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Abstract—Mobile phones are increasingly able to read auto-
id labels, such as barcodes or RFID tags. As virtually all
consumer products sold today are equipped with such a label,
this opens the possibility for a wide range of novel digital services
building on physical products. In this paper, we discuss the
problems that arise when such novel applications are deployed,
and present a unified system architecture for providing mobile
phone-based digital services in the Internet of Things, called BIT.
BIT aims to be a “single point of interaction” for users when
accessing the services of a variety of tagged objects. BIT also
aids service developers and product manufacturers in deploying
services linked to tagged products, by providing a cross-device
development and deployment framework. We have used BIT to
quickly implement nine diverse services in a prototypical fashion,
and report on our inital experiences with the framework.

I. INTRODUCTION

Personal mobile devices, such as mobile phones and PDAs,
represent an important building block in many of the systems
envisioned for the Internet of Things. By using so-called auto-
id tags, i.e., visual markers or labels based on Radio Frequency
Identification (RFID) technology, mobile devices can quickly
and efficiently identify all sorts of physical objects. Most
mobile phones already feature an integrated camera that is
often capable of decoding the omnipresent barcodes that can
be found on virtually all consumer goods [1]. On top of this,
some mobile phones are already capable of reading passive
RFID tags, using a Near Field Communication (NFC) module
that is either built-in or can easily be attached to the phone.1

From an economic perspective, the convergence of auto-
id technology and mobile phones opens many very attractive
opportunities for businesses. While the benefits of auto-id
tags were earlier limited to internal business processes (e.g.,
enhanced efficiency in supply chain management), it is now
possible to leverage this technology throughout a product’s life
cycle. One of the most promising prospects is that businesses
can establish a direct link to consumers through simple phone-
mediated interaction with the physical product:

• Manufacturers can deliver added value to customers by
enriching their physical products with digital services that
can be accessed in a straightforward and intuitive way.
Unlike the physical product itself, such digital services
are not static and can be evolved over time as well as

1See the Nokia 6131 NFC, or the sleeve solution for the iPhone planned
by Visa [2], respectively.

personalized, thereby ensuring an ongoing appeal and
repeated interaction with the product.

• Third-party businesses can equally offer independent
product-related digital services. A consumer advocacy
organizations, e.g., can “link” a review directly to a
physical product, thus making it easily accessible when
a buying decision is made in a brick and mortar store.

• Consumers in turn can retrieve information and services
directly from a physical product, without the intermediate
step of a manual search on the web. Additionally, data
that allows the user’s context to be inferred (e.g., location)
can also be taken into account.

Typical usage scenarios of mobile phone-based services for
tagged products include, e.g.: a system warning users with
allergies that a certain product contains allergenic ingredients
[1]; a price comparison service informing shoppers that a
product at hand costs less at a nearby store;2 a product
review system that allows users to read product-related user
feedback, third-party information (e.g., carbon footprint, fair
trade seals), as well as rate items in-place [3]; a system to
re-order consumables (such as printer cartridges or coffee
capsules) by simply scanning a device (such as a printer or
coffee maker); accessing the manual or receiving diagnostic
information for a faulty appliance on one’s mobile phone; and
controlling a device through an extended UI on the phone via
an embedded NFC interface [4].

While some of the above scenarios are nothing more than
a vision as of now, several of them have in fact already been
publicly fielded (e.g., ShopSavvy, Google Shopper). However,
existing systems are typically one-shot, proprietary develop-
ments that repeatedly re-implement largely identical function-
ality (i.e., auto-id-based information lookup/feedback). The
BIT framework presented here aims at offering a unified
architecture that not only simplifies application development
and deployment, but also offers consumers a “single point of
interaction” for all available services relating to auto-id objects
– a dedicated Browser for the Internet of Things (BIT).

When a new physical object is detected, BIT transparently
downloads, installs and starts the software needed to use its
digital services. It allows users to interact with their environ-

2E.g., ShopSavvy at www.biggu.com/apps/shopsavvy-android/ or Google
Shopper, both for Android phones.



ment spontaneously, as they no longer need to manually find
and install the corresponding application. When an object is
detected, BIT also invokes the various applications provided
by different parties that may offer a service for the given
product. The available services are presented in an overview,
freeing users from the need to try one application after another
in order to gain a comprehensive picture. For developers,
BIT facilitates the creation of such services by providing a
number of convenient abstractions, such as an implementation-
agnostic communication interface masking whether an object
is equipped with a barcode, NFC, or Bluetooth.

II. RELATED WORK

The idea of a personal and portable device that would
allow its users to retrieve background information on consumer
products has been discussed for a while. An early example
is the “personal shopping assistant” [5]. It was proposed in
1994 as a mobile device of the “size of a walkman” with
an integrated barcode scanner that could be carried around a
retail store by shoppers. It would show product information
and also keep a running total of all items purchased. In the
last 10 years, a number of such “m-commerce” systems have
explored the potential value that mobile devices can offer for
applications around consumer products, e.g., [6]–[9]. None
of these projects have investigated how the many application
ideas can be integrated in a consistent, unified framework.
Neither have they looked into the specific needs that arise
when all these applications are to run on the end-user’s own
mobile device that cannot be assumed to be available for
exclusive use by these services.

Portable shopping assistants are a specific instance of
context-based information access – in their case the context
is a tagged object. One of the most well-known projects in
this area is probably Hewlett-Packard Labs’ Cooltown [10],
which provided a blueprint for many later projects by others.
Cooltown proposed an infrastructure based on world wide web
technologies to create a “web presence” for people, places, and
things. These entities had their own web pages, where they
were able to offer information and services. Just like BIT,
Cooltown envisioned a universal interaction device to be used
with any object and appliance that a user may encounter. The
most notable difference to our work is that Cooltown relied
on web pages to deliver information. Firstly, this complicates
the use of multiple information providers, as their information
would be spread among individual pages.3 Also, the use of
a web-based interface to appliance control has significant
security drawbacks. If an appliance, such as a coffee maker,
is accessible via the web, some form of authentication is
needed in order to prevent unauthorized access. BIT in turn
can leverage short-range communication technologies such as
NFC and Bluetooth that naturally restrict access to users who
are in the appliance’s physical proximity.

A number of projects have explored the use of mobile
phones in order to interact with and control smart environ-

3While the need to aggregate resolution services is mentioned in [11], it is
not detailed how this could be done.

ments. The Physical Mobile Interaction Framework (PMIF)
[12] provides developers with a generic framework to write ap-
plications that support different interaction techniques in smart
environments, such as touching, pointing, and scanning. The
PERCI (PERvasive ServiCe Interaction) project [13] also aims
at facilitating physical mobile interaction, however, the focus
lies on the automatic generation of user interfaces from service
descriptions based on Semantic Web Services. The REACHeS
(Remotely Enabling and Controlling Heterogeneous Services)
project [14], finally, proposes a system that implements the
universal remote control paradigm. NFC tags are used to
enable users to physically interact with their environment.
While all of these projects are related to our work, our focus is
more on individual, low-value, physical products than on smart
environments. We aim at providing a runtime environment in
which services offered by a large number of interested parties
can be deployed and executed. In contrast to many other
scenarios discussed in the community, the physical objects
tend to be more inexpensive in our examples, and both tagged
products as well as interaction devices are highly mobile. The
emphasis of our research is thus on a lightweight approach
that allows for the fast and easy creation of new services in
this specific domain.

III. TECHNICAL CHALLENGES

While the scenarios outlined in section I above are likely to
be appealing to most end users, developers of such services
face a number of challenges today, in particular regarding
cross-platform development, hardware support, and user in-
teraction.

Even though Google’s Android and Apple’s iPhone platform
have hugely popularized mobile application development,
moving beyond these two platforms is still a cumbersome
process. Firstly, today’s fragmented mobile phone market
means that service providers must potentially write a separate
version of the same application for half a dozen platforms
or more in order to cover a majority of devices in use.
Secondly, toolchain and framework support, especially on
legacy platforms, is often still poor. Consequently, product
manufacturers with an interest in providing digital services
for their products might not have the required expertise in
software development to do so. Creating an in-house team
to do mobile application development, or even outsourcing
it to a specialized development company, is costly, and for
many of the applications described above may hardly be
justified. While the same applies, to some extent, to traditional
websites accompanying a physical product, the programming
of an interactive website is still a considerably easier task than
mobile application development, requiring skills that are much
easier to acquire.

An obvious answer to this dilemma, which might also
solve cross-platform development issues, might be the use
of a web-based solution that runs in the pre-installed phone
browser. The problem with this approach is that a mix of
HTML, JavaScript, and server-side applications per se does
not enable developers to access phone-specific hardware, such
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Fig. 1. BIT overview. BIT addresses two distinct needs: It represents a
“single point of interaction” for users, freeing them from having to try
individual applications one after another, and providing a software framework
for developers that simplifies the deployment of services for tagged objects.

as barcode or RFID readers, as well as GPS receivers. Another
problem arises from the still relatively high latency in today’s
mobile networks. Applications based on web technology re-
quire frequent request-response cycles that are triggered by
simple user input. Given the latencies commonly observed,
this has a negative impact on user experience. Finally, there are
still some places without network coverage, such as subway
stations or even large supermarkets. Even without connectivity,
a physical object may offer information or services directly to
the mobile phone through, e.g., NFC technology or Bluetooth,
which could not be supported in a web-based solution.

From a usability perspective, another challenge stems from
the necessity to integrate the various services into a single
interaction experience. If, as today, each service is deployed
as a separate application, this results in the user’s phone being
littered with a large number of small applications. Worse yet,
the execution of these applications is not automatically coordi-
nated. In order to use a service, the user first needs to manually
start the corresponding application before a product can be
scanned. Since objects might not be associated with a given
service, scanning will not render a result in these instances,
quickly leading to user frustration. A user’s need to simply see
“everything my favorite services offer for this product” cannot
be addressed in today’s fragmented application environment.

We believe that the majority of these challenges can be
best addressed by a unified framework and architecture that
offers a single entry point into the Internet of Things. Such
an architecture (see Figure 1) can offer a single runtime
environment (i.e., a single application) that is home to all sorts
of services as described above. From a user’s point of view,
this application represents a one-stop shop for interaction with
auto-id tagged physical products – a dedicated browser appli-
cation that allows one to explore physical products and their
services. From a developer’s point of view, the architecture
provides a software framework that facilitates the creation of
product-related digital services.

IV. REQUIREMENTS

Based on the above considerations, we can derive a number
of requirements that our BIT system needs to fulfill in order
to support the wide array of services that can be implemented
for tagged products.

• Discovery and presentation. When a tag is read, BIT
must discover which services are available and present
this information to the user. Optionally, BIT must be able
to retrieve status information from an appliance (e.g., an
error code indicating a paper jam in a printer).

• Lifecycle management. BIT needs to be able to dynami-
cally obtain, execute, cache, and update the code needed
to offer a particular service on the mobile phone.

• Unified user experience. BIT must coordinate the execu-
tion and presentation of all the services that might get
triggered by a single barcode scan.

• Platform and device independence. A service should run
on any platform that provides an BIT implementation.

• Programming abstractions. BIT should free developers
from dealing with, e.g., a particular tagging technology
(e.g., RFID, barcodes) or communication technology
(e.g., Bluetooth). Additional contextual information, such
as the user’s location, should also be accessible.

• Infrastructure integration. Most product-related informa-
tion and services will be stored in a backend infrastruc-
ture. In order to discover and retrieve this data, BIT must
seamlessly integrate with those infrastructures.

• Storage. Certain services, such as an allergy checker, need
to permanently store data (e.g., the user’s food allergens).
BIT must provide persistent storage for such services.

• Security and privacy. BIT must ensure that a service can
only access those resources for which it is authorized. As
BIT mediates all interactions between a user and every
physical product’s digital offerings, it must also minimize
the risk of unauthorized tracking.

V. ARCHITECTURE

A. Framework Core Concepts

The BIT framework is built around a number of concepts,
which will be presented in this section.

Perspectives. BIT’s user interface is divided into two major
parts: the aggregation perspective and the exclusive perspec-
tive. In response to scanning a tagged product, the aggregation
perspective provides an overview of information and services
that are available. As its name suggests, this perspective
aggregates data from various sources in a single view. Figure 2
shows an example of BIT’s aggregation perspective. As soon
as a user selects an item in the aggregation perspective, the
corresponding service is opened in the exclusive perspective
for a more detailed view. In this perspective, the service
can exclusively use the full assigned screen area to display
more detailed information (e.g., directions to another store
selling the same product for less). Unlike in the aggregation
perspective, an applet can also collect user input.



Fig. 2. Browser aggregation perspective showing overview of information
and services available for a tagged object.

Applets. Services and information regarding a physical
product are provided through applets, i.e., small programs
that are executed within BIT. The functionality offered by
an applet can range from the very simple task of displaying
some information on a physical object to more complex
procedures, such as gathering user input and communicating
with a physical appliance.

Runlists. Applets can be part of a runlist, which groups a
number of applets that a user considers relevant in a certain
everyday context. For example, while users may be interested
in product reviews during a shopping trip, they may prefer not
to see such information while at home. When a tagged object
is detected, BIT first invokes all applets that form the runlist,
passing the tag read to every applet. The applet is expected to
generate a terse output (e.g., “Caution: contains peanuts”) that
can be empty optionally. All non-empty output is collected by
BIT and displayed in the aggregation perspective as shown in
Figure 2. The example in said figure has been generated by
a runlist with an “Allergy Checker” applet placed at its top.
By assigning this applet a prominent position in the runlist,
the user ensures to immediately grasp the information that is
most important to her or him. If an applet decides not to return
any output (e.g., no price information is available for a price
comparison service), it is omitted from the results list in order
to unclutter the interface.

Ranged vs. singular applets. While some applets can be
used in connection with any tagged object, others can provide
a meaningful service only in connection with a specific one.
An example of the first kind is an applet that offers product
reviews. It can show reviews for a potentially large number
of products and should be invoked whenever the user scans
a tagged object. This is ensured by including the applet in a
runlist, which requires it to be individually downloaded and
installed in the browser for frequent use. Such applets are
called ranged.

An example of the second kind is an applet to control
an appliance. This sort of applet can provide a service only

for a specific tagged object, such as a particular model of
a coffee maker. Including it in a runlist makes little sense,
since it cannot react in a meaningful way in response to the
recognition of any other object. In contrast to ranged applets,
so-called singular applets should start automatically as soon
as the user interacts with the corresponding tagged object.
However, in order to avoid the risk of unsolicited applets
popping up as soon as an object is scanned, we only allow
the manufacturer to provide a singular applet for an object.
In addition, singular applets cannot persistently store data in
order to have them available during a subsequent execution
(unlike ranged applets). After a singular applet is stopped,
it is removed entirely from the browser without leaving any
traces behind (though caching of applet code is possible).
This restriction represents an additional safeguard to allow for
spontaneous, possibly one-off interaction with services whose
source cannot necessarily be trusted.

Virtual reads. Similar to a web browser, BIT allows users
to bookmark tagged objects. It also keeps a history of all
tagged objects that were scanned. When a bookmark or history
item is selected, BIT internally creates a virtual read, which is
processed as if the physical object had been recognized. This
allows for the display of up-to-date information in bookmarks
(e.g., latest prices in a price comparison applet).

Open lookup infrastructure (OLI). BIT leverages our
previously developed open lookup infrastructure (OLI) [4].
OLI allows both manufacturers as well as third parties to
offer applets and further information for any tagged object.
It also provides a context-aware lookup mechanism, which
helps users to find those services that are most relevant to
their respective situation. While BIT relies on OLI to discover
applets and metadata for tagged objects (see below), any
similar infrastructure (such as the Object Naming Service [15])
could be used instead.

Communication endpoints. BIT provides applet develop-
ers with the abstraction of communication endpoints. An end-
point represents a logical connection to a physical object that
offers bidirectional communication through Bluetooth, TCP/IP,
HTTP, NFC, or a similar technology. It allows developers
to write applets that can communicate with physical objects
without needing to worry about the concrete underlying com-
munication technologies. When an object is recognized, the
browser detects whether it has bidirectional communication
capabilities. It does so by inspecting its metadata, which was
made available by its manufacturer via OLI. If the object
is found to offer bidirectional communication, an endpoint
is created and passed to the applet. As soon as the applet
decides to send or receive a message to or from the endpoint,
the browser automatically establishes a physical connection
to the device through one of the communication technologies
that were discovered when the physical object was originally
recognized.

B. Handling of Tagged Object Reads

In this section, we will present in detail how BIT proceeds
when the user scans a tagged object. The exact steps taken



by the browser in this phase depend on whether the tagged
object was recognized while the aggregation perspective or
the exclusive perspective was active.

In the aggregation perspective, BIT executes the currently
active runlist in the background and updates the aggregation
perspective accordingly. If no runlist is active or none is
defined, all installed ranged applets are executed.

At the same time, BIT checks via OLI whether the tagged
object’s manufacturer provides an applet for it.4 If an applet
is found, BIT downloads it and – if it is a singular applet
– executes it immediately in the exclusive perspective. Note
that a manufacturer applet might also be a ranged applet, e.g.,
the developer of a comparison shopper applet may print a
paper flyer touting its features, and include a barcode link for
downloading it. In such cases, BIT downloads and installs the
ranged applet, but does not execute it right away. Instead, the
user can decide whether or not to add it to a runlist.

When a tagged object is recognized while the exclusive
perspective is active, BIT simply passes the tag read to the
applet running in the exclusive perspective. At the same time,
BIT again executes the runlist and updates the aggregation
perspective in the background.5

C. Service Development

We will now present the tools that BIT provides for de-
velopers to implement services. The major building blocks
are: the BIT markup language (BITML) for the definition
of services’ user interfaces; a scripting language for the
implementation of the dynamic behavior of services; and the
BIT API, which allows services to access the functionality
provided by the browser.

1) BIT markup language (BITML): To ensure the porta-
bility of services across platforms, BIT relies on its own
XML-based user interface description. It defines a number
of commonly used GUI widgets, whose presentation can be
customized using CSS [16]. A plethora of user interface
markup languages exist, such as UIML [17], XIML [18],
XUL [19], or XAML [20]. BITML shares many similarities
with such languages, yet it is much simpler (and therefor
less powerful). While BITML could be easily replaced with
another language, such as XUL, we opted for creating our
own leightweight markup language in order to simplify the
development of BIT.

In BITML, an applet’s user interface is structured into views,
which occupy the entire screen estate that is available to the
browser’s exclusive perspective. Views can have a title, a body,
and a menu. This simple structure worked well with the phone
hardware of our prototype (see section VI below), though it
might work less well on modern touch screen-based devices.
However, as the focus of our work was not on portable user

4Note that in this context, the term “manufacturer” has a somewhat broader
meaning. It simply refers to the party that commissioned (i.e., reserved) an
auto-id identifier for the physical object. In the case of a movie poster, for
example, the “manufacturer” would typically be an advertising company, a
movie distributor, or a similar entity.

5This ensures that the output produced by other applets is available
immediately when the user switches from exclusive to aggregation perspective.

Listing 1. Excerpt from main.lua file.
REPOS_URL = "http://repository.example.com/"
PROFILE_REVIEW = "review"

function start_exclusive_perspective(tagged_object)
-- connect to repository in OLI
local repos = anon.get_repository(REPOS_URL)
-- fetch reviews (= resources with profile "review")
review_resources = repos.lookup_resource({tag_id =
tagged_object.tag_id, profile = PROFILE_REVIEW})

anon.show_view("overview")
end

Listing 2. Corresponding view overview.
<view title = ’ReviewCentral.com’>
<list><? reviews = {}

for i = 1, #review_resources do
reviews[i] = anon.json_decode(
review_resources[i].data.value)

anon.out(’<list_item description="Rated ’ ..
reviews[i].rating .. ’ out of 5">’)

anon.out(reviews[i].title)
anon.out(’</list_item>’)

end ?>
<menu><menu_item action="anon.show_view(’details’,

{review = reviews[index]})">Show details</menu_item>
</menu></list>

</view>

Fig. 3. Source code examples taken from review applet (see Figure 5(a)).

interfaces, we decided to stick with our simple UI model for
our first prototype.

2) Scripting: For the implementation of the dynamic behav-
ior of services, we leverage the Lua scripting language [21].
The BIT browser application incorporates a Lua interpreter,
which supports the local execution of Lua scripts. Like many
web development frameworks (e.g., Ruby on Rails, PHP, JSP),
BIT allows developers to mix markup and scripting code
to create a dynamic user interface, while also supporting
standalone scripts.6

Technically, a BIT applet is a ZIP file that contains a
Lua script named main.lua, which must implement a callback
function that is invoked by the browser when the applet is
started in the aggregation perspective (for ranged applets) or
in the exclusive perspective (for transitory applets). The ZIP
file can optionally contain additional script files, views, and
other resources, such as images.

On top of the main callback function, BIT offers further
callback functions that can be implemented by an applet
in order to be notified about subsequent read events or its
imminent termination. When BIT notifies an applet about a
read event, it passes to the callback function three elements:
First, the physical object’s tag id. Second, context information
(e.g., the status code of an appliance as picked up over NFC).
Third, an endpoint object that can be used to communicate
with the physical object.

3) API: In addition to BITML and Lua scripting, BIT also
offers an API that provides a range of functionality, such
as user interface manipulation (e.g., switch between views,
show dialogs, open URLs, access phone’s vibration module),

6Note that, unlike with web frameworks, all markup and scripting code is
interpreted and run on the phone.
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Fig. 4. Architecture of BIT.

persistent storage, and data exchange with various backend
services (e.g., access OLI, invoke HTTP requests, serialize and
deserialize Lua data structures to and from XML or JSON [22]
formats). While space limitations do not allow us to discuss
an example in detail, we reproduce some excerpts from the
product review applet’s source code in Figure 3.

VI. PROTOTYPE

Based on the concepts outlined above, we developed a
prototype implementation of BIT in the form of a stand-alone
browser application. In this section, we will present the high-
level architecture of the browser and its main components as
well as an overview of the actual implementation of BIT and
the technologies used.

A. Components

As a runtime environment for applets, BIT acts as an
additional layer between the mobile phone’s operating system
and the services that are available to users. BIT’s role on the
mobile phone platform, its interaction with the environment,
as well as its main components are illustrated in Figure 4. The
functions of these components are as follows:

The resource discoverer connects the browser to the open
lookup infrastructure. It encapsulates the protocols used to
access the OLI and provides a local interface that allows the
browser components to find applets. The applet manager
is responsible for the lifecycle of applets and coordinates
their execution. Whenever a tagged object is recognized, the
applet manager tries to discover and start applets. It also
manages the installation of new applets and keeps track of
runlist configurations. It relies on the reader manager to obtain
notifications on recognized tagged objects, the storage engine
to load already installed applets, as well as the scripting
runtime to execute applets. The scripting runtime provides
the Lua interpreter that is required to execute applets. It
also makes sure that the BIT API is available to applets at
runtime. The BIT API allows applets to use the functionality
of resource discoverer, storage engine, reader manager, context
grabber, and rendering engine in a standard way that ensures
portability of applets across different browser implementations

and mobile device platforms. The security manager controls
an applet’s access to the functionality provided through the
BIT API. It ensures, e.g., that an applet can only access its
own data store. The rendering engine is invoked through the
BIT API and allows an applet to present its user interface
on the screen. It parses the BITML code of an applet’s
views. The storage engine provides means for both (ranged)
applets and other browser components to persistently store
data in the browser. The reader manager is used by the
applet manager and, indirectly through the BIT API, applets
to recognize tagged objects. It wraps the different tagging
technologies that may be available on a particular mobile
device (e.g., barcodes, NFC, EPC, etc.) and provides a simple
interface that abstracts from the specific labeling standard.
The communication manager is responsible for establishing
and managing bidirectional connections with tagged objects
that offer communication capabilities. It is used by the BIT
API to provide the endpoint abstraction. The context grabber
allows applets to acquire information about their context. This
includes, for example, location and status information on the
last recognized object.

B. Implementation

We implemented a prototype of our browser for the Symbian
S60 platform, which is (still) one of the most widespread
smartphone platforms. The browser itself is written in Python,
which we used because it allows for the rapid development
of applications for S60 phones. Python is available on S60
through the PyS60 project [23]. PyS60 allows developers to
access extensions. An extension is a binary module that is writ-
ten in the platform’s native Symbian C++ language. We used
this mechanism to import the BaToo Barcode Recognition
Toolkit [1], which offers fast and robust barcode recognition
using the phone’s built-in camera. The same approach, i.e., a
Python extension module written in Symbian C++, was used
for the Lua interpreter. We ported the source distribution of the
Lua interpreter [21] along with Lunatic Python7 to Symbian
S60. Lunatic Python provides a “bridge” between the Python
interpreter and the Lua interpreter. With the resulting S60
module, a PyS60 program, such as BIT, can import and control
a Lua interpreter from within Python. The hardware platform
that we used was a Nokia E61i mobile phone. While this
model does not provide an NFC module, the particular phone
we used had been modified by Nokia Research Center [24]
and features a built-in UHF RFID reader based on EPCglobal’s
Class 1 Generation 2 protocol [25].

VII. EXAMPLE SERVICES AND DISCUSSION

In order to validate both our framework design as well
as our prototypical browser implementation, we created nine
example services for BIT. Our goal was to assess the practical
value that our framework can provide for relevant services
and to illustrate the range of different service types that are
supported. We mostly selected services that had been proposed

7http://labix.org/lunatic-python



(a) Customer reviews. (b) Troubleshooting instructions.

Fig. 5. Two example applets implementing a product reviews service (a) and
a coffee maker controller service (b).

or taken up and refined by others in the Internet of Things
community [1], [26]–[30].

In particular, the services we prototypically implemented
are: (a) A product reviews applet that allows users to browse
other consumers’ written opinions and numerical ratings for a
product (see Figure 5(a)). (b) A “political shopping” applet by
an imaginary consumer pressure group. (c) A carbon footprint
calculator, which lets consumers review the carbon emissions
produced by a product. Users can add a product’s emissions
to their personal record, review their total carbon footprint,
and reset their personal record. (d) An allergy checker applet,
which notifies users when a product should not be consumed
according to their dietary requirements. Users can configure
these requirements in the applet. (e) A location-aware price
comparison applet, which displays cheaper nearby offerings of
the same product. The applet leverages Google Maps to offer
detailed directions when an alternative store is selected. (f) A
shopping list service, which allows users to prepare a personal
shopping list by scanning the products that should be bought
on one of the next shopping trips. (g) A search service, which
allows users to find standard web pages on the internet that
are related to the product at hand and that are relevant in the
user’s current context.8 (h) A coffee maker controller, which
allows users to operate the appliance through BIT. The applet
relies on Bluetooth for bidirectional communication with a
coffee maker, simulated by an application running on a laptop.
This application can simulate the status of an actual coffee
maker (e.g., “need filter change”). Depending on this status,
the applet automatically shows corresponding troubleshooting
instructions as soon as it is started (see Figure 5(b)).9 (i) A
self checkout applet that allows grocery store patrons to scan
goods before they put them in their shopping baskets. Once
they have collected all items, users can proceed to a payment
point in the store to scan a special “pay” barcode. The endpoint
abstraction is used to connect the applet with a cash terminal

8This applet relies on the search service available in OLI [4].
9Note that BIT makes no attempt to standardize the message exchange

between applets and appliances. As applets are downloaded dynamically,
developers can easily implement the specific protocol supported by the
appliance. BIT supports this process with an API for XML and JSON data
handling.

Applet Views V. LOC S. LOC Total LOC
Product reviews 2 51 34 85
Political shopping 2 43 30 73
Carbon footprint calc. 1 26 124 150
Allergy checker 2 38 107 145
Price comparison 2 33 69 102
Shopping list 2 38 88 126
Search service 1 24 29 53
Coffe maker controller 13 216 44 260
Self checkout 4 60 98 158

TABLE I
Example applets metrics: NUMBER OF VIEWS, SOURCE LINES OF CODE

(LOC) FOR VIEWS, LOC FOR SCRIPT FILES, AND LOC TOTAL.

that accepts the customer’s credit card payment.
These nine example applets show how BIT supports the

development of a broad range of different services for tagged
objects. Table VII shows how many views and how many
source lines of code10 were needed to implement the services
as described. While lines of code are certainly not the most
accurate metrics (and it is to be expected that a scripting
language like Lua requires relatively few lines of code), these
numbers should help to give an impression of the complexity
of developing a service for the BIT framework.

For illustrative purposes, we also compared the most com-
plex applet, the coffee maker controller, with the “appliance
interaction device” (AID) presented by Roduner et al. [31].
Our applet is essentially a re-implementation of their Java ME-
based AID and offers the same functionality. On top of this,
our applet also retrieves and updates the appliance’s settings,
while their version does not communicate with the device.
Despite its more limited functionality, the Java ME-based
implementation required 931 source lines of code11, compared
to the 260 lines used by the BIT applet.

An important benefit from the use of an interpreted scripting
language is the platform independence of BIT. However,
as applets are distributed in source code form, it is easy
for anyone to look into their implementation, borrow ideas,
or create derivatives. Appliance manufacturers, e.g., would
effectively disclose the interfaces to their physical products by
offering a controller applet. While this may be perceived as a
threat to their business by some, note that this transparency is
not unique to BIT: The bustling Web 2.0 community makes
heavy use of technologies that disclose source code, which
allows developers to learn from each other and build new,
innovative mashups.

As applets contain Lua scripts, they represent mobile code,
which poses some risks to its host. BIT mitigates these risks
through the use of the Lua interpreter as a sandbox. As
a virtual machine that lies above the operating system, the
scripting runtime may offer some degree of protection for the
host [32]. Access to operating system functionality is possible
only through the BIT API and can be controlled by the security
manager. Applets themselves are isolated from each other.

10We counted physical lines of code by using the UNIX wc -l command.
11Christof Roduner, personal communication, December 3, 2009.



Every applet has its own state in the Lua interpreter, which is
unavailable during the execution of another applet.

A major privacy concern in BIT is that all permanent
applets which are part of an active runlist are notified about
every single tagged object that the user scans. This could
allow service providers to gain detailed insight into a user’s
everyday scanning activities — no matter whether a specific
service is actually used or not. BIT mitigates this problem
by limiting the information an applet can transmit when it
runs in aggregation mode. In order to prevent applets from
revealing any information that could be used to identify the
user, the security manager blocks all communication opera-
tions bar resource lookups in OLI. In these lookups, applets
can only use a very restricted request syntax that prevents
the transmission of personally identifiable information to the
backend infrastructure.

Note that these restrictions apply in aggregation mode only.
In exclusive mode, an applet can communicate freely because,
unlike in aggregation mode, it is only notified about tagged
objects that are recognized while the user explicitly uses the
service. In order to prevent applets from logging reads during
aggregation mode and then later sending them during exclusive
mode, the security manager also blocks write operations to the
storage manager while the applet runs in aggregation mode.
Read operations are still possible and necessary (e.g., for an
allergy checker to fetch a user’s dietary restrictions).

VIII. SUMMARY AND OUTLOOK

Since we believe that the idea of enriching physical products
with digital information and services will become increasingly
popular, we see the need for simpler ways to build such
services. To address this need, we presented a framework and
a prototype implementation of BIT – a browser for the Internet
of Things if you will – that accommodates such services in
the form of lightweight, portable applets. BIT aims to be a
“single point of interaction” for users by coordinating the
many services that may be linked to a physical object. It frees
users from the need to repeatedly scan a product with the many
installed applications in order to check which services are
available. By dynamically downloading and executing applets,
it also enables spontaneous interaction with services that were
not previously known to the user. On the other hand, BIT
provides a software framework that considerably simplifies
the development of mobile phone-based services for tagged
objects. We believe that the concepts employed by BIT can
be a first step towards our vision of making the development
of mobile services for products no more complex than the
creation of a traditional product web site.

While our initial prototype was developed for Symbian S60,
an implementation for the Android or iPhone platform could
take advantage of touch-based interaction. However, as pointed
out earlier, the focus of our work was not on user interface
concepts. Even with a different user interface, the advantages
of a one-stop solution integrating and coordinating the services
from different providers remain.
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