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ABSTRACT
Sensor networks are prone to failures and are hard to de-
bug. This is particularely true for failures caused by incor-
rect interaction of multiple nodes. We propose a mechanism
called passive distributed assertions (PDA) that allows de-
velopers to detect such failures and provides hints on pos-
sible causes. PDA allow a programmer to formulate asser-
tions over distributed node states using a simple declarative
language, causing the sensor network to emit information
that can be passively collected (e.g., using packet sniffing)
and evaluated to verify that assertions hold. This passive
approach allows us to minimize the interference between
the application and assertion verification. Further, our sys-
tem provides mechanisms to deal with inaccurate traces that
result from message loss and synchronization inaccuracies.
We implement PDA on the BTnode platform and evaluate it
using an extensive case study.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Assertion Checkers; C.2.4 [Computer Communica-
tion Networks]: Distributed Systems

General Terms
Reliability, Languages, Verification
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1. INTRODUCTION
Problems in deployed sensor networks are not only com-

mon [9], but very hard to debug. Debugging requires visi-
bility of the system state, but limited resources make it hard
or impossible to extract the full system state from the sensor
network. Debuggers compete with the debugged application
for the limited system resources, resulting in pronounced in-
terference between the debugger and the debugged applica-
tion (e.g., probe effects). Sensor networks are large and dy-
namic distributed systems, thus debugging is not a single-
node problem, but has to consider the interaction of many
nodes. Sensor networks are systems with many input vari-
ables under control of the physical environment, hence the
behavior of a deployed system may differ substantially from
a testbed environment – necessitating debugging in situ on
the deployment site.

The contribution of this paper is a mechanism called pas-
sive distributed assertions (PDA) to simplify debugging of
sensor networks, with special emphasis on failures that re-
sult from incorrect interaction of multiple nodes. PDA allow
a programmer to formulate hypotheses about the distributed
state of the sensor network and include these hypotheses into
the program code. Whenever the control flow reaches such a
hypothesis in the code, our system checks if the hypothesis
holds and alerts the user if this is not the case. For example,
PDA could be used to express the hypothesis that at a certain
point in the program execution, a sensor node should have at
least one network neighbor that is a cluster head.

A key point of our approach is that we do not introduce
complex protocols into the sensor network to check such hy-
potheses, rather we passively collect a message trace from
the network, such that hypothesis checking is performed on
this trace outside of the sensor network. By this, we mini-
mize the interference of PDA with the sensor network appli-
cation. In other words, we minimize the chance that intro-
ducing PDA alters the behavior of the sensor network appli-
cation and that a failure of the application affects the PDA
mechanism. A variety of approaches can be used to collect
such traces in the lab and in the field, providing different
trade-offs between the overhead required to collect the trace
and the level of interference with the sensor network appli-
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Figure 1: PDA system architecture.

cation.
A second important property of PDA is its ability to deal

with inaccurate traces. For example, some messages may be
missing from the trace or the correct ordering of the mes-
sages may not be established due to synchronization inac-
curacies. Rather than producing wrong output in such cases
(e.g., reporting a failed hypothesis where it actually did not
fail), our system will flag such occurrences as undecidable.

In a recent position paper [13], we published the basic
ideas underlying passive distributed assertions. The present
paper turns these ideas into a complete system, present-
ing its detailed design, implementation, and evaluation. An
overview of the system architecture can be found in Sect. 2.
Sects. 3-8 present the detailed design and implementation
aspects. An evaluation can be found in Sect. 9.

2. SYSTEM ARCHITECTURE
Our system allows a sensor node to publish part of is pro-

gram state as so-called attributes, where an attribute has a
name, a type (e.g., Boolean, Integer), and a value that may
change over time as detailed in Sect. 3. Typically, an at-
tribute maps directly to a program variable. A programmer
can then insert distributed assertions over these attributes
into the source code similar to the assert macro in the
C programming language. A distributed assertion is essen-
tially a Boolean expression over attributes as detailed in Sect.
4 below. However, these attributes may reside on different
nodes. The semantics of such a distributed assertion is that
whenever the control flow reaches a distributed assertion, the
Boolean expression should evaluate to true. Otherwise, there
is a mismatch of the programmer’s hypothesis about the sys-
tem state and the actual system state. In such a case, the user
is informed, including details about the location of the as-
sertion in the source code and the values of the referenced
attributes. Distributed assertions can be disabled at runtime
once the user is confident that the system works fine.

Fig. 1 depicts the architecture underlying our system. The
basic idea is that sensor nodes execute a compact runtime
system (Sect. 6) to publish small messages whenever an
attribute value changes (so-called snapshot or SNAP mes-
sages) and when a distributed assertion is executed (so-called

PDA messages). These messages can be either published in-
band with other application messages on the radio channel,
or out-of-band using a different channel (e.g., a serial cable
attached to the node). A trace of these messages is collected
and passed to the backend for evaluation (see Sect. 7). Dur-
ing trace collection, each attribute change (i.e., SNAP mes-
sage) and execution of a distributed assertion (i.e., PDA mes-
sage) is tagged with an accurate global timestamp. The back-
end uses this synchronized trace to evaluate assertions. For
each PDA message in the trace, the backend reconstructs the
values of all relevant attributes (using the SNAP messages in
the trace) at the point in time the assertion was executed and
evaluates the assertion on these attribute values. Details on
the backend can be found in Sect. 8.

The source code of the application containing distributed
assertions is run through a preprocessor (Sect. 5), which
extracts information from the source code and modifies the
source code with the goal of reducing the amount of infor-
mation that has to be transmitted at runtime.

A key design decision behind this architecture is that each
sensor node generates a trace of PDA and SNAP messages
independent of all other nodes. Our system then passively
listens to the sensor network to collect and evaluate these
traces. This approach allows us to minimize the interference
between assertion evaluation and the actual sensor network
application. One the one hand, we thus minimize the proba-
bility that a partial failure of the sensor network application
affects the ability to evaluate assertions. On the other hand,
we thus minimize the probability that distributed assertions
change the behavior of the application in significant ways.
Different trace collection approach allow a user to carefully
tune the trade-off between level of interference with the ap-
plication and overhead for trace collection.

An alternative design would be to evaluate distributed as-
sertions directly in the sensor network by introducing a pro-
tocol that allows a node to fetch values of attributes from
remote nodes to evaluate a distributed assertion (e.g., as sug-
gested in [16]). However, a failure in the multi-hop routing
protocol would then also break assertion evaluation. Also, as
distributed assertions may reference attributes on many dis-
tant nodes, the resulting traffic overhead may easily change
the behavior of the sensor network application.

3. ATTRIBUTES
Attributes are an abstraction of the program state. Each at-

tribute has a name, a type, and a value that may change over
time. In many cases, attributes map directly to program vari-
ables, i.e., the attribute has the same name, type, and value
as a program variable.

In order to enable the use of an attribute in a distributed
assertion, a snapshot of the value of the attribute has to be
published whenever its value changes. In our system, this is
accomplished by the SNAP(n,v) function, where n is the
name of the attribute given as a string and v is the value of



the attribute. Consider the following example:
int a; ...; a=1; SNAP("a", a)

Here, a program variable of type integer is created and later
assigned a value. Right after the assignment, the SNAP func-
tion is invoked to publish a snapshot of the new value of at-
tribute a. It is also possible to take snapshots of multiple
attributes with one invocation of the SNAP function as in
SNAP("a,b", a, b)

A special attribute is the neighborhood of a node, i.e., a set
of node addresses identifying the direct neighbors of a node
in the wireless network. Such a neighbor table is maintained
by many MAC and routing protocols. As we will see be-
low, this attribute can be very useful to formulate distributed
assertions.

4. DISTRIBUTED ASSERTIONS
To formulate a distributed assertion, our system offers the

function PDA(o,e,c1,c2,...) where o is a time off-
set, e is a Boolean expression over node attributes given as a
string, and c1,c2,... are zero or more so-called evalua-
tion constants. Consider the following example:
PDA(0, "a == 2:b")

This distributed assertion represents the hypothesis that the
value of attribute a on the node executing the distributed as-
sertion equals the value of attribute b on the node with ad-
dress 2 at the point in time when the the control flow reaches
the distributed assertion.

As illustrated by the above example, distributed assertions
are specified by Boolean expressions over node attributes,
using an extended syntax of expressions in the C program-
ming language. Besides the usual arithmetic and Boolean
operators, an extensible set of builtin functions is supported.

4.1 Delayed Assertions
Sometimes it is desirable to evaluate a distributed assertion

at a point in time different from the point in time when the
control flow reaches the assertion statement. For example,
if a node sends a message to node 2 instructing it to set the
value of its attribute b to the value of attribute a, one may
want to check that node 2 has completed this operation after a
certain amount of time. This can be accomplished by setting
the first parameter of PDA to a value other than zero as in the
following example:
PDA(100, "a == 2:b")

Here, the assertion will be evaluated 100 milliseconds after
the control flow has reached the assertion statement.

4.2 Evaluation Constants
Often it is inconvenient to hardcode node addresses or

other parameters as in the above example, where node ad-
dress 2 cannot be changed at runtime. For this purpose, we

introduce evaluation constants as in the following example:
PDA(100, "a == %addr:b", address)

Here, the placeholder %addr will be replaced with the value
of the variable address before the assertion is evaluated1.
Note the difference between evaluation constants and at-
tributes. Attributes are published so that all nodes can use
their values in distributed assertions, while evaluation con-
stants are not published to other nodes.

4.3 Node Sets
In practice it is often necessary to formulate distributed as-

sertions over sets of different nodes. For example, one may
want to check that at least one node or all nodes out of a
given set have a certain property. Such node sets can either
be given as an explicit list of node addresses or by using
builtin functions such as nodes() that returns the set of all
nodes in the network or hood(n) which returns the set of
nodes at most n hops apart from the node executing a dis-
tributed assertion. Note that these builtin functions are not
evaluated on the sensor nodes, but only in the backend. The
use of hood(n) requires that nodes publish their neighbor-
hood as an attribute as described in Sect. 3. Knowing the
individual neighborhoods (i.e., hood(1)) of all nodes, the
backend can compute hood(n) for any value of n by com-
puting shortest paths between pairs of nodes.

Special operators exist to formulate distributed assertions
over node sets. These have the form op(set,exp), where
op is the name of the operator, set is a node set, and exp is
an expression over node attributes that is evaluated for each
node in the set. In exp, the special address prefix $ can
be used as a placeholder for the currently considered node.
Some example are:
PDA(0, "exists(hood(1), a == $:b)")
PDA(0, "all(hood(1), a == $:b)")
PDA(0, "count(hood(1), a == $:b) > 2")

PDA(0, "max(hood(1), $:b) > a")

From top to bottom, these assertions ensure that attribute b
of at least one neighbor equals attribute a; that attribute b
of all neighbors equals attribute a; that attribute b of at least
two neighbors equals attribute a; that the maximum value of
attribute b among the neighbors is greater than attribute a.

Real-world examples of distributed assertions can be
found in Sect. 9.

5. PREPROCESSOR
The source code of the application, including PDA and

SNAP statements as described earlier, is run through a pre-
processor. The preprocessor performs type inference and
type checking, and instruments the code to compresses as-
sertions for lower communication overhead.

Both PDA and SNAP statements contain static informa-
1Note the similarity to the printf function in C. In fact, the PDA
and SNAP functions are implemented in C as functions with a vari-
able argument list.



tion that does not change over time, but is required by the
backend to evaluate assertions. For example, the Boolean ex-
pression of assertions as well as their location in the source
code (file name, line number) does not change over time.
To avoid transmitting this information repeatedly as part of
SNAP and PDA messages, the preprocessor extracts this
static information, creates a table with one line for each PDA
and SNAP statement and passes this table to the evaluation
backend. Also, the preprocessor modifies the source code
to include an index into this table (i.e., the row number) as
an additional parameter into each invocation of the SNAP
and PDA functions. This way, PDA and SNAP messages
do only contain this index instead of repeatedly transmitting
bulky static information.

6. NODE RUNTIME
The main purpose of the runtime system is to translate in-

vocations of the PDA and SNAP functions into small mes-
sages. A trace of these messages is then collected (Sect. 7)
and fed to the backend (Sect. 8), where the assertions are
eventually evaluated. The runtime system consists of two
main components, a message encoder that encodes the pa-
rameters of PDA and SNAP invocations into small messages,
and a scheduler that schedules the transmission of these mes-
sages so as to minimize interference with the sensor network
application.

6.1 Message Encoding
Three types of messages are created, SNAP messages con-

taining snapshots of one or more changed attribute value,
PDA messages representing the execution of a distributed as-
sertion, and so-called periodic update (PU) messages. While
PDA and SNAP messages are created as a result of invoca-
tions of the PDA and SNAP functions, PU are sent at reg-
ular intervals (in the order of tens of seconds). PU serve
multiple purposes. Firstly, they enable the backend to detect
node death (lack of messages from a node in the trace) and
node reboot (sequence number contained in message resets
to zero), which are both common problems that invalidate
the node state. Secondly, PU messages allow the backend to
decide that all SNAP messages containing attribute changes
up to a certain point in time have been processed, assum-
ing that the message trace contains messages in chronolog-
ical order. Thirdly, PU contain copies of recently changed
attributes that have already been reported through previous
SNAP messages to compensate for lost SNAP messages.

All messages contain the address of the node that gener-
ated the message, a sequence number to allow the backend
to detect missing messages in the trace, and two timestamps
to support global synchronization. The first timestamp texec

equals the point in time when the respective PDA or SNAP
function was invoked or when the PU was triggered. The
second timestamp tsend equals the point in time when the
first bit of the message was sent and is obtained using MAC-

layer timestamping. Note that we do not require that the
clocks of the nodes are synchronized. However, using these
unsynchronized timestamps we can compute a synchronized
timestamp for each invocation of PDA, SNAP, and PU as de-
scribed in Sect. 7.

In addition to this common header, PDA and SNAP mes-
sages contain the index that has been assigned by the pre-
processor, allowing the backend to identify the static infor-
mation belonging to the distributed assertion or snapshot en-
coded in the message. Finally, PDA messages contain the
values of evaluation constants if any were given, while SNAP
messages contain the values of changed attributes.

PU messages are similar to SNAP messages in that they
contain the values of recently changed attributes. Moreover,
a timestamp tlatest which equals the point in time of the latest
value change among the recently changed attributes is also
included to indicate that the values of all attributes in the
message are valid between tlatest and texec.

6.2 Scheduling of Message Transmissions
If messages are sent in-band with the application traffic,

then the transmissions of PDA, SNAP, and PU messages
should be scheduled so as to minimize interference with the
application protocols. A general strategy to reduce the over-
head of distributed assertions is to transmit multiple mes-
sages back-to-back with a single, shared header. Our sched-
uler implementation follows this approach for snapshots of
multiple attributes that are created with a single SNAP invo-
cation, generating only a single SNAP message in this case.
Further, our scheduler randomly delays the transmission of
messages up to one second to reduce the chance of network
congestion and collisions that may result when many nodes
try to transmit PU or other messages simultaneously. If the
radio supports this, a different frequency may be used to
broadcast PDA and SNAP messages so as to avoid interfer-
ence with application messages sent by other nodes.

Note that there is potential for further improvements in
this area by exploiting application knowledge. For example,
many data collection applications perform a sample, send,
sleep cycle with long sleep periods. If packet sniffing is used
to collect PDA, SNAP, and PU messages from the network
(see Sect. 7), then these messages could be transmitted dur-
ing the sleep phase of the application to avoid interference
with the application. As part of future work we plan to in-
vestigate configuration mechanisms where a user can specify
this type of application knowledge as an input to the sched-
uler.

7. TRACE COLLECTION
Trace collection is concerned with collecting PDA, SNAP,

and PU messages from all sensor nodes, assigning a glob-
ally synchronized time stamp to each message in the trace,
and merging all messages into a single chronologically or-
dered trace. Synchronization is needed as the evaluation of a
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Figure 2: Trace collection: (a) In-band collection (b) Logging (c) Offline sniffer network (d) Online sniffer network (e)
wireless testbed (f) wired testbed.

distributed assertion requires to compute the values of all at-
tributes at the point in time when the assertion was executed
on the node.

7.1 Trace Collection Approaches
The passive design of our system, where nodes generate

traces of PDA, SNAP, and PU messages independent of each
other, allows us to apply different approaches for collecting
these traces as depicted in Fig. 2. Each such approach is
characterized by a certain overhead (e.g., additional hard-
ware, installation effort) and by a certain level of interfer-
ence with the sensor network application. As illustrated in
the figure, approaches with low interference typically require
a high overhead, while approaches with low overhead result
in higher interference. In particular, the amount of traffic
that is transmitted in-band with the application traffic (i.e.,
over the same communication channel) determines the level
of interference. The trace collection approaches also differ
in the ability to perform an online evaluation of distributed
assertions while the application is still executing.

The approaches depicted in Fig. 2 thus span a large design
space, from which the application developer can chose the
trace collection approach that best fits his specific require-
ments. During the lifetime of the application, different trace
collection approaches can be used (e.g., a wired testbed in
the lab and an online sniffer in the field) without affecting
the ability to use distributed assertions.

With the in-band collection approach in Fig. 2 (a), PDA,
SNAP, and PU messages are routed through the sensor net-
work to a sink, where they are merged and fed to the evalua-
tion backend. For example, many applications use a similar
approach to collect sensor values from the network. Here,
PDA, SNAP, and PU messages could be considered as “sen-
sor values”. This approach has the lowest overhead as no
additional hardware is required, but results in high interfer-
ence with the application as all traffic is transmitted in-band
with application traffic through the whole network. This is
an example for an online approach.

With the logging approach in Fig. 2 (b), PDA, SNAP, and
PU messages are stored to a flash memory indicated by the
small database symbols in the nodes. While this approach
causes no interference with the application traffic, the nodes
need to be collected to download the traces from their mem-
ories, resulting in substantial overhead. This is an example
of an offline approach.

With the offline sniffer approach in Fig. 2 (c), sensor nodes
broadcast PDA, SNAP, and PU messages in-band with the
application traffic. However, other sensor nodes ignore these
messages and do not forward them, resulting in significantly
less in-band traffic compare to the in-band collection ap-
proach. Instead, an additional set of sniffer nodes (depicted
as squares) is installed alongside the sensor network to over-
hear these messages and store them in their flash memo-
ries. Now, the sniffer nodes can be collected to download
messages from their memories, while the sensor network re-
mains operational. This approach has been used in [3].

With the online sniffer approach in Fig. 2 (d), sniffer nodes
have a second, powerful radio that is free of interference
with the sensor network radio (e.g., Bluetooth, WLAN). Us-
ing this second radio, sniffer nodes forward overheard PDA,
SNAP, and PU messages to a sink where they are merged and
fed to the backend for evaluation. In contrast to the offline
sniffer approach, traces are processed online, but a reliable
second radio channel is required. This approach has been
used in [11] and is also applied in our case study in Sect. 9.

The wireless testbed approach in Fig. 2 (e) is similar to the
online sniffer, but instead of sending PDA, SNAP, and PU
messages in-band with application traffic, each sensor node
is connected by wire (e.g., serial cable) to one of the snif-
fer nodes that forwards the messages over the second radio
channel to the sink. This approach results in even less in-
terference and message loss than online sniffing, but requires
substantial overhead for wiring. This approach has been used
in [4].

Finally, with the wired testbed approach in Fig. 2 (f), each
node is wired to a sink. PDA, SNAP, and PU message are



transmitted over the wire to a sink, where they are merged
and fed to the evaluation backend in an online fashion. Many
testbeds exist that support such a wired channel to each node,
for example [18]. This approach is typically only feasible in
the lab, while the other approaches could be applied both in
the lab and in the field.

7.2 Trace Synchronization
The goal of trace synchronization is to assign a globally

synchronized timestamp to each attribute change and to each
execution of a distributed assertion. This is necessary to
compute the values of all relevant attributes at the exact
point in time when a distributed assertion is executed. The
synchronization approach depends on the trace collection
method used. We focus on online sniffer network and briefly
outline synchronization approaches for other trace collection
methods.

7.2.1 Online Sniffer Network
As we want to minimize interference of PDA with the sen-

sor network, we do not require the sensor network to be syn-
chronized. Instead, we synchronize the sniffer nodes among
each other. In our implementation of the sniffer network, we
use the synchronization algorithm described in [10], but any
other synchronization algorithm could be used as well. A
sniffer node now timestamps the reception of the first bit of
each PDA, SNAP, or PU message using MAC-layer times-
tamping, obtaining a timestamp trecv that refers to the syn-
chronized time in the sniffer network. Now recall that each
message contains timestamps texec when the PDA or SNAP
statement was executed, and tsend when the first bit of the
message was actually transmitted – both referring to the lo-
cal, unsynchronized time of the originating sensor node. As-
suming that the time for message propagation from sender
to receiver is negligible, we can obtain a synchronized ver-
sion of texec by computing trecv − (tsend − texec). It has
been shown that the accuracy of the resulting synchronized
timestamp is in the order of 10 µs when applying such a time
scale transformation [15]. It would also be possible to take
into account the drifts of individual node clocks as in [12].
However, as tsend − texec is usually small, the influence of
clock drift is typically negligible.

Once a synchronized timestamp has been assigned to each
PDA, SNAP, or PU operation in the trace in this way, the
traces from all sniffer nodes are merged into a single trace,
sorted in chronological order, and duplicate messages are re-
moved. The resulting trace is then passed to the backend for
assertion evaluation.

Although the above synchronization approach can provide
an accuracy in the order of tens of µs, we have to take this
inaccuracy into account when evaluating assertions, because
an attribute value could change almost simultaneously with
the execution of a distributed assertion. Here, it makes a dif-
ference if the timestamp of the assertion is a bit too early

(uses old attribute value) or a bit too late (uses new attribute
value). In the remainder of the paper we assume that there is
a known upper bound ∆ for the synchronization error. That
is, a timestamp that has been obtained with the above ap-
proach does not differ from the correct timestamp by more
than ∆ time units.

7.2.2 Other Trace Collection Approaches
For wireless and wired testbeds, the same approach as for

online sniffer network can be applied. In an offline sniffer
network, the sniffer nodes cannot communicate with each
other, hence it is not obvious how to synchronize them. How-
ever, if the sniffer nodes are deployed densely enough, then
a single PDA, SNAP, or PU message is received by multiple
sniffer nodes. As broadcast messages are received almost
simultaneously by multiple receivers, a reception event can
act as a reference point for synchronization. Hence, it is pos-
sible to perform reference broadcast synchronization (RBS)
[5] in an offline fashion on the traces downloaded from the
sniffer nodes, resulting in an accuracy in the order of 10 µs
on typical sensor node hardware as demonstrated in [3].

Only for the in-band collection and logging approaches,
the sensor network itself must be synchronized. Then, the
texec timestamps contained in all messages are already syn-
chronized (see Sect. 6) as they have been obtained from the
synchronized node clocks.

8. ASSERTION EVALUATION BACKEND
The backend takes a trace of PDA, SNAP, and PU mes-

sages as input and evaluates the distributed assertions en-
coded as PDA messages in the trace, notifying the user of
failed assertions and giving as much detail as possible on the
failed assertion to assist the user in identifying the cause of
the failure.

The backend consists of three main components, the state
model which evaluates SNAP messages to reconstruct the
values of node attributes over time, the assertion evaluator
which evaluates an assertion using the state model to obtain
the values of attributes at the time of assertion execution, and
a user interface to display evaluation results.

8.1 Inaccurate Traces
The key challenge of assertion evaluation are inaccurate

traces. Firstly, the input trace is likely to miss one or more
messages depending on the trace collection approach. While
traces obtained with logging and wireless testbeds are less
likely to miss messages, approaches that involve wireless
communication (in particular approaches involving passive
sniffing due to the lack of acknowledgments and retransmis-
sions) are likely to miss a substantial fraction of messages,
often in the order of some percent. Secondly, as time syn-
chronization is always inaccurate, the timestamps associated
with attribute changes and distributed assertions are only es-
timates of the correct timestamps with a bounded error ∆
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(see Sect. 7).
As we cannot completely eliminate the causes of inaccu-

racies, assertion evaluation must be prepared to handle inac-
curate traces. In particular, the evaluation backend should be
able to identify assertions that cannot be evaluated correctly
due to inaccuracies instead of reporting wrong evaluation re-
sults. Hence, in our system each attribute referenced by an
assertion can be in one of tree possible states: verified (the
value of the attribute at the time the assertion was executed
is definitely known), uncertain (a possible value of the at-
tribute at the time the assertion was executed is known, but
may be incorrect), or unknown (a value for this attribute is
not known at the time the assertion was executed). Like-
wise, an assertion has three possible outcomes: success, fail,
and unknown. In addition, each assertion evaluation has four
possible states: tentative (evaluation outcome may change if
more messages are received), finished (evaluation outcome
won’t change any more and the assertion can be decided),
or undecidable (evaluation outcome won’t change any more
and the assertion cannot not be decided).

8.2 State Model
The state model provides an interface to query the value

and state of a given attribute of a given node at a given point
in time. To provide this information, the network model
processes the SNAP messages in the trace, which report the
value changes of attributes in chronological order.

In an accurate trace (no lost messages, perfect synchro-
nization), the value of an attribute at time t is given by the
value reported in the SNAP message with the latest times-
tamp smaller than t. This is sufficient if the trace is processed
offline, i.e., the backend sees the complete trace. However,
if the trace is processed online, then we have to make sure
that no later message with a timestamp smaller than t will
arrive in the future. Hence, the value of the attribute remains
uncertain until a message has been received with a times-
tamp greater than t. One of the purposes of PU messages
is to ensure that such messages are regularly generated. As
the trace is chronologically ordered, this will ensure that no
messages with timestamps smaller than t will arrive in the
future. Consider Fig. 3 for an example. Depicted is a sensor
node publishing three attributes A, B, and C. Time pro-
gresses from left to right, small circles represent snapshots
(i.e., value changes) of the attributes. At time t, the values

C

C:=2
Attribute

Node A

B

C

Time

Updated Attribute Value

A:=1 A:=3 A:=5

B:=true

C:=3

Node A

B

C

Time

Node Synchronization Error

Snapshot 
Time

Node A

B

Time

Uncertain Value

Missed 
Packet435 449 451 462

Sequence 
Numbers

t

At time t:
A=3, B=true, C=3

-Δ     +Δ

Figure 4: Impact of synchronization inaccuracy on at-
tribute reconstruction.
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Figure 5: Impact of missing messages on attribute recon-
struction.

of the attributes are A = 3, B = TRUE, C = 3. Note
that all attributes are verified at time t, even attribute B, be-
cause at least one SNAP message with a timestamp greater
t must have been received from the node to report snapshots
for A = 5 and C = 2.

In the presence of synchronization errors, things are
slightly more complicated as depicted in Fig. 4, where each
snapshot is enclosed by an interval ±∆ that marks the max-
imum synchronization error. If the value of an attribute is
requested during such an interval, the state of the attribute
is uncertain, because it might be the case that in reality the
attribute changed slightly before (after) the requested time t
even if the timestamp suggests that the value changed after
(before) t.

To detect lost messages, every message contains a mono-
tonically increasing sequence number. If a certain sequence
number is not present in the trace, then this indicates a lost
message. In Fig. 5, the message with sequence number 450
is missing. Hence, all attributes of the node are marked un-
certain starting with the timestamp of message 449, as at-
tribute value changes reported in lost message 450 might
have occurred arbitrarily close to the previous value change
reported in message 449. An attribute remains uncertain un-
til a later snapshot for this attribute has been received.

The network model also evaluates PU messages to detect
node death and reboot. If for a certain amount of time no PU
messages have been received from a node, then this node is
assumed dead. The state of all attributes of this node is set to
unknown.

When a node reboots, global variables are typically reini-
tialized. As the sequence number counter is also reset to zero
upon reboot this way, a node reboot will manifest itself in a
jump of the sequence number in messages to zero. In such a
case, all attributes of the node are set to unknown.



Figure 6: GUI of the assertion evaluation backend.

8.3 Assertion Evaluator
The assertion evaluator processes PDA messages con-

tained in the trace. For each such message, the synchronized
timestamp t is extracted and the values at time t of all at-
tributes referenced by this assertion are requested from the
state model. If all attributes are either verified or uncertain,
then the Boolean expression of the assertion is evaluated on
the attribute values and the result of the assertion is set to
success or fail depending on the evaluation result. Other-
wise, if at least one attribute is unknown, then the evaluation
result is also unknown.

The state of the assertion evaluation is either finished if all
attributes are verified or undecidable otherwise. If the trace
is processed online, then it may take some time after the ex-
ecution of the assertion until all nodes have sent respective
SNAP or PU messages. During this time, the state of an as-
sertion is tentative as the evaluation result may change later
with the arrival of new messages. If an attribute changes its
state from unknown or uncertain to uncertain or verified due
to the arrival of a new message, all assertions referencing this
attribute are reevaluated.

To evaluate operations over node sets (see Sect. 4), the
set of nodes to evaluate the assertion on has to be com-
puted. The set of all nodes, nodes() is known to the state
model by virtue of the PU messages. To compute a neighbor-
hood hood(n), the value of the neighborhood attribute (see
Sect. 3) of the node executing the assertion at time t is re-
trieved from the state model, which equals hood(1). Then,
the neighborhoods of all nodes in hood(1) at time t are
retrieved and merged with hood(1) to obtain hood(2).
This process is repeated until hood(n) has been obtained.

The evaluation results are shown by the graphical user in-
terface in Fig. 6. There is one column for each assertion exe-
cution, showing the evaluation result and state. By selecting
a row, details are displayed on the right, including the loca-
tion of the assertion in the source code and the values and
states of all involved attributes. The displayed assertions can

be filtered by various criteria.

9. CASE STUDY: TARGET TRACKING
We see passive distributed assertions as a tool to

assist the developer throughout the whole develop-
ment/test/deployment cycle of an application. That is, typ-
ically the programmer will add distributed assertions incre-
mentally as he writes the code, rather than adding assertions
to an existing application. Hence, to evaluate and gain ex-
periences with our system, we implemented a complete non-
trivial application from scratch on the BTnode [2] platform
and used distributed assertions throughout the lifecycle of
the application.

9.1 Tracking Application
The application is concerned with tracking the location of

a single mobile target with a sensor network, similar to [1].
The target itself is also a sensor node that broadcasts beacon
packets to allow its detection. These simplifications (e.g.,
single, cooperative target) are justified by the fact that we are
mainly interested in passive distributed assertions and not in
the application itself.

Sensor nodes are assumed to know their geographical lo-
cation (x, y) in the plane and can take on different (also mul-
tiple) roles. Nodes that currently detect the target take on the
group member role. One of the group members that is close
to the location of the target additionally takes on the leader
role and announces this fact to the group members. Group
members regularly send a message to the leader containing
their position. Using these messages, the leader computes
the location of the target as the average of the locations of
all group members. Nodes that do not detect the target but
have a neighbor that is a group member are so-called bor-
der nodes. They overhear leader announcement messages
sent by group members, enabling them to send reports to the
leader when the target enters their range, turning them into
group members. All other nodes are idle.

When the target moves out of the range of the leader, a
new leader is elected among the group members. For this
purpose, the leader also computes the direction of movement
of the target using past target locations and computes the
group member that lies furthest into the direction of move-
ment in an attempt to minimize the number of handovers.

Greedy geographic routing is used to send messages be-
tween nodes across multiple hops. For this, the geographical
location of the destination node must be known. The sender
and intermediate nodes forward the message to the neighbor
that lies closest to the destination. For neighbor discovery,
nodes broadcast short messages containing their ID and lo-
cation.

9.2 Distributed Assertions
During the development of the application, we placed

a number of distributed assertions and snapshots in the



code. In particular, all nodes publish two Boolean attributes
isLeader and isMember that indicate if a node is a leader, a
group member, both, or none. In the latter case, the node is
either a border node if it recently received a leader announce-
ment, or idle otherwise.

The following assertion is periodically executed by the
leader code to check that the node executing the assertion
is the one and only leader in the network. In other words,
the node executing the assertion should have the isLeader
attribute set and all other nodes (i.e., those with an ID that
does not equal the ID of the node executing the assertion)
must not have this attribute set.
A.1: PDA(isLeader &&

all(nodes(), !$:isLeader || id == $:id)

Just before a node sends a target detection report to the
leader, the following distributed assertion is inserted to check
that the destination of the message (%DEST is an evaluation
constant that is replaced with the actual address of the leader
node) is actually the leader. Essentially, this is a consistency
check that that a node’s knowledge about the leader is con-
sistent with the actual leader.
A.2: PDA(%DEST:isLeader)

An analogous distributed assertion is inserted into the
leader code after the reception of a target detection report.
Here, we check that the sender of a target detection report is
actually a group member.
A.3: PDA(%SENDER:isMember)

The below assertion is executed when the current leader
has lost the target and is about to send a handover request to
the new leader candidate. This is a delayed assertion with
a delay of 100 ms, checking that the new leader candidate
has actually turned into the leader (i.e., has set its isLeader
attribute) after 100 ms.
A.4: PDA(%CANDIDATE:isLeader)

In early versions of the code, we also exported the coordi-
nates x and y of each node to verify the assumption under-
lying greedy geographic routing that there is indeed a node
that is closer to the destination node (%DST) than the node
executing the assertion. Here, dist(x1, y1, x2, y2)
is a builtin function that computes the Euclidean distance be-
tween (x1,y1) and (x2,y2):
A.5: PDA(exists(hood(1),

dist(x, y, %DST:x, %DST:y) >

dist($:x, $:y, %DST:x, %DST:y))

9.3 Anecdotal Experience
Distributed assertions very tremendously helpful to debug

early versions of the code, in particular of the leader elec-
tion code. We encountered two classes of problems. Firstly,
where a bug in the code resulted in a failed assertions, and
secondly, where the code was actually correct, but the dis-
tributed assertion was wrong, i.e., the programmer’s hypoth-
esis about the system state as expressed by the assertion was
wrong.

In experiments with the tracking application, assertion
(A.4) failed occasionally depending on the mobility pattern
of the target, meaning that the leader handover failed. By
inspecting the values of attributes references by the assertion
we found that the leader candidate was no longer a group
member because he lost the target meanwhile but the leader
didn’t know. The failed assertions in Fig. 6 are an example
of this behavior. Hence, we changed the code to try sev-
eral different leader candidates until one accepts. Also, we
changed the assertion to only require successful handover if
the candidate is still a group member:
A.4’: PDA(!%CANDIDATE:isMember ||

%CANDIDATE:isLeader)

Similarly, assertion (A.3) occasionally failed depending on
the mobility pattern of the target, meaning that the sender of
a detection report is not a group member. It turned out that
this was caused by the fact that the leader code that computes
the target location is executed periodically and not imme-
diately after receiving a new detection report from a group
member. In the meantime, a former group member had lost
the target. Here, the code was actually correct, but the as-
sertion was misplaced. Hence, we moved it to the packet
reception handler where it is executed immediately after re-
ceiving a detection report.

Finally, we observed a varying number of undecidable as-
sertions depending on the type of assertion. While only a
small fraction of the assertion executions (A.2-4) were un-
decidable, a larger fraction of assertion executions (A.1)
couldn’t be decided. The reason for this is that the asser-
tion involves all nodes in the network, meaning that already
a single lost message from any of these nodes could make
the assertion undecidable.

9.4 Quantitative Results
To evaluate the overhead and accuracy of passive dis-

tributed assertions, we deployed an instance of the tracking
application described above in our lab, consisting of 8 BTn-
odes arranged in a grid layout running the tracker applica-
tion including distributed assertions and an additional BTn-
ode that acts as the tracked target.

For trace collection, we used an online sniffer network de-
veloped in previous work [11], which is also based on BTn-
odes. Each BTnode includes a ChipCon CC1000 low-power
radio and a Zeevo Bluetooth radio that operates in a differ-
ent frequency band. The CC1000 is used to overhear mes-
sages exchanged in the sensor network. In addition, the snif-
fer nodes form a multi-hop Bluetooth network to route over-
heard messages to a laptop computer executing the backend
software, which was implemented in Java. In our experi-
ment, we use a sniffer network consisting of two nodes.

The experiment lasts for 300 seconds. At time 0, the net-
work is switched on. At time 120 seconds, the target appears
and remains static until the end of the experiment. We repeat
the experiment five times and compute averages. The two
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Figure 7: Number of messages and bytes sent due to dis-
tributed assertions.

main parameters of the distributed assertion system were set
as follows: the PU interval was set to 30 seconds, while the
time synchronization accuracy ∆ was set to 1 millisecond.

Firstly, we consider the communication overhead caused
by passive distributed assertions in terms of number of bytes
and number of messages as depicted in Fig. 7, which shows
summary values for the whole network, averaged over the
experiment runs. We do not show standard deviations as
these were very small. We break down the overhead to indi-
vidual PDA, SNAP, and PU messages according to the fol-
lowing table:

ID PDA/SNAP
A.1 PDA(isLeader &&

all(nodes(), !$:isLeader || id == $:id))
A.2 PDA(%TARGET:isLeader)
A.3 PDA(%SENDER:isMember)
A.4 PDA(%CANDIDATE:isLeader)
S.1 SNAP(isLeader)
S.2 SNAP(isMember)
P Periodic Updates

The majority of the overhead was caused by periodic up-
dates and assertions A.2 and A.3. The reason for this is that
periodic updates are executed by all nodes, assertion A.2 is
executed by all nodes that are group members, and asser-
tion A.3 is executed by a leader when it receives a message
from a group member. In contrast, assertions A.1 and A.4
are only executed by the single leader, A.1 in regular inter-
vals and A.4 in case of a leader handover – which are rather
infrequent events. In summary, about 336 messages contain-
ing 8551 Bytes were generated on average by the whole net-
work, meaning that a single node generated about 42 mes-
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Figure 8: Undecidable assertions and their reasons.

sages or 1069 Bytes on average, which equals an average
message rate of one message every 7.1 seconds or 3.6 Bytes
per second. These values are quite acceptable given the typ-
ical communication bandwidth of sensor nodes. It must be
noted, however, that this overhead depends on the specific
application scenario (e.g., number, complexity, and execu-
tion frequency of snapshots and distributed assertions).

Figure 7 (top) also shows a breakdown of the communi-
cation overhead into different components, namely the MAC
headers (we used BMAC), fixed headers of PDA/SNAP/PU
messages, and variable payload consisting of attribute values
and evaluation constants. In our particular application, most
of the overhead is caused by MAC headers and fixed headers.
The MAC overhead could be reduced by combining multiple
packets into one, which would, however, increase the amount
of lost information, as the probability of message loss due to
bit errors increases with message length, and as a single bit
error causes all information in the combined packet to be
lost. Combining multiple packets would, however, not re-
duce the overhead of fixed headers as these headers share
little information across different messages. One possible
approach would be some form of header compression. How-
ever, each of these headers in itself is quite small, requiring
compression schemes with small initial overhead. Also, it is
not advisable to apply differential compression to consecu-
tive messages as then a single lost message would mean that
the following messages cannot be decoded. We plan to in-
vestigate such compression techniques in future work.

Secondly, we investigate the accuracy of passive dis-
tributed assertions in terms of the fraction of assertions that
cannot be decided as depicted in Fig. 8, which shows the
total number of executed assertions and the number of un-
decidable assertions. In addition, we show the frequency
of the different causes of undecidable assertions. Missing
packet means that a SNAP message is missing in the trace
that contains the value of an attribute that is relevant for the
evaluation of an assertion. Note that even though periodic
updates implement some form of retransmission of changed
attribute values, attributes that change more frequently than
the PU interval may still cause undecidable assertions. In
fact, this is the main reason for undecidable assertions in our
case. We also experimented with shorter PU intervals, but
the increased network congestion resulted in higher packet



loss with the used BMAC protocol and made things worse.
Regarding missing next packet, recall from Sect. 8 that from
each node that publishes an attribute that is referenced in an
assertion, the backend needs to receive a message from this
node with a timestamp later than that of the assertion to en-
sure that no relevant attribute changes are missing. Missing
next packet means that such a message has not been received,
which may occur at the end of the experiment, e.g., when the
final PU message is lost. Finally, value change too close
means that the value of an attribute at the time of execution
of an assertion cannot be decided due to time synchroniza-
tion inaccuracy (see Sect. 8). The latter did not occur during
the experiments. Note that the different reasons are not addi-
tive, i.e., an undecidable assertion may have multiple causes
if the assertion references multiple attributes.

The non-negligible fraction of undecidable assertions es-
sentially means that our approach can miss transient or spo-
radic problems. Note, however, that for undecidable asser-
tions the user can inspect the values and states of attributes
referenced by an assertion to learn more about the system
state.

The probability of undecidable assertions heavily depends
on the trace accuracy, which in turn depends on the trace col-
lection approach. In this respect, sniffing as used in this case
study can be considered the worst case. Other approaches
can either use acknowledged retransmissions (in-band col-
lection), wired communication (trace readout with logging,
wired testbed), or a combination of both (wireless testbed).

10. LIMITATIONS

10.1 Detectable Bugs
PDA supports the dectection of bugs that result from the

incorrect interaction of multiple nodes. Both functional bugs
(i.e., wrong action is performed) and timing bugs (i.e., right
action is performed too early or too late) can be detected. As
each distributed assertion considers the state of the system
at a single point in time, it is not directly possible to reason
about the evolution of the system state over time. Within
these constraints, PDA offers a framework to detect arbitrary
bugs, whereas other systems such as Sympathy [8] can only
detect a fixed set of problems.

Another characteristic of PDA is that the developer spec-
ifies the correct system state explicitely by formulating an
assertion, which may be difficult and can lead to situations
where the assertion itself is incorrect. In contrast, other sys-
tems learn the correct system state automatically by observ-
ing the state during periods when the system is known to
work correctly [6]. However, the latter approach is limited
by the fact that correct system state that has not been ob-
served during the learning phase will be considered an error
later.

10.2 Overhead and Probe Effects
One of the goals behind PDA is to minimize the interfer-

ence with the sensor network by minimizing the use of its
resources. Nevertheless, PDA consumes resources (CPU cy-
cles, memory, bandwidth) of the sensor network, the amount
of which depends on the used approach for trace collection as
discussed in Sect. 7.1. When using an online sniffer network,
for example, this overhead is smaller than routing monitor-
ing traffic through the sensor network to a sink as in Sympa-
thy [8], but larger than completely passive approaches such
as SNIF [11]. However, compared to the latter, PDA offers
much better visibility of the node states.

The use of sensor network resources by PDA may result in
probe effects, where bugs appear or disappear by introduc-
ing distributed assertions. For example, the use of distributed
assertions may result in different memory layouts, such that
bugs resulting from dangling pointers are subject to probe
effects. Also, the timing of the program execution (compu-
tations, I/O, and communication) is altered by introducing
distributed assertions, which may result in probe effects.

10.3 Scalability
There are three different scalability aspects with PDA.

Firstly, the data rate of PDA/SNAP/PU traces generated by a
sensor network increases linearly with the number of nodes
in the sensor network. The trace collection infrastructure
(e.g., online sniffer network) needs to be dimensioned such
that it can handle the resulting aggregate bandwidth. Sec-
ondly, the data rate of a trace generated by a sensor node
increases linearly with the frequency of PDA and SNAP exe-
cutions, resulting in increasing interference with the applica-
tion executing on the sensor node. Thus, PDA may not be ap-
propriate to formulate assertions over attributes that change
very frequently. Thirdly, the probability of an assertion being
undecidable increases with the number of nodes an assertion
refers to. This is true because an assertion is undecidable if
the state of at least one of the nodes it refers to is unknown
due to lost messages. Thus, PDA may not be appropriate to
formulate assertions that refer to large numbers of nodes.

11. RELATED WORK
In previous work, we proposed passive inspection with an

online sniffer network to inspect unmodified sensor networks
[11]. Similarly, an offline sniffer network is used in LiveNet
[3] to investigate the networking dynamics in an unmodified
sensor network. While these approaches can detect symp-
toms of failures, the causes of failures typically cannot be
identified in this way. Passive distributed assertions address
this limitation by extending passive inspection to consider
the internal node states.

We have published the basic ideas underlying our system
in a position paper at a recent workshop [13]. In parallel
to our own work, two other position papers have been pub-



lished at recent workshops that suggest approaches that are
similar to passive distributed assertions. Wringer [16] uses
binary code rewriting to add watchpoints for global variables
to the code that are triggered when the variable is assigned
a new value. By introducing a Scheme interpreter into sen-
sor nodes, node-local assertions can be formulated over vari-
ables. They also mention the possibility to formulate dis-
tributed assertions by collecting variable values from remote
nodes using in-band routing protocols. However, they do
not address distribution issues such as message loss and syn-
chronization inaccuracies, causing incorrect evaluation re-
sults. Also, all communication is in-band, causing signifi-
cant interference with the application. Further, they lack the
flexibility of using different trace collection approaches as in
our work. Finally, their approach requires writing Scheme
code to formulate assertions (which may itself be prone to
errors if the assertions are more complex), while we use a
declarative language to formulate assertions. With MEGS
[7], a programmer manually inserts code into the WSN ap-
plication to send changes of variables over a side channel
(e.g., wired testbed) to a central PC. At the PC, manually
written Java code can be executed to check assertions over
the distributed node states. As in Wringer, MEGS does not
address issues such as message loss or synchronization inac-
curacies. Also, formulating assertions requires writing Java
code, which may itself be error-prone.

Several systems have been proposed for debugging of
sensor networks, notably Sympathy [8] and Memento [14].
Both systems introduce monitoring protocols in-band with
the actual sensor network protocols. Also, both tools support
a fixed set of problems, while passive distributed assertions
are a generic mechanism. Tools for sensor network man-
agement such as NUCLEUS [17] or Marionette [19] provide
read/write access to various parameters of a sensor node that
may be helpful to identify failure causes. This approach also
introduces protocols in-band with the actual sensor network
protocols. Recently, the gdb source level debugger has been
adopted to work on sensor nodes [20]. However, typical de-
bugging operations such as single-stepping do significantly
interfere with the sensor network, as the timing of opera-
tions is changed substantially. Also, the overhead of typical
debugging operations is currently very high.

The concept of distributed assertions in itself is not new
and has been used to debug distributed systems. We adopt
this concept to sensor networks by introducing appropriate
language abstractions (e.g., operations over neighborhoods),
use passive trace collection to enable the developer to care-
fully balance overhead and interference, and provide mech-
anisms to deal with message loss and synchronization inac-
curacies that are common in sensor networks. Also, in con-
trast to many systems that use logical time (e.g., Lamport or
vactor time), our system is based on physical time as sen-
sor networks are real-time systems (e.g., periodic activity is
triggered by system timers). Finally, we provide a complete

implementation on a sensor node platform with constrained
resources.

12. CONCLUSIONS
We have presented passive distributed assertions, a tool to

detect sensor network failures resulting from incorrect in-
teraction of multiple nodes and to assist in identifying their
causes. To verify distributed assertions, sensor nodes emit
additional information that can be passively collected, such
that the resulting trace can be evaluated outside of the sensor
network, thus minimizing the interference between assertion
verification and the application. A veriety of different trace
collection approaches are supported that can be used in the
lab and in the field, providing different tradeoffs between the
amount of interference and the overhead required for trace
collection. The system also detects and flags assertions that
cannot be correctly evaluated due to incomplete traces or due
to synchronization inaccuracies. We have applied the system
in an extensive case study where it helped to fix several bugs
and showed an acceptable overhead.
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