FragDB — Secure Localized Storaged Based on
Super-Distributed RFID-Tag Infrastructures

Marc Langheinrich
Institute for Pervasive Computing, ETH Zurich
8092 Zurich, Switzerland
langhein@inf.ethz.ch

Abstract

Smart environments and wearables will make the
storage and subsequent sharing of digitized multimedia
diaries and meeting protocols — whom we meet, or what
we say or do — cheap and easy. However, controlling
access to this data will become cumbersome if tradi-
tional forms of access control are to be used: Overly re-
strictive rules might deny the potential of data sharing,
while a lack of control could easily lead to Orwellian
surveillance scenarios. This paper presents FragDB, a
storage concept based on localized access control, where
data storage and retrieval are bound to a specific place,
rather than the knowledge of a particular password or
certificate. FragDB uses tiny RFID tags embedded in
the environment to compute a local key that is used to
encrypt and decrypt data in a global storage system.
We describe the design and implementation of an ini-
tial prototype.

1 Introduction

With storage media continuously dropping in price,
the vision of storing all events of our lives, in the man-
ner of a 24/7 multimedia diary, seems soon to become
feasible. So-called “capture and access” projects such
as Classroom2000/eClass [1] or Teamspace [5] have em-
ployed audio and video recording to make lectures and
meetings accessible to attendees and external guests
for later perusal. Other “active spaces” research, such
as Microsoft’s Fasy Living [3] or Gaia at the Univer-
sity of Illinois at Urbana Champaign [8], envision the
comprehensive digitization of our lives in order to pro-
vide novel services and smart reactive environments.
All of these projects have recognized that controlling
access to the stored data requires novel access control
schemes, as traditional forms of role-based access con-

trol (RBAC) fall short of the required flexibility.

A number of researchers have begun to explore the
use of location as an access control parameter, thus al-
lowing users to regulate access to particular data not
only on who wants to access it, but from where [4, 6, 7].
However, common to all approaches is the need for ex-
plicit access control, i.e., data owners will need to for-
mulate and adjust security policies in order to properly
regulate access to the stored data. While this might
be feasible in an office setting, e.g., where employees
are used (or required) to protect sensitive documents,
many novel types of data acquired by active spaces
might be difficult to properly assign an access cate-
gory. Moreover, regular users are often put off by the
cumbersome setup and use of traditional access con-
trol mechanisms (e.g., passwords and policies), thus
never bothering to protect personal data [9], especially
if the information is not considered particularly sensi-
tive (e.g., shopping records).

In many situations, implicit access control might be
sufficient, which uses situated privacy controls to limit
data access. Situated access is not regulated explicitly
through security parameters of access policies, but im-
plicitly through time and space. With situated access
control, only those close enough in time and space will
be able to “witness”, i.e., retrieve, stored data, while
those far away, both in time and space, will not.

While this “free for all, if near enough” approach
might sound counterintuitive for traditional data sets,
such as contact information, health or financial data,
it might be sufficient for semi-public data that does
not warrant explicit protection, but which nevertheless
should be prevented from being globally and eternally
available. An example would be the above-mentioned
meeting rooms, where the individual participants could
store logs of their own wearable sensors directly in the
meeting room, allowing participants who come late, or
maybe even next year’s students, to easily find it there.
Smart vehicles could store information on road condi-

tions or encountered hazards, say, at mile 27, on tags
they remembered a few miles ahead, e.g., at mile 25
(and maybe later again at mile 29). This would allow
the following traffic to be informed in time, without
giving an outside observer any information on the ac-
tual locations of individual cars or events. FragDB at-
tempts to demonstrate the technical feasibility of such
an implicit privacy control system.

2 Basic Principles

The basic idea of FragDB is analogous to how peo-
ple managed their privacy in the past: While certainly
under close observation by their neighbors, detailed in-
formation about individuals was not available in far
away places. In order to find out about someone’s past,
one had to travel to a person’s home town and talk to
friends and neighbors. Thus, privacy was an inherent
aspect of the locality of a person. Instead of having
to manage one’s privacy, which always entails the pos-
sibility of mismanaging it, the limited communication
and storage capabilities of the past implicitly hampered
the unwanted disclosure of personal facts across spatial
and temporal boundaries.

FragDB aims at recreating some part of this inherent
privacy of a place, by constructing a system that facil-
itates a localized storage and retrieval concept. Data
is seemingly deposited at a particular location and can
only be retrieved by visiting this particular place again.
Since FragDB uses a remotely accessible storage system
for actual data storage (e.g., a file server), all stored
data is encrypted with the particular fingerprint of
the original storage location. Only if this fingerprint
is known, or by physically traveling again to the orig-
inal storage location to (re-)compute this fingerprint,
can data in the storage system be retrieved.

The idea of using the “fingerprint” of a particular
location as an access key to a storage repository creates
two immediate challenges:

1. Fluid Boundaries: One cannot expect to find one-
self directly at the same spot for data retrieval as
used for data storage. As such, our storage system
must be able to tolerate a certain fluidity in po-
sitioning, while still recreating the correct access
keys (i.e., fingerprint).

2. Time Variance: In order to prevent that a one-
time readout of a place’s fingerprint leads to a
perpetual access to all data being stored at this
place, the access keys of a place have to periodi-
cally change.

Challenge two immediately leads to another compli-
cation: once an access key of a place changes — this

might happen as fast as every day or every hour — ac-
cess to this information might be lost forever, unless
we have saved the particular key used during storage.
However, the idea of conveniently sharing semi-public
information with people in the vicinity, both time- and
space-wise, is the main reason for such an access control
scheme — if all we wanted to do is protect personal infor-
mation, much more effective means would be possible,
e.g., local storage in a wearable system, or a biometric
encryption key. Our third challenge is thus:

3. Time Continuity: Instead of simply exchanging
an old fingerprint for a new one, a location needs
to keep track of a number of old prints (say, the
last five or the last fifty, depending on the reso-
lution), so as to still support the retrieval of data
stored at this place in the past. However, old keys
should eventually expire, recreating some sort of
“forgetfulness” principle.

Note that this only apparently contradicts our time
variance principle: While our second challenge ad-
dresses the storage of new information, the time con-
tinuity principles concerns the access to old informa-
tion. New data should continuously be fingerprinted
differently, even at the same place, but old fingerprints
should continue to “lie around” for a while.

Last but not least, by having a remotely accessi-
ble storage system where fingerprinted data is saved,
we also must make sure that data access is impossi-
ble without knowing the proper key (fingerprint) of
its storage location. Otherwise, a simple database
scan could reveal any location-bound data stored in it.
Thus, our fourth requirement is that of secure storage:

4. Secure Storage: Irrespective of actual storage lo-
cation in cyberspace — be it a server in Boston or
Cape Town, or multiple servers distributed around
the world — the stored data must be properly en-
crypted, in order to render database attacks infea-
sible.

In our actual implementation of FragDB, we use the
IDs of a large numbers of RFID-tags, embedded in the
environment, to serve as the key to a virtual storage
location. As RFID-tags can only be read locally with
a reader device, we can ensure that users must be at or
near the place where data was stored, in order to find
the data’s access parameters, which then allow data re-
trieval from anywhere. The idea of incorporating large
populations of miniature RFID tags into the environ-
ment was first proposed by Bohn and Mattern [2], who
envisioned passive RFID tags deployed in vast quanti-
ties and in a highly redundant fashion over large areas

- Froo0e =lolx
(Store | Retrieve | Batch

1. Choose File

2. Select Algorithm 3. Choose Tags

Fecragmentaion2:|~] umboroead Tags: 370 |_chooseTags|

Sorerie]

e
%

Figure 1. Prototype Interface

or object surfaces — so-called Super Distributed RFID-
Tag Infrastructures (SDRIs) — in order to provide novel
services such as positioning or collaboration.

3 Prototype System

Our FragDB prototype consists of a simulator, allow-
ing us to virtually place RFID-tags on virtual surfaces
and subsequently simulating the storage and retrieval
of data through a set of read-in tag IDs, as well as an
actual RFID-reader interface that supports the entire
process with real RFID-tags, albeit at a much smaller
scale (i.e., typically dozens, instead of thousands of
tags). Also, data storage is handled by a generic stor-
age system interface that currently stores information
in main memory, but which could just as well use a file
server or a distributed P2P-storage system.

Figure 1 shows the user interface of the prototype
after storing a file in the virtural environment. Cen-
tered at the bottom, the virtual surface shows a set of
tags that have been read in (shaded). Tag selection
can be done using a paintbrush-like cursor that allows
simulating the process of reading tags on the surface.
The controller window at the top right can then be
used to store, e.g., an audio file at the virtual location
of the read tags, using a particular storage algorithm
(“FEC Fragmentation 2:1” in this example, see sec-
tion 4). The memory window shown at the left side
gives a view of the global storage system, indicating
the storage cells where data has been placed. In the
example, the audio file is divided into a set of individ-
ual fragments and stored all across the storage system,
in order to make reassembly by a simple storage sys-
tem scan infeasible. A separate batch controller (not
shown) allows automating these steps multiple times,
i.e., tag selection, file selection, and storage of the file
at the selected tag locations, in order to achieve a more
realistic system usage.

[Store | Refrieve | Batch |
H MName Algarithm Status

IDjava FEC 2:1
test.mp3 FEC 2:1
SimpleVirtualSurfa... E imple Split
IDSnapShot.java dundant Spiit
VirtualReaderWith... Redundant Split
Virtual2DSurface ja... Simple Split
VirtualSurfacejava Simple Split

i java FEC 21

| read new tags H go down a level || reset |

Figure 2. Key Reassembly/Data Access

Storage
IDs, Frags

Select Tags "
| SclectTags
Virtual Surface
1Ds
ID-Set P—

Frags
Retrieval

Storage System

Figure 3. FragDB Controller

The set of read tags (shaded in the virtual surface
window in figure 1) represents the key for both locating
and decrypting the stored data in the storage system
— saving this “key” allows the data owner continuous
access to the stored data. Users without this key must
physically travel to the initial location where the stor-
age was performed (i.e., where the RFID-tags repre-
senting the key are located) and reassemble this key.
The interface for key reassembly, and thus data access,
is shown in figure 2. As during file storage, the user
first uses a paintbrush-like cursor to select a set of tags
from the virtual surface that should be read in. During
tag reading, the system continuously assembles the tag
IDs into potential access keys and shows a list of found
files under the retrieval-tab of the controller window.
In the example, the keys for the two topmost files have
been completely reassembled, while keys for six other
files have been found but not completely reassembled,
as indicated by the status column.

Both storage and retrieval (but not the batch opera-
tions) also work with actual RFID hardware. We have
connected a Hitachi p-chip reader to our prototype and
affixed about forty p-chips to a number of cardboards,
representing a floor or desk space. u-chips feature a size
of 0.16mm? and a stick antenna of about 10cm. They
contain a factory-written, read-only 104 bit serial num-
ber, which can be read out from up to 5-10cm distance.
p-chips and -readers do not use an anti-collision proto-
col, so having several p-chips in range will most likely
result in failed readouts. The FragDB prototype maps
physical RFID-tags onto a simulated one, thus allow-
ing our p-chips to support the same features as our
simulated ones, i.e., time- or usage-based ID changes,
as well as storage of prior IDs.

4 Architecture

Figure 3 shows the general architectural division.
A central controller interfaces the virtual surface (or,
alternatively, a real hardware reader) to receive a set
of tags read at a particular location. It then uses these
tag IDs to either store data in the storage system, or
attempt to retrieve data stored “at” these tag IDs from
the storage system. The architecture supports the four
distinct features described above:

Fluid Boundaries A straightforward way of bind-
ing a file to a specific set of tags is using the tags’
IDs as pointers to individual memory locations, and
storing a fragment of the file at each memory cell. In
order to tolerate variances in the tag set, a fragmenta-
tion algorithm is used that encodes the desired level of
redundancy into each fragment, e.g., using a forward
error correction code (FEC). The FragDB prototype
supports three different kinds of fragmentation algo-
rithms: A simple split algorithm simply cuts a file into
as many pieces as memory cells available, with no re-
dundancy. This is useful for streaming data, such as
audio or video, where a certain loss of fragments can
be tolerated. The redundant split algorithm saves each
fragment twice, i.e., fragments the file in only half as
many pieces as possible. While it is able to tolerate
slightly more missing fragments, it is still most useful
for streaming media files. The FEC 2:1 algorithm fi-
nally uses Reed-Solomon forward error correcting codes
to encode redundancy information evenly across all
fragments, allowing the system to reassemble the entire
file with any half of the fragments.

Time Variance In order to prevent that a one-
time visit to a place yields eternal access to the data
stored at this place, access IDs will need to periodi-
cally change. Future RFID tags might employ minia-
ture timer components, which could be powered by a
capacitive element that would be charged when the tag
is within a reader’s field, and subsequently be able to
power the on-chip clock for a certain period of time. Al-
ternatively, tags could be programmed to change their
ID upon each readout with a certain probability, yield-
ing a similar behavior as a timer-based solution. The
FragDB prototype supports both approaches in its sim-
ulator, while providing a probabilistic ID-translation
table for the real hardware reader in order to simulate
the second method also for actual read-only RFID tags.

Time Continuity While time variance ensures that
a once acquired fingerprint will not guarantee perpet-
ual access to stored data, it also cuts off access to pre-

RFID Tags

T T T Storage System
18AF62| Files; 54017 - 03BCA| File3is 7843A| Filezis, Filegsz
Current 1D
IF2539| File315 8DC12| File3ts, Fileg. 948AA| Filegg2 43B21] File67
> _ e
B35F] Fnegw,/m Filegs2 [TBEE3] Files D132*| Files,Filegz, - —
04DA*| Filerz, Fileas | |B3ECH Fileas, Filer2 | |1231%| Fileas E321% Fileas
7TAA**| - C34**| Fileg1 BC3**| Filegy, File12 DE2**| Filegn, File12
908~ il B = 987%%| Filen, il 9E4**| Fil T~~~
189***| Filerg, Filers,... | |AC***| Filewg,File7a | |AA***| Fileg8s6 12744 Filery
C1wx| Fileqsss 9C*** Fileg265 g4 4E=** File32

Figure 4. Virtual Layered Storage

viously stored data for “legitimate” users, i.e., those
who actually visit the prior storage location. In order
to still allow local access to old data, tag IDs are not
simply exchanged with a new one upon an ID change,
but queued. Thus, even if a new ID is in place (which
will subsequently be used to store new data), old IDs
will still be available in a tag’s “lower levels,” providing
time continuity for readout.

As old IDs must be stored directly on the RFID,
they will need to expire eventually, mimicking the real-
world “expiration” of memories. We implemented a
gradual expiration mechanism by shortening old IDs in
the queue bit by bit as they get older. Thus, an ID at
level S has 29~ bits missing, yielding 2° — 1 possible
IDs that a reader needs to explore in order to find the
correct ID that was used S timesteps before. By ad-
justing the “shrinkage factor,” i.e., the amount of bit
shortening per level, and the frequency of ID changes,
e.g., each 100 readouts, the difficulty of retrieving old
information at a place can be regulated, thus providing
both time continuity and, eventually, forgetfulness.

Figure 4 gives a virtual view of a particular location,
comprised of four RFID-tags shown on top. Below,
each tag’s storage cells are given, together with the
respective contents of each cell. The IDs are stored
in the ID-queue of each tag, gradually shortening the
IDs as they grow older, as indicated by the starred-out
numbers. To read a file, a FragDB client will need to
search through such old memory cells, trying a large
number of potential cell locations until a complete set
of file fragments can be found.

Secure Storage FragDB does not actually store data
in a particular real-world location, it only requires
knowledge about a certain key that is made up by this
location to retrieve the information that was stored
there (using this key). The actual file data can reside
in any type of storage system — either a remotely ac-
cessible file server or even a global peer-to-peer storage
repository. Each tag ID that is used during file storage
provides a single storage address in this space, allowing

Address Contents
SESEEEIREIE Enc(hash(1D), Fragment Payload) ‘

/ Hash % Hash @
e, —en

TagID Encryption Key Storage Address

Figure 5. Cell Contents and Key Derivation

our system to store one fragment of the file there. How-
ever, in order to facilitate file reassembly later, we need
to store metadata in each such fragment, e.g., the cre-
ator of the file, the date it was stored, or the filename,
but most importantly the order of the fragments and
information on any employed error correction mech-
anism. Storing such information in plain text could
make it trivial to access such data without the need to
read out any tag IDs, as the storage system could be
systematically scanned for matching fragments.

A straightforward solution is thus the encryption of
each fragment. As we do not want to require any addi-
tional passwords or keys in the system, we simply use
the the hashed tag ID as an encryption key for each
storage cell payload. The storage cell of each fragment
is in turn computed by hashing the hashed ID again.
Figure 5 shows the contents of a single storage cell and
the derivation of its keys. Finding this cell in mem-
ory does not allow an attacker to decrypt it, as this
requires finding the inverse of a hash operation. If the
ID is known, however, computing the memory cell loca-
tion and its encryption key becomes trivial. Obviously,
an attacker could simply guess an ID and retrieve the
data found at this particular storage cell. By using suf-
ficiently large IDs — 104 bits in the case of the p-chips
— such an exhaustive search of all 2'% memory cells
is rendered impractical. Note that while an attacker
might simply install a hidden reader and secretly ob-
serve the changing tag values at a particular place, we
assume that such installation would be easy to detect.

5 Conclusions

We have designed and built a system for localized,
secure storage, based on SDRI. The initial prototype
demonstrates the potential of this principle, and allows
us to explore its uses and limits for providing implicit
access control for future privacy protection.

In a next step, we are planning to devise further use
cases and create corresponding prototype applications
to evaluate the general usability of our concept, e.g.,
using a mobile reader and storage hot-spots. We also
want to improve the storage system implementation,
potentially using some freely available P2P-frameworks

to create a fully distributed version of the memory.
This would also need to address the problem of even-
tually deleting memory locations whose IDs have faded
away for good, e.g., using common caching strategies
such as LRU or NRU (last/not recently used). Also,
fragment reassembly could be improved by incorporat-
ing clever ID-space exploration strategies and adding
corresponding Ul mechanisms to provide position guid-
ance.

Acknowledgements

Lukas Stucki implemented FragDB prototype as part
of his Master’s thesis. Ruedi Arnold provided helpful
comments on earlier drafts of this paper. This work
has been partially funded by Hitachi SDL, Japan.

References

[1] G. D. Abowd. Classroom 2000: An experiment with
the instumentation of a living educational envrionment.
IBM Systems Journal, 38(4):508-530, Oct. 1999.

[2] J. Bohn and F. Mattern. Super-distributed RFID tag
infrastructures. In Ambient Intelligence — Second Euro-
pean Symposium, EUSAI 2004, volume 3295 of LNCS,
pages 1-12. Springer, Nov. 2004.

[3] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. A.
Shafer. Easyliving: Technologies for intelligent environ-
ments. In P. J. Thomas and H.-W. Gellersen, editors,
HUC, volume 1927 of LNCS, pages 12-29. Springer,
2000.

[4] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca.
GEO-RBAC: A spatially aware RBAC. ACM Trans.
Inf. Syst. Secur., 10(1):1, 2007.

[5] W. Geyer, H. Richter, L. Fuchs, T. Frauenhofer, S. Dai-
javad, and S. Poltrock. A team collaboration space sup-
porting capture and access of virtual meetings. In C. S.
Ellis and I. Zigurs, editors, Proceedings of GROUP 01,
pages 188-196, New York, NY, USA, 2001. ACM Press.

[6] J. I. Hong and J. A. Landay. An architecture for
privacy-sensitive ubiquitous computing. In MobiSYS
’04: Proceedings of the 2nd international conference on
mobile systems, applications, and services, pages 177—
189. ACM Press, 2004.

[7] T. Kindberg, K. Zhang, and N. Shankar. Context
authentication using constrained channels. In Mobile
Computing Systems and Applications, 2002. Proceed-
ings of the Fourth IEEE Workshop, pages 14-21. IEEE
Press, 2002.

[8] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan,
R. H. Campbell, and K. Nahrstedt. A middleware in-
frastructure to enable active spaces. Pervasive Com-
puting, 1(4):74-83, Oct. 2002.

[9] A. Whitten and D. Tygar. Why Johnny can’t encrypt.
In Proceedings of the 8th USENIX Security Symposium,
pages 169-184, 1999.

