
Distributed Persistence for Limited Devices

Philipp Bolliger and Marc Langheinrich

Inst. for Pervasive Computing
ETH Zurich, Switzerland

{bolligph,langhein}@inf.ethz.ch

Abstract. The problem of storing data both locally and remotely in a
synchronized fashion is common in ubiquitous computing, where a mo-
bile device (e.g., a tiny sensor node or a mobile phone) might produce
a significant amount of data while having only limited storage capac-
ity. While data management frameworks for small and mobile devices
exist, they either have high system requirements (e.g., JavaSpaces) or
do not focus on distributed storage issues (e.g., TinyDB). We have de-
signed and implemented a lightweight storage system that allows the
transparent use of both local and remote storage space, using identical
semantics. It is based on a serialization framework that allows CLDC-
enabled J2ME devices to transparently store Java objects in the (local)
Record Management Store, or in a remote database via a wireless byte
stream transmission. We have built a prototypical mobile application
ontop of this framework and report on our experiences.

1 Introduction

As mobile phones become more and more common in everyday life [1], they
will increasingly be used for more sophisticated applications and might eventu-
ally be the main computational device for a majority of the population. Energy
constraints, however, will for the foreseeable future limit the computational re-
sources on such devices, thus prompting the need for good programming frame-
works that support the Java Micro Edition (J2ME), a Java distribution for
resource-constrained devices, and in particular its Connected Limited Device
Configuration (CLDC), which represents the smallest available language subset
of Sun’s Java, together with the Mobile Information Device Profile (MIDP),
which includes support for mobile phones.

In contrast to the more powerful Connected Device Configuration (CDC),
the usage of the CLDC implies some non-negligible language restrictions, such
as:

– The lack of support for java.io.Serializable
– The Java Reflection API is not available
– It does not provide Remote Method Invocation (RMI)

Distributed persistent storage is a particular feature of mobile applications
that need to store objects and/or data both locally and remotely. This becomes

important whenever collaboration among several mobile users is wanted: while
information needs to be accessible off a central database for sharing purposes,
a local, synchronized copy helps to reduce communication overhead and system
responsiveness.

Persistent storage frameworks are a well researched area for which a large
number of both commercial and free open-source implementations are avail-
able. Particularly in the context of distributed systems, a number of approaches
attempt to take heterogeneous environments into account, such as Sun’s Java-
Spaces [2]. JavaSpaces has been developed as a part of Sun’s JINI architecture,
and glues processes together via a shared, network-accessible, and persistent ob-
ject repository, called space. In order to interact, processes may read, write, or
just “take” (i.e., read and delete) objects from the space. Nevertheless, Java-
Spaces is not a relational or object oriented database and is thus not primarily
designed as a data repository. More importantly, JavaSpaces explicitly uses re-
flection to obtain the field names, types, and class name of an entry, rendering
it unsuitable in the reflection-less environment of CLDC enabled mobile phones.
This also applies to other freely available distributed persistence frameworks,
such as Hibernate [3], Cocobase [4], or Torque [5].

While the FramePersist [6] framework explicitly addresses CLDC-based Java
environments on mobile phones, it lacks an actual implementation. Equally un-
available is the (planned) CLDC version of the Data Persistence API, which is
part of the Mobile Infrastructure [7] of the German software giant SAP. This
lack of distributed persistence frameworks that are able to operate under the
resource- and language-constrained conditions of MIDP/CLDC-enabled mobile
phones has prompted us to design and implement our own distributed persistence
framework. The following sections will briefly describe a motivating scenario for
persistent distributed storage, before introducing our design and outlining our
implementation. We will conclude with our experiences and an outlook on sub-
sequent steps.

2 Example Scenario

Let us consider a Java MIDlet-application running on a mobile phone, as shown
in figure 1 below. It stores its user’s business cards, i.e., his name, office address,
and phone number, in its local Record Management Store (RMS) under a locally
unique ID, e.g., 0x220E.F214. At the same time, this information is replicated in
the employee directory on a central server in order to allow distributed access by,
e.g., colleagues and clients. Upon first upload to this database, a globally unique
ID, e.g., 0x103B.0105, is assigned to this card, and subsequently propagated
to the user’s mobile phone in order to override the previous local ID. Should
the user decide to share his business card with another mobile user, he can now
simply exchange its global ID, 0x103B.0105, allowing the recipient to directly
reference this data off the central database. By sharing this common reference,
both mobile clients can have access to identical information, i.e., if the user
updates his contact information, all other mobile clients can verify if their local

ID = 0x220E.F214 ID = 0x103B.0105

Database Serializer

Mobile Phone

Object:User

Mobile Phone

Object:UserID = 0x103B.0105

Fig. 1. Sample Use Case of the Remote Storage Service. A user’s object is created
locally (ID = 0x220E.F214) and then stored on a central database. This prompts the
creation of globally unique ID (0x103B.0105), which can be given to other mobile
clients in order to allow them to reference (and sync to) the global copy.

copy is still current, or alternatively get informed by the central database that
the data has been changed.

This (admittedly simple) example can easily be implemented in Java using
existing persistent storage frameworks, such as the popular JavaSpaces. However,
trying to port this (i.e., the remote storage and synchronization of objects) to any
of today’s mobile phones fails due to the lack of serialization support, reflection,
and RMI capabilities in J2ME’s CLDC.

3 Framework Design

In order to support the above functionality on today’s mobile phone, we thus set
out to create a minimal serialization framework that would allow us to trans-
parently store data both in a phone’s local RMS, as well as on a remote re-
lational database management system (RDBMS). Instead of including direct
RDBMS support on the resource-constrained mobile device, we opted to imple-
ment a generic byte stream serializer, which simply allows sending data to a
corresponding module on the server side. The server component then includes a
JDBC module that allows access to a local database. Figure 2 gives an overview
of the entire framework, with the Stream Serializer being present in both server
and mobile instances, and the RMS Serializer and Database Serializer being
only available on the mobile client or the server, respectively.

The fundamental idea of our serialization API is that a Serializable object
gets transformed into a stream, stored in a database or the RMS using the
corresponding Serializer. The common serialization API abstracts the calls to
the different serializers and hence simplifies their usage. All three serializers are
able to serialize and deserialize objects, object associations, object composition,
and even class inheritance (up to one level) with only one method call. To enable
the serialization of object collections, a special vector object is available.

Serialization API

Application

Other framework components

JDBC Database Record Management
Store Byte Array

Database Serializer RMS Serializer Stream Serializer

Fig. 2. Overview of the unified Serialization Framework. A serialization API provides
transparent access to different Serializers for JDBC, RMS, and byte streams.

To distinguish the objects from each other, we use a numeric identifier, which
is conceptually similar to the serialization API of J2SE [8]. The ID-space is
partitioned into local (i.e., RMS) and global (i.e., database) identifiers, allowing a
client to quickly differentiate replicated from local items. For practical purposes,
global identifiers range from 0-0x1FFF.FFFF (thus being identical to the RDBMs
ID-space) and local identifier starting from 0x2000.0000.

As RMS and RDBMS store data differently – RMS uses a record-oriented
schema, compared to the table-oriented approach of RDBMS – we created a
table-oriented RMS access scheme that allows us to reuse much of the RDBMS-
serialization functionality. For this purpose, our system transparently organizes
objects into type stores (according to their type) during serialization. For exam-
ple, assume that a User object contains not only the user’s name, but also a
reference to a Phone object. During serialization, our system translates a single
storage command into a number of separate stores, as shown in Figure 3, where
the Users-store holds references to individual User objects, e.g., User10001,
which in turn are represented by stores that contain references to other object-
stores (e.g., Phone10001).

In order to support the use case as depicted in Figure 1, we need to combine
the services of the different serializers to remotely store an object. This is done
in the Remote Storage service, which allows mobile phones to instruct the server
to remotely store an object in its database. Upon invocation, the service creates

2

1

Phone10001

Q. Tarantino

User10001

2

1

User24

User10001

Users

2

1

+2165 86 45 26

Nokia

Phone10001

..

Fig. 3. Example view on the abstracted Record Management System. In order to allow
code reuse from the Database Serializer, RMS records get transparently converted into
several type stores, based on the contained object types.

a XML request message, serializes it using the Stream Serializer, and then sends
it off to the server. Using tokenization and zip-compression as proposed in [9],
we achieve average compression rates of 4:1 for these XML messages.

On the server side, an identical instance of the Stream Serializer receives the
incoming message, reinstantiates the object, and stores it in its RDBMS using
the Database Serializer. The object’s local ID will be detected (being above
0x1FFF.FFFF) and transparently converted to a new global ID, which will be
sent back to the mobile client as a response to its storage request.

To enable the different and distributed applications to communicate with
each other, we implemented a bidirectional, asynchronous communication mech-
anism based on messages. As messages are always sent directly between clients
and server, or in between clients, we were able to omit routing information com-
pletely. Messages thus only consist of a sender and a type attribute, making
the message definition relatively simple, yet still allowing for arbitrary com-
plex messages. In order to minimize (monetary) communication costs, the client
implementation dynamically chooses between SMS, MMS, and Bluetooth com-
munication, depending on message size and service availability. Since contacting
a mobile client directly from the server using IP-based services is difficult, we
simply employ a polling mechanism on the mobile phone to fetch messages from
the server.

In order to support a large number of concurrent client connections to the
server, our server infrastructure can start multiple instances of a service, for
example for handling object storage request. This is achieved by having every
service dispatch a freely selectable number of worker threads that will process
requests, and by increasing or decreasing the number of threads according to
service load.

4 Experiences and Outlook

We have used our persistence framework to build a distributed query applica-
tion that allows mobile phones to trace users objects (which are equipped with
small identification tags), distribute useful context information related to these
objects, and locate them when lost or misplaced [10]. The use of our framework
has greatly simplified application development. Even though developing for the
limited capabilities of the CLDC was challenging, we were able to successfully
create a persistence framework that allows application programmers to store and
load objects in and from the RMS, as well as in a remote RDBMS. As far as we
know, our serialization framework is the fist that supports both JDBC databases
and the Record Management System of MIDP. By combining these services, we
were able to develop a remote storage service that, given an appropriate commu-
nication mechanism, makes the storage of data transparent for the application
programmer.

Since the API of J2ME is limited, developing for this platform proved to
be very time consuming, since we had to reimplement a non-trivial amount of
standard Java functionality. This becomes especially relevant when developing

components that are intended to run on both the mobile phone and on the
server. We have found it worthwhile to establish a suitable test environment
that relieved us from continuously uploading programs to a real mobile phone.

As we strictly applied the OSGi specifications [11] during framework design,
we also realized that the use of a component- and service-oriented architecture
indeed has significant advantages. Since we were obliged to organize all compo-
nent interaction through interfaces, we are now able to easily exchange individual
components in the future. Furthermore, testing became much simpler, as the in-
terfaces were already defined and allowed us to concentrate on the specification
of the expected behavior. Every component was continually tested for correct-
ness during development, using standard JUnit testing methods (for testing the
remote storage services we needed to write our own extensions though).

One sobering experience was the wide variety of (supposedly standardized)
CLDC implementations we encountered. Additionally, all of the different phones
we tried featured a different version of the MIDP as well. As many of the needed
functionalities, like Bluetooth or the Wireless Messaging API (WMA), are not
part of the MIDP, these optional packages were often not available on a particular
mobile phone. A mechanism to determine a phone’s capabilities before compiling
and installing a MIDlet would reduce development time and thus costs.

We are currently working on an additional security layer that should provide
access rights and user groups. We also plan to introduce a notion of lifetime to
the serialized data, in order to automatically delete outdated objects. Another
interesting area of research that we want to look into is the implementation
of transactions and concurrency control. Despite the often sever limitations of
CLDC, we are confident that we can still significantly improve our distributed
persistence framework for small, mobile devices.

References

1. Geser, H.: Towards a sociological theory of the mobile phone. (2004)
2. Sun Microsystems Inc.: JavaSpaces service specification. White paper (2003)
3. JBoss: Hibernate reference documentation. Manual (2005)
4. Thought, Inc.: CocoBase: Managing data in the enterprise. Tech report (2003)
5. Foundation, A.S.: http://db.apache.org/torque/ (2006) June 14, 2006.
6. Magalhaes, K.C.P., Carvalho, W.V., Lemos, F., Machado, J.C., Andrade, R.M.C.:

FramePersist: An object persistence framework for mobile device applications. In:
XIX Simposio Brasileiro de Banco de Dados, Brasilia, DF, Brasil (2004)

7. SAP AG: SAP mobile infrastructure: An open platform for enterprise mobility.
White paper (2003)

8. Sun Microsystems, Inc.: Java object serialization specification. Tech report (2001)
9. Kochnev, D.S., Terekhov, A.A.: Surviving java for mobiles. IEEE Pervasive Com-

puting 02(2) (2003) 90–95
10. Frank, C., Roduner, C., Noda, C., Kellerer, W.: Query scoping for the sensor

internet. In: IEEE International Conference on Pervasive Services (ICPS 2006),
Lyon, France (2006)

11. Kriens, P., et al.: OSGi Service Platform Specification, Release 3. Tech report,
The Open Services Gateway Initiative (2003)

