to either device.
Input and output capabilities that are used by a user interface are
modeled as OSGi services (e.g., “PointingDevice” and “ScreenDevice”).
Due to the underlying R-OSGI middleware, AlfredO can offer a com-
plete infrastructure for more complex applications. This requires an
understanding of concepts that may not be familiar to a casual soft-
ware developer. Thus, for the scenarios outlined in this thesis, BIT’s
simpler approach seems to be just as appropriate.
With similar applications in mind like Rellermeyer et al., Riekki et

al. propose their REACHeS (Remotely Enabling and Controlling Het-
erogeneous Services) architecture [120, 131] that allows users to control
public displays through their mobile phones. Unlike the other projects
reviewed above, REACHeS is explicitly designed to be used with tagged
objects, and in particular NFC. The system relies on URLs that are
encoded in NFC tags, which are opened in the phone’s web browser
when the tag is recognized. This URL points to the central REACHeS
server, which allocates a specific display that is encoded in the request
URL and forwards the request to a server that actually implements
the service to be shown on the display (e.g., a web site advertising a
product). The service responds by updating both the display as well
as the HTML page in the phone’s browser, which contains a user in-
terface that allows for controlling the display. REACHeS differs from
the above projects in that it only uses technologies that are readily
available on mobile phones, such as Ajax [50] and NFC’s mechanism to
automatically launch the browser when a tag is read. The system does
not require any additional software on a standard NFC phone, and in-
frastructure requirements in the backend are modest. The downside of
this simplicity is that REACHeS only works with NFC and HTTP over
the phone’s default data bearer, but does not support other tagging
technologies or direct Bluetooth connections with local appliances.
All of the above projects concentrate on using services to control

a smart environment and do not address the question of how users
can select a service that matches their needs. In the case of NFC, for
example, the service to launch is hard-coded in the tag. Others let users
manually choose from a fixed list of services provided by an appliance.
BIT aims to go beyond this by leveraging the open lookup infrastructure
to dynamically bind services to tagged objects and supporting users

4.10. Related Work 127

with selecting the right service through its runlists.

4.10.3. Retrieving information

There are a number of projects concerned with retrieving information
on a mobile device that are related to our framework. Some of these
focus on providing information for tagged objects, others offer informa-
tion for places, taking into account the user’s context.
The Hewlett-Packard Labs’ Cooltown [72, 71] is perhaps one of the

most widely known projects in this field. Cooltown proposes an in-
frastructure based on world wide web technologies to create a “web
presence” for people, places, and things. These entities can have their
own web pages, where they can offer information and services. This
web presence is advertised by infrared beacons that broadcast URLs
(mainly used for places) or by encoding identifiers in barcode or RFID
tags (mainly used for things). The web presence of an entity is man-
aged by a “web presence manager” [27], a hyperlinked collection of web
pages with information and services related to the entity. A web pres-
ence manager for a place, a “place manager”, can also contain a resolver
that maps the identifier encoded in a tag to a URL. As users enter a
place, it is automatically recognized by the mobile device via infrared
beacons or a “you are here” tag. When identifiers are sensed later, the
place’s resolver is used to look up the URL associated with the sensed
entity. This allows for the context-dependent retrieval of information
and services for a given entity.
Like BIT and our open lookup infrastructure, Cooltown envisions a

universal interaction device to be used with any object and appliance
that a user may encounter. However, while BIT supports places as a
part of the context that can be supplied when looking up resources,
Cooltown includes people and places as first-class entities in its archi-
tecture. For example, Cooltown allows users to see the momentary
location of others. BIT does not offer such functionality because from
the beginning, its focus was confined to tagged objects. Conversely, the
Cooltown architecture is limited in its support of information and ser-
vices provided by many independent parties. By default, identifiers are
resolved using the local place manager. As a result, only those services
that were registered by the owner of a place, who is in charge of the
place manager, can be found. Services offered by third parties cannot
be located. This problem is recognized in [70]. The suggested solu-

128Chapter 4. Facilitating Service Development – A Browser for the Internet of Things

tion consists in information providers running their own web site with
a resolver that is independent from the momentary place’s resolver.
However, this approach requires users to decide on the service they
would like to use before scanning an object. Also, it may be necessary
to try a long list of services before a relevant result is found. BIT frees
users from making this decision by aggregating the services offered by
several providers and ordering them according to the user’s preferences.
While the need to aggregate resolution services is mentioned in [70], it
is not detailed how this could be done.
Finally, Cooltown relies on applications that are presented in a web

browser. This approach can have significant security drawbacks. If
an appliance, such as a coffee maker, is accessible only via the web,
some form of authentication is needed in order to prevent unauthorized
access. Since BIT does not rely on a web browser, it can leverage short-
range communication technologies such as NFC and Bluetooth that
naturally restrict access to users who are in the appliance’s physical
proximity.
The limitations of a web browser in the context of RFID-based mobile

services are also discussed by Michael and Darianian [89]. Their focus
is on striking a balance between thin-client solutions where the mobile
phone and its web browser act merely as a presentation device for an
application running on a remote server and rich-client solutions where
the application executes directly on the mobile device. They propose a
“quasi-rich client”, a standalone application on the mobile terminal that
fetches content from a server and displays it locally. This is the same
approach that we also chose for BIT. However, BIT goes further by
not only considering a single application, but a multitude of services.
Many other aspects of the BIT framework (appliance control, context,
presentation — just to name a few) are not addressed by [89].
With the PanOulu Luotsi, Kukka et al. [75] present a system that

aggregates location-dependent information that can be accessed from
a mobile phone. Data from different sources is integrated and mapped
into the Luotsi’s own data model — similar to wrappers in the open
lookup infrastructure. Unlike BIT, however, the Luotsi system is cen-
tralized: all data is kept in a single database. As a result, new services
cannot be deployed without the central database’s support and coop-
eration.
Finally, the AURA (Advanced User Resource Annotation) system by

Brush et al. [17, 137] allows users to view and share product-related

4.11. Summary 129

annotations for products that are tagged with barcode labels. The use
cases that are presented (e.g., product reviews, price comparison) are
very similar to the examples that motivate our work. The paper also
stresses the importance of an open architecture that allows any party
to publish information and services. However, it does not propose the
architecture of such a system, but presents the learnings from a user
study that was carried out based on a prototype implementation.

4.11. Summary

When any party that is interested in providing information or services
for a physical object can do so, the question arises how users can inter-
act with the many offerings that may be available for a given object.
Traditionally, there has been a single, isolated application on the mobile
phone for every service. In this chapter, we presented the concepts, ar-
chitecture, and implementation of a browser for the Internet of Things
(BIT). BIT represents a single point of interaction that allows users
to quickly gain an overview of available services and invoke those that
seem interesting. It further frees users from the need to, one after an-
other, start applications on the mobile phone that may offer content
for a physical product — only to find out that none is available.
At the same time, BIT provides a software framework that signifi-

cantly facilitates the creation of services for tagged objects. The frame-
work offers a number of concepts and abstractions through its API that
can be used by developers to implement services in a faster, easier, and
more convenient way. Rather than needing to port a service to all ma-
jor mobile platforms, each with its particular intricacies, a service needs
to be written just once in order to run on any platform that offers a
BIT implementation.

5. Conclusion

We began this thesis with the observation that the idea of augmenting
everyday objects with digital services on mobile phones faces several
obstacles and open issues. This is the case with respect to both the
usability of such systems as well as their implementation. Our goal was
therefore to identify factors in both fields that can help alleviate some
of the current problems. In particular, we aimed to investigate, on the
one hand, under which conditions users benefit from mobile devices to
control physical appliances, and under which conditions they do not.
On the other hand, we aimed to propose infrastructure components and
a software framework that facilitate the development of mobile services
for tagged objects.
In the remainder of this chapter, we will briefly revisit the arguments

of this thesis.

5.1. Summary

We started this dissertation by reviewing some oft-cited applications of
personal mobile devices to control physical appliances. We challenged
the somewhat counterintuitive notion that it is more efficient to operate
a physical appliance via a softkey-based user interface on a PDA than
through the device’s haptic controls, as suggested by previous studies.
We argued that mobile devices are likely to offer benefits in special sit-
uations, such as a faulty appliance or a rarely occurring condition that
requires the user’s manual intervention. However, contrary to what
is outlined in many scenarios in the ubiquitous computing literature,
they cannot be expected to be of significant value during normal, ev-
eryday use of an appliance. In order to confirm or reject our claim, we
formulated three hypotheses to be tested in a comprehensive usability
evaluation:

• For controlling an appliance in exceptional situations, interaction
based on a mobile phone is faster than interaction based on the
traditional user interface.

132 Chapter 5. Conclusion

• Looking up context-dependent information on the handling of an
appliance is faster using a mobile phone than using traditional
means (e.g., user manuals).

• To carry out everyday tasks, the use of an appliance’s traditional
user interface is faster than mobile phone-based interaction.

We continued with a description of our study setup. We used four
typical appliances — a dishwasher, a coffee maker, a laser printer, and
a radio — and 18 tasks. We distinguished between control tasks, prob-
lem solving tasks, everyday tasks, and repeated control tasks, the last
representing the re-enactment of a control task that was performed be-
fore. Our study involved 23 participants and was based on a mobile
phone running the software we had developed for the trial.
We then presented the results of our user study, in which we found

support for all three hypotheses. Interestingly, mobile phone-mediated
control remains significantly faster even after participants have famil-
iarized themselves with an appliance. We concluded the chapter with a
critical discussion of these results and pointed out the benefits arising
from mobile phones that can sense an appliance’s status and provide
context-sensitive assistance for users.
In Chapter 3, we presented an open lookup infrastructure. We ar-

gued that, for two reasons, the increasing availability of information
and services for tagged products requires a basic infrastructure for the
publishing and discovering of such resources: First, it is needed by users
to find relevant resources. Second, it frees developers from the need to
implement anew a custom solution for a generic problem.
We stressed the importance for such an infrastructure to accommo-

date product-related resources from any party, including manufactur-
ers, consumer interest groups, and even end-users. Our infrastructure
consists of four core concepts: resources and their descriptions, resource
repositories, a manufacturer resolver service, and a search service. Re-
source descriptions define a standard way for annotating and linking
to resources, i.e., information or services. While resource repositories
accommodate resource descriptions and allow for their context-aware
lookup, the manufacturer resolver service can be used to find a product
manufacturer’s resource repository. The search service, finally, enables
searches that span multiple repositories and makes standard web pages
containing product-related information available as resources. We pre-
sented an implementation of the open lookup infrastructure as a proof

5.1. Summary 133

of concept along with example applications that illustrate its applica-
bility.
In Chapter 4, we proceeded by presenting BIT, a browser for the In-

ternet of Things. We began by analyzing the obstacles that developers
face when creating mobile services for tagged objects. Most notably,
these include the need to create a separate implementation for every
mobile phone platform and to deal with details (e.g., managing reader
devices, connection handling, etc.) that are not a service’s main con-
cern. We also pointed out that users need a tool that coordinates the
invocation of services on their behalf, or, in other words, a “single point
of interaction” rather than many services to be invoked separately. We
then sketched a scenario touching on many possible services, from which
we derived the requirements as well as the design implications for our
system.
Based on these findings, we detailed the core concepts of BIT and its

software framework, the most important being the notion of applets.
Applets are self-contained packages that are downloaded dynamically
to provide services as users interact with tagged objects. We continued
with a description of how services can be implemented using our frame-
work. In particular, we presented BITML, the BIT markup language,
which allows for the abstract, platform-neutral description of the user
interface of services. We further introduced the BIT API, which offers
abstractions that simplify service development and ensure platform in-
dependence. Finally, we described the integration of the Lua scripting
language, which is used to glue the different applet components to-
gether.
These concepts were implemented in a prototypical browser. We

presented its architecture, detailed the implementation on the Symbian
S60 platform, and outlined our port of Lua to Symbian S60. We also
pointed out some security and privacy aspects of BIT and the steps
taken to mitigate them, which include sandboxing the Lua interpreter
and limiting access to API functions.
To demonstrate the applicability of our system and its practical value

for the development of services, we implemented nine example applets
representing a variety of services. In particular, we used our framework
to re-implement the Java MIDlet from our usability evaluation and
showed that BIT significantly reduces the amount of code developers
need to write. We critically discussed the strengths and limitations of
our system. We found that it meets the majority of requirements set

134 Chapter 5. Conclusion

forth and our overall goal of easing service development, even though
there is room for more sophisticated user interfaces. We concluded the
chapter with a review of related research projects.

5.2. Contributions

The overall result of this dissertation is a spectrum of concepts, tools,
techniques, and findings that facilitate the development of usable, mo-
bile phone-based digital services for tagged objects. It provides insight
into where the mobile phone as an interaction device can offer sig-
nificant benefits for users, but also into the limits of the usability of
this approach. It further provides an enabling infrastructure for such
services on the one hand, and considerably simplifies the development
process on the other hand.
In particular, the individual contributions can be summarized as fol-

lows:

• A usability evaluation of mobile phones to control physical appli-
ances. We showed that, in exceptional situations, users achieve
their goals significantly faster when interaction is mediated by a
mobile phone. We also showed that in everyday situations, these
benefits do not appear.

• An open lookup infrastructure for publishing and discovering in-
formation and services that are linked to tagged objects. The
infrastructure is open to all interested parties, including product
manufacturers, but also end-users.

• A browser for the Internet of Things (BIT) that coordinates the
execution of the many services that may be associated with a
tagged object and represents a “single point of interaction” for
users.

• A software framework that minimizes the effort needed to create
digital services for tagged objects and allows for the development
of portable, platform-independent services. The framework inte-
grates with BIT and offers a user interface markup language, an
API, as well as a scripting language.

5.3. Limitations and Future Work 135

5.3. Limitations and Future Work

There are a number of open issues that could not be addressed in this
thesis, but could be the subject of future work.
The current implementation of BIT is not always as responsive as

it should be. This is a shortcoming of the Python for S60 module,
which is used by BIT and occasionally introduces unpredictable net-
work latency. This issue could be addressed by a native Symbian C++
implementation.
When applets are distributed, they are accompanied by their source

code. As discussed in Section 4.9.10, this may not always be desirable.
Some service providers may find the idea of BIT more attractive if it
offered the option not to disclose implementation details.
We did not aim at creating a comprehensive abstract user interface

description language for our framework. However, it would be interest-
ing to investigate how such a language can achieve a balance between
portability across different mobile platforms and interaction capabilities
on the one hand and expressiveness on the other hand.
Tagged objects often do not have just information and services asso-

ciated, but also documents, which can sometimes be personal. It would
be helpful if such documents could as well be accessed by directly inter-
acting with the physical object. This also leads to the question of how
access to such documents can be managed, delegated, and shared in a
usable way when ownership in a tagged object is transferred between
or shared by several parties.
The selection of runlists is currently done manually. It could be

worthwhile to combine BIT with research in the activity recognition
domain to automatically select the appropriate runlist and to possibly
also provide additional context for the search service.
Finally, a prototype of BIT has been implemented, but it would also

be interesting to conduct a comprehensive study to gain insight in peo-
ple’s actual use of the system.

Appendices

A. User Study Task Assignments

For every task in our user study, users were given instructions written
on a small card. This section shows the original text and layout of all
cards used in the trial (reproduced from [135]).

GESCHIRRSPÜLER
Das Gerät besitzt einen Wasserenthärter, der dem Wasser Kalk
entzieht. Ohne die korrekte Einstellung lagert sich Kalk in den Leitun-
gen ab, und das Gerät funktioniert nicht mehr.

Aufgabe:
Stellen Sie die Wasserhärte korrekt ein.

In Zürich beträgt die Wasserhärte laut www.trinkwasser.ch 13-18 °fH
(französischer Härtegrad).

(1/5)

GESCHIRRSPÜLER
Aufgabe:
Aktivieren Sie die Kindersicherung.

(2/5)

140 Appendix A. User Study Task Assignments

GESCHIRRSPÜLER
Nehmen Sie an, dass am Gerät im Display die Zeichenfolge
“F 2“’ angezeigt wird und die Kontrolllampe der Taste blinkt.

Aufgabe:
Nennen Sie uns die notwendigen Schritte, um die Anzeige zum Er-
löschen zu bringen.

(3/5)

GESCHIRRSPÜLER
Nehmen Sie an, dass nach dem Spülvorgang ein weisser Belag auf
dem Geschirr zurück bleibt.

Aufgabe:
Nennen Sie uns die vom Hersteller empfohlenen Vorschläge zur Be-
hebung des Problems.

(4/5)

GESCHIRRSPÜLER
Aufgabe:
Starten Sie das Spülprogramm “Kurz/Glas”.

(5/5)

141

KAFFEEMASCHINE
Das Gerät besitzt einen Wasserenthärter, der dem Wasser Kalk
entzieht. Ohne die korrekte Einstellung lagert sich Kalk in den Leitun-
gen ab, und das Gerät funktioniert nicht mehr.

Aufgabe:
Stellen Sie die Wasserhärte korrekt ein.

In Zürich beträgt die Wasserhärte laut www.trinkwasser.ch 13-18 °fH
(französischer Härtegrad).

(1/3)

KAFFEEMASCHINE
Aufgabe:
Stellen Sie die Kaffeemaschine so ein, dass sie sich automatisch um
08:00 Uhr einschaltet.

(2/3)

KAFFEEMASCHINE
Ein Staubsaugervertreter ist bei Ihnen zu Besuch. Weil er gratis
Ihre ganze Wohnung staubsaugt, möchten Sie ihm einen Kaffee
offerieren.

Aufgabe:
Lassen Sie an der Kaffeemaschine eine grosse Tasse Kaffee heraus.

(3/3)

142 Appendix A. User Study Task Assignments

RADIO
Nach einem Stromausfall hat Ihr Radio alle Einstellungen verloren.

Aufgabe:
Stellen Sie die Uhr des Radios auf 13:30 Uhr ein.

(1/3)

RADIO
Aufgabe:
Programmieren Sie die folgenden Radiostationen in das Radio:

Programmplatz 1:
DRS 3 (105.8 MHz)

Programmplatz 3:
Radio 24 (102.8 MHz)

(2/3)

RADIO
Aufgabe:
Hören Sie DRS 3.

(3/3)

143

DRUCKER
Für jedes der Druckfächer kann eingestellt werden, welche Art von
Medien es enthält. Diese Funktion kann verwendet werden, um aus
der Textverarbeitung heraus direkt auf das passende Medium zu
drucken, z.B. Briefe auf Briefpapier, Etiketten auf Etikettenbögen oder
Präsentation auf Folien.

Aufgabe:
 Stellen Sie für Fach 3 den Papiertyp “Briefpapier” ein.

(1/4)

DRUCKER
Auf allen ausgedruckten Seiten erscheinen schwarze Flecken.

Aufgabe:
Beheben Sie dies, indem Sie den Drucker eine Reinigungsseite
ausgeben lassen.

(2/4)

DRUCKER
Nehmen Sie an, Sie hätten ein Problem mit der Druckqualität. Ihre
Ausdrucke sind zu hell, der gesamte Text erscheint nicht mehr in sat-
tem Schwarz, sondern in einem verwaschenen Grauton.

Aufgabe:
Suchen Sie nach den Hinweisen des Herstellers zur Lösung dieses
Problems und nennen Sie uns den ersten vorgeschlagenen Schritt.

(3/4)

144 Appendix A. User Study Task Assignments

DRUCKER
Nehmen Sie an, aus Versehen werde ein 400-seitiges Dokument ge-
druckt.

Aufgabe:
Brechen Sie den Druckauftrag am Drucker ab.

(4/4)

B. BIT API

This appendix describes the BIT API, which was briefly outlined in
Section 4.7.9. For every API function, the following reference indicates
the applet type, mode, and state in which it can be called.

General

• bit.out(object)

Inserts a Lua object’s string representation in a BITML view.
This function cannot be used in a meaningful way outside of a
processing instruction.

Arguments: object: object to be inserted

Return value: —

Applet type: permanent, transitory

Applet mode: exclusive

Applet state: coupled, uncoupled

• bit.debug(object)

Prints a Lua object’s string representation to the console. This
function can be used when debugging an applet.

Arguments: object: object to be printed

Return value: —

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

User Interface

• bit.show_view(view_name, args)

146 Appendix B. BIT API

Displays a given BITML view on the screen. An associative array
can be passed to the view, which will be available during rendering
in the args variable.

Arguments: view_name: The name of the view to be displayed.
The view will be loaded from a file named views/view_name.bit.
args: An optional associative arrray that will be made available
to scripts that are executed as the view is rendered.

Return value: —

Applet type: permanent, transitory

Applet mode: exclusive

Applet state: coupled, uncoupled

• bit.set_aggregation_text(aggr_text)

This function allows applets running in aggregation mode to spec-
ify textual output that will be displayed by the browser. The
browser will display the text on a best effort basis. However, an
implementation is free to truncate the output as needed.

Arguments: aggr_text: string containing text to be displayed

Return value: —

Applet type: permanent

Applet mode: aggregation

Applet state: coupled

• bit.set_aggregation_image(aggr_img)

This function allows applets running in aggregation mode to spec-
ify an icon image that will be displayed by the browser. Browsers
can scale images to fit the space that is allocated for an applet’s
output.

Arguments: aggr_img: A string referencing the image to be dis-
played. The string can either be a URL, referencing an image on
the internet, or the name of a local file.

Return value: —

Applet type: permanent

Applet mode: aggregation

Applet state: coupled

147

• bit.show_note(text, type)

Displays a modal textual pop-up note.

Arguments: text: A string containing the text to be displayed.
type: A string that specifies the nature of the note. Valid types
are “info”, “error”, or “confirmation”.

Return value: —

Applet type: permanent, transitory

Applet mode: exclusive

Applet state: coupled, uncoupled

• bit.show_dialog(text, type)

Displays a modal dialog with a single input field to collect data
entered by the user.

Arguments: text: A string containing the text to be displayed
in the dialog. type: A string that specifies the type of input
to be collected. Valid types are “text”, “integer”, “date”, “time”,
“tag_id” (for manually entering an object’s tag ID), “confirmation”
(for confirming or canceling an operation).

Return value: Data entered by the user. The value returned is
independent of the current locale, i.e., user input is converted into
a standard format.

Applet type: permanent, transitory

Applet mode: exclusive

Applet state: coupled, uncoupled

• bit.open_in_web_browser(url)

Opens a URL in the device’s standard web browser.

Arguments: url: URL to be opened

Return value: —

Applet type: permanent, transitory

Applet mode: exclusive

Applet state: coupled, uncoupled

• bit.vibrate(duration)

148 Appendix B. BIT API

Switches on the device’s vibration module for the specified dura-
tion.

Arguments: duration: time in milliseconds

Return value: —

Applet type: permanent, transitory

Applet mode: exclusive

Applet state: coupled, uncoupled

Persistent Storage

• bit.storage_put(key, object)

Serializes a Lua object and persistently stores it under a given key.
Existing entries stored under the same key will be overwritten.
Note that every applet has its own key namespace. Two different
applets cannot read/write an object stored under the same key.

Arguments: key: An arbitrary string identifying the object. object:
The object to be stored.

Return value: true if the operation succeeded, false otherwise.

Applet type: permanent

Applet mode: exclusive

Applet state: coupled, uncoupled

• bit.storage_get(key)

Retrieves and deserializes a Lua object that has been stored per-
sistently under the given key. Note that every applet has its own
key namespace. Two different applets cannot read/write an object
stored under the same key.

Arguments: key: string identifying the object to be retrieved

Return value: previously stored Lua object, nil if no object was
found

Applet type: permanent

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

149

• bit.storage_remove(key)

Deletes a Lua object that has been stored persistently under the
given key. Note that every applet has its own key namespace.
Two different applets cannot read/write an object stored under
the same key.

Arguments: key: string identifying the object to be deleted from
the persistent storage

Return value: true if success, false otherwise (object not found,
I/O error, etc.)

Applet type: permanent

Applet mode: exclusive

Applet state: coupled, uncoupled

• bit.storage_has(key)

Checks whether an object has been stored under the given key.
Note that every applet has its own key namespace. Two different
applets cannot read/write an object stored under the same key.

Arguments: key: string identifying the object

Return value: true if object exists, false otherwise

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

Data Exchange

• bit.http_request(url, method, data, headers)

Sends an HTTP request to a server.

Arguments: url: The server’s URL. method: The HTTP method
(e.g., “GET”, “POST”, etc.). data: The data to send along with
the request (for “POST” and “PUT” requests). headers: List of
additional HTTP headers to include in the request.

Return value: numeric HTTP status code or nil in case of client-
side error

Applet type: permanent, transitory

150 Appendix B. BIT API

Applet mode: exclusive

Applet state: coupled, uncoupled

• bit.json_decode(json)

Deserializes a Lua object from its JSON representation. JSON
data is mapped into Lua tables according to the following rules: 1.
JSON objects are converted into Lua dictionary tables. 2. JSON
arrays are converted into numerically indexed Lua array tables. 3.
All other JSON data types are converted into their corresponding
Lua types.

Arguments: json: string in JSON format to be deserialized

Return value: deserialized Lua object

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

• bit.json_encode(object)

Serializes a Lua object in JSON format. See bit.json_decode(json)
for mapping rules.

Arguments: object: Lua object to be serialized

Return value: string containing the JSON representation of the
object

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

• bit.xml_decode(xml)

Deserializes a Lua object from its XML representation. XML trees
are mapped into Lua tables according to the following rules:1

1. For every XML element, a separate Lua table is created. 2.
Subelements can be accessed through numerical indices. 3. Ele-
ment names and attributes can be accessed through string keys.

Arguments: xml: string in JSON format to be deserialized

Return value: deserialized Lua object
1This mapping is inspired by the LuaXML module. See www.viremo.de/LuaXML for details on
use.

www.viremo.de/LuaXML

151

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

• bit.xml_encode(object)

Serializes a Lua object in XML format.

Arguments: object: Lua object to be serialized

Return value: string containing the XML representation of the
object

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

Open Lookup Infrastructure

• bit.get_repository(url)

Returns a Repository proxy object representing the resource repos-
itory running at a given URL. The proxy object can be used to
invoke operations on the remote resource repository (see below).

Arguments: url: resource repository’s URL

Return value: Repository proxy object

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

• bit.get_manufacturer_repository(tagged_object)

Return’s a Repository proxy object representing the resource
repository run by the manufacturer of a given tagged object.

Arguments: tagged_object: tagged object whose manufacturer
resource repository is to be returned

Return value: Repository proxy object

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

152 Appendix B. BIT API

• Repository.get_resource_description(resource_id)

Retrieves a resource description with a given ID from the resource
repository.

Arguments: resource_id: resource description’s ID

Return value: resource description

Applet type: permanent, transitory

Applet mode: exclusive

Applet state: coupled, uncoupled

• Repository.lookup_resource(criteria)

Retrieves the descriptions of all resources matching the given cri-
teria from a resource repository.

Arguments: criteria: Lua table (used as an associative array)
to specify query parameters. The table can contain the following
keys: “tag_id”, “profile”, “context”, “max_results”, “start_index”
(see Section 3.4.2 for details on query parameters). In aggregation
mode, the lookup criteria are subject to restrictions as discussed
in Section 4.8.3.

Return value: list of resource descriptions

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

• bit.get_search_service(url)

Returns a SearchService proxy object representing the search
service running at a given URL. The proxy object can be used to
invoke operations on the remote search service (see below).

Arguments: url: search service’s URL

Return value: SearchService proxy object

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

• SearchService.search(criteria)

153

Retrieves the descriptions of all resources matching the given cri-
teria from a search service.

Arguments: criteria: Lua table (used as an associative array)
to specify search parameters. The table can contain the following
keys: “tag_id”, “profile”, “context”, “max_results”, “start_index”
(see Section 3.4.3 for details). In aggregation mode, the search
criteria are subject to restrictions as discussed in Section 4.8.3.

Return value: list of resource descriptions

Applet type: permanent, transitory

Applet mode: aggregation, exclusive

Applet state: coupled, uncoupled

Bibliography

[1] Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue
Long, Rob Kooper, and Mike Pinkerton. Cyberguide: A mo-
bile context-aware tour guide. Wireless Networks, 3(5):421–433,
October 1997.

[2] Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal,
Stephen M. Williams, and Jonathan E. Shuster. UIML: an
appliance-independent XML user interface language. Computer
Networks, 31(11–16):1695–1708, 1999.

[3] Robert Adelmann, Marc Langheinrich, and Christian Floerke-
meier. Toolkit for Bar Code Recognition and Resolving on Cam-
era Phones – Jump Starting the Internet of Things. In Infor-
matik 2006 Workshop on Mobile and Embedded Interactive Sys-
tems (MEIS’06), Dresden, Germany, October 2006.

[4] Heikki Ailisto, Lauri Pohjanheimo, Pasi Välkkynen, Esko Ström-
mer, Timo Tuomisto, and Ilkka Korhonen. Bridging the physical
and virtual worlds by local connectivity-based physical selection.
Personal Ubiquitous Computing, 10(6):333–344, 2006.

[5] Glen Allmendinger and Ralph Lombreglia. Four Strategies for the
Age of Smart Services. Harvard Business Review, 83(10):131–145,
October 2005.

[6] Abhaya Asthana, Mark Cvavatts, and Paul Krzyzanowski. An
Indoor Wireless System for Personalized Shopping Assistance. In
Proceedings of the First Workshop on Mobile Computing Systems
and Applications (WMCSA 1994), pages 69–74, Santa Cruz, CA,
USA, December 1994.

[7] Magdalena Balazinska, Hari Balakrishnan, and David Karger. IN-
S/Twine: A Scalable Peer-to-Peer Architecture for Intentional
Resource Discovery. In Proceedings of the First International
Conference on Pervasive Computing, volume 2414 of Lecture

156 Bibliography

Notes in Computer Science, pages 195–210, Zurich, August 2002.
Springer.

[8] Rafael Ballagas, Jan Borchers, Michael Rohs, and Jennifer G.
Sheridan. The Smart Phone: A Ubiquitous Input Device. IEEE
Pervasive Computing, 5(1):70–77, 2006.

[9] Rafael Ballagas, Michael Rohs, Jennifer G. Sheridan, and Jan
Borchers. BYOD: Bring Your Own Device. In UbiComp 2004
Workshop on Ubiquitous Display Environments, Nottingham,
UK, 2004.

[10] Michael Beigl. Point & Click – Interaction in Smart Environ-
ments. In HUC’99: First International Symposium on Hand-
held and Ubiquitous Computing, volume 1707 of Lecture Notes in
Computer Science, pages 311–313, Karlsruhe, Germany, Septem-
ber 1999. Springer.

[11] Rachel Bellamy, Calvin Swart, Wendy A. Kellogg, John Richards,
and Jonathan Brezin. Designing an E-Grocery Application for a
Palm Computer: Usability and Interface Issues. IEEE Personal
Communications, 8(4):60–64, August 2001.

[12] Bert Bos, Tantek Çelik, Ian Hickson, and Håkon Wium Lie.
Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Speci-
fication. W3C Candidate Recommendation, September 2009.
www.w3.org/TR/2009/CR-CSS2-20090908.

[13] John M. Boyer. XForms 1.0 (Third Edition). W3C Recommen-
dation, October 2007. www.w3.org/TR/xforms/.

[14] Adam B. Brody and Edward J. Gottsman. Pocket BargainFinder:
A Handheld Device for Augmented Commerce. In Proceedings
of the 1st International Symposium on Handheld and Ubiquitous
Computing, volume 1707 of Lecture Notes in Computer Science,
pages 44–51, Karlsruhe, Germany, September 1999. Springer.

[15] Gregor Broll, Markus Haarländer, Massimo Paolucci, Matthias
Wagner, Enrico Rukzio, and Albrecht Schmidt. Collect&Drop:
A Technique for Multi-Tag Interaction with Real World Ob-
jects and Information. In Proceedings of the European Confer-
ence on Ambient Intelligence (AmI 2007), volume 5355 of Lec-

www.w3.org/TR/2009/CR-CSS2-20090908
www.w3.org/TR/xforms/

Bibliography 157

ture Notes in Computer Science, pages 175–191, Nuremberg, Ger-
many, November 2008. Springer.

[16] Gregor Broll, Sven Siorpaes, Enrico Rukzio, Massimo Paolucci,
John Hamard, Matthias Wagner, and Albrecht Schmidt. Sup-
porting Mobile Service Usage through Physical Mobile Interac-
tion. In Proceedings of the 5th Annual IEEE International Con-
ference on Pervasive Computing and Communications (Percom
2007), pages 262–271, White Plains, NY, USA, March 2007. IEEE
Computer Society.

[17] A.J. Bernheim Brush, Tammara Combs Turner, Marc A. Smith,
and Neeti Gupta. Scanning Objects in the Wild: Assessing an
Object Triggered Information System. In Proceedings of the 70th
International Conference on Ubiquitous Computing (UbiComp
2005), volume 3660 of Lecture Notes in Computer Science, pages
305–322, Tokyo, Japan, September 2005. Springer.

[18] Marc Bühler. Universal Browser and Interaction Service. Mas-
ter’s thesis, Institute for Pervasive Computing, Department of
Computer Science, ETH Zurich, Zurich, Switzerland, 2007.

[19] Scott Carter, Elizabeth Churchill, Laurent Denoue, Jonathan
Helfman, and Les Nelson. Digital Graffiti: Public Annotation
of Multimedia Content. In CHI ’04: CHI ’04 Extended Abstracts
on Human Factors in Computing Systems, pages 1207–1210, Vi-
enna, Austria, 2004.

[20] Gabriella Castelli, Alberto Rosi, Marco Mamei, and Franco Zam-
bonelli. A Simple Model and Infrastructure for Context-aware
Browsing of the World. In Proceedings of the 5th Annual IEEE
International Conference on Pervasive Computing and Commu-
nications (Percom 2007), pages 229–238, White Plains, NY, USA,
March 2007. IEEE Computer Society.

[21] David M. Chess. Security Issues in Mobile Code Systems. In Gio-
vanni Vigna, editor, Mobile Agents and Security, volume 1419 of
Lecture Notes in Computer Science, pages 1–14. Springer, Berlin
Heidelberg New York, 1998.

[22] Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday,
and Christos Efstratiou. Developing a Context-aware Electronic

158 Bibliography

Tourist Guide: Some Issues and Experiences. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Sys-
tems (CHI 2000), pages 17–24, The Hague, The Netherlands,
April 2000. ACM.

[23] Luca Chittaro and Daniele Nadalutti. Presenting Evacuation In-
structions on Mobile Devices by means of Location-Aware 3D
Virtual Environments. In Proceedings of the 10th International
Conference on Human Computer Interaction with Mobile Devices
and Services (MobileHCI 2008), pages 395–398, Amsterdam, The
Netherlands, September 2008. ACM. Short paper.

[24] Douglas Crockford. RFC 4627: The application/json Media Type
for JavaScript Object Notation (JSON), July 2006.

[25] Ali Dada, Thorsten Staake, and Felix von Reischach. Display-
ing Dynamic Carbon Footprints of Products on Mobile Phones
(Demo). In Advances in Pervasive Computing – Adjunct Proceed-
ings of the 6th International Conference on Pervasive Computing
(Pervasive 2008), Sydney, Australia, May 2008. OCG.

[26] Nigel Davies and Hans-Werner Gellersen. Beyond Prototypes:
Challenges in Deploying Ubiquitous Systems. IEEE Pervasive
Computing, 1(1):26–35, 2002.

[27] Philippe Debaty and Deborah Caswell. Uniform Web Presence
Architecture for People, Places, and Things. IEEE Personal
Communications, 8(4):46–51, August 2001.

[28] Lisa Deng and Landon P. Cox. LiveCompare: Grocery Bargain
Hunting Through Participatory Sensing. In Proceedings of the
10th Workshop on Mobile Computing Systems and Applications
(HotMobile 2009), Santa Cruz, CA, USA, February 2009. ACM.

[29] Anind K. Dey. Understanding and Using Context. Personal Ubiq-
uitous Computing, 5(1):4–7, 2001.

[30] W. Keith Edwards, Mark W. Newman, Jana Sedivy, Trevor
Smith, and Shahram Izadi. Challenge: Recombinant Computing
and the Speakeasy Approach. In Proceedings of the 8th Annual
International Conference on Mobile Computing and Networking
(MOBICOM 2002), pages 279–286, Atlanta, GA, USA, Septem-
ber 2002. ACM.

Bibliography 159

[31] EPCglobal. EPC Radio-Frequency Identity Protocols Class-
1 Generation-2 UHF RFID Protocol for Communications
at 860 MHz – 960 MHz, Version 1.1.0, December 2005.
www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_1_
0-standard-20071017.pdf.

[32] EPCglobal. EPC Information Services (EPCIS) Version
1.0.1 Specification, September 2007. www.epcglobalinc.org/
standards/epcis/epcis_1_0_1-standard-20070921.pdf.

[33] EPCglobal. EPCglobal Object Name Service (ONS) 1.0.1 –
Ratified Standard Specification with Approved, Fixed Errata,
May 2008. www.epcglobalinc.org/standards/ons/ons_1_0_
1-standard-20080529.pdf.

[34] EPCglobal. EPCglobal Tag Data Standards Version 1.4,
June 2008. www.epcglobalinc.org/standards/tds/tds_1_
4-standard-20080611.pdf.

[35] EPCglobal. The EPCglobal Architecture Frame-
work – EPCglobal Final Version 1.3, March 2009.
www.epcglobalinc.org/standards/architecture/
architecture_1_3-framework-20090319.pdf.

[36] Ulrich Etter. BIT – A Browser for the Internet of Things. Mas-
ter’s thesis, Institute for Pervasive Computing, Department of
Computer Science, ETH Zurich, Zurich, Switzerland, 2009.

[37] Kevin F. Eustice, Tobin J. Lehman, Armando Morales,
Michelle C. Munson, Stefan Edlund, and Miguel Guillen. A uni-
versal information appliance. IBM Systems Journal, 38(4):575–
601, 1999.

[38] Andrew Fano and Anatole Gershman. The Future of Business
Services in the Age of Ubiquitous Computing. Communications
of the ACM, 45(12):83–87, 2002.

[39] Andrew E. Fano. Shopper’s Eye: Using Location-based Filtering
for a Shopping Agent in the Physical World. In Proceedings of
the 2nd International Conference on Autonomous Agents, pages
416–421, Mineapolis, MN, USA, 1998. ACM.

[40] Glover T. Ferguson. Have Your Objects Call My Objects. Har-
vard Business Review, 80(6):138–144, June 2002.

www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_1_0-standard-20071017.pdf
www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_1_0-standard-20071017.pdf
www.epcglobalinc.org/standards/epcis/epcis_1_0_1-standard-20070921.pdf
www.epcglobalinc.org/standards/epcis/epcis_1_0_1-standard-20070921.pdf
www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-20080529.pdf
www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-20080529.pdf
www.epcglobalinc.org/standards/tds/tds_1_4-standard-20080611.pdf
www.epcglobalinc.org/standards/tds/tds_1_4-standard-20080611.pdf
www.epcglobalinc.org/standards/architecture/architecture_1_3-framework-20090319.pdf
www.epcglobalinc.org/standards/architecture/architecture_1_3-framework-20090319.pdf

160 Bibliography

[41] Roy T. Fielding and Richard N. Taylor. Principled Design of
the Modern Web Architecture. ACM Transactions on Internet
Technology, 2(2):115–150, 2002.

[42] Elgar Fleisch and Christian Tellkamp. Inventory inaccuracy
and supply chain performance: a simulation study of a retail
supply chain. International Journal of Production Economics,
95(3):373–385, 2005.

[43] B. J. Fogg. Persuasive Computers: Perspectives and Research
Directions. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI 1998), pages 225–232, Los
Angeles, CA, USA, April 1998. ACM / Addison-Wesley Publish-
ing Co.

[44] InterNational Committee for Information Technology Standards.
V2 – Information Technology Access Interfaces, August 2005.
http://v2.incits.org/.

[45] Christian Frank, Philipp Bolliger, Christof Roduner, and Wolf-
gang Kellerer. Objects Calling Home: Locating Objects Using
Mobile Phones. In Proceedings of the 5th International Con-
ference on Pervasive Computing (Pervasive 2007), volume 4480
of Lecture Notes in Computer Science, pages 351–368, Toronto,
Canada, May 2007. Springer.

[46] Adrian Friday, Nigel Davies, Nat Wallbank, Elaine Catterall, and
Stephen Pink. Supporting Service Discovery, Querying and In-
teraction in Ubiquitous Computing Environments. Wireless Net-
works, 10(6):631–641, November 2004.

[47] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Un-
derstanding Code Mobility. IEEE Transactions on Software En-
gineering, 24(5):342–361, May 1998.

[48] Krzysztof Gajos and Daniel S. Weld. SUPPLE: Automatically
Generating User Interfaces. In IUI ’04: Proceedings of the 9th
international conference on Intelligent user interface, pages 93–
100, New York, NY, USA, 2004. ACM Press.

[49] Alan Ganguillet. Universal Appliance Helper. Diploma thesis,
Department of Design, Zurich University of the Arts (ZHdK),
Zurich, Switzerland, 2006.

http://v2.incits.org/

Bibliography 161

[50] Jesse J. Garrett. Ajax: A New Approach to Web Applica-
tions, February 2005. www.adaptivepath.com/ideas/essays/
archives/000385.php.

[51] Christian Giordano, Sonia Modeo, Giorgio Bernardi, and Ferdi-
nando Ricchiuti. Using Mobile Phones as Remote Control for
Ubiquitous Video-Recording. In Proceedings of the 6th Interna-
tional Conference on Mobile and Ubiquitous Multimedia (MUM
2007), pages 125–130, Oulu, Finland, December 2007. ACM.

[52] Ben Goodger, Ian Hickson, David Hyatt, and Chris Waterson.
XML User Interface Language (XUL) 1.0, 2001. www.mozilla.
org/projects/xul/xul.html.

[53] Chris Greenhalgh, Steve Benford, Adam Drozd, Martin Flintham,
Alastair Hampshire, Leif Oppermann, Keir Smith, and Christoph
von Tycowicz. Addressing Mobile Phone Diversity in Ubicomp
Experience Development. In UbiComp ’07: Proceedings of the 9th
International Conference on Ubiquitous Computing, volume 4717
of Lecture Notes in Computer Science, pages 447–464, Innsbruck,
Austria, September 2007. Springer.

[54] William G. Griswold, Patricia Shanahan, Steven W. Brown,
Robert Boyer, Matt Ratto, R. Benjamin Shapiro, and Tan Minh
Truong. ActiveCampus: Experiments in Community-Oriented
Ubiquitous Computing. Computer, 37(10):73–81, 2004.

[55] GS1 US. An Introduction to the Global Trade Item Nnumber
(GTIN), December 2006. http://barcodes.gs1us.org/dnn_
bcec/Documents/tabid/136/DMXModule/731/Command/Core_
Download/Default.aspx?EntryId=59.

[56] Erik Guttman. Service Location Protocol: Automatic Discovery
of IP Network Services. IEEE Internet Computing, 3(4):71–80,
1999.

[57] Gerald Häubl and Valerie Trifts. Consumer Decision Making in
Online Shopping Environments: The Effects of Interactive Deci-
sion Aids. Marketing Science, 19(1):4–21, 2000.

[58] Sumi Helal, Nitin Desai, Varun Verma, and Choonhwa Lee.
Konark - A Service Discovery and Delivery Protocol for Ad-Hoc
Networks. In IEEE Wireless Communications and Networking

www.adaptivepath.com/ideas/essays/archives/000385.php
www.adaptivepath.com/ideas/essays/archives/000385.php
www.mozilla.org/projects/xul/xul.html
www.mozilla.org/projects/xul/xul.html
http://barcodes.gs1us.org/dnn_bcec/Documents/tabid/136/DMXModule/731/Command/Core_Download/Default.aspx?EntryId=59
http://barcodes.gs1us.org/dnn_bcec/Documents/tabid/136/DMXModule/731/Command/Core_Download/Default.aspx?EntryId=59
http://barcodes.gs1us.org/dnn_bcec/Documents/tabid/136/DMXModule/731/Command/Core_Download/Default.aspx?EntryId=59

162 Bibliography

Conference (WCNC 2003), volume 3, pages 2107–2113, March
2003.

[59] Christopher K. Hess and Roy H. Campbell. A Context File Sys-
tem for Ubiquitous Computing Environments. Technical Report
UIUCDCS-R-2002-2285 UILU-ENG-2002-1729, University of Illi-
nois at Urbana-Champaign, July 2002.

[60] Todd D. Hodes, Randy H. Katz, Edouard Servan-Schreiber, and
Lawrence Rowe. Composable Ad-hoc Mobile Services for Univer-
sal Interaction. In MobiCom ’97: Proceedings of the 3rd Annual
ACM/IEEE International Conference on Mobile Computing and
Networking, pages 1–12, Budapest, Hungary, September 1997.
ACM Press.

[61] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Walde-
mar Celes. The Evolution of Lua. In Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Lan-
guages (HOPL III), pages 2.1–2.26, San Diego, CA, USA, June
2007.

[62] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Walde-
mar Celes Filho. Lua – An Extensible Extension Language. Soft-
ware: Practice and Experience, 26(6):635–652, June 1996.

[63] Stephen S. Intille. Designing a Home of the Future. IEEE Per-
vasive Computing, 1(2):76–82, 2002.

[64] Charles L. Isbell, Olufisayo Omojokun, and Jeffrey S. Pierce.
From devices to tasks: automatic task prediction for personalized
appliance control. Personal Ubiquitous Computing, 8(3-4):146–
153, 2004.

[65] Hiroshi Ishii and Brygg Ullmer. Tangible Bits: Towards Seamless
Interfaces Between People, Bits and Atoms. In CHI ’97: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 234–241, Atlanta, GA, USA, March 1997. ACM
Press.

[66] Jerry Kang and Dana Cuff. Pervasive Computing: Embedding
the Public Sphere. Washington and Lee Law Review, 62:93–146,
2005.

Bibliography 163

[67] Khomkrit Kaowthumrong, John Lebsack, and Richard Han. Au-
tomated Selection of the Active Device in Interactive Multi-
Device Smart Spaces. In Proceedings of the Ubicomp 2002 Work-
shop on Supporting Spontaneous Interaction in Ubiquitous Com-
puting Settings, Göteborg, Sweden, September 2002.

[68] Alan H. Karp. Lessons from E-speak. In Proceed-
ings of the 1st Workshop on Real, Large, Distributed Sys-
tems (WORLDS 2004), San Francisco, CA, USA, Decem-
ber 2004. USENIX. www.usenix.org/events/worlds04/tech/
full_papers/karp/karp.pdf.

[69] Wooyoung Kim, Sven Graupner, Akhil Sahai, Dmitry Lenkov,
Chetan Chudasama, Samuel Whedbee, Yuhua Luo, Bharati De-
sai, Howard Mullings, and Pui Wong. Web E-Speak: Facilitating
Web-Based E-Services. IEEE MultiMedia, 9(1):43–55, 2002.

[70] Tim Kindberg. Implementing Physical Hyperlinks Using Ubiq-
uitous Identifier Resolution. In Proceedings of the 11th Inter-
national Conference on World Wide Web (WWW 2002), pages
191–199, Honolulu, HI, USA, May 2002. ACM.

[71] Tim Kindberg and John Barton. A Web-based nomadic comput-
ing system. Computer Networks, 35(4):443–456, March 2001.

[72] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie
Caswell, Philippe Debaty, Gita Gopal, Marcos Frid, Venky Kr-
ishnan, Howard Morris, John Schettino, Bill Serra, and Mirjana
Spasojevic. People, Places, Things: Web Presence for the Real
World. Mobile Networks and Applications, 7(5):365–376, 2002.

[73] Tiiu Koskela and Kaisa Väänänen-Vainio-Mattila. Evolution to-
wards smart home environments: empirical evaluation of three
user interfaces. Personal Ubiquitous Computing, 8(3-4):234–240,
2004.

[74] Panos Kourouthanassis and George Roussos. Developing
Consumer-Friendly Pervasive Retail Systems. IEEE Pervasive
Computing, 2(2):32–39, April 2003.

[75] Hannu Kukka, Timo Ojala, Juha Tiensyrjä, and Teemu Mikko-
nen. panOULU Luotsi: A Location Based Information Mash-up
with XML Aggregator and WiFi Positioning. In Proceedings of

www.usenix.org/events/worlds04/tech/full_papers/karp/karp.pdf
www.usenix.org/events/worlds04/tech/full_papers/karp/karp.pdf

164 Bibliography

the 7th International Conference on Mobile and Ubiquitous Mul-
timedia (MUM 2008), pages 80–83, Umeå, Sweden, December
2008.

[76] Matthias Lampe, Christian Metzger, Elgar Fleisch, and Oliver
Zweifel. Digitally Augmented Collectibles. Adjunct Proceedings
of 8th Annual ACM Symposium on User Interface Software and
Technology (UIST), Seattle, October 2005.

[77] Bill LaPlant, Shari Trewin, Gottfried Zimmermann, and Gregg
Vanderheiden. The Universal Remote Console: A Universal Ac-
cess Bus for Pervasive Computing. IEEE Pervasive Computing,
3(1):76–80, 2004.

[78] R.D. Lawrence, G.S. Almasi, V. Kotlyar, M.S. Viveros, and S.S.
Duri. Personalization of Supermarket Product Recommenda-
tions. Data Mining and Knowledge Discovery, 5(1–2):11–32, Jan-
uary 2001.

[79] Lawrence Lessig. The Future of Ideas: The Fate of the Commons
in a Connected World. Random House Inc., New York, NY, USA,
2001.

[80] Laura M. Leventhal and Julie A. Barnes. Usability Engineering:
Process, Products, and Examples. Pearson Prentice Hall, Upper
Saddle River, NJ, USA, 2008.

[81] Theodore Levitt. Marketing intangible products and product in-
tangibles. Harvard Business Review, 59(3):94–102, May 1981.

[82] Clayton Lewis and John Rieman. Task-Centered User Interface
Design – A Practical Introduction. University of Colorado, 1993.

[83] Henry Lieberman and José Espinosa. A Goal-Oriented Interface
to Consumer Electronics Using Planning and Commonsense Rea-
soning. In IUI ’06: Proceedings of the 11th International Con-
ference on Intelligent User Interfaces, pages 226–233, New York,
NY, USA, 2006. ACM Press.

[84] Peter Ljungstrand, Johan Redström, and Lars Erik Holmquist.
WebStickers: Using Physical Tokens to Access, Manage and Share
Bookmarks to the Web. In DARE ’00: Proceedings of DARE
2000 on Designing Augmented Reality Environments, pages 23–
31, Elsinore, Denmark, April 2000. ACM Press.

Bibliography 165

[85] Andreas Lorenz, Clara Fernandez De Castro, and Enrico Rukzio.
Using Handheld Devices for Mobile Interaction with Displays in
Home Environments. In Proceedings of the 11th International
Conference on Human Computer Interaction with Mobile De-
vices and Services (MobileHCI 2009), Bonn, Germany, September
2009.

[86] S. McFaddin, D. Coffman, J.H. Han, H.K. Jang, J.H. Kim, J.K.
Lee, M.C. Lee, Y.S. Moon, C. Narayanaswami, Y.S. Paik, J.W.
Park, and D. Soroker. Modeling and Managing Mobile Commerce
Spaces Using RESTful Data Services. In Proceedings of the 9th
International Conference on Mobile Data Management (MDM
2008), pages 81–89, Beijing, China, April 2008.

[87] Michael Mealling. RFC 3403: Dynamic Delegation Discovery
System (DDDS) – Part Three: The Domain Name System (DNS)
Database, October 2002.

[88] Alan Messer, Anugeetha Kunjithapatham, Mithun Sheshagiri,
Henry Song, Praveen Kumar, Phuong Nguyen, and Kyoung Hoon
Yi. InterPlay: A Middleware for Seamless Device Integration and
Task Orchestration in a Networked Home. In Proceedings of the
Fourth IEEE International Conference on Pervasive Computing
and Communications (PerCom’06), pages 296–307, Pisa, Italy,
March 2006. IEEE Computer Society.

[89] Martin Peter Michael and Mohsen Darianian. Architectural So-
lutions for Mobile RFID Services for the Internet of Things. In
Proceedings of IEEE Congress on Services (SERVICES 2008),
pages 71–74, Honolulu, HI, USA, July 2008. IEEE Computer So-
ciety.

[90] Microsoft. Extensible Application Markup Language (XAML),
June 2008. http://go.microsoft.com/fwlink/?LinkId=
113699.

[91] Nikola Mitrovic and Eduardo Mena. Adaptive User Interface for
Mobile Devices. In Proceedings of the 9th International Workshop
on the Design, Specification, and Verification of Interactive Sys-
tems (DSV-IS 2002), volume 2545 of Lecture Notes in Computer
Science, pages 29–43, Rostock, Germany, June 2002. Springer.

http://go.microsoft.com/fwlink/?LinkId=113699
http://go.microsoft.com/fwlink/?LinkId=113699

166 Bibliography

[92] Giulio Mori, Fabio Paternò, and Carmen Santoro. CTTE: Sup-
port for Developing and Analyzing Task Models for Interactive
System Design. IEEE Transactions on Software Engineering,
28(8):797–813, August 2002.

[93] Giulio Mori, Fabio Paterno, and Carmen Santoro. Tool Support
for Designing Nomadic Applications. In Proceedings of the 8th In-
ternational Conference on Intelligent User Interfaces (IUI 2003),
pages 141–148, Miami, FL, USA, January 2003.

[94] Giulio Mori, Fabio Paterno, and Carmen Santoro. Design and De-
velopment of Multidevice User Interfaces through Multiple Log-
ical Descriptions. IEEE Transactions on Software Engineering,
30(8):507–520, August 2004.

[95] Andreas Müller, Peter Forbrig, and Clemens H. Cap. Model-
Based User Interface Design Using Markup Concepts. In Pro-
ceedings of the 8th International Workshop on the Design, Speci-
fication, and Verification of Interactive Systems (DSV-IS 2001),
volume 2220 of Lecture Notes in Computer Science, pages 16–27,
Glasgow, Scotland, UK, June 2001. Springer.

[96] Ilario Musio. Interacting with Appliances using Mobile Phones.
Master’s thesis, Institute for Pervasive Computing, Department
of Computer Science, ETH Zurich, Zurich, Switzerland, 2006.

[97] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, Present,
and Future of User Interface Software Tools. ACM Transactions
on Computer-Human Interaction (TOCHI), 7(1):3–28, March
2000.

[98] Brad A. Myers, Jeffrey Nichols, Jacob O. Wobbrock, and
Robert C. Miller. Taking Handheld Devices to the Next Level.
IEEE Computer, 37(12):36–43, 2004.

[99] Brad A. Myers, Herb Stiel, and Robert Gargiulo. Collaboration
using multiple PDAs connected to a PC. In CSCW ’98: Pro-
ceedings of the 1998 ACM Conference on Computer Supported
Cooperative Work, pages 285–294, Seattle, WA, USA, 1998.

[100] Erica Newcomb, Toni Pashley, and John Stasko. Mobile Com-
puting in the Retail Arena. In Proceedings of the SIGCHI Con-

Bibliography 167

ference on Human Factors in Computing Systems (CHI 2003),
pages 337–344, Ft. Lauderdale, FL, USA, April 2003. ACM.

[101] Mark W. Newman, Ame Elliott, and Trevor F. Smith. Providing
an Integrated User Experience of Networked Media, Devices, and
Services through End-User Composition. In Proceedings of the
6th International Conference on Pervasive Computing (Pervasive
2008), volume 5013 of Lecture Notes in Computer Science, pages
213–227, Sydney, Australia, May 2008. Springer.

[102] NFC Forum. Near Field Communication (NFC). www.
nfc-forum.org.

[103] NFC Forum. Connection Handover 1.1 – Technical Specification,
November 2008. www.nfc-forum.org/specs/.

[104] Jeffrey Nichols and Brad A. Myers. Studying the Use of Hand-
helds to Control Smart Appliances. In ICDCSW ’03: Proceedings
of the 23rd International Conference on Distributed Computing
Systems, pages 274–279, Washington, DC, USA, May 2003. IEEE
Computer Society.

[105] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes,
Thomas K. Harris, Roni Rosenfeld, and Mathilde Pignol. Gen-
erating Remote Control Interfaces for Complex Appliances. In
UIST ’02: Proceedings of the 15th Annual ACM Symposium on
User Interface Software and Technology, pages 161–170, Paris,
France, October 2002. ACM Press.

[106] Jeffrey Nichols, Brad A. Myers, and Brandon Rothrock. UNI-
FORM: Automatically Generating Consistent Remote Control
User Interfaces. In CHI ’06: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pages 611–620,
New York, NY, USA, 2006. ACM Press.

[107] Jeffrey Nichols, Brandon Rothrock, Duen Horng Chau, and
Brad A. Myers. Huddle: Automatically Generating Interfaces for
Systems of Multiple Connected Appliances. In Proceedings of the
19th Annual ACM Symposium on User Interface Software and
Technology (UIST 2006), pages 279–288, Montreux, Switzerland,
October 2006.

www.nfc-forum.org
www.nfc-forum.org
www.nfc-forum.org/specs/

168 Bibliography

[108] Don Norman. The Design of Everyday Things. Basic Books, New
York, NY, USA, 2002.

[109] Stina Nylander, Markus Bylund, and Annika Waern. Ubiquitous
service access through adapted user interfaces on multiple devices.
Personal Ubiquitous Computing, 9(3):123–133, 2005.

[110] Dan R. Olsen, Sean Jefferies, Travis Nielsen, William Moyes, and
Paul Fredrickson. Cross-modal Interaction using XWeb. In UIST
’00: Proceedings of the 13th Annual ACM Symposium on User
Interface Software and Technology, pages 191–200, San Diego,
CA, USA, November 2000. ACM Press.

[111] Olufisayo Omojokun, Jeffrey S. Pierce, Charles L. Isbell, and Pra-
sun Dewan. Comparing end-user and intelligent remote control
interface generation. Personal Ubiquitous Computing, 10(2):136–
143, 2006.

[112] Jason Pascoe, Nick Ryan, and David Morse. Using While Moving:
HCI Issues in Fieldwork Environments. ACM Transactions on
Computer-Human Interaction (TOCHI), 7(3):417–437, Septem-
ber 2000.

[113] Lauri Pohjanheimo, Heikki Keränen, and Heikki Ailisto. Imple-
menting TouchMe Paradigm with a Mobile Phone. In sOc-EUSAI
’05: Proceedings of the 2005 Joint Conference on Smart Objects
and Ambient Intelligence, pages 87–92, Grenoble, France, Octo-
ber 2005. ACM Press.

[114] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan,
and Terry Winograd. ICrafter: A Service Framework for Ubiq-
uitous Computing Environments. In UbiComp ’01: Proceedings
of the 3rd International Conference on Ubiquitous Computing,
volume 2201 of Lecture Notes in Computer Science, pages 56–75,
Atlanta, GA, USA, 2001. Springer.

[115] Angel Puerta and Jacob Eisenstein. XIML: A Common Repre-
sentation for Interaction Data. In Proceedings of the 7th Inter-
national Conference on Intelligent User Interfaces (IUI 2002),
pages 214–215, San Francisco, CA, USA, January 2002. ACM.

[116] Jun Rekimoto and Katashi Nagao. The World through the Com-
puter: Computer Augmented Interaction with Real World En-

Bibliography 169

vironments. In UIST ’95: Proceedings of the 8th Annual ACM
Symposium on User Interface and Software Technology, pages
29–36, Pittsburgh, PA, USA, November 1995. ACM Press.

[117] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-
OSGi: Distributed Applications Through Software Modulariza-
tion. In Proceedings of the 8th ACM/IFIP/USENIX Interna-
tional Conference on Middleware (Middleware 2007), volume
4834 of Lecture Notes in Computer Science, pages 1–20, New-
port Beach, CA, USA, November 2007. Springer.

[118] Jan S. Rellermeyer, Oriana Riva, and Gustavo Alonso. Al-
fredO: An Architecture for Flexible Interaction with Electronic
Devices. In Proceedings of the 9th ACM/IFIP/USENIX Inter-
national Conference on Middleware (Middleware 2008), volume
5346 of Lecture Notes in Computer Science, pages 22–41, Leuven,
Belgium, December 2008. Springer.

[119] Florian Resatsch, Stephan Karpischek, Uwe Sandner, and
Stephan Hamacher. Mobile Sales Assistant – NFC for Retailers.
In Proceedings of the 9th International Conference on Human
Computer Interaction with Mobile Devices and Services (Mobile-
HCI 2007), pages 313–316, Singapore, September 2007. ACM.

[120] Jukka Riekki, Ivan Sanchez, and Mikko Pyykkönen. Universal
Remote Control for the Smart World. In Proceedings of the 5th
International Conference on Ubiquitous Intelligence and Com-
puting (UIC 2008), volume 5061 of Lecture Notes in Computer
Science, pages 563–577, Oslo, Norway, June 2008. Springer.

[121] Jennifer A. Rode, Eleanor F. Toye, and Alan F. Blackwell. The
fuzzy felt ethnography – understanding the programming pat-
terns of domestic appliances. Personal Ubiquitous Computing,
8(3-4):161–176, 2004.

[122] Michael Rohs. Real-World Interaction with Camera-Phones. In
2nd International Symposium on Ubiquitous Computing Systems
(UCS), pages 39–48, Tokyo, Japan, November 2004.

[123] Michael Rohs and Jürgen Bohn. Entry Points into a Smart Cam-
pus Environment – Overview of the ETHOC System. In IW-
SAWC ’03: Proceedings of the 23rd International Conference on

170 Bibliography

Distributed Computing Systems, pages 260–266. IEEE Computer
Society, 2003.

[124] Michael Rohs and Christof Roduner. Camera Phones with Pen
Input as Annotation Devices. In Pervasive 2005 Workshop on
Pervasive Mobile Interaction Devices (PERMID), pages 23–26,
Munich, Germany, May 2005.

[125] Manuel Román, Christopher Hess, Renato Cerqueira, Anand
Ranganathan, Roy H. Campbell, and Klara Nahrstedt. A Mid-
dleware Infrastructure for Active Spaces. IEEE Pervasive Com-
puting, 1(4):74–83, 2002.

[126] Kay Römer, Thomas Schoch, Friedemann Mattern, and Thomas
Dübendorfer. Smart Identification Frameworks for Ubiquitous
Computing Applications. Wireless Networks, 10(6):689–700, De-
cember 2004.

[127] George Roussos, Juha Tuominen, Leda Koukara, Olli Seppala,
Panos Kourouthanasis, George Giaglis, and Jeroen Frissaer. A
Case Study in Pervasive Retail. In Proceedings of the 2nd In-
ternational Workshop on Mobile Commerce (WMC 2002), pages
90–94, Atlanta, GA, USA, September 2002. ACM Press.

[128] Aviel D. Rubin and Daniel E. Geer. Mobile Code Security. IEEE
Internet Computing, 2(6):30–34, 1998.

[129] Enrico Rukzio, Gregor Broll, and Sergej Wetzstein. The Phys-
ical Mobile Interaction Framework (PMIF). Technical Report
LMU-MI-2008-2, Lugwig-Maximilians-Universität München, Mu-
nich, December 2008.

[130] Enrico Rukzio, Karin Leichtenstern, Vic Callaghan, Paul Holleis,
Albrecht Schmidt, and Jeannette Chin. An Experimental Com-
parison of Physical Mobile Interaction Techniques: Touching,
Pointing and Scanning. In UbiComp ’06: Proceedings of the 8th
International Conference on Ubiquitous Computing, volume 4206
of Lecture Notes in Computer Science, Orange County, CA, USA,
September 2006. Springer.

[131] Iván Sánchez, Marta Cortés, and Jukka Riekki. Controlling Mul-
timedia Players using NFC Enabled Mobile Phones. In Proceed-
ings of the 6th International Conference on Mobile and Ubiq-

Bibliography 171

uitous Multimedia (MUM 2007), pages 118–124, Oulu, Finland,
December 2007. ACM.

[132] Jari T. Savolainen, Harri Hirvola, and Sassan Iraji. EPC UHF
RFID Reader: Mobile Phone Integration and Services. In Pro-
ceedings of the 6th IEEE Consumer Communications and Net-
working Conference (CCNC 2009), pages 1–5, Las Vegas, NV,
USA, January 2009.

[133] Jürgen Scheible and Ville Tuulos. Mobile Python: Rapid Pro-
totyping of Applications on the Mobile Platform. John Wiley &
Sons, Chichester, England, December 2007.

[134] Christian Schmitt, Kai Fischbach, and Detlef Schoder. Enabling
Open Innovation in a World of Ubiquitous Computing. In Pro-
ceedings of the 1st International Workshop on Advanced Data
Processing in Ubiquitous Computing (ADPUC 2006), Melbourne,
Australia, November 2006. ACM.

[135] Beat Schwarzentrub. Interacting with Appliances Using Mobile
Phones. Master’s thesis, Institute for Pervasive Computing, De-
partment of Computer Science, ETH Zurich, Zurich, Switzerland,
2007.

[136] Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim, Trav-
ell Perkins, and Wan Li Zhu. Open Mind Common Sense:
Knowledge Acquisition from the General Public. In On the
Move to Meaningful Internet Systems 2002: CoopIS, DOA, and
ODBASE, Proceedings, volume 2519 of Lecture Notes in Com-
puter Science, pages 1223–1237. Springer, 2002.

[137] M. A. Smith, D. Davenport, H. Hwa, and T. Turner. Object
AURAs: A Mobile Retail and Product Annotation System. In
EC ’04: Proceedings of the 5th ACM Conference on Electronic
Commerce, pages 240–241, New York, NY, USA, May 2004. ACM
Press.

[138] Sun Microsystems. Jini Architectural Overview. www.sun.com/
software/jini/whitepapers/architecture.pdf.

[139] Frédéric Thiesse, Christian Floerkemeier, Mark Harrison, Florian
Michahelles, and Christof Roduner. Technology, Standards, and

www.sun.com/software/jini/whitepapers/architecture.pdf
www.sun.com/software/jini/whitepapers/architecture.pdf

172 Bibliography

Real-World Deployments of the EPC Network. IEEE Internet
Computing, 13(2):36–43, March 2009.

[140] Art Thomas and Ron Garland. Grocery shopping: list and non-
list usage. Marketing Intelligence & Planning, 22(6):623–635,
2004.

[141] UDDI. UDDI Technical White Paper, 2000. www.uddi.org/
pubs/Iru_UDDI_Technical_White_Paper.pdf.

[142] UPnP Forum. www.upnp.org.

[143] Felix von Reischach, Dominique Guinard, Florian Michahelles,
and Elgar Fleisch. A Mobile Product Recommendation System
Interacting with Tagged Products. In Proceedings of the 7th
Annual IEEE International Conference on Pervasive Comput-
ing and Communications (PerCom 2009), pages 1–6, Galveston,
TX, USA, March 2009.

[144] Jim Waldo. The Jini Architecture for Network-Centric Comput-
ing. Communications of the ACM, 42(7):76–82, July 1999.

[145] RoyWant, Kenneth P. Fishkin, Anuj Gujar, and Beverly L. Harri-
son. Bridging Physical and Virtual Worlds with Electronic Tags.
In CHI ’99: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 370–377, Pittsburgh, PA,
USA, May 1999. ACM Press.

[146] Alexander Yates, Oren Etzioni, and Daniel Weld. A Reliable
Natural Language Interface to Household Appliances. In IUI
’03: Proceedings of the 8th International Conference on Intel-
ligent User Interfaces, pages 189–196, Miami, FL, USA, January
2003. ACM Press.

[147] Gottfried Zimmermann, Gregg Vanderheiden, and Al Gilman.
Prototype Implementations for a Universal Remote Console Spec-
ification. In CHI ’02: CHI ’02 Extended Abstracts on Human
Factors in Computing Systems, pages 510–511, Minneapolis, MN,
USA, April 2002. ACM Press.

www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
www.upnp.org

	Introduction
	Background
	Opportunities
	Motivation
	Objective
	Contributions
	Usability evaluation
	Infrastructure for publishing and discovering information and services for tagged objects
	Concepts and framework for the development of mobile services for tagged objects

	Thesis Outline

	Usability of Mobile Phones for Operating Appliances
	Introduction
	Related Work
	Usability Benefits
	Pre-Study
	Main User Study
	Hypotheses
	Appliances and tasks
	Participants
	Apparatus
	Procedure

	Results
	Quantitative results
	Qualitative results
	User feedback

	Discussion
	Summary

	Publishing and Discovering Services for Tagged Objects
	Introduction
	Application Scenarios
	Requirements
	Architecture
	Resources and resource descriptions
	Resource repository
	Manufacturer resolver service and search service
	Deployment and use

	Implementation
	Resource repository
	Manufacturer resolver service
	Search service

	Prototype Applications
	Calorie tracker
	Shopping assistant
	Appliance support

	Related Work
	Summary

	Facilitating Service Development – A Browser for the Internet of Things
	Introduction
	Limitations Today
	Scenario
	Requirements
	Implications
	Services provided by mobile devices
	Mobile code rather than built-in protocols
	Full programmability
	Minimal attention user interface

	Framework Core Concepts
	Open lookup infrastructure
	Perspectives
	Applets
	Runlists
	Applet dimensions
	Tying applets to tagged objects
	Virtual reads through bookmarks and history
	Handling of tagged object reads
	Endpoints

	Service Development
	BIT markup language (BITML)
	User interface organization and GUI widgets
	Presentation
	Scripting
	Scripting in views
	Applet organization
	Callback functions and applet startup
	The ``tagged object'' argument
	BIT API
	Example applet

	Browser Architecture and Implementation
	Components
	Implementation
	Security and privacy considerations

	Example Services and Discussion
	Product reviews
	Political shopping
	Carbon footprint calculator
	Allergy checker
	Price comparison
	Shopping list
	Search service
	Coffee maker controller
	Self checkout
	Discussion

	Related Work
	User interface adaptation
	Smart environment control
	Retrieving information

	Summary

	Conclusion
	Summary
	Contributions
	Limitations and Future Work

	User Study Task Assignments
	BIT API
	Bibliography

