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Abstract

Simulation of logic designs is a very important part of the VLSI-design

process. The increasing size of the designs requires more e�cient simulation

strategies to accelerate the simulation process. Parallel logic simulation seems

to be a promising approach in this direction. This paper describes the ba-

sic principles of parallel logic simulation, discusses di�erent approaches, and

surveys the research done in this �eld so far.

1 Introduction

In recent years the increasing demand for fast development of integrated circuits

has caused many studies in the �eld of design of microelectronics and hardware

units. A particular problem arises from the exploding number of transistors that can

be placed on single chips. Design methodologies such as placement, 
oor planning,

channel routing [SES85a] are one major topic in research. Another and even more

important theme is veri�cation of such large designs. \Is the �nal product really

going to show the expected behavior?" is one of the most important questions in

this context. For this reason the simulation of the behavior of the planned chip is

essential in the design process to avoid the fabrication of faulty chips.

In the past years, several rather di�erent approaches have been made to this topic

ranging from dedicated hardware which was especially built to support the needs of

logic simulation (such as hardware support for event queue management) to various

classes of software simulators for logic simulation.

In the next section of this paper the basic properties of logic simulation will be de-

scribed. In Section 3 we will consider some speci�c characteristics of logic simulation

�This work has been supported by the German Science Foundation (Deutsche Forschungsge-
meinschaft), project D1b, SFB 124
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that are important when one considers parallel simulation of digital circuits. Section

4 describes di�erent approaches to realize parallel simulators. After this we will point

out which work is currently done in this �eld (Section 5). Section 6 is dedicated to

closely related topics, in particular the partitioning of circuits, load balancing in par-

allel applications, and the dependencies between computation and communication

overhead.

A partial overview on parallel logic simulation is also given by Briner and Soul�e in

[BRI90a] and [SOU92a], respectively. However, the authors focus on their own work

and do not treat this theme in a general way. A more comprehensive overview (in

german) is given in a recent report by R�ossig [ROE93a], where the author surveys

parallel logic simulators and compares the underlying hardware, the strategies, and

the partitioning aspects.

2 Principles of Logic Simulation

Simulation of digital logic circuits is mainly used to avoid serious design errors that

may render the costly development process of a hardware unit worthless. This is even

more important as the development may take several months or even years. Another

important task of simulation is to verify whether a design ful�lls its speci�cations.

The simulation of a planned design can discover many of the problems that may

arise. Usually, the chip design goes through several iterations. Starting with the

initial design, the prototype has to be checked using design rule checkers for electrical

behavior and simulation for functional tests. If errors are detected, they have to be

corrected and another iteration is performed until the speci�ed design is realized.

Chip design can be supported by hardware description languages which describe the

modeled unit in a programming language-like fashion. Examples are VHDL (Very

High Speed IC Hardware Description Language) [VHD87a] and Mimola [ZIM80a,

JOM89a].

The speci�cation in terms of such a language can also be used as input to the

simulation tools. Hardware description languages provide a complete speci�cation

and documentation frame for the development of circuits.

There might be di�erent ways to describe the chip. VHDL, for example, provides

three views on a model:

� a behavioral description,

� the structural interconnections of the basic components, and

� the logical functions implemented by the unit under design.

Additionally, one may combine several views arbitrarily within one model. Hard-

ware description languages provide an abstract view of the chip and help to obtain

more structured and comprehensible designs.
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Figure 1: Design Hierarchy and Abstraction Levels for Logic Design

2.1 Design Abstraction Levels

Usually, the design of a chip will not be done totally from the scratch. Instead, the

trend goes towards the reuse of building blocks such as elements of cell libraries for

logical gates or register transfer primitives. Such components are obtained from earlier

designs or from speci�c libraries to support a faster design process. The elements of

such libraries can then be composed to form new circuits.

Even then, however, it is often necessary to simulate the new design at a higher

level to verify the interaction of the preconstructed units. For this reason, it is obvious

that simulations are performed at very di�erent layers. One may start at the top

level description of a whole system, and re�ne the model at the register transfer

level (RTL). A further level of detail consists in the simulation of gates, switches,

or transistors. This process of decreasing abstraction is known as top-down design.

The opposite approach is the bottom-up design where libraries are used to compose

complex objects from already existing simpler devices (see Fig. 1).

In the bottom-up approach, the most accurate simulation is done by an analog

simulator. The next step towards abstraction is the consideration of digital circuits

that can be modeled at the switch or transistor level. The description of the timing

3



behavior of an analog circuit through di�erential equations is replaced by dynamically

calculated switch times from a capacitance/resistor model. The next higher layer

views transistors only as switches that react on their inputs with a given �xed delay.

Here, only the delays are of importance while exact switching times due to the actual

number of driven fanout elements are neglected.

On top of the switch layer we can �nd the gate level grouping together several

transistors to logic gates, memory cells, and 
ip-
ops. These elements may be com-

bined to RTL primitives (MUX's, counters, or registers) in a next step. Another layer

consists of functional descriptions of complete units such as ALUs or CPUs composed

from RTL building blocks and simpler elements. The top of the hierarchy is built by

instructions that realize complex operations of a system such as a load or store in-

struction for a CPU. This level is mainly used for the simulation of complex logic

circuits. However, each level of abstraction has to be paid with a loss of information

on the exact behavior of the simulated circuit. For this reason, almost every design

process has to be veri�ed at one of the lower levels to ensure the desired behavior of

the �nal product.

Another often used principle is to combine the elements of several levels within

one single model and to perform a mixed-level simulation. This is mainly applied to

elements of the switch level, the gate level, and the register transfer level. However, all

elements of a mixed-level simulation show digital characteristics. If analog simulation

is also incorporated into a multi-level simulation process, we speak of multi-mode

simulation where analog and digital behavior of the simulated elements is mixed.

2.2 Timing Models

In logic simulation several possibilities to model the temporal behavior of circuits are

used:

� Continuous time is mainly applied for analog simulation of the lowest level

of the circuit. The currents and voltages are expressed through di�erential

equations in dependency of the time.

� Unit delay assumes that every change of a signal's value needs exactly one time

unit to become available. This means that a change at an input of an element

is re
ected in the next step on the output of that element.

� Fixed delay assigns individual delays to each element which are kept constant

throughout the whole simulation. By this, di�erent falling and raising times

can be modeled and the circuit can be simulated more accurately.

� Variable delay provides the most 
exible way to simulate elements. It is used in

particular at the lower levels and allows di�erent switching times due to chang-

ing fanouts or capacitances that depend on the actual state of the simulated

system.
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Figure 2: Simple Schematic of a Model at the Gate Level

2.3 Environment and Structural Model for Logic Simula-

tion

The behavior of a design is simulated by feeding the description of the circuit obtained

during the development into a simulator. To actually run the simulation, one also has

to supply the simulator with input data (stimuli). The stimuli might be randomly

generated or extracted from the speci�cation. The results on the outputs of the

simulated circuit are evaluated to see whether the design shows the speci�ed and

expected behavior in functionality and speed.

The basic actions that are performed during logic simulation are identical for

all abstraction levels and discrete timing models. For this reason, we refer to any

element of a circuit that is contained within a model as a unit. In general, each unit

is provided with at least one input and at least one output and has an internal state

that is time-dependent. The inputs and outputs of the basic units are interconnected

through wires over which signal values are propagated. A signal value changes at

discrete points in time. The wires are realized within a simulator as nodes that store

the current signal value of the wire and possibly future signal changes. A wire's signal

may be in
uenced by multiple units that are connected to it. For this reason, the

node has to separate the values supplied on the outputs of the driving units from the

inputs of the driven units as shown in Fig. 2. This is necessary because

� several units driving a node with their outputs may supply di�erent values at

the same time and

� the values of the inputs and outputs must be maintained until all units are

evaluated at the current time. A new value provided on an output for a future

time must not be delivered to any input before its associated units have been

evaluated for the current timestep.
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Figure 3: The Basic Simulation Procedure

Thus, to separate input and output behavior, nodes must be inserted. They may

also provide so-called resolution functions. If there are multiple driving units that

may in
uence the signal values simultaneously, a resolution function determines the

values that will be propagated to the inputs of units that are driven by this signal.

For simplicity of the model, the external inputs of the units (e.g., the pins of a

chip) are considered as nodes which are driving the connected units by supplying

them with the current values of the external links.

2.4 The Basic Simulation Scheme

The simulation of a circuit is performed as a cyclic operation preceded by an initial-

ization phase before entering the loop (Fig. 3). In the initialization phase, the a priori

known stimuli are provided to the inputs of the circuit. After this, all units that may

be a�ected by the initial input settings are scheduled for evaluation of their internal

states. Then the loop is entered.

Each iteration of the loop is composed of three steps. In the �rst step, the new

states of the scheduled units are calculated. Changes of states possibly result in
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changes of the outputs of the units which are driving inputs of other units via the

intervening nodes. If this is the case, the new values of the nodes are determined

in a second step according to the resolution function when all values of their inputs

are available. In the third step, the simulator schedules units for reevaluation. In

particular, units which are driven by nodes that changed their values in the previous

step have to be evaluated.

The loop will only be left when no more changes take place. This happens when

the model becomes quiescent or if a prede�ned termination condition is reached (e.g.,

when the simulation time exceeds a limiting value).

The data structures for the realization of such a simulator generally consist of

a list of units with their inputs, outputs, and current states, and of a list of nodes

including the driving and driven units. Often, an event queue that is used to schedule

units whose inputs changed is also part of the simulator. During each cycle of the

loop described above, the appropriate operations on the units, the nodes, and the

event queue are performed in order to update the data structures according to the

simulation model.

2.5 Sequential Simulation Strategies

The main criterion to distinguish between di�erent simulation types is the way how

simulation time behaves and is advanced. According to this, we can partition the

simulation methods in two classes:

� Time-Driven Simulation can be viewed as slow-motion or quick-motion of

the simulated system. Based on a given discretization of time, all timesteps are

simulated. Time-driven simulation is also known as compiled mode simulation

because the strategy after which units are evaluated for each step is determined

once at compile time of the simulator and cannot be adapted during simulation

according to dynamic requirements.

This method is the most simple way to do a simulation. The simulation time

usually advances in equidistant steps. For each step all units are evaluated.

The new state values are stored in a second set of state variables that will

take the role of the old state variables in the next cycle. The third step of

the simulation loop of the general scheme degenerates to the scheduling of all

units. However, this scheme may be optimized by evaluating only those units

for which the input signals changed in the last step. This optimization is also

called synchronous event-driven scheme.

The size of the simulation timestep depends on the desired accuracy of simula-

tion. For �xed and variable delay it has to be chosen in a way that the execution

order in the real system is re
ected by simulation time, i.e., two activities with

di�erent execution times in the circuit are modeled in two di�erent simulation

timesteps. At the end of each cycle, the simulation time is increased by the step

size.
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� Event-Driven Simulation: The main disadvantage of time-driven simulation

is that in the case of many idle time intervals (with no changes or activities at

all) much execution time is wasted in evaluating units that did not change, and

in checking whether something has changed or not. This drawback is avoided

by the event-driven method which models the changes of signals as events with

associated discrete points in simulation time, so-called timestamps.Timestamps

indicate when the events are to be executed.

To maintain the temporal order of events in the event-driven simulation, the

events are always simulated in increasing timestamp order. Idle times are

skipped which typically results in faster running simulations. The properties

of event-driven simulation will be detailed in Section 4.

3 Parallel Logic Simulation

3.1 Aspects of Parallelizing Logic Simulators

As the size of the designs to be simulated rapidly grows, the need for fast simulation

tools cannot be satis�ed any more by sequential simulators on general purpose ma-

chines. The gap between the speed required by the user and the speed delivered by

available simulators grows. There are two solutions to this problem:

� The �rst approach consists in building special simulation hardware such as the

Yorktown Simulation Engine YSE [PFI82a] or the MuSiC computer [HAF85a].

These machines consist of several special purpose processors which support fast

synchronous time-driven simulation or data
ow-driven simulation. The problem

of such specialized processors is that they are very expensive and that they often

only support a restricted class of models. The YSE, for example, can only deal

with gates with four inputs. Hence, the design process is severely restricted

by this approach. Mixed-level simulation seems to be impossible with such

restrictions.

� The second approach consists of executing the logic simulation software in

parallel on a general purpose multiprocessor and thus exploiting the parallelism

of the models to be simulated.

The second strategy will be detailed for digital discrete event simulations in the

following sections.

3.2 Metrics for Parallelism

Parallelization of logic simulation tries to exploit the computational power of multiple

processors in a multi-computer environment by concurrently executing the model un-

der simulation. To achieve this, several processors are performing the work in parallel
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which a single processor would have to perform in a sequential order. The underlying

idea is that there should be enough activities to simulate in parallel at every instance

in time during the simulation, so that the unavoidable overhead involved with par-

allel simulation is paid o�. One important problem is how to de�ne and to measure

possible parallelism.

The general potential for parallelization in time-driven simulation has been ex-

amined in [WFC86a] and [BAI92a]. There it is described that models derived from

realistic designs show only a relative activity of 1.2 %. This means that by averaging

over all nonidle times, less than 2 % of all units in the model are evaluated. If the

calculations of the relative activity also include idle timesteps, the activity values

fall below 1 %. Additionally, the relative activity does not scale linear with the cir-

cuit size as one might expect. Instead, with increasing design sizes, the potential for

parallelism from units that can be evaluated simultaneously grows slower than the

dimension of the circuits.

This leads to the question how an appropriate measure for concurrency and po-

tential parallelism has to be de�ned. In the two papers cited above, the average

percentage of active units over nonidle timesteps is used.

Another measure has been proposed by Briner [BRI90a]. This measure was de-

rived from an asynchronous event-driven approach for parallel simulation. For this

idea, the model is distributed onto several sequential simulators which simulate only

their assigned portion. Each simulator is free to proceed at its own speed, and there-

fore di�erent processors may possess di�ering simulation times.

Briner suggests to take into account all units that may be evaluated at a given

instant in time even if the corresponding events have di�ering evaluation times. The

basic idea is that concurrency is determined by the number of events that are si-

multaneously executable based on a real time approach instead of simulation time

as in the previously described scheme. This method, however, strongly depends on

the progress in simulation time of the single simulators. For this reason, the mea-

surements of di�erent simulation runs may vary which makes it di�cult to draw the

right conclusions concerning the circuit behavior.

3.3 Distribution of Data

Todays parallel computing environments are mostly either SIMD or MIMD archi-

tectures [HWB84a]. A SIMD architecture, where the same operation is executed on

di�erent data (e.g., a vector) at a time, does usually not provide the 
exibility needed

to simulate logic circuits in an appropriate way. In logic simulation the units often

show quite di�erent behavior so that SIMD machines are not well suited for this task.

In the following, we will therefore assume the availability of MIMD architectures as

a basic hardware for the simulators.

There exist two large classes for these architectures: shared memory and dis-

tributed memorymachines. Shared memory systemsmay hide the di�erences between

the access methods to local and remote data, whereas the processors in a distributed
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Figure 4: Data Access and Distribution Possibilities

memory system can only access their local memories, and data between processes

must be exchanged via messages.

Access to data of the simulated model can be provided in di�erent ways (Fig. 4):

1. The whole information is stored on a central server and portions of the data

are assigned dynamically to worker processes for execution of the appropriate

operations. After processing, the results are retransmitted to the central server.

This scheme can be modi�ed to a demand-driven method where idle workers

may request supplementary work from the central server.

2. The data is replicated on each processor and a centralized or decentralized

algorithm decides which portion is actually simulated by each worker.

3. The data is partitioned into subsets which are distributed to dedicated worker

processors. The subsets comprise disjoint parts of the whole model and form

submodels. Each worker operates only on the assigned subset, i.e., it performs

only the evaluations for the units within this subset.

Applying these methods on either shared or distributed memory systems shows

various strengths and weaknesses of the approaches.

The �rst schemewill perform quite well in a shared memory environment where all

processors can access all available data. The load (i.e., the work that is performed by

the worker processors) is implicitly balanced. Each worker will work on the problem

as long as there is something to be done. In a system with distributed memory, load

balancing is a non-trivial problem.

The second strategy involves additional overhead to keep the replications in a

consistent state but, compared to the �rst scheme, it avoids the sending of huge

amounts of data when a distributed memory system is used. The distribution of

the units' data through messages might become a problem especially for mixed-level
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simulation where units may have large states. For shared memory there might arise

another problem if shared data structures, such as an event queue that is accessed

by all worker processors to get work, are referenced too frequently. Again, as in the

�rst scheme, load balance can easily be established.

The third strategy is often applied in distributed memory environments and is

used to keep communication costs low. It may, however, also be used for simulation

of large models which do not �t into the memory of a single processor. If this scheme

is realized in a shared memory system, one may enhance the method combining

the possibility of being able to access remote data for load balancing in an easy

manner with the advantage of keeping as much computation as possible locally on

the processors. This is also a main problem in partitioning and load balancing which

will be discussed in Section 6.

Another criterion beside the memory paradigm is the question whether simulation

is based on the time-driven or on the event-driven method. For event-driven simula-

tion, the third strategy re
ects the basic behavior of this kind of simulation quite well

because the simulators on the processors communicate by sending messages. Addi-

tionally, the simulation times that represent the state of simulation can di�er among

the simulators running on the processors. The two other approaches can easily be

used with time-driven simulation with a central or decentralized control that gives

a starting shot for each parallel evaluation cycle and synchronizes at the end of the

cycles. The management of units with di�ering states of progress in simulation time

might involve too much overhead in these cases.

4 Methods of Parallelizing Logic Simulation

In the following sections we will point out which approaches for parallelization of

logic simulation are possible. The parallelization techniques can be divided into two

classes: synchronous and asynchronous schemes.

4.1 Synchronous Parallel Simulation Schemes

For the synchronous schemes, all parallel instances operate closely coupled at the

same simulation time. These methods use a central clock as a time base for all

processors. An example for this strategy is the time-driven algorithm described in

Section 2. The evaluation of units is performed in parallel by distributing the set of

scheduled units onto several processors. After completion of the evaluation step, the

states of the units and the signals are updated and the set of events for the next

cycle is determined. The units for which new events have been created are scheduled

for reevaluation. This approach is depicted schematically in Fig. 5.

One recognizes that the central time causes the operations to be synchronized

after each step. Therefore, the speed-up that can be achieved depends on the evalua-

tion speed of the single units. The slowest unit determines the speed of the simulation
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time advancement with respect to real time. This might be a problem especially in

mixed-level simulation where a model may contain simple gates, as well as a whole

ALU or CPU as units.

4.2 Asynchronous Parallel Simulation Schemes

A quite di�erent starting point is the introduction of asynchrony in parallel simu-

lation. The basic mechanism is discrete event-driven simulation. For this approach,

the model is partitioned into disjoint submodels. Each processor is charged with the

simulation of one or more submodels. The simulation of each submodel is performed

by a so-called logical process (LP for short) which behaves like a sequential simula-

tor and may interact with other LPs if local changes in
uence units beyond its own

submodel.

Each LP consists of a local state comprising the data concerning the local par-

tition of the model. All actions that are performed in the submodel are realized as

events which have an execution timestamp and may cause the local state to change.

Additionally, an LP has a local clock which proceeds at its own speed and which de-

pends only on the local events that must be executed in increasing timestamp order

(Fig. 6). There exists no notion of a global clock or global state. The local clocks of

di�erent LPs usually di�er and the LPs run in asynchrony.

To maintain the timestamp order of the executed events, all events are kept in an

event queue in increasing timestamp order. The LP always picks the event with the

smallest timestamp from the event queue and executes it. The processing of an event
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advances the local clock to the execution timestamp of the event and may create

several new events which are to be executed in the future. If the a new event a�ects

a unit of the local partition, it is simply enqueued in the local event queue.

Events that were generated for non-local units, so-called remote events, are sent

via an event message to the LP that is responsible for the simulation of this unit. On

the reception of an event message, an LP creates a local event that re
ects the e�ects

of the remote event on the destination partition, and inserts the new event into the

local event queue. To maintain the correct timestamp order of the local and remote

events, each event message contains a timestamp that indicates the local time of the

sender at which the message was created and a timestamp that tells the receiver

when the event has to be executed. This whole procedure is usually called remote

event scheduling.

In the case of parallel logic simulation, the events re
ect changes of signals that

drive units or may be driven by units. As signals are generally realized as nodes, sig-

nal changes that a�ect other partitions must also be propagated through the nodes.

This implies that the nodes themselves may be distributed if their inputs and out-

puts connect di�erent LPs (Fig. 7). Thus, the distributed nodes are creating event

13



external 

external
outputs

inputs

distributed node

LP 1 on processor 1 LP 2 on processor 2

Figure 7: Schematic of a Distributed Model at the Gate Level

messages to propagate the signal changes to their remote portions.

We generally assume that a node and all units that feed it reside on the same LP.

If nodes and feeding units were placed on di�erent LPs, additional work would have

to be done to maintain the states of the nodes through event messages. Hence, the

nodes were no longer auxiliary constructs that are used to separate evaluation cycles

but they would have to be handled as a special type of units for signal propagation

instead.

The way how distributed nodes and event messages are realized depends on the

programming paradigm (i.e., shared memory or message passing).

4.2.1 Synchronization of Logical Processes

The absence of a central simulation clock gives raise to the problem of synchronizing

the LPs. In a sequential simulation all events are executed chronologically. Further-

more, unless there is explicit nondeterminism, two runs of a sequential simulator will

always produce identical results for the same model. This is a behavior which a user

of a parallel simulator expects too.

In a sequential simulator no event with execution time (timestamp) t1 can be

executed before an event with execution time t2, if t2 < t1 holds. For sequential

simulation, the order in which the events have to be scheduled according to their

timestamps is always respected. This means that all events ei that may in
uence an

event ej are executed before the execution of ej. Because of this property, the order

and dependency of actions in the real system, which is the base for the simulated

model, is re
ected. For events with identical timestamps a deterministic resolution

scheme has to be used to guarantee deterministic reproducibility [MEH91c]. For

simplicity we assume here that no two events with the same timestamp appear in

the simulation.
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In a parallel environment where each LP maintains only its own local simulation

clock and its local state, global states are generally not available. For this reason, it

is di�cult for the LPs to predict whether another LP will schedule a remote event

for them with an execution timestamp that is smaller than the smallest timestamp

of all events in the local event queue. Of course, such an event must be executed

before the locally known events to ensure that the timestamp order is respected. The

decision whether to proceed or whether to wait for possible remote events has to be

made only with the local state information available to the LPs.

Because of the lack of global knowledge, one has to take appropriate means to

assure that all events are simulated in the \right" order and that the causality among

the events is maintained. There are two main principles to achieve this which will be

sketched next.

4.2.2 Conservative Approach

In conservative approaches, a local event is only processed if the LP can be sure

that no late events (i.e., events that have a timestamp which is smaller than the LP's

local clock) may arrive anymore. This may be achieved by associating logical channels

between those LPs that may schedule remote events for each other. Each time an LP

schedules a remote event for another LP, the channel's clock is set to the value of

the originating LP's local clock. Because each LP only processes events in increasing

timestamp order, and a remotely scheduled event always has a higher timestamp than

its originating event, the values of the channel clocks cannot decrease
1
. Processing

an event is always preceded by checking the clocks of the incident channels against

the timestamp of the event. If the event possesses the smallest timestamp among all

those values, it is safe because the LP knows that no late event messages can arrive

and the event can be executed. In the other case, late events may arrive and the LP

has to block until all channel clocks satisfy the required condition.

The blocking property of the conservative methods almost always causes dead-

locks to appear during simulation of models that contain feed-back loops. To solve

this problem, the LPs have to gather supplementary information to detect and re-

solve deadlocks, or they have to use methods which avoid deadlocks (e.g., so-called

null-messages). The deadlock problem sometimes causes serious overhead for parallel

distributed simulations and the general usefulness of this approach is still unclear. A

general and more detailed description of the conservative methods may be found in

[CHM81a, FUJ90a, MIS86a].

1For the case that the channels do not preserve delivery of event messages in FIFO-order, sup-
plementary actions must be introduced to prevent decreasing channel clocks that would disturb the
conservative methods. Appropriate means for dealing with non-FIFO channels are, for example,
counting mechanisms which record the number of event messages that are still in transit.
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4.2.3 Optimistic Methods

The second class of simulation algorithms is called optimistic. Each LP is free to

execute in timestamp order all events which are currently in its event queue. Only

when a late event, a so-called straggler, arrives, then the local clock that represents

the virtual time of the LP and the state of the LP are reset to a state that guarantees

that the straggler and the other events can be processed in the right order [JEF85a].

Resetting an LP is called rollback because the local states and clocks are rolled back

to former states and clock-values. Event queues are also rolled back, and the a�ected

events have to be executed again after the execution of the straggler.

For this reason, each LP periodically has to save its local state to be able to restore

it if a rollback occurs. As possibly erroneous calculations were performed because of

a straggler, all e�ects of those computations must also be reset. This cannot always

be restricted to local recovery. Often it is necessary to cancel also the e�ects that

were caused on other LPs.

The best known representative of the optimistic methods is Time Warp [JES85a].

Time Warp was designed for an environment where several LPs interact by sending

event messages. During a rollback the e�ects on remote processes are revoked by

sending antimessages for remote events that became invalid. The LPs keep the event

messages in an input list until they are processed. If an antimessage �nds its corre-

sponding event message still enqueued in the input list, both messages are annihi-

lated. If the event message has already been processed, a secondary rollback for the

receiving LP has to be done. This might result in cascades of rollbacks. There exist

several optimizations that avoid a too deep level of rollbacks which might render the

whole method worthless [FUJ90a].

It should be noted that the time spent in speculatively processing events by an

optimistic method would be \wasted" by the conservative strategies in blockings

caused by waiting on new events or by deadlocks and their resolution.

4.2.4 Conservative or Optimistic?

Much work has been done to learn which approach is best suited for typical classes

of simulation applications. Lin, Lazowska and Bailey de�ned an optimal conservative

method which is based on simpli�ed assumptions on the behavior of conservative pro-

tocols. This scheme was compared to Time Warp and several conservative methods.

From their theoretical examinations, they established a hierarchy with Time Warp

being superior to the optimal and the other conservative algorithms [LLB89a].

Reynolds lined out that the distinction between optimistic and conservative meth-

ods is not su�cient because there exist many mixtures in existing strategies that

cannot be assigned to either of the two methods [REY88a]. Many possibilities for

synchronizing distributed simulation have not yet been investigated. Therefore, he

designed a testbed which provides support for an easy and fast implementation of

di�erent methods. This testbed allows also the realization of multiple applications.

The experiences from this project show that it is not quite easy to evaluate the dif-
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ferent approaches and that much more conceptual work has to be done to obtain a

more clearly classi�cation or ordering of synchronization schemes.

Schemes that dynamically adapt their behavior either to be more optimistic if

the situation allows this, or to return to a more conservative method if too many

rollbacks occur, have also been devised. The practical studies and experiences on

parallel logic simulation are, however, dominated by the two basic approaches.

5 State of the Art

In this section we will give an overview on current and earlier work performed by

research groups on parallel logic simulation. It should be noted that much conceptual

and practical work on parallel and distributed simulation has also been done outside

the speci�c application area of logic simulation. A survey on this work is out of

the scope of this paper, although some of the general results are of course also of

relevance to logic simulation. The interested reader is referred to [FUJ90a] where

important contributions to the general theory of parallel and distributed simulation

are surveyed and discussed, and further pointers to the literature are given.

5.1 Theoretical Studies and Conceptual Work

5.1.1 Wong et al.

In [WFC86a] the general possibilities to parallelize logic simulation are examined.

According to the authors, the logic simulation process can be divided into several

subtasks: event queue manipulation, functional evaluation of units, netlist operations

(e.g., propagation of changes of signal values), data output, startup operations, and

other overhead that does not �t into one of these classes.

They instrumented a sequential gate and switch level logic simulator, lsim, to

gather statistics on the relative frequency of the subtasks mentioned above in dis-

crete event simulation. The experiments of the authors showed that all of the above

listed subtasks use approximately the same amount of time in the execution of a

simulator and that consequently all of them have to be sped up to achieve reasonable

acceleration of simulation runs by parallelization. This implies that there is no gen-

eral bottleneck that might have negative impact on acceleration e�orts and dooms

to failure the approaches right from the beginning.

They also measured the total number of events associated with each of the circuit

components, the size of the event queue, and the mean distance between the execution

times of two succeeding events in the event queue. These experiments showed that

in (synchronous) lock step simulation with unit or �xed-delay models there were on

the average 86 % of idle timesteps with no events to simulate. The average number

of simultaneous events at each nonidle timestep was in the range of 0.08 % to 3.1 %

relative to the total number of gates in the model.
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The authors tested �ve circuits from real designs with sizes between 650 and

7,950 transistors which were stimulated by randomly generated input. Additionally

they checked the number of simultaneously enqueued events. In 90 % of all cases a

maximum queue length less than 200 was observed.

5.1.2 Bailey and Snyder

In [BAS88a] the problems of the generation of stimuli for logic simulation and also the

in
uence of circuit size on available parallelism are investigated. Bailey and Snyder

followed Wong's approach in [WFC86a] for the measurements with six chips (approx.

200 { 27,000 transistors).

First, they examined the in
uence of the chosen time base on parallelism. Three

di�erent timing schemes were used.

For the �rst timing model, the size of the timesteps was enlarged by grouping

together events from di�erent time-slices into one interval without respecting causal

relationships between them. This resulted in a linear increase of parallelism at the

cost of lost accuracy and correctness of simulation.

The unit-delay model used in the second class of experiments respects causality

and order of sequential execution and represents an upper bound for the third ap-

proach in which the queueing delay of the events is changed, i.e., the time which

is needed to process a single event is raised arti�cially to reduce the in
uence of

the communication overhead on the whole simulation time. The latter method also

respects causality by simulating dependent events in di�erent timesteps.

Bailey and Snyder found that increasing the timestep size usually causes a higher

degree of parallelism according to the chosen metric (event queue length) because

either more events are enqueued or the events are enqueued over a longer period of

time. For their measures they selected the unit-delay model with a step size of 0.1

ns with which very accurate results can be obtained. The simulation results were

compared to the universally accepted analog circuit simulator, SPICE [NAG75a],

showing only very small deviations. From this fact the authors conclude that their

measurements are general enough to be valid for a large class of logic simulators.

While recording the average activity rate within the tested circuits, (i.e., the

number of units that are evaluated compared to the total number of units) they

found that approximately 5 events are scheduled at a given simulation time resulting

in an average activity rate between 0.04 % and 2.9 % scaled to the circuit size. It

was also observed that the examined circuits have a quite sequential behavior with

only one executable event for approximately 45 % of the simulation timesteps.

The circuits were �rst initialized by random stimuli to avoid faulty measurements

due to start up phenomena. Afterwards, a second set of random input was supplied

to perform the measurements for parallelism. For increasing circuit size, it was found

that there is no obvious linear relationship between parallelism and size of the chips.

The increase in observed parallelism stays sublinear.

The question whether Wong's measurements described in the previous section

18



are representative for larger circuits is also the theme of Bailey's more recent work

reported in [BAI92a]. She simulated nine circuits with a unit-delay and a variable-

delay simulator (SwitchSim [FRA85a], based on a hardware simulator, and RNL

[TER83a]) at the switch level. The simulators were instrumented to calculate an

event metric (the number of simulated events at an instant in simulation time) and

a queue metric de�ned to be the number of scheduled events in the event queue. The

circuit sizes range from 200 to 61,000 transistors and the chips were taken from real

design processes.

Special emphasis is put on the scalability of concurrency within circuit fami-

lies. These experiments have been performed for four of the nine circuits by using

di�erently dimensioned instances of the same circuit types. Bailey found no clear

tendencies whether the activity rate of a circuit scales well with the circuit size. It

strongly depends on the type of the circuit as well as on the used timing model; hence

further investigations are required and predictions from existing results are hard to

make.

In particular the question whether there is a linear relationship between potential

activity available for parallelization and circuit size is still not resolved because there

are many factors that in
uence distributed simulation so that a clear decision on this

topic is not yet possible.

5.2 Empirical Studies and Prototype Implementations

The previous approaches [WFC86a, BAS88a, BAI92a] were performed on modi�ed

and instrumented sequential simulators trying to predict the behavior of a paral-

lel application by using supplementary calculations to obtain an estimation on the

available parallelism. In this section the work of di�erent research groups on actual

parallel simulators will be summarized.

5.2.1 Soul�e, Blank, and Gupta

Soul�e and Blank examined the dependency between simulation duration and level of

abstraction for given circuits [SOB87a]. Another point in this paper is the investiga-

tion of similar statistics as presented in [WFC86a] for average event queue lengths

and average number of executable events per time. They categorized and analyzed

four views of abstraction for logic simulation:

� instruction level,

� functional level,

� register transfer level, and

� gate level.
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Their investigations were performed for three chip designs. Among them was a

quite large multicomputer design consisting of approximately 150,000 gates. It was

observed that for each level of detail the total execution time grew by a factor 10.

By examining the execution time needed by the di�erent subtasks of the simu-

lator (model evaluation, event processing, netlist updates) they found that for more

detailed speci�cation of the circuit, the netlist update phase needs more and more

computation time. This is due to the fact that the number of signals in the circuit

increases while the evaluation of the �ne grained units can be performed in less time.

For the activity rates and the queue lengths similar behavior as found in [WFC86a]

was recorded. The activity rate is less than 1 % and there are relatively short event

queues which contained in general less than 500 entries.

In [SOB88a], Soul�e, and Blank compared an optimized parallel synchronous event-

driven algorithm and a parallel compiled-mode algorithm to a parallel asynchronous

event-driven simulator with a conservative strategy described by Chandy, Misra, and

Bryant in [CHM81a, BRY77a] (CMB) which is essentially a deadlock detection and

recovery strategy.

The experiments were performed on an Encore Multimax machine with shared

memory. The circuits under test were several quite simple designs in the range of

some thousand gates. Their results show that for all algorithms speed-up can be

achieved although the speed-up value strongly depends on the type of circuit. A

major distinction has to be made between circuits with feed-back loops and circuits

without any feed-backs. Another factor that in
uences speed-up is the grain size of the

simulated units. For a higher level of abstraction (e.g, RTL) the asynchronous version

performs quite well. If the circuit contains feed-backs, the conservative asynchronous

algorithm mainly has to detect and to resolve deadlocks.

The problems with asynchronous event-driven approaches are further investigated

in [SOG89a] by Soul�e and Gupta. The main topic of this paper is the problem how the

asynchronous method is in
uenced by deadlocks that might appear in circuits with

feed-back loops and cycles. Additionally, the authors examined some other features

that decrease the expected acceleration of parallel simulation. In measurements with

four realistic circuits they discovered that deadlocks are a main drawback for this

type of simulation and that much higher speed-up values would be attainable if more

e�cient methods were available for deadlock handling. To reach this aim, deadlocks

were analyzed and categorized into four classes according to their origins. The four

classes contain deadlocks caused by:

� clocked registers that wait for the next clock tick while all other units have

completed execution,

� paths with di�erent delays (e.g., one input has to pass an inverter before it is

input to another gate),

� order of node update, where a unit may be activated or not depending on the

order in which the units are evaluated by the simulator, and
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� unevaluated paths (e.g., there are signals that do not change for long times but

which are supplied to units as inputs). Hence, no channel times are advanced

for these signals and the simulation blocks.

For each class, solutions to prevent some of those deadlocks are proposed. Finally,

Soul�e and Gupta show that the classi�cation covers almost all of the appearing

deadlocks. For this reason, it seems plausible that higher speed-ups may be obtained

if the proposed solutions are applied.

5.2.2 Soul�e (Ph.D. Thesis)

The previously described work of Soul�e et al. in
uenced the presentations in [SOU92a]

where the previously gathered experiences were placed in an extended context. Here,

Soul�e examined the behavior of two parallel algorithms for parallel logic simulation

based on the THOR logic simulator [ABC88a]. Both operate at the gate and reg-

ister transfer level (RTL). The �rst algorithm is realized within a centralized time

event-driven simulator, while the second algorithm is an implementation of the asyn-

chronous conservative CMB-method.

Both simulators were �rst modeled on an ideal multiprocessor with uniform mem-

ory access for all processors. It was assumed that each reference to a memory location

needs a constant amount of time regardless whether the access is performed locally

or on a remote processor. This multiprocessor was realized as an emulation in a

multiprocessor simulation environment.

Synchronous Simulator: The results obtained on the simulated multiprocessor

with ideal load balancing and ideal memory access revealed that in the case of the

synchronous algorithm di�erent lengths for the evaluation of the units and the barrier

synchronization due to the lock step processing mode present strong limits for speed-

up. As an ideal load balance at no cost cannot be realized for true simulators, Soul�e

\corrected" this ideal view by introducing into his machine model step by step more

realistic assumptions. In this way, he showed where the expected speed-up vanishes.

In particular, the ideal load balance cannot be realized in general because of the

varying evaluation times. Soul�e reports theoretical acceleration factors between 10

and 17 on a 64 processor con�guration.

To re
ect the e�ects that occur on real systems, the same measurements were

performed on an Encore Multimax using 16 processors. The speed-up for the syn-

chronous algorithm yielded acceleration factors between 4 and 6. Another available

multicomputer (DASH) only provided speed-ups between 2 and 3 using 16 processors.

The examination of the grain sizes of the event routines in terms of instructions

per evaluation and the grain size of node updates revealed that on the one hand the

duration of the unit evaluations does not diverge too much and is only a minor reason

for poor load balancing. Large fanouts of nodes, on the other hand, cause a relatively

high variance in the execution times of node updates and result in unequally balanced
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load if the partitions are statically mapped and the behavior of the units cannot be

predicted prior to simulation.

Asynchronous Simulator: The implementation of the parallel asynchronous sim-

ulator is based on the conservative CMB-approach with deadlock detection and reso-

lution. The major obstacle to speed up the simulator was found to be the frequency of

deadlocks. To improve the behavior of an initial version, the proposals from [SOB88a]

were applied to prevent running into deadlocks that can be avoided by introducing im-

plicit knowledge on the application into the algorithm. Furthermore, several variants

are proposed by supplying additional information to the simulation routine such as

using information from previous runs of the simulator, clocked registers, and grouping

(globbing) of several units into higher functional units. Globbing might also increase

the evaluation grain size and reduce the variance of the evaluation's duration.

In general, a speed-up of 16 to 32 could be achieved on the ideal multiprocessor.

For the Encore, the acceleration factor lies between 6 and 9 for the improved versions.

Results: The comparison of both simulation strategies shows that the synchronous

method is faster than the asynchronous CMB-algorithm for the examined circuits

whose sizes range between 2,000 and 74,000 units. The overhead associated with the

asynchronous version makes the theoretical advantages of the event-driven approach

useless.

Another fact that should be mentioned is that the reported speed-ups are com-

pared to the distributed algorithms that were running on one processor. This means

that there is no comparison to a true sequential simulator that implements the same

functionality but avoids the overhead that is associated with the distributed version

even if it runs on a single processor. Hence, no general statements can be drawn from

this experiments whether parallel simulation of the examined type can outperform a

sequential simulator to obtain real acceleration.

The author concludes that the CMB-algorithm is badly suited to speed up par-

allel logic simulation. This is true at least at the gate-level or for higher abstractions

although one expects for these layers larger evaluation grain sizes due to more com-

plex units and therefore also a higher degree of parallelism. For a more detailed level

such as switch-level simulation, further examinations have to be made. Soul�e expects

a better performance for the latter case because due to the larger number of units,

the LPs are kept busy for longer periods of time.

5.2.3 Briner

In his Ph.D. thesis [BRI90a], Briner concentrated his work on Time Warp, a paral-

lel asynchronous optimistic simulation scheme, originally described by Je�erson in

[JEF85a]. He also considers critical path analysis (CPA) [BEJ85a]. This method is

a scheme to calculate an upper bound on acceleration which is possible with a dis-

tributed simulator and must not be confused with critical path calculations from
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VLSI design (see, e.g., [LDC91a]). The CPA uses a sequential simulator and calcu-

lates theoretical speed-up factors assuming either a limited or an unlimited number of

processors for the distributed simulator. The CPA represents an alternative method

to the measurements described in [WFC86a, BAS88a, BAI92a] to express parallelism

in circuitry. Furthermore, Briner also incorporates the e�ects of the used memory ac-

cess methods on multiprocessors into his re
ections by comparing uniform versus

nonuniform access for distributed and local memory.

Using the CPAmetric for determination of potential parallelism, the author points

out that there are several important aspects to be considered to get good speed-ups.

First, the state saving in the TimeWarp system has to be done e�ciently.He proposes

incremental state saving to avoid vast cemeteries of data that �ll up memory. A

second topic is the importance of partitioning with respect to the detailing degree of

simulation. While partitioning might be a useful means in transistor-level simulation,

it becomes crucial for the gate-level where the total evaluation grain size for each

point in simulation time decreases by a magnitude of 10 which often results in poor

load balance because processors run into idle phases.

By using several variants and optimizations for Time Warp, such as aggressive

and lazy cancellation [FUJ90a] and statically sized bounding windows, measurements

were performed which yielded speed-up factors of at most 25 with 32 processors on

a shared memory architecture (BP-1000) compared to a sequential simulator. The

average speed-up factor is about 6. The most promising approach from the variants

seems to be a combination of lazy cancellation with bounding window where the size

of the window strongly depends on the simulated circuit.

Another question in this context is raised by the fact that real systems only

provide limited resources. For this reason, the partitions of the simulation model

that are distributed onto the available processors generally contain more than one

unit (clustering). Briner examined how to perform a rollback in such an environment.

Should, in the case of a faulty speculative computation, all units of the processor be

rolled back (processor synchronization) or must only the faulty e�ects on the single

unit which is concerned by the the rollback be undone (component synchronization)?

From his results, Briner concludes that combining component synchronization with

lazy cancellation provides the best approach to speed up simulation for the �ve

examined circuits.

These investigations are carried on in [BEK91a]. According to Briner, the circuit

activity measurements described by Wong, Bailey and Soul�e are a too restrictive

approach to predict concurrency and parallelism in the case of asynchronous methods.

Instead of their proposals, the CPA provides a much better metric for the attainable

acceleration of parallel logic simulation in an asynchronous environment. Due to the

di�erent logical clocks, even events with di�erent simulation time may be executed at

the same moment in real time on di�erent processors. Hence, the lock step forced by

the synchronous strategies is removed allowing a much higher degree of concurrency.

Another advantage of the asynchronous versions over the synchronous methods is

that the LPs on di�erent processors do not have to wait for the completion of all
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other processors. Each LP can continue at its own speed without having to wait until

all \concurrent" events are processed.

Briner proposes several improvements to additionally increase the speed-up of

the basic Time Warp scheme. Among them are: incremental state saving, bounding

window and di�erent synchronization granularities.

Arguing from this approach, Briner points out the necessity of e�cient parti-

tioning algorithms to prevent disastrous e�ects of the needed synchronization among

di�erent LPs on the system's performance. High communication costs that are caused

by a badly suited placement strategy may eat up the bene�ts which were obtained

by using Time Warp.

5.2.4 Matsumoto and Taki

Matsumoto and Taki describe a parallel gate-level simulator based on Time Warp

[MAT92a]. They obtained speed-ups of up to 50 with 64 processors compared to

asynchronous conservative and synchronous methods on a distributed memory mul-

tiprocessor and argued from this point that Time Warp is superior to asynchronous

conservative and to synchronous methods.

An interesting improvement is the proposal to send only one antimessage to the

a�ected LPs during rollbacks. This message is the one which has the smallest times-

tamp of all antimessages that normally would have to be sent and which causes the

cancellation of all messages sent by the same simulator with larger timestamps. Be-

side this, Matsumoto and Taki introduce some improvements in detail which yield

better performance. However, their implementation depends on the underlying hard-

ware and cannot be generalized.

The authors simulated four medium sized benchmarks from the ISCAS89 bench-

mark set [BBK89a] and recorded several supplementary statistics concerning rollback

depth and frequency of rollbacks. For the larger of the simulated circuits they found

that on the average rollback processing needed 5 % of the whole simulation time.

As a metric for parallelism they used the average number of events evaluated per

second of real time which resulted in the above mentioned speed-up. However, as

Time Warp may process an event as soon as it is available, their measurement may

contain events that are evaluated several times due to rollbacks at high speed. This

may lead to false interpretations. The total number of events executed per second in

a sequential version would be helpful to estimate the real speed-ups. Unfortunately,

those numbers are not included in the article.

5.2.5 Karthik and Abraham

Karthik and Abraham examined switch level simulation on a network of workstations

[KAA92a]. They used a conservative event-driven approach which was extended by

a cycle-free partitioning scheme. The basic mapping units for partitions are strongly

connected components that are extracted from the netlist graph to avoid feedback cy-

cles over partition boundaries. The partitions of the model were ordered for propaga-
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tion of event messages in a pipeline like fashion where the connections in the pipeline

represent communication dependencies between partitions. The pipeline order assigns

ranks to the partitions. Starting with the partitions containing the primary inputs

at the lowest rank, all partitions with the same ranking level are simulated by the

same processor. If there are more ranks than available processors the subcircuits are

assigned in a manner that no cycles between processors occur. By that, Karthik and

Abraham could avoid all deadlocks in their simulations.

Problems that might appear with this partitioning scheme are that the parti-

tions can have very di�erent sizes and become very large because of large feedback

loops. To cope with low communication bandwidth, the authors propose to introduce

bu�ers between the stages of the pipeline. Another proposal consists in compressing

information by packing several signal values into one message.

Karthik and Abraham found an average speed-up factor of 2.3 with 3 processors

for medium sized ISCAS89 benchmarks (10,000 to 33,000 transistors) with a max-

imum of 4.1 on 5 processors for one of the smaller circuits. They also discovered

that their implementation provides similar speed-ups as a comparable simulator in a

shared memory environment [MSA91a] so that one can hope that if communication

e�ects and especially remote data accesses can be handled e�ciently, there will not

be too much di�erences in both approaches.

5.2.6 Manjikian and Loucks

Manjikian and Loucks [MAL93a] implemented a parallel gate-level simulator with

unit-delay on a network of workstations. They used a hybrid approach for synchro-

nization of the LPs. The single LPs are allowed to run in an optimistic way but event

messages are only sent to other LPs when they are safe (i.e., they cannot be cancelled

by stragglers). For this reason, the e�ects of rollbacks are kept local to the LPs.

Measurements with large circuits from the ISCAS89 benchmark suite yielded

speed-up factors between 2 and 4.2 on 7 processors. The speed-up is calculated rel-

ative to a true sequential simulator. According to the authors, an important role is

played by the applied partitioning scheme. They used cone partitioning [SMU87a]

with enhancements to incorporate the estimated circuit behavior into the partitioning

algorithm.

5.2.7 The DACAPO-III Project

The DACAPO-III system is a multi-level, mixed-mode simulation system for logic

simulation [GRA90a]. It has been developed at the University of Dortmund and runs

as a sequential and parallel version on a network of transputers. The parallel version

uses Time Warp for synchronization of the LPs. The maximal number of processors

that was used is 4. The statements in [GRA90a] concerning speed-up are unclear. It

is only mentioned that speed-up strongly depends on the simulated model and no

results from measurements are presented in this paper.
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5.2.8 DISIM / Sang

Originally, DISIM was a sequential multi-level logic simulator developed by Daimler

Benz AG in cooperation with the Technical University of Berlin. This simulator

was extended by a parallel multi-level simulation (PMLS ) component as part of the

Esprit project 415. Synchronization is performed either by a conservative protocol

or by Time Warp. PMLS was designed to run on general purpose multicomputers

such as the Intel iPSC/2 hypercube [INT91a] or a network of transputers. This

system supports all design levels. A prototype implementation was realized on the

DOOM machine [BNO87a] in the object-oriented programming environment POOL

[ANH90a]. Measurements showed that on the prototype with 100 processors speed-

up factors in the range of 2 to 20 compared to the sequential version of DISIM could

be achieved.

Another project that used sequential DISIM as basic simulator was the imple-

mentation of the parallel logic simulator ParaDiSim at the University of Dortmund

([SAN90a]) on a network of transputers. J. Sang and M. Sang realized three syn-

chronization protocols: synchronous lock step, a simple asynchronous conservative

method and Time Warp. While the �rst method brought no speed-up at all com-

pared to the sequential version, the conservative approach led to acceleration of up

to 3.4 with 16 processors. However, no linear relationship was found between acceler-

ation and the number of processors used. The size of the benchmarks which were real

designs ranged from 600 to 13,600 units. In the Time Warp implementation speed-up

factors of about 1.6 on 4 transputers were observed for the smaller models and 1.5

for the largest one.

5.2.9 Bauer and Sporrer

At the Technical University of Munich, Bauer and Sporrer realized a parallel logic

simulator based on Time Warp synchronization [BSK92a]. They used the sequential

event-driven gate-level simulator LDSIM [KRA90a] as base for their work. The paral-

lel version runs on a network of workstations. The authors propose incremental state

saving for their simulator [BAS93a] to keep the overhead for memory administration

low. The state saving is realized in an e�cient way by modi�cation of the event

queue. Evaluated events are simply marked and left in the queue. When a rollback

appears, the executed events are reactivated and no enqueue operations have to take

place.

Bauer and Sporrer observed speed-up factors between 2 and 4 on 12 processors for

medium sized ISCAS89 benchmarks in the range of 3,500 to 19,200 gates. The factors

are given relative to the speed of the true sequential LDSIM simulator. Compared to

the parallel algorithm on a single processor, the acceleration ranges from 4 to 6 on

12 processors for the observed circuits.
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5.2.10 Luksch

In [LUW93a] and [LUK93a], Luksch reports the experiences from implementing a

parallel version of LDSIM on the Intel iPSC/860 hypercube. He used a conservative

algorithm and TimeWarp for the synchronization of the LPs and enhanced the basic

Time Warp algorithm by incremental state saving and lazy reevaluation.

Results for the conservative method are presented in [LUK93a] and speed-up fac-

tors of up to 2.8 were found for some circuits on 4 processors. For Time Warp, the

obtained speed-up factors ranged between 1.2 and 4.7 for up to 16 processors with

some medium sized circuits from the ISCAS89 benchmark suite. However, their mea-

surements revealed no clear tendency between attainable speed-up and the number

of used processors. Another important observation is the fact that for large circuits,

the physical memory limitations cannot be neglected. Due to the fact that the logical

clocks of the LPs may drift very far in Time Warp, there may be a huge amount of

state saving information that has to be stored during simulation. Additional e�orts

to parallelize the code (notably the simulation support functions such as event queue

management) instead of the model data yielded no promising results.

5.2.11 Lanch�es

At the University of Stuttgart, Lanch�es implemented a system for the evaluation of

di�erent strategies for parallel logic simulation on a network of transputers and also

on a network of workstations to re
ect the e�ects of di�erent underlying hardware on

simulation speed [LAB92a]. His system consists of a simulator that supports di�erent

synchronization strategies and several tools that provide a framework to examine

monitoring data supplied by the simulators and to visualize them for evaluation and

analysis. No results have been published so far, however.

5.2.12 Hoppe

Hoppe (Technical University of Berlin) simulated a parallel multi-level logic sim-

ulation system on a single processor to examine the in
uence of partitioning and

dynamic load balancing on parallel logic simulation [HOP91a]. The LPs were syn-

chronized either by Time Warp or with a conservative method. Hoppe measured

speed-up factors between 2 and 16 on up to 64 virtual processors with the conser-

vative method and acceleration rates of up to 17.5 when Time Warp was used. The

initial partitioning strategy tries to minimize the costs for communication and also

respects given partition sizes which were calculated from estimated activities of the

units.

Dynamic load balancing is realized on the base of estimated progress of the local

virtual time (LVT). When load imbalance appears, small portions of the circuit are

moved from the LP with the largest progress to the LP with the smallest progress

in LVT. As the whole system is simulated on a single processor, this can be done

easily by a central instance. Hoppe reports that the simulations yielded an e�ciency
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of 34% to 81% of the maximal possible speed-up with some small benchmarks. With

dynamic repartitioning the speed-up could be increased between 2% and 38%.

5.2.13 Simic and Ortner

Simic and Ortner implemented the parallel multi-level and multi-mode logic sim-

ulator DELSIM on a network of transputers at the Technical University of Berlin

[SIO93a]. They used Time Warp for synchronization of the logical processes. A ba-

sic dynamic repartitioning scheme is included in their system. A central controller

records the LVTs and initiates load balance actions if a threshold is passed. The au-

thors report speed-up factors of up to 3.3 on 6 processors with a small circuit without

load balancing and further improvement factors between 1.1 and 2.1 for dynamic load

balancing.

5.3 Parallelization of VHDL Simulators

5.3.1 VHDL (VHSIC Hardware Description Language)

VHDL provides a means to describe a circuit under design in a high-level language

at very di�erent detailing levels [VHD87a]. Its abilities range from description on the

system layer and register transfer level down to the design at transistor and switch

level. VHDL supports hierarchical designs and facilitates the development and design

process of new circuits. The user may specify the circuit through one of three di�erent

views. The structural view describes the interconnections and dependencies between

the di�erent components. The behavioral view represents the dynamic behavior of

the cell under design and the logical view or data 
ow view may be used to transform

boolean equations into a circuit description. VHDL provides 
ow control statements,

sequential statements, and statements for concurrent signal and variable assignments.

Additionally, VHDL allows nested block structures. A special block type is the process

statement that is often used for behavioral description of a circuit as a block of

sequential statements which is cycled through in an endless loop. The execution of

a process block is in
uenced by wait conditions on signal changes (wait statement).

Beside these features, VHDL de�nes basic primitives such as simple gates, and it

supports di�erent types of logic values and I/O operations which are supplied through

libraries (packages).

VHDL descriptions are used for validation of circuits through simulation, as the

base for the further steps within the design process, and for documentation of the

target circuits. For simulation of the models, usually each VHDL model is compiled

into a custom-mode simulator that allows to verify the behavior of the circuit.

5.3.2 Vellandi and Lightner

Vellandi and Lightner parallelized a VHDL simulator by restructuring the VHDL

description of the simulated models and modifying the compiling of the model de-
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scription [VEL90a, VEL92a]. The concurrent statements were used in an ad hoc

manner as parallel components. For the other statement types, techniques for lan-

guage parallelization using graph rewriting are applied.

A second proposal to accelerate simulation consists in using e�cient techniques

to realize parallel versions of the simulation support functions (evaluation, event

queueing). The authors simulated the modi�ed VHDL-descriptions on a Connection

Machine (CM2) with additional support to make the SIMD machine behave almost

like a MIMD architecture via an emulation layer. They obtained speed-ups in the

range of 1.4 to 10 on the CM-2 for quite small circuits by mapping each simulated unit

onto a dedicated processor. They also mention that by restructuring the simulation

support functions a much higher degree of parallelism can be obtained than outlined

in [SOB88a, WFC86a, BAS88a].

5.3.3 Wilsey, Palaniswamy, Chawla, and Aji

Another parallel simulator based on VHDL has been built by Chawla and Wilsey

at the University of Cincinnati [CHW91a]. They implemented an event-driven asyn-

chronous version using the TimeWarp strategy with various modi�cations. As VHDL

provides a so-called delta-delay timing to model causal dependencies between events

with the same simulation times, the notion of timestamps has to be extended to a

pair

(<simulation time>, <delta-cycle number within actual timestep>).

The comparison of two timestamps is performed in lexicographical order from left

to right. The delta delay is an in�nitesimal time that does not advance the normal

simulation time but is used to distinguish between di�erent cycles within VHDL

constructs. The delta time is set to zero for the �rst events of a timestep. If the

evaluation of an event creates new events with the same simulation time, the delta

value of the new events is incremented by one. If new events are scheduled for a future

simulation time, the delta value is reset to zero for these events. Similar constructs

for handling events with the same simulation time are described in [MEH91c].

In [WIP92a] an extension to the simulator is introduced, called rollback relaxation.

VHDL process blocks can be classi�ed into two groups: stateless processes and pro-

cesses with states due to previous iterations of the process loop. The authors provide

means to relax the processing of stateless processes during a rollback resulting in less

processing overhead because no state saving and checkpointing has to be performed.

In general, concurrent statements and processes behave in di�erent ways during

the simulation. To be able to proceed in a uniform way, all concurrent statements

and blocks are transformed into processes before the relaxation algorithm is started.

In a second stage, all stateless processes are determined and marked for relaxation

of rollbacks.

It was observed that an average of 74 % of all processes qualify for the proposed
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improvement and that speed-up factors of 1.12 to 1.46 could be obtained by intro-

duction of relaxation. These results were obtained from tests with four small circuits.

As no information is provided on the exact circuit sizes and on the number of pro-

cessors for which these results were achieved, it remains questionable whether the

observations can be generalized to larger designs.

Another modi�cation to the basic TimeWarp algorithm is proposed in [PAW92a].

The reevaluation of events after rolling back an LP often leads to the same state as

if the straggler or antimessage had not appeared. Hence there exists a potential to

avoid unnecessary work by just retaining the old state and continue as if no error

had occurred. An e�cient technique to compare states is lined out which consists

in a modi�cation of the event routine's code by introducing 
ags which indicate a

possible di�erence in the states. If the reevaluation quali�es for a possible change, the

states have to be recalculated to re
ect the changed conditions. Otherwise, the LP can

continue with the state immediately before the rollback because a reevaluation would

produce exactly the same state. By that, the rollback algorithm can use a shortcut

and skip over the reevaluation phase. This proposal represents an implementation of

lazy reevaluation as described in [FUJ90a].

Measurements for this technique were performed with three of the small bench-

marks mentioned before comparing execution times and number of rollbacks to the

results provided by a traditional aggressive cancellation version of Time Warp. The

new algorithm performed better than the aggressive cancellation method, but from

the reported results it should be considered as a minor optimization only.

In [APW93a], the e�ects of combining di�erent improvements for Time Warp are

examined: bounded time window, rollback relaxation, lazy cancellation and periodic

checkpointing. The work reveals that a simple combination of all proposals does not

always improve performance of parallel logic simulation. The in
uence of the di�erent

modi�cations also depends on the simulated model. The authors conclude that the

combination of bounded time window, lazy cancellation, and periodic checkpointing

provided the most general approach for optimization of Time Warp.

5.3.4 The Simulator Coupling Project

In cooperation with several industrial partners, the Simulator Coupling Project tries

to combine existing parallel logic simulators that may simulate di�erent levels of the

design hierarchy into one multi-level and multi-mode simulator [BLN90a]. A subset

of VHDL was chosen as the hardware description language for the circuits to be

simulated.

The synchronization of the di�erent simulators is based on Time Warp with lazy

cancellation. The circuit components are examined at compile time for suitability for

simulation by the incorporated simulators. At the start of the simulation, the circuit

components are distributed to the corresponding simulators and a coordination and

data exchange layer provides communication between the simulators. Time Warp is

realized within this layer.
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Furthermore, a dynamic adaptive control behavior is planned where a coordinator

may dynamically modify the synchronization strategy ranging from lock step simu-

lation to totally asynchronous simulation. Results are not presented so far for this

project.

5.3.5 The DVSIM-Project

As part of a project to evaluate general principles of parallel and distributed sim-

ulation at the University of Saarland, we have parallelized an existing VHDL sim-

ulator (vsim, University of Pittsburgh) [LEV93a] using asynchronous event-driven

strategies. Recently a conservative strategy was implemented using the Chandy-

Misra deadlock detection and recovery scheme [CHM81a]. The system is running

on an Intel iPSC/860 hypercube and on a network of workstations. Both versions are

based on the MMK system [BEL90a] providing an unique interface for programming

in both environments.

We use four di�erent partitioning schemes: Cycle-free partitioning, Round Robin,

Kernighan-Lin [KEL70a] and SOCCER [RUN88a]. A simulated annealing based al-

gorithm will be integrated soon. In addition to the results gained from the usual

experiments, the parallelism available from our benchmarks [BBK89a] is also exam-

ined using the critical path approach [BEJ85a] and oracle lag [SWF87a] to re
ect

both the ideal speed-up and the e�ects of real communication.

Furthermore, we are implementing several variants of Time Warp to be able

to faithfully compare conservative and optimistic approaches. To ease the design

of new synchronization strategies, all protocol dependent actions are encapsulated

within three procedures of the distributed simulator following Reynolds' and Dickens'

proposal described in [RED89a].

In order to obtain detailed insights into the behavior of the parallel simulation al-

gorithms, monitoring mechanisms and statistical evaluation tools [STU93a] have been

realized. A variant of the ParaGraph system [HEF91a] is used for graphical anima-

tion purposes. First measurements show that for some benchmark models speed-up

is possible with our DVSIM system even for conservative strategies, but it is yet too

early to draw general conclusions from these experiments.

6 Related Topics: Partitioning of Circuits, Load

Balance and Model Granularity

As the last section revealed, the basic algorithms for distributed simulation often

show poor performance. This is not only a problem for distributed simulation but also

for many other parallel applications. There is a class of closely related aspects that

in
uence the performance of such applications. The dependencies among them are

rather involved and the known partial solutions represent a vast space of combinations

for experimentation. In this section, the basic factors that in
uence performance and
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which are relevant to parallel logic simulation are sketched.

6.1 Partitioning and Mapping

In this section we will describe di�erent approaches to do data partitioning of logic

circuits for parallel simulation. The partitioning and mapping problem is caused

by the fact that bounded resources as well as communication requirements in a

distributed environment have to be respected. An optimal mapping is often hard

to �nd due to the NP-completeness of the problem and heuristics must be applied.

Fundamental aspects of keeping a simulation balanced will also be mentioned.

6.1.1 Random Partitioning

The simplest method of partitioning is just to scatter the units randomly over the

available processors. This might be a bad solution at �rst sight but it provides at least

a lower bound for the comparison of the performance and behavior of other placement

strategies. In [FRA86a], Frank even argues that random partitioning will perform as

well as anything else if the processors can always be kept busy, an assumption that

hardly holds for parallel logic simulation.

There exist several slight modi�cations of this principle. One of them is mentioned

in [SOU92a] as a kind of round robin mapping assigning units as well as the connected

output nodes in a modulo-like fashion to the processors. Another enhancement is to

assign a unit to a processor that has the lowest current load (for example, measured

in the number of transistor equivalents) to achieve a nearly equal distribution of work

[KRA88a].

The random algorithms usually do not respect any application speci�c knowledge

but cause low computational costs and are very fast. In the following sections addi-

tional information on logic simulation will be used in order to improve the mapping

of the circuits to partitions.

6.1.2 String Partitioning

The string partitioning method ([SOU92a, BRI90a, MAT92a]) �rst distributes the

input nodes and registers in a random way onto the available processors because

these units are supposed to create many new events during the whole simulation. For

this reason they will produce heavy load and should be separated by assigning them

to di�erent partitions. Starting with the input nodes and the outputs of the registers

the netlist is scanned for units driven by those nodes. The �rst unit that ful�lls this

requirement is added to the corresponding partition. The algorithm continues in a

depth-�rst scheme by following always only one out of several fanout branches until

either an external output of the circuit or an already assigned unit is encountered.

If there remain unassigned units, one of them is randomly chosen, placed into the

partition with the least number of units and the depth-�rst search is repeated for

this unit. This algorithm is repeated until all units belong to a partition [AGR86a].
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In most cases this method distributes units that are driven by the same signals,

in particular from nodes with high fanout, into di�erent partitions so that they are

possibly evaluated in parallel during the simulation when a change on the driving

signal occurs.

6.1.3 Notion of Regions

Several units that are closely connected (e.g., transistors sharing sources or drains)

form so-called regions. Because of their strong coherence and in order to minimize

communication costs complete regions should be mapped onto single processors.

In the packed partitioning algorithm [KRA88a] the regions are ordered according

to the number of their units. Starting with the largest region, the regions are placed on

the processor with the smallest number of assigned units. For this mapping an equally

loaded distribution may be attained so that all processors are assigned approximately

the same number of units.

A similar approach is proposed by Karthik and Abraham [KAA92a]. As an exten-

sion to the previous method, they provide cycle-free partitioning by requiring that

feedback loops must be included in one single region and by assigning only complete

regions to processors.

In [BAS93b], Bauer and Sporrer propose another partitioning algorithm based

on regions. First, the strongly connected regions are calculated (petals). The petals

are combined to so-called corollas in a second step. The criterion for combination

of the regions is to minimize the connectivity between di�erent corollas in order to

minimize the e�ects of message passing during simulation. Additionally, a maximum

size for the corollas may be speci�ed.

6.1.4 Minimizing Communication Costs

In a distributed-memory system the underlying communication network plays an

important role. The relation between computational and communication overhead

must be balanced if one wants to avoid that high communication costs render the

whole approach of distributed programming worthless.

The problem of minimizing communication costs is essentially a graph partition-

ing problem where the units represent the vertices of the graph and the connections

between them are the edges.

The following scheme tries to minimize communication costs on an empirical

base. The mapping algorithm takes into account the e�ects of communication. The

parameters for assigning costs to communication connections are usually taken from

previous runs by accumulating statistics for the communication channels in the cir-

cuit. They are needed to calculate the impact of the di�erent signal propagation

frequencies onto the communication overhead. The algorithm tries to minimize com-

munication across partition boundaries by keeping units connected by signals with

heavy duty communication local to a single partition.
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Basic algorithms for this approach were developed by Kernighan and Lin and

are described in [KEL70a]. Briner also proposed to include information on signal

activities into the calculation of partitions and uses a recursive bisection method to

obtain more than two partitions [BRI90a].

In the case of a shared-memory environment the same methods should also work

but some modi�cations are required. The problem is that one cannot exactly predict

on which processor the data structures that represent the units of the circuits are

located because of the desirable transparency of data allocation. For this reason the

communication costs should be replaced by data access costs to partition the circuits.

6.1.5 Bitslice and Hierarchical Partitioning

Methods using bitslice [SOU92a] and hierarchical partitioning [ARN85a] strongly

depend on the simulated model and the availability of the necessary information.

Bitslice mapping is based on the observation that on all bits of a word (e.g., a

word representing a bus) the same operations are performed simultaneously. If the

simulation of each bitslice is mostly independent from the other bitslices, it can be

carried out concurrently and each bitslice may be placed entirely in one partition.

The hierarchical approach is based on the assumption that in a hierarchical design

the units at the same layer are usually independent units and can be viewed as a

basic elements for partitioning.

The problem with these methods is whether there is enough inherent parallelism

within such coarse grained divisions. In particular for the hierarchical designs often

only one component out of several might be active at a time.

6.1.6 Cone Partitioning

Cone Partitioning [SMU87a] is well suited for clocked circuits that contain latches.

Starting with the latches of a circuit, all units that feed a latch are added to the input

cone of that latch. This procedure is repeated recursively for the added units until

either a primary input or the output of a latch is reached. As cones may overlap,

several units have to be replicated if they are placed in di�erent partitions. The

assignment of cones to partitions may be done in di�erent ways. The simplest one is

random mapping. Manjikian and Loucks [MAL93a] propose to collect data on circuit

activity from previous or partial simulation runs and to use the data as weighting

factors for the units. The weight of cones is determined by the weights of its units. In

an iterative improvement technique which tries to balance the load of the partitions

and to minimize the number of replications, the cones are assigned to partitions.

6.1.7 Simulated Annealing

Simulated annealing is a method that is often used in placement during later steps of

the chip design process. This placement strategy has been applied for parallel logic
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simulation by Frank in [FRA85a]. As it is a general method, it will not be detailed

here. For the basic principles, the reader is referred to [KGV82a, SES85a].

6.2 Dynamic Partitioning | Load Balance

Dynamic partitioning schemes for parallel logic simulation have been reported in

[KRA88a, SAN90a, LUK93a]. Kravitz and Ackland state that dynamically reparti-

tioning of a model during a running simulation will not provide signi�cant improve-

ments because the overhead created by load determination, data exchange for the

unit migration, and bookkeeping on the actual locations of the units would overcome

the bene�ts from having equal loads on all processors.

J. Sang and M. Sang implemented a basic facility for dynamic load balancing

[SAN90a]. They used a weighted ratio of the number of evaluations per unit and the

number of created events by a unit as a base for repartitioning decisions. The reparti-

tioning is performed through a central control instance which monitors the load data

of the processing nodes. If the LPs' loads di�er too much, the simulation is stopped,

the partitioning algorithm is restarted, and the units are collected and redistributed

onto the processors. The results are already promising for this simple version of dy-

namic load balancing. The speed-up that was obtained with the distributed version

of DISIM was still increased by dynamic load balancing.

Luksch and Weitlich also chose dynamic partitioning as a means to speed up

parallel logic simulation [LUW93a]. They de�ned load as the di�erence between the

local clocks of the LPs. To reestablish load balancing, one or several units are moved

from the LP with the lowest local clock to the LP which has the maximum simulation

time. For the choice of units, the authors give several criterions: the complexity of

evaluation of a unit, the activity of the unit, and the e�ect of the unit on commu-

nication in the system. They also point out that the costs for transmission of state

histories in Time Warp must not be neglected. Measurements have not yet been per-

formed. Similar approaches for dynamic load balancing based on the local virtual

time of the LPs have been pursued by Hoppe and by Simic and Ortner in [HOP91a]

and [SIO93a], respectively.

In parallel logic simulation load balancing principles may also be realized through

other methods. Soul�e proposes the implementation of a distributed event queue from

which all idle processors can request additional work if they complete while other

processors are still running [SOU92a]. The same principle should be possible for

the work of the update phase of nodes. Soul�e realized this method for a centralized

time algorithm on a shared memory machine. These schemes are well suited for

synchronous lock step simulation with centralized time or hardware simulators and

simulation machines. For asynchronous simulators where each LP runs a subset of

the whole model they do not seem to �t well.
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6.3 Computation Versus Distribution Overhead

As mentioned in Section 5, the granularity of the models is an important factor for

the parallelism and concurrency that can be exploited by a distributed and parallel

application like parallel logic simulation.

Usually, the number of events which are simulated in parallel logic simulation

decreases if the simulation is performed at higher abstraction levels. This fact was

con�rmed by measurements conducted by Soul�e and Blank in [SOB88a]. On the

other hand, the cpu time needed to simulate one event increases for the higher design

layers. Interestingly, in measurements of the total time of a simulation run, Soul�e and

Blank found that each step towards higher abstraction results in gaining speed-up

of approximately 10. The higher the abstraction level of the simulated circuits, the

faster they can be simulated. This is mainly caused by the fact that each stage of

abstraction has to be paid by a loss of accuracy of the simulated model and in a

reduced number of units at the higher levels.

Often, however, very detailed simulations are necessary to obtain the high accu-

racy needed to verify the behavior of the unit under design. The large run times for

these simulations can only be reduced if the acceleration e�orts through paralleliza-

tion do not introduce too much overhead, and if the time spent in the additional

work needed for the distributed application can be compensated by the bene�ts of

executing parts of the application in parallel.

A main source of overhead are the communication costs between the distributed

components to propagate signal changes and to synchronize the components. In a

shared memory environment, the additional costs are due to synchronization by

locks for data structures or similar mechanisms such as semaphores. The costs of

these operations must be kept low. If the used hardware has large latencies for these

operations and not much work is supplied to the single processors, they will spend

most of their time in waiting for the arrival of messages or until a lock is available.

Hence, it is desirable to provide enough work to each processor to keep it busy. This

leads to the conclusion that simulation of large circuits and simulation of circuits

where units have large evaluation times for the calculation of a new state are best

suited for parallel logic simulation.

Another problem is whether several units should be simulated by a single LP or

whether each unit is simulated by a dedicated LP. Even with unlimited resources,

the second approach to simulate each small unit by a dedicated simulator is doomed

to failure right from the beginning because the synchronization and administration

overhead is much too large. Also, di�erent granularities of the units in a multi-level

design would slow down a parallel simulation because due to di�ering evaluation

times of the units the simulators would be blocked most of the time waiting for

externally caused events.

A better approach consists in forming clusters of units that are simulated by

one LP. As only one process can be active at a given time on one processor, only

one simulator (LP) should be placed on each processor. The assignment of units to
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clusters is solved by an appropriate partitioning algorithm (see Section 6.1) where

estimates of the activity of units and the duration of the event evaluations may be

applied if they are available. This helps to balance the load of all processors. One

disadvantage of this single cluster approach is that the whole cluster may block if

events for only one unit are pending due to external dependencies. This, however,

can be avoided in many cases by the use of an appropriate partitioning algorithm.

These two methods are the extreme cases. For practical implementation, both

schemes may be combined, for example, by using multithreading for running several

LPs on a single processor.

7 Conclusions

Much work has been done on parallel logic simulation. Several approaches seem to

be quite promising for signi�cantly speeding up simulation times. Among them are

hardware accelerators that provide the ability to simulate restricted models of a given

type at a very high speed. For general use, however, they are usually too expensive

and too in
exible to be of interest.

For software simulation of logic circuits, two main proposals have been made:

synchronous centralized time and asynchronous simulation. Although the �rst ap-

proach allows a simple implementation, usually not enough parallelism is available

within the given models so that the distributed simulators often run slower than

good sequential tools. Asynchronous simulation can provide a higher degree of paral-

lelism by removing the restriction that all simulator components must advance their

simulation time with the same speed. However, even for the asynchronous schemes,

speed-up is hard to obtain. The most interesting approach among all known synchro-

nization methods seems to be Time Warp which has maximally decoupled simulator

components. Recent work has concentrated mainly on this approach.

However, until now no conceptual work has been done covering all aspects of

asynchronous logic simulation in their entirety including experimental comparison of

di�erent synchronization strategies on general purpose machines for an accepted set

of benchmarks with reasonably sized circuits. Also, di�erent partitioning strategies

should be examined for their applicability to parallel logic simulation. Finally, it

would be very interesting to investigate whether general statements on the suitability

of a given circuit for parallelization based on its characteristics can be made. This

last point might have major impact on parallelization e�orts because then the best

suited simulator for a given model could be chosen from data gathered during the

design process.
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