
Publishing and Discovering Information and
Services for Tagged Products

Christof Roduner and Marc Langheinrich

Institute for Pervasive Computing, ETH Zurich, 8092 Zurich, Switzerland
roduner@inf.ethz.ch, langhein@inf.ethz.ch

Abstract. Radio frequency identification (RFID), and more recently
the development of Near Field Communication (NFC) technology, have
popularized the idea of linking real-world products with online informa-
tion and services. Apart from early prototypes, however, the benefits
of such automated identification technologies have so far been mostly
available to industry, rather than consumers. With the next generation
of mobile phones capable of reading both traditional bar codes through
their integrated cameras, as well as RFID tags using the NFC stan-
dard, end-users themselves could take full advantage of such ubiquitous
identification labels, given novel information architectures that go be-
yond simple web pages or industrial enterprise resource planning (ERP)
systems. This paper presents an open lookup infrastructure that allows
commercial, public, and private entities to easily provide information and
services associated with tagged items, thus facilitating the rapid devel-
opment and deployment of applications based on everyday products.

1 Introduction

The idea of linking information and services to physical objects has been investi-
gated in many research projects, either using printed markers [1–5], embedding
RFID tags [6–8], or even by attaching small infrared beacons [9]. In its sim-
plest form, product identification technology has been widely used as early as
in the mid-1970s, when bar code labels began to speed up the checkout process
in supermarkets. Today, bar codes have become truly ubiquitous, forming the
backbone of many automated processes, such as in airline ticketing and baggage
handling, in libraries and video rental shops, in hospitals, and – most of all – in
industrial supply chain management.

During the past few years, radio frequency identification (RFID) labels have
gradually begun to replace traditional bar code labels, as they offer two dis-
tinct advantages: Firstly, RFID labels do not require a line of sight between a
reader and a tag, thereby allowing large numbers of tags to be read quickly. Sec-
ondly, traditional one-dimensional product bar codes (so-called EAN or UPC
bar codes)1 can only be used to identify products at class-level, while RFID
1 EAN stands for European Article Number, UPC for Universal Product Code. They

represent the official product identification codes for European and North American
products, respectively.

2

tags allow the identification of individual items (as RFID offers more digits in a
smaller area), thus allowing for more detailed product tracking capabilities.

However, so far the benefits of such identification technologies – be it bar
codes or RFID tags – have mainly been limited to industry, i.e., manufacturers,
distributors, wholesalers, and retailers, who were able to automate many of their
logistical processes. This situation may change in the near future, as modern
mobile phones are increasingly able to directly read identification tags found on
consumer products: Mobile phones equipped with a Near Field Communication
(NFC, see www.nfc-forum.org) module are already able to read specific types of
RFID tags, while recent camera-equipped models can easily decode traditional
EAN or UPC bar code symbols found on virtually all consumer goods [10].

While the above-cited projects certainly offer a wide variety of applications
for tagged products, they nevertheless assume monolithic, centrally adminis-
trated services – such as calling up an online dictionary when putting a bound
dictionary on the desk [8], opening a product’s web page [9], or launching an
application-specific user interface [4]. However, the general availability of infor-
mation tags and corresponding reader devices opens up the possibility for novel
and innovative applications that cannot be planned for. Having to install and
run separate applications and infrastructures for each of the potentially available
services for a product (e.g., a price comparison service, allergy warnings, a calorie
calculator, or warranty information) would soon overburden users, application
developers, and system administrators.

Ideally, an open service infrastructure would allow any party, e.g., manu-
facturers, consumer interest groups, governmental agencies, or even enthusiastic
end-users, to dynamically add services to a specific product or product group,
which could then be presented to and selected by consumers right when they
scan a product. This paper presents our open lookup infrastructure for tagged
items, which allows

1. manufacturers, third-parties, and individuals to publish product-specific re-
sources (i.e., information and services), and

2. consumers to dynamically find and use these resources.

We begin by describing a set of envisioned scenarios and an analysis of the cor-
responding requirements for our lookup infrastructure in Section 2. The overall
architecture of our system is presented in Section 3, with implementation de-
tails given in Section 4. Section 5 concludes with a discussion of three prototype
applications that we built on top of our infrastructure, demonstrating the value
and feasibility of our approach.

2 Application Scenarios and Requirements

Augmenting physical products for end-user lookup is an attractive option, espe-
cially for manufacturers. A frozen food company could for example differentiate
its frozen spinach by providing an instant “recipe of the week”-suggestion, which
customers would be able to access simply by pointing their mobile phone at the

3

product. At the same time, a consumer interest organization could provide back-
ground information about the product’s health benefits, e.g., praising it for the
organic fertilizer that was used for it, or maybe warning consumers of geneti-
cally modified ingredients. Another example scenario for end-user lookup could
be a faulty appliance, such as a printer or a coffee maker, which would provide
a diagnostic code over an integrated NFC interface. By touching the appliance
with a mobile phone, users could pick up this diagnostic information and receive
instructions on how to resolve the problem. Alternatively, a list of nearby repair
centers could be displayed. For missing consumables (e.g., printing paper, coffee
capsules, or filter units), third party stores could offer users one-click reordering
options. Last but not least, tagged products could also provide machine-readable
instructions for other appliances, which would, e.g., allow a microwave oven to
prepare a frozen meal, or a washing machine to warn users when the wrong
temperature for a certain garment is selected.

Based on these scenarios, we can derive a number of high-level requirements
for an infrastructure that should facilitate the discovery of resources (i.e., infor-
mation and services) associated with a physical product.

Publication, search, and retrieval of resources. In general, many re-
sources may be linked to a single tagged product at the same time. Our infras-
tructure must therefore provide mechanisms to store and find these resources.
At the same time, an application might want to limit or focus the resources re-
turned when looking up information and services associated with a given tagged
product. Such search restrictions could be based on certain topics (e.g., “health
aspects”) or certain types of resources to look up (e.g., “expiration date”). Fur-
thermore, the concept of context [11] (e.g., the location or status of the appliance
the user interacts with) should be supported as a search criterion.

Openness. As the example scenarios illustrate, a range of stakeholders could
have a potential interest in associating resources with a product. We therefore
want to allow both product manufacturers and third-parties (such as advocacy
organizations, competitors, or individuals) to be able to publish resources for a
particular product. Similarly, our system should also allow the sharing of publicly
available resources. In line with Lessig’s “Creative Commons” approach [12],
we expect the general availability of resources and a supporting infrastructure
to prompt the development of numerous innovative applications, as is the case
with current Web 2.0 mashups.

Extensibility. In our application scenarios above, resources can be of very
different types. Our infrastructure should thus not try to define a limited set of
foreseen resource types and their uses. Rather, it should provide extension points
that allow third-parties, be it individuals or industries, to come up with their
own resource types that can be shared using our system. Additionally, it must
be possible to easily integrate existing information systems, such as enterprise
resource planning (ERP) systems, to make their data accessible as resources.

Lightweight and secure architecture. Most of the discussed applica-
tions run on either mobile devices or embedded systems. Due to the resource
constraints typically found on these platforms, we need to employ lightweight

4

Resource Consumers

Resource
Repository

Resource
Repository

Resource
Repository

Resource
Repository

Manufacturer
Resolver Service

Manu-
facturer

Third Party

Third Party

S
ea

rc
h

S
er

vi
ce

Fig. 1. Open lookup infrastructure. The center of our architecture are resource
repositories containing resource descriptions. In order to find one or more repos-
itories, given a particular product tag, mobile devices or stationary appliances
either access a known repository (e.g., of their favorite consumer interest group),
use the manufacturer resolver service, or query generic search services.

protocols in our lookup infrastructure. The open nature of our system mandates
the use of security mechanisms. For example, in certain applications users must
be able to determine the authenticity of a party providing a resource.

Resource discovery, i.e., finding resources by specifying a set of desired at-
tributes in a distributed environment, has been an active field of research. While
many of the protocols in this domain, such as Jini [13], UPnP [14], SLP [15], and
Konark [16], focus on ad-hoc networks and do not scale beyond single commu-
nities, our application scenarios span larger networks (i.e., the Internet). While
INS/Twine [17] seems to be well suited for large networks, it gives resource
providers no control over where their resources are stored, which would be a
problem for tagged product resolving, as it gives resource providers no control
over service quality and cost sharing. UDDI [18] is a discovery service used in the
domain of web services, so it should in principle scale well and offer finer control
options. However, UDDI is not well suited for the lightweight lookup of simple
and small bits of information. Very much related to our work is EPCglobal’s
EPCIS [19] – a standard for sharing product related information. However, its
applicability is limited to the logistics domain. In summary, none of these exist-
ing solutions meet our requirements as discussed above.

3 Architecture

In this section, we discuss the architecture and four core concepts of our lookup
service: resources and their descriptions, resource registries, a manufacturer re-
solver service, and search services (see Figure 1).

3.1 Resources and Resource Descriptions

Resources are at the core of our system. They offer information on, or services for,
a physical product. Typical examples for resources range from a simple website

5

to complex web services. Resources can be provided by the original product
manufacturer or any other party. Resource consumers can be product owners,
business partners, or appliances. For every resource, a resource provider must
create a resource description that specifies all the metadata that is needed to
consume the information or service.

Figure 2 shows an example of a resource description. A resource description
includes the following main elements:

– The resource ID element is a pseudo-random value that serves as a globally
unique identifier (GUID) for the resource.

– The tag ID element denotes the identifiers of those tags on physical prod-
ucts that a resource is associated with. The tag ID can specify a product
at an item- or class-level. Different numbering schemes, such as EPC2 and
EAN/UPC, are supported. Note that a resource can carry several tag IDs
and thus apply to several products. This can be helpful, e.g., when the same
(or similar) product is sold under different identifiers.

– The profile element can be used to express that the resource adheres to the
syntax and semantics that are defined in a certain profile. Typically, a profile
will be defined by an industry (e.g., in a standardization group). The food
industry could, for example, specify in a profile how the expiration date of a
product is to be represented in a resource. Profiles are essential in cases where
a resource is not interpreted by humans, but processed by an appliance.3

– The url element points to the actual resource (e.g., a website). Alternatively,
the resource can be stored directly in the data element if it is relatively
small (e.g., a product’s expiration date), which avoids an additional round-
trip. The syntax and semantics of the data available via either the url or
data element are defined by the resource’s profile as indicated in the profile
element.

– If specified, the context field defines in which situation the resource is rele-
vant. In order to enable interoperability, we predefined the following context
elements that can be used to restrict a resource’s applicability: time (date,
time, weekday), location (coordinates, city, country), and status (expressed
as a simple string) of the appliance the user interacts with. Note that this
list is easily extensible by resource providers. Exact values, value ranges, and
regular expressions are supported for each context element.

– The title and description elements describe the resource in natural language.
– Finally, the resource provider can digitally sign the resource description using

the optional signature element.

Figure 2 shows an example of a resource description, in this case describing
the expiration date of a particular bottle of milk. Notice that the example is
2 EPC stands for Electronic Product Code and is the designated, global successor to

both the EAN and UPC numbering scheme. It is administered by EPCglobal.
3 Note that this element does not actually contain a syntactical or semantical descrip-

tion, but merely serves as an identifier for a format agreed upon by participants,
similar to the Content-Type field in HTTP.

6

resource id: f5f7305bf097af39c68b790d817d7889f788f222
tag id: urn:ean.ucc:7610200337481
profile: http://foodindustry.org/profiles/expiration-date/

url: (empty)
data: 2007-05-31

context: (empty)
title: Expiration date

description: Expiration date for OrganicMilk, 1 liter
signature: (empty)

Fig. 2. Example resource description. Descriptions can be expressed in various
formats, e.g., XML or even binary, depending on the particular communication
and storage needs of a product (example given in an abstract format).

given in a generic format, which in practice can be instantiated in a number
of formats, such as XML or even binary form, depending on the particular use
case. Also, resource descriptions for food products might equally well be entire
data sets (e.g., expiration date, allergy information, country of origin) instead
of just a single data item (e.g., expiration date) as in the above example – this
can be standardized as needed by the various standard bodies.

3.2 Resource Repository

The resource repository is responsible for storing resource descriptions and mak-
ing them available to resource consumers. Resource repositories can be deployed
by any party interested in offering resources, such as a manufacturer or an ad-
vocacy group. In this way, a single resource repository typically contains the
descriptions of resources that are thematically related. Operators can flexibly
configure access restrictions to their resource repositories. For example, a man-
ufacturer will in most cases run a read-only repository, while a community-
operated product reviews repository might allow anyone to add or even update
resource descriptions (very much like today’s Wikis). The same applies to the
querying side, where a consumer reviews publisher might limit access to its
repository to paying customers only.

The three basic operations offered by a repository are RegisterResource,
which is used to publish a resource description, RemoveResource to delete a
published description, and LookupResource, which returns the descriptions of
those resources matching the query conditions provided by the caller. A query
can consist of up to four elements:

– The tag ID element must be provided to denote the product for which re-
sources are looked up. A lookup can be performed at both class- and item-
level.

7

tag id: urn:epc:id:sgtin:0652642.800031.400
profile: http://appliances.org/troubleshooting-hints/

search term: (empty)
context: status=E683[hint]

Fig. 3. Example lookup request sent to a resource repository. Based on a partic-
ular printer status (as sent through the printer’s NFC interface), a user could
query directly for information on a particular printer in the context of a “sta-
tus=E683” code.

– A profile element can be indicated to only fetch resources adhering to it.
– A search term element can be specified to restrict the resulting resources

based on their textual description.
– Using the context element, the caller can specify an arbitrary number of con-

text values. Each value must be marked as either a hint (favoring resources
with a matching context element) or a requirement (excluding resources with
no matching context element).

An typical lookup request is shown in Figure 3. It shows a request as it could,
for example, be sent to a printer manufacturer’s resource repository in order to
obtain troubleshooting instructions when the printer is in a malfunctioning state.
The printer’s status code is read by the mobile phone’s NFC module and used
as context information to narrow down the lookup.

A resource repository can also be configured to allow user feedback on re-
sources. The incorporation of feedback allows community-based applications
where the quality of content is controlled by users submitting confidence val-
ues for resources. At the moment, we only provide the SendBinaryFeedback
operation, which can be called by users to express their approval or disapproval
of a resource. The order in which resource descriptions are returned by the repos-
itory depends on these ratings. Finally, the resource repository can be configured
to synthesize resource descriptions of a specific profile using custom-built wrap-
pers. Wrappers can be used to integrate existing information systems, such as
an ERP, into the lookup infrastructure.

Note that resource repositories are in principle no different from traditional
Web servers. Therefore, the same well-established mechanisms for achieving se-
curity, reliability, and scalability can be used. For example, a repository could
be replicated and made accessible through a load-balancer that routes traffic
according to the individual repositories’ availability and load.

3.3 Manufacturer Resolver Service and Search Service

In order to make use of resource descriptions, users must be able to locate the
resource repositories containing them. This is the task of the manufacturer re-

8

solver services and search service. They connect a product EPC or EAN/UPC
to a resource repository where this product’s resource descriptions can be found.

The use cases in which the various deployed resource repositories are accessed
by potential resource consumers can be divided into four groups. In the first
group, only the product manufacturer’s repository is of interest. An example for
such a case is a washing machine that checks the handling instructions of every
piece of clothing put into it. In the second group, there is a single repository
that is used for every lookup. An example for this case is an application that
allows a user to check prices offered by other dealers for a physical product at
hand. In the third group, a lookup is performed in several repositories at the
same time. An example for such a case is a browser application that lets users
specify a number of repositories operated by interest groups (e.g., environmental,
political, etc.) they care about. The browser would then, for example, display all
reviews regarding a product that can be found in the repositories relevant to the
user’s interests. We envision repository directories similar to the Dmoz Open
Directory Project (www.dmoz.org) from which users can pick the repositories
they find interesting. In the fourth group, a user wants to search all repositories
for resources associated with a given product. This case comes into play when no
relevant resources can be found in the repositories the user has registered in his
or her browser. In this case, the consumer would simply query his or her favorite
search service for relevant repositories. It is clear from these considerations that
the architecture needs to include both a manufacturer resolver service that links
a tag ID to the manufacturer’s resource repository and a search service to find
resources across the boundaries of single repositories.

Why is there only a resolver service for manufacturers? Why not for distrib-
utors, vendors, or consumer interest groups? After all, the example scenarios in
Section 2 above illustrated that a wide variety of parties might want to offer
their descriptions to consumers, each for an equally valid reason. The question
of who gets to supply information to a product, i.e., who gets to “define” its
properties, is actually highly political. Our system uses a pragmatic approach,
inspired both by technology and legal realities. Manufacturers already play a
special role in the life of a product. They are responsible for its safety, they
supply manuals, organize warranties and repairs, and often also handle its re-
cycling. In many scenarios, manufacturers thus will be legally the main, if not
the only, authoritative source for information. From a technical point of view,
manufacturers are also much easier to localize, given their (industrial) ID. This
is because the current EPC standard (and, to some extent, also the EAN/UPC
standard) contain special mechanisms to quickly identify a product’s manufac-
turer from an EPC or EAN/UPC code. Our manufacturer resolver service makes
use of this mechanism (see Section 4 below for details), thus ensuring that users
can always locate the repository of a product’s manufacturer.

All other information and service providers are harder to identify and find.
While one could conceive a central registry where all repositories would be reg-
istered, this would violate our openness and extensibility principles set forth in
Section 2. Instead, we decided to complement our manufacturer resolver with

9

an orthogonal, decentralized, search-based approach, building on existing web
search technology. Just as today’s web spiders and robots, specific resource search
services would crawl repositories, create an index, and answer search queries. A
query passed to a search service’s Search operation consists of the same four
elements (tag ID, profile, search term, context – see above) as a LookupResource
request sent to a single resource repository.4 Of course, users can also directly
access repositories, e.g., of their favorite product review magazine, by manually
entering its address, by receiving the address via Bluetooth or SMS, or by finding
it in a directory of resource repositories.

3.4 Deployment and Use

How would these architectural parts be used to deploy and/or make use of indi-
vidual product descriptions? This depends on the individual stakeholder.

A manufacturer would begin with setting up a public, read-only resource
repository, e.g., using an add-in to a standard web server. It would then create
resources for each of its products – either informational resources such as web
pages or user manuals, or service resources, such as a recipe service or a diag-
nostics program – and prepare corresponding resource descriptions for each of
these resources. These would be entered into its resource repository, which in
turn would be registered with the manufacturer resolver service.5

A third-party wishing to provide information for a certain product (e.g., an
advocacy organization or even a governmental agency) would start out similarly.
After setting up a repository, creating a number of resources and publishing their
descriptions in the repository, however, a third party would need to advertise
this repository to potential users (as it cannot make use of the manufacturer
resolver service). Instead, it would register its resource repository with a search
service or repository directory (similar to Yahoo or the Dmoz Open Directory
Project), and/or communicate its repository URL to end-users through tradi-
tional advertising, e.g., TV, SMS, and print media.

Without any special configuration, end-users can always contact the manu-
facturer’s resource repository, which can be found via the manufacturer resolver
service, in order to retrieve a list of “official” resources offered for a product. Sim-
ilarly, they can use a search service to find resources available from third parties
that have registered their repository with the search service. Alternatively, they
can manually configure resource repositories that they find especially interesting,
using the above mentioned out-of-band advertising mechanisms.

As with the World Wide Web, the cost of running our infrastructure is borne
by those publishing resources. Parties interested in participating must either
set up their own resource repository (i.e., a dedicated machine with a 24/7

4 While this mechanism could in principle be also applied to the manufacturer’s repos-
itory, thus eliminating the need for a special manufacturer resolver, we decided to
make use of existing resolution mechanisms in order to guarantee users that at least
the manufacturer information can be located.

5 See Section 4 for details on how the manufacturer’s resolver service is registered.

10

Internet connection), or find someone to do so on their behalf (e.g., a hosting
company). Just like the Web, our repository infrastructure can be built gradually
and without central coordination.

Since anyone can publish arbitrary resources, data quality will become an
issue. Until sophisticated search engines that can provide ranked results are
available, we expect that word-of-mouth recommendation and independent edi-
torial review (e.g., popular press) will lead to the emergence of a set of resource
repositories that are known to provide quality content. Just as it has become
standard with websites today, manufacturers and third parties will eventually
run and advertise their repositories in both print and electronic media, treating
them as yet another means for differentiating their products and services.

Given these characteristics, our approach differs from automatic service dis-
covery as implemented in, e.g., UDDI [18] or E-Speak [20]. In the scenarios ad-
dressed by these technologies, selecting the right services is a matter of semantic
description and automated matching. In the use cases presented above, however,
selecting resources is simpler, as the search scope is limited to entries linked to a
certain physical product at hand. We therefore believe that the adoption process
for our infrastructure would be considerably faster.

4 Implementation

Based on the concepts described above, we implemented a prototype of our
resource lookup infrastructure. For each of its three building blocks, the imple-
mentation is reviewed in this section.

Resource Repository. Resource repositories are implemented using Java
Servlets and a relational database for resource, feedback, and user management.
Fulltext search capabilities are implemented using the Apache Lucene search
engine. The implementation provides bindings to SOAP, XML-RPC, and REST
[21]. Optionally, TLS can be used for increased security.

Manufacturer Resolver Service. Resolving the manufacturer’s resource
repository is implemented using the Object Naming Service (ONS) [22]. ONS
is a global infrastructure that is used as part of EPCglobal’s EPC Network
to find the EPCIS6 of a product’s manufacturer. It resolves a product’s iden-
tifier (its EPC number) to a URL pointing to the corresponding EPCIS by
leveraging the existing Domain Name System (DNS) infrastructure. The basic
principle of ONS is to append “.sgtin.id.onsepc.com” to the EPC’s string repre-
sentation. Using standard DNS infrastructure, the resulting domain name (e.g.,
000024.0614141.sgtin.id.onsepc.com) is then queried for “NAPTR” records
(a type of record as defined by the DNS specifications), which contain the URL
to the manufacturer. We use a custom value (EPC+ResRep) in the service field
of the NAPTR record in order to distinguish our URLs pointing to the manufac-

6 EPCIS stands for EPC Information Services and is an integral part of the EPC
Network. The EPCIS holds logistical information on a product in the EPC-enabled
industrial supply chain.

11

turer’s resource repository from other data in the ONS (typically URLs pointing
to an EPCIS).

Search Service. We believe that indexing of resource repositories is a task
that could be best done by already existing web search services such as Google.
In our prototype system, we developed a simple search service based on the
Apache Lucene search engine. Our search service crawls all registered resource
repositories, creates an index, and can be queried using the Search operation.

In addition to this, we extended our search service implementation beyond
crawling resource repositories. The Internet is full of standard web pages con-
taining information that pertain to physical products. Such information range
from product reviews to user guides and blog entries. If we consider such stan-
dard web pages as potential resources linked to physical products, we can easily
build a search service for these particular resources. Similarly to the Technorati
blog search service, we use an empty anchor-tag (i.e., an <a/> HTML-element)
to mark a web page as being a resource belonging to a certain physical prod-
uct. A weblog author could for example link a posting to a physical product
with EAN number 7610200337481 by including the element <a href="http:
//tagged.example.org/tagid/ean/7610200337481"/> into the HTML source
code.7 As most search engines support a link operator to find all web pages link-
ing to a given URL, it is possible to leverage these systems to easily find pages
marked with such an <a/> element. Our original intention was to implement the
search service around one of the large Internet search engines. However, as this
turned out not to work reliably, we again used Apache Lucene as the underlying
search technology. When the search service receives a Search request, it inter-
nally queries the Lucene search engine, converts the search results into resource
descriptions with the profile element set to “webpage” and the url element set
to the respective web page’s address, and returns these resource descriptions to
the caller.

Depending on the client’s request, matching resource descriptions found in
resource repositories and synthesized from web pages are returned either sep-
arately or aggregated. Our search service implementation provides bindings to
both XML-RPC and REST.

5 Prototype Applications

To illustrate the value that our lookup infrastructure offers to the development
of applications around tagged products, and to validate our architectural design
choices, we built three demonstrator applications. All prototypes were imple-
mented as Java MIDlets on a Nokia 3220 mobile phone. The MIDlets use the
REST binding to connect to both the resource repositories and the search ser-
vice. XML parsing of service responses is implemented using kXML, a lightweight
parser for J2ME with minimal memory footprint. Our demonstrators rely on the
7 Notice how this link does not enclose any text, which is how traditional hyperlinks

work. Instead, this singular anchor indicates that this entire page applies to the
referenced resource.

12

(a) Results overview (b) Rate (c) Add resource

Fig. 4. “Calorie Tracker” application. An example for a community-built and
-maintained product repository.

Nokia 3220’s integrated NFC reader, even though conventional EAN/UPC bar-
code symbols could be equally used as tagging technology.

5.1 Calorie Tracker

The first demonstrator allows users to track their daily calorie intake (see Fig-
ure 4). Calorie information on products is fetched from a user-extendable re-
source repository. The application demonstrates the possibility of a community-
built and -maintained resource repository, by creating new resources and adding
feedback to them directly on a mobile phone. To ensure basic quality control, we
borrow a concept from community websites and let users approve or disapprove
resources created by other users. For every resource, the number of positive and
negative votes is recorded and taken into account when resources are ranked in
response to a query. If there are no entries for a product, or if a user does not
agree with any of the returned values, a new resource can be created. When a
user touches a product with the NFC phone, a LookupResource request with the
acquired tag ID is performed on the “calories repository”. The result contains
a list of resource descriptions, consisting of the textual description, the calorie
number, and feedback, as partly shown in Figure 4(a). While browsing through
the results, the user has the possibility to rate a result. Figure 4(b) shows the
form for entering a rating for a resource. If none of the suggestions are correct,
the user can add a new resource as shown in Figure 4(c).

Table 1. Resource repository queries. Three examples for a shopping assistant
(see Section 5.2), trying to find information pertaining to an identified product.

Repository LookupResource elements
manufacturer tagid=urn:ean.ucc:9783540240037, profile=allergy
price information tagid=urn:ean.ucc:9783540240037, profile=price
env. information tagid=urn:ean.ucc:9783540240037, profile=review

13

<resDescriptions repository ="http :// repos.allergy.org/">
<item resId =" b5fe3a5bf077af32c68b790d817d7339f724f209">

<profile >allergy </profile > <title >Allergy Information </title >
<data ><almonds/></data >

</item >
</resDescriptions >

<resDescriptions repository ="http :// repos.envprot.org/">
<item resId ="73 cd125bf097af69c64b790d817d7899f788ffa7">

<profile >review </profile > <title >Environmental Information </title >
<data >Acme Crop. has repeatedly distributed its toxic waste ...</data >

</item >
</resDescriptions >

Fig. 5. Responses from resource repositories. These (abbreviated) replies illus-
trate potential replies to the queries shown in Table 1.

5.2 Shopping Assistant

A second example application provides users with background information on
products. Upon scanning a tagged product, the “shopping assistant” contacts
3 resource repositories: First, the manufacturer to obtain allergy information
according to the “allergy” profile that we assume has been defined by the food
industry. Second, a repository implementing a wrapper to the product’s price
information at Amazon.com. Third, a repository offering information on envi-
ronmental issues of a given product. Based on the resources obtained from these
repositories, the assistant informs the user if the product conflicts with his or her
allergy profile, if it is available from Amazon and for what price, and if there are
any environmental issues with it. Table 1 shows queries for an example product
sent to the 3 repositories, while Figure 5 illustrates two received responses. All
results are aggregated and displayed as shown in Figures 6(a) and 6(b). The
Amazon book price resources are automatically created by a custom wrapper
that leverages the Amazon Web Services to fetch the current price of books.

5.3 Appliance Support

Our last application uses context in the form of a status code obtained from a
malfunctioning appliance, such as a printer, to find information that can help

(a) Assistant (b) Details (c) Printer Help (d) Help Details

Fig. 6. “Shopping Assistant” and “Appliance Support” applications

14

solve the problem. We use the search service to locate web pages, blog entries,
or other sources of information that are marked as relevant to the product at
hand in the status encountered. Figure 6(c) shows an overview of the results
found for a printer in a certain status. By selecting “Goto”, the user can launch
the device’s web browser and open the web page (Figure 6(d)). The two spe-
cial links that mark the pages that were found as relevant for a product with
EAN tag ID “6420256000052” and context “status=3762” were <a href="http:
//tagged.example.org/tagid/ean/6420256000052"/> and <a href="http:
//tagged.example.org/context/status/3762"/>, respectively.

6 Conclusion

The idea of linking information and services with physical objects is a powerful
concept, especially when we are able to augment millions of everyday products
with such resources. Realizing the vision of every product being augmentable
raises the question of how interested parties can flexibly associate information
and services with a product. We address this issue by presenting the concept
and architecture of an open lookup infrastructure for resource descriptions that
fulfills the requirements derived from a range of example application scenarios.
We validated the infrastructure by implementing its key components prototypi-
cally. We also implemented three demonstrator applications to illustrate how it
facilitates the development of novel applications involving digitally augmented,
tagged products. In a corresponding user study [23], our demonstrators received
very positive reviews from our test subjects. In summary, our open lookup in-
frastructure offers four key benefits to the various stakeholders involved. Firstly,
it allows users to find out what information and services are available for a
physical product. Secondly, it gives resource providers access to potential con-
sumers. Thirdly, it enables manufacturers to increase the value of their products
by adding information and services to them. And finally, it provides application
developers with concepts and services that facilitate the implementation of novel
applications.

References

1. Ishii, H., Ullmer, B.: Tangible Bits: Towards Seamless Interfaces between People,
Bits and Atoms. In: CHI ’97: Proc. of the SIGCHI conference on Human factors
in computing systems, ACM Press (1997) 234–241

2. Ljungstrand, P., Redström, J., Holmquist, L.E.: WebStickers: Using Physical To-
kens to Access, Manage and Share Bookmarks to the Web. In: DARE ’00: Proc.
of DARE 2000 on Designing augmented reality environments, ACM Press (2000)
23–31

3. Rekimoto, J., Nagao, K.: The World through the Computer: Computer Augmented
Interaction with Real World Environments. In: UIST ’95: Proc. of the 8th annual
ACM symposium on User interface and software technology, ACM Press (1995)
29–36

15

4. Rohs, M., Bohn, J.: Entry Points into a Smart Campus Environment – Overview of
the ETHOC System. In: IWSAWC ’03: Proc. of the 23rd International Conference
on Distributed Computing Systems, IEEE Computer Society (2003) 260–266

5. Smith, M.A., Davenport, D., Hwa, H., Turner, T.: Object AURAs: A Mobile Retail
and Product Annotation System. In: EC ’04: Proc. of the 5th ACM conference on
Electronic commerce, ACM Press (2004) 240–241

6. Lampe, M., Metzger, C., Fleisch, E., Zweifel, O.: Digitally Augmented Collectibles.
Adjunct Proc. of 8th Annual ACM Symposium on User Interface Software and
Technology (UIST), Seattle (2005)

7. Römer, K., Schoch, T., Mattern, F., Dübendorfer, T.: Smart Identification Frame-
works for Ubiquitous Computing Applications. Wireless Networks 10(6) (2004)
689–700

8. Want, R., Fishkin, K.P., Gujar, A., Harrison, B.L.: Bridging Physical and Virtual
Worlds with Electronic Tags. In: CHI ’99: Proc. of the SIGCHI conference on
Human Factors in Computing Systems, Pittsburgh, PA, USA (1999) 370–377

9. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal,
G., Frid, M., Krishnan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M.:
People, Places, Things: Web Presence for the Real World. Mob. Netw. Appl. 7(5)
(2002) 365–376

10. Adelmann, R., Langheinrich, M., Floerkemeier, C.: Toolkit for Bar Code Recogni-
tion and Resolving on Camera Phones – Jump Starting the Internet of Things.
In: Informatik 2006 workshop on Mobile and Embedded Interactive Systems
(MEIS’06). (2006)

11. Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Comput. 5(1)
(2001) 4–7

12. Lessig, L.: The Future of Ideas: The Fate of the Commons in a Connected World.
Random House Inc., New York, NY, USA (2001)

13. Sun Microsystems: Jini Architectural Overview (1999) www.sun.com/software/

jini/whitepapers/architecture.pdf.
14. UPnP Forum: UPnP Device Architecture (2000) www.upnp.org.
15. Guttman, E.: Service Location Protocol: Automatic Discovery of IP Network

Services. IEEE Internet Computing 3(4) (1999) 71–80
16. Helal, S., Desai, N., Verma, V., Lee, C.: Konark - A Service Discovery and De-

livery Protocol for Ad-Hoc Networks. In: IEEE Wireless Communications and
Networking Conference (WCNC 2003). Volume 3 (2003) 2107–2113

17. Balazinska, M., Balakrishnan, H., Karger, D.: INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery. In: Proc. of the First International
Conference on Pervasive Computing. Volume 2414 of Lecture Notes in Computer
Science, Springer-Verlag (2002) 195–210

18. UDDI: UDDI Technical White Paper (2000) www.uddi.org/pubs/Iru_UDDI_

Technical_White_Paper.pdf.
19. EPCglobal: EPCglobal Architecture Framework Version 1.0 (2005)
20. Kim, W., Graupner, S., Sahai, A., Lenkov, D., Chudasama, C., Whedbee, S., Luo,

Y., Desai, B., Mullings, H., Wong, P.: Web E-Speak: Facilitating Web-Based
E-Services. IEEE MultiMedia 9(1) (2002) 43–55

21. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture.
ACM Trans. Inter. Tech. 2(2) (2002) 115–150

22. EPCglobal: Object Naming Service (ONS) Specification Version 1.0 (2005)
23. Roduner, C., Langheinrich, M., Floerkemeier, C., Schwarzentrub, B.: Operating

Appliances with Mobile Phones – Strengths and Limits of a Universal Interaction
Device. In: Proc. of Pervasive 2007. LNCS, Springer (2007)

