
Connecting Things to the Web using
Programmable Low-power WiFi Modules

Benedikt Ostermaier, Matthias Kovatsch, Silvia Santini
Institute for Pervasive Computing, ETH Zurich

Zurich, Switzerland
{ostermaier, kovatsch, santinis}@inf.ethz.ch

ABSTRACT
We present first experiences of using programmable low-
power WiFi modules for connecting things directly to the
Web. Instead of relying on dedicated low-power radio tech-
nology and specialized protocols, we leverage the ubiquity
of IEEE 802.11 access points and the interoperability of
the HTTP protocol. Using a loosely coupled approach, we
enable seamless association of sensors, actuators, and
everyday objects with each other and with the Web. Our
experimental results show that low-power WiFi modules can
achieve long battery lifetime despite the fact that we are
using HTTP over TCP/IP for communication.

1. INTRODUCTION
Making everyday objects “smart” by endowing them with

computing and communication capabilities as well as with
sensors and actuators, is the long-standing vision of Perva-
sive Computing. Early attempts to connect things to the
Internet stem from the desire to remotely monitor and con-
trol them. A popular example is the vending machine serv-
ing cold beverages at CMU, which was first connected to
the Internet in the 1970s.1 Using a simple text-based inter-
face, users could not only check if beverages were available,
but also if they were cold. The idea of connecting everyday
objects to the Internet, thus building an Internet of Things
[8], has gained significant momentum in the last couple of
years. More recently, concepts and standards that had been
developed for the World Wide Web have been leveraged for
representing, discovering, managing, and accessing resources
made available by and for Internet-enabled physical objects,
creating a Web of Things [19].

In this paper, we show how programmable, low-power
WiFi modules can be used to connect things directly to the
Web and to each other. Instead of using dedicated radio
technology and communication protocols that are optimized
for low power consumption, such as IEEE 802.15.4, 6LoW-

1http://www.cs.cmu.edu/~coke/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoT 2011, June 2011; San Francisco, CA, USA
Copyright 2011 ACM 978-1-4503-0624-9/11/06 ...$10.00.

PAN [9], or CoAP [15], we rely on the ubiquity of WiFi
and the interoperability of HTTP. No gateways nor protocol
translations are necessary in order to make physical objects
fully Web-enabled. This represents a significant advantage
with respect to efforts that rely on more energy-efficient, but
less interoperable protocols for low-power networks.

In the next section, we briefly discuss related work. In
Sect. 3, we provide background information and present
our approach for connecting things to the Web. Sect. 4
describes the hardware platform we leveraged to support
our investigations. In Sect. 5, we discuss the prototypical
implementation of our approach. Preliminary experimental
results that demonstrate the feasibility of our approach are
presented in Sect. 6. Finally, Sect. 7 concludes the paper
and provides an outlook on further research.

2. RELATED WORK
The Mediacup project [1] represents an early attempt to

augment everyday objects with tiny computational devices.
For instance, ordinary coffee cups were unobtrusively aug-
mented with sensor nodes measuring movements of the cup
or the temperature of the beverage contained by the cup.
Nodes were connected to the Internet through an IrDA gate-
way and could send messages using UDP. A more generic ap-
proach was later taken by the Smart-Its project2, in which
sticker-like computational devices that include small sensor
nodes were developed, which could be attached to everyday
objects in order to make them “smart”. In the Cooltown
project [16], people, places, and things were given a Web
presence, which could be used for interaction. For example,
a lamp connected to a gateway server could be controlled
over HTTP using form-encoded POST requests.

With the advent of modern Web approaches and also the
large-scale deployments of sensor networks, these ideas re-
cently gained momentum. There are services which sup-
port the connection of sensors or actuators to the Web, like
Pachube.com or Microsoft SenseWeb [7], and research ap-
proaches such as sMap [2], sensor.network [6], or WebPlug
[11]. Contiki3, an operating system for resource-constrained
embedded devices such as sensor nodes, features an HTTP
server and client as central components. There are also ap-
proaches to adopt Internet protocols for energy-constrained
devices, like 6LoWPAN [9] for using IPv6 over IEEE 802.15.4
or EBHTTP [17] and CoAP [15], as a more efficient HTTP
substitute.

2http://www.smart-its.org
3http://www.sics.se/contiki/

3. APPROACH
Connecting everyday objects to the Web does not only

simplify access to sensors and actuators but also enables a
wide range of novel applications and services: One could
make things “smart” by leveraging context available from
other sensors on the Web, create novel search engines based
on real-time data available from sensors [10], and “program
the real world” by considering the Web as an application
layer for physical objects. We are interested in lowering the
entry barrier for connecting things to the Web (and to each
other), in order to foster rapid deployment of Web-enabled
everyday objects. To do so, we leverage existing WiFi- and
HTTP-based infrastructure.

3.1 Connecting to Things
We consider two fundamentally different approaches for

connecting things to the Web: The first approach is to at-
tach a pre-configured node to the physical object and use
the node’s built-in sensors and actuators to monitor and
control the object, following the idea of Smart-Its. For ex-
ample, a node featuring a motion sensor could be attached
to an office chair to detect whether it is currently occupied.
The second approach is to manipulate the object itself by
electrically connecting the node, thereby offering immediate
connectivity to sensors and actuators of the physical object.
For instance, embedding the node into a light switch, which
is essentially a binary sensor, allows to connect the switch
to the Web.

Orthogonal to this characterization is the question of power
supply: Nodes running on batteries have limited energy and
will therefore not be able to stay continuously connected to
the wireless network. Instead, they will need to persist in
a sleep mode most of the time and wake up only on certain
events. However, if a grid-based power supply is available,
nodes will be able to stay permanently connected to the
network and thus also to control actuators in (near) real-
time. For example, a node could be attached to a meeting
room sign and signal if the room is currently occupied, or it
could be embedded in a switchable power outlet to be able
to switch the connected devices via the Web. A summary
of the considered design space is depicted in Fig. 1.

3.2 Connecting Things to the Web
We rely on the REST paradigm [4] to expose things, in-

cluding their sensors and actuators, as resources on the Web.
Compared to SOAP, REST utilizes HTTP as an application
protocol rather than as a transport protocol. For this rea-
son, it introduces less overhead and can also directly benefit
from HTTP’s features such as cache-control and content-
negotiation, for example. Additionally, the resource-oriented
view of REST maps nicely to physical resources.

In our approach, every node is running a built-in Web
server exposing sensor, actuator, and configuration data as
Web resources. These are identified by self-descriptive URLs
and can be accessed with HTTP using standard operations
such as GET and POST4. For example, in order to read a
current sensor value, an HTTP GET request is sent to the
resource of the sensor. The response includes a textual rep-
resentation of the current sensor value. This concept works
similarly for actuators and configuration variables exposed

4To maximize interoperability, we currently resort to POST
instead of using the more appropriate PUT.

Design	
 Space	

•  Sleeping	

•  Connected	
 to	

object	

	

Light	
 switch	

•  Sleeping	

•  Sensors	

included	

	

Desktop	
 drawer	

•  Awake	

•  Connected	
 to	

object	

	

Power	
 outlet	

•  Awake	

•  Actuators	

included	

	

Status	
 indicator	

Po
w
er
	
 su

pp
ly
	

Physical	
 connec@on	

Gr
id
	

Ba
Ce

rie
s	

electronic	
 aCached	

Figure 1: Considered design space

as resources, except that we can also update them by send-
ing an HTTP POST request with the new desired value to
their URLs.

To avoid continuous polling on resources and also to en-
able near real-time applications, we support HTTP callbacks
(also known as Webhooks5) for resources representing sen-
sor readings. In particular, as soon as the value of a sensor
changes, an HTTP POST request is sent by the node to a
pre-specified URL, containing the updated value, i.e., the
current sensor reading, in the message body.

3.3 Putting Things Together
We illustrate our approach through a simple example con-

sisting of two Web-enabled things: A switchable power out-
let, which is a simple actuator and a light switch, which is
essentially a binary sensor. Both objects feature a built-in
Web server implementing our interaction model.

The power outlet features two resources: The main re-
source representing the outlet, http://poweroutlet/ located
at the root, and a sub-resource representing its actuator,
a relay, located at http://poweroutlet/power. Accessing
the root resource returns an HTML representation of the
outlet, including a graphical representation of its current
switch state. Accessing the resource of the built-in relay re-
turns a textual representation of its current state: false if
it is currently switched off, true if it is currently switched
on. In order to change the state of the relay, one simply
needs to POST the desired state as a textual representation
to http://poweroutlet/power, using the according content-
type text/plain. This way, the power outlet can be easily
controlled using a script on an HTML page, from the com-
mand line using a tool like curl, or from a program using
an HTTP client library.

The light switch features three resources: The root repre-
senting the switch located at http://lightswitch/, a sub-
resource representing the state (or sensor) of the switch at
http://lightswitch/position, and a second sub-resource
located at http://lightswitch/callback. Similar to the
power outlet, accessing the root resource of the light switch
returns an HTML representation including a depiction of the
current state of the switch (Fig. 4). The state of the light
switch is also returned as a textual representation reading
true or false, respectively. In order to enable push-based

5http://www.webhooks.org

Figure 2: The Roving RN-134 evaluation board,
which includes an RN-131.

operations, we can read and set the callback target URL
using the same approach as for actuators. We can also dy-
namically adjust the callback target of a sensor based on
some external state like other sensor readings, time, or lo-
cation without having to place any additional logic in the
light switch.

An important aspect of our approach is that we can link
sensors and actuators directly: In order to control the power
outlet with the light switch, one simply needs to update the
resource http://lightswitch/callback, the callback tar-
get of the light switch, to the value “http://poweroutlet
/power”, which is the URL of the relay of the outlet. Note
that this concept of association is comparable to HTML hy-
perlinks, which are also unidirectional and implemented at
the source of the relation. Now each time the light switch
is pressed, its state changes and thus an HTTP POST re-
quest is sent to the actuator of the power outlet, causing
it to reflect the current state of the light switch (Fig. 3).
To realize more complex scenarios, like a light switch that
controls multiple actuators simultaneously, based on some
external condition, one would utilize a service like WebPlug
[11], which would receive the HTTP callback from the light
switch and distribute it to one or more targets based on some
pre-defined conditions. Connecting sensors and actuators
via a gateway or Web service may of course be problematic
in certain scenarios: To stay with our home automation sce-
nario, users will probably neither tolerate noticeable delays
when pressing a light switch nor the outage of their light
controls when a Web service or their Internet connection
breaks down.

3.4 Addressing Energy Constraints
As mentioned in Sect. 3.1, battery-powered nodes can-

not remain continuously associated with an access point
and connected to the Internet, as they would otherwise ex-
haust their batteries very quickly. Indeed, modern low-
power IEEE 802.11 transceivers may drain just a few µA
of current while in sleep mode but require currents that are
more than 10000 times higher when actively sending and
receiving data [13, 18].

To provide for an energy-efficient operation mode, we re-
sort to a typical duty-cycled model that interleaves short
activity intervals to longer periods during which the node
persists in sleep state. While sleeping, the node is not able
to send nor receive data, but it can quickly wake up upon
certain events. For instance, if the value monitored by an
attached sensor changes, the node can wake up, perform the
HTTP callback, and go back to sleep. As controlling actu-
ators often requires them to be accessible in (at least near)

real-time, we assume that nodes operating in duty-cycled
mode feature sensors only.

However, if the node operates in duty-cycled mode and is
thus sleeping most of the time, configuring it interactively
using the built-in Web server is no longer possible. Instead,
the node needs to wake up periodically and poll for config-
uration data stored at a well-defined location on the Web.
Alternatively, nodes could be kept awake for a limited pe-
riod of time once a specific event (e.g., a “double-click” of
the light switch) occurs.

4. PLATFORM
We utilize the RN-131 [13], a low-power programmable

WiFi module manufactured by Roving Networks6. The mod-
ule was initially developed by G2 Microsystems7 under the
name G2M5477 [5], before the technology was acquired by
Roving Networks. It is a tiny (20x38x4 mm), WiFi-certified,
IEEE 802.11 module that features a fully-fledged TCP/IP
stack. The module is equipped with a 44 MHz 32-bit RISC
processor, 128 kB of RAM, 2 kB of battery-backed memory,
2 MB of ROM, and 8 Mbit of flash storage. The RN-131
supports a number of standard communication interfaces,
including UART, SPI, SDIO, RFID, and IEEE 802.11b/g.
It also provides 10 general-purpose I/O pins and 8 analog
sensor interfaces. The module features a small on-board
ceramic chip antenna and also a connector for an external
antenna. The built-in IEEE 802.11b/g transceiver supports
connection rates of up to 54 Mbit/s and also supports stan-
dard authentication methods such as WEP, WPA-PSK, and
WPA2-PSK.

According to the data sheet, the RN-131 can be powered
between 2.0 and 3.7 V and drains 15 − 212 mA of current
when in active mode, depending on the specific operation
[13]. When in sleep mode, however, the module has a nomi-
nal current consumption of only 4 µA, which is comparable
to the consumption in sleep mode of mote-like devices [12].
Clearly, the shorter the module is kept in active mode, the
longer will its battery last and thus the module itself be
able to operate. For this reason, the RN-131 is optimized
for short boot-up and access point association times. It also
provides hardware support for wake-up triggers based on
sensor readings or timers.

The RN-131 can be controlled in two different ways: It can
connect to a host CPU and operate as a client, handling all
the network-related operations. In this scenario, the user’s
application is running on the host CPU and communicates
with the RN-131 via a serial connection. The other possi-
bility is to run the application directly on the RN-131. In
order to use this possibility one has to develop the applica-
tions using a development kit provided by Roving Networks.

The RN-131 runs eCos8, an embedded real-time operating
system that supports multi-threading. It utilizes the lwIP
TCP/IP stack [3] for communication.

Rapid prototyping using the RN-131 is enabled by the
availability of the RN-134 evaluation board [14]. This board,
shown in Fig. 2, integrates the RN-131 module and some
additional components, such as LEDs and a TTL to RS232
level converter.

6http://www.rovingnetworks.com
7http://www.g2microsystems.com
8http://ecos.sourceware.org

hCp://poweroutlet/power	

POST	
 /power	
 HTTP/1.1	

Host:	
 poweroutlet	

Content-­‐Length:	
 4	

Content-­‐Type:	
 text/plain	

Connec@on:	
 close	

Referer:	
 hCp://lightswitch/posi@on	

User-­‐Agent:	
 WiFiNode	
 0.4	

Date:	
 Sat,	
 01	
 Feb	
 2011	
 12:45:26	
 GMT	

Last-­‐Modified:	
 Sat,	
 01	
 Feb	
 2011	
 12:45:26	
 GMT	

X-­‐SensorEvent-­‐Count:	
 12	

X-­‐Last-­‐Up@me:	
 88	

	

true	

hCp://lightswitch/	

Figure 3: Connecting things using HTTP callbacks

5. IMPLEMENTATION
We now outline how we connect sensors and actuators

with each other and to the Web using the low-power WiFi
module introduced in Sect. 4.

5.1 Software
We implemented both a single-threaded HTTP server and

a HTTP client, which run on the RN-131 and currently in-
clude only the features required for our concept.

Considering the implementation of sensor modules, we
have to minimize the time the node is awake in order to
preserve battery. As capturing sensor events is supported in
hardware by the RN-131, we configured the device to main-
tain a low-power sleep mode and only wake up on an event
of the connected sensor. The typical wake-up cycle is as
follows: (1) CPU and RAM are powered up and the device
boots our application, (2) it connects to a pre-configured
access point, (3) it acquires an IP configuration via DHCP,
(4) it looks up the IP address of the callback target, (5)
it creates a TCP/IP connection to the host of the callback
target, (6) it performs the HTTP callback, and (7) it shuts
down again. We can also optimize this process by caching
certain settings in the non-volatile memory, such as the IP
configuration or the IP address of the callback target so as
to skip steps (3) and (4), for example.

For the sensor callback, we leverage both existing head-
ers of the HTTP protocol and include custom headers as
a side channel. For example, we set the Referer to the
monitored resource, Last-Modified to the timestamp of the
sensor event and Date to the timestamp of sending the mes-
sage. The custom headers X-SensorEvent-Count and X-

Last-Uptime include the number of sensor events and the
length of the last uptime. An example of a complete HTTP
request for a sensor event is depicted in Fig. 3.

However, as a sensor is usually offline, there is no way to
verify if it is still working (if there is no sensor activity) and
also no way of (re-)configuring it. We address this problem
as follows: In its initial configuration, the sensor stays on-
line and is therefore accessible via its built-in HTTP server.
As soon as the user has configured the sensor, he instructs
it to shut down by sending an HTTP POST request to the
/sleep resource of the sensor, containing the text string
true. The sensor will then periodically wake up and send a
heartbeat message to a pre-configured URL, containing sta-
tus information encoded in JSON. If appropriate, the server

Figure 4: Front-end of the Web-enabled light switch

can include configuration data in its response, e.g., to update
the callback URL of the sensor.

5.2 Hardware
We experimented with three different types of sensors,

which were chosen to enable the measuring of activity of
an object or a room the node is attached to. First, a reed
switch, which in combination with a permanent magnet cre-
ates a contactless switch, for example to monitor whether a
door is currently open or closed. Second, a micro-mechanical
“ball-in-tube” motion sensor, which detects if the attached
object is currently moving. Third, a passive infrared (PIR)
sensor, which can detect the presence of people in a room, for
example. The first two sensors are passive elements which
do not consume power by itself, the PIR sensor is an active
element which consumes about 300 µA. While all sensors
are binary, neither the platform nor our concept impedes
the use of non-binary sensors.

We also embedded the RN-134 into several objects, in-
cluding: A Web-enabled light switch, a Web-enabled power
plug based on a modified Plogg9, which can not only switch
a connected consumer load but also sense its current power
consumption, and a Web-enabled LED candle, which can
act as a subtle notification device.

6. EVALUATION
We performed preliminary experiments and measured the

time required to process a sensor event, the callback failure
rate, and the energy consumption of the node. Our analysis
focuses on the sensor configuration, since energy consump-
tion and the wake-up period are not relevant for actuators,
as discussed in Sect. 3.4.

6.1 Quantitative Analysis
For our analysis, we use an optimized approach of the

wake-up cycle outlined in Sec. 5.1. In particular, we cache
the last channel of the access point, the DHCP lease, the
ARP table, and the DNS table. These optimizations can
significantly reduce the time required to connect to the call-
back target.

The nodes were configured to wake up every 10 seconds
and send a heartbeat callback using an HTTP POST request
to a PHP script hosted at the Web server of our institute.
Heartbeat messages were encoded in JSON and included
cumulated timing information about the operation of the
node, timing information considering the previous heartbeat
operation, information regarding the access point in use, and
other relevant parameters. The size of a heartbeat message

9http://www.plogginternational.com

Scenario S1 S2 S3

Location Office Space Home 1 Home 2
Authentication None WPA WPA2
Multiple BSSIDs Yes No No
DHCP lease time 15 mins 24 hours 24 hours

Table 1: Scenarios considered for the evaluation

Scenario S1 S2 S3

Total average uptime 128 ms 930 ms 182 ms
Callbacks initiated 297180 74444 241428
Callbacks received 295314 66300 240970
Callbacks received (%) 99.37 % 89.06 % 99.81 %

Table 2: HTTP callback statistics

(including HTTP headers) is approximately 900 bytes. The
preferred connection rate was set to 24 Mbit/s. In order to
prevent an excessive draining of the batteries due to network
problems, we limited the maximum time the node can stay
awake to 5 seconds.

For our evaluation, we utilized the existing WiFi infras-
tructure at three different locations, listed in Tab. 1. S1
leverages the WiFi infrastructure of ETH Zurich at the of-
fices of the authors’ institute, which is an enterprise-level
system consisting of multiple access points and a central
DHCP server. The access points at S2 and S3 are single,
standard consumer-level routers with built-in DHCP servers.

Table 2 provides aggregated data for each of the three sce-
narios. As each heartbeat message also includes a sequence
number, we can detect failed callbacks at the server. An
HTTP callback may fail due to several reasons, including
failure to associate with the access point, network problems,
and problems at the callback target. The node at S2 per-
forms significantly worse than the nodes at the other scenar-
ios. This is due to the access point used at that location; re-
placing it with the model used at S3 resulted in performance
comparable to S3. This is an important issue, as we cannot
assume the existence of access points of a given model when
leveraging existing WiFi infrastructure. Note that success
rates could be increased by queuing failed callbacks for later
transmission, which is currently not implemented.

For a detailed analysis of the average awake times, which
is depicted in Fig. 5, we considered only data of success-
ful HTTP callbacks. For each scenario, the average time is
further split into time required for the association with the
access point, for getting the IP configuration via DHCP, for
performing the HTTP callback, and for other operations. As
we cache DNS entries, the time for resolving the IP address
of the callback target is negligible (< 0.2 ms in each scenario)
and thus not depicted. The node performed best at scenario
S1, requiring only 98 ms on average for a successful HTTP
callback. Interestingly, the additional overhead caused by
the short DHCP lease time is overcompensated by the short
transmission time to the HTTP target, which is hosted at
the same site. For S2 and S3, DHCP time has no impact as
a lease is valid for 24 hours. However, for these scenarios we
see that the callback requires considerably more time, which
is caused by the higher round trip times to the target host.
The time required to connect to the access point at S2 is
significantly longer than for the other scenarios, because of
the mentioned interoperability issues with that access point.

S1 S2 S3
0

50

100

150

200

250

300

350

400

450

Scenario

Ti
m

e
(m

s)

Other
Callback
DHCP
Association

Figure 5: Average time spent awake (considering
successful callbacks only)

The shortest awake time at S1, S2 and S3 were 52 ms, 79
ms and 97 ms, respectively.

The node at S1 was optimized for low power consumption
by disabling status LEDs and physically removing unused
components from the RN-134. It was powered using two
daisy-chained NiMH AAA batteries with a capacity of 1100
mAh each. Assuming that the node has a static IP config-
uration and reports 100 events per day, this would result in
an operating time of about 8 years (not considering power
consumption in sleep mode and battery self-discharge).

We also tested the response times of our Web server run-
ning on the node. The average time for processing an HTTP
request, measured at the client between the start of the TCP
connection and its shutdown, is 24 ms. This qualifies for
(near) real-time control of actuators. We compared this to
an Apache HTTP server running on Windows, which re-
quired 19 ms on average. For both tests, 1000 requests were
issued from a client within the adjacent subnet.

6.2 Discussion
Deploying a traditional sensor network and presenting its

sensor readings on the Web usually requires setting up a
dedicated infrastructure: A sink node connected to a host
computer which is running a dedicated gateway software in
order to receive, store, and publish the data. In contrast,
deploying WiFi-based nodes is rather simple, as no addi-
tional infrastructure is required at the deployment location,
provided there is WiFi coverage.

In order to store and publish sensing events, we utilized
a simple PHP script consisting of only a few lines of code.
However, as a starting point an existing service like
postbin.org could also be used. For publishing status in-
formation regarding the deployed nodes and updating their
configuration, we also utilized two PHP scripts. One serves
as a heartbeat callback target that stores the heartbeat mes-
sages and returns device-specific configuration data to the
node. The other script parses the last heartbeat messages
and renders an HTML page. Since the heartbeat messages
are encoded in JSON, parsing is simple, as PHP comes with
a built-in JSON parser.

Leveraging existing IEEE 802.11 networks for communi-
cation instead of using dedicated radio technology eases de-
ployment but also comes at the price of reduced and fluctu-
ating network quality, caused by interference in the 2.4 GHz

band or network congestion caused by other hosts. Dur-
ing our experiments at our offices, for which we utilized
our university’s infrastructure, we sometimes struggled with
the fluctuation of the quality of the network, which caused
missed callbacks ranging from single events up to several
hours. Fluctuations generally seemed smaller at the private
networks used at S2 and S3.

An unresolved issue is currently the bootstrapping prob-
lem: One has to specify the SSID and, if the network requires
authentication, also the key. While this problem could be
solved by putting the node initially in ad-hoc mode and then
configure it using the built-in Web server, the configuration
would need to be sent over an unsecured channel. We are
currently investigating whether the RFID interface of the
RN-131 could be leveraged in order to communicate this
configuration data. Our prototype currently does not sup-
port WiFi roaming based on RADIUS, IPSec, or SSL/TLS
secured“landing pages”. There is also the problem of getting
the IP address of the node to know, and to have a config-
urable domain name for the node. A possible solution would
be to collect the IP address at the heartbeat target and show
it to the user. Regarding the domain name, a service like
dyndns.com could be used, for example.

Finally, we would like to emphasize that, as our results
are still preliminary, there is still room for optimization. For
example, one could use a more receptive external antenna,
optimize timing parameters, or reduce the transmission rate
of the RN-131 in order to achieve better link quality.

7. CONCLUSIONS
In this paper, we investigated how to connect things to

the Web by leveraging existing infrastructure and standards.
Instead of relying on dedicated low-power radio technology
and specialized network- or application-level protocols, we
rely on the ubiquity of IEEE 802.11 and the interoperability
of the HTTP protocol. Our results show that, using re-
cently developed low-power IEEE 802.11 transceivers, this
approach can be implemented in an energy-efficient manner.
Future work includes addressing the bootstrapping problem,
to which we sketched a possible solution in the paper. Ad-
ditionally, the support for WiFi-based roaming based on
user authentication would simplify the deployment of mo-
bile nodes.

8. REFERENCES
[1] M. Beigl, H.-W. Gellersen, and A. Schmidt.

MediaCups: Experience with Design and Use of
Computer- Augmented Everyday Artefacts. Computer
Networks, 35(4):401 – 409, 2001.

[2] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and
D. Culler. sMAP - a Simple Measurement and
Actuation Profile for Physical Information. In
Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’10, pages 197–210,
New York, NY, USA, 2010. ACM.

[3] A. Dunkels. Full TCP/IP for 8-bit Architectures. In
Proceedings of the First International Conference on
Mobile Systems, Applications, and Services, MobiSys
’03, pages 85–98, New York, NY, USA, 2003. ACM.

[4] R. T. Fielding and R. N. Taylor. Principled Design of
the Modern Web Architecture. ACM Trans. Internet
Technol., 2:115–150, May 2002.

[5] G2 Microsystems. Epsilon Module Family Product
Brief. http://www.g2microsystems.com/downloads/
PB Epsilon Modules Final.pdf.

[6] V. Gupta, P. Udupi, and A. Poursohi.
Sensor.Network: An Open Data Exchange for the Web
of Things. In Proc. of the First IEEE International
Workshop on the Web of Things (WOT2010),
Mannheim, Germany, Mar. 2010.

[7] A. Kansal, S. Nath, J. Liu, and F. Zhao. SenseWeb:
An Infrastructure for Shared Sensing. IEEE
MultiMedia, 14(4):8–13, 2007.

[8] F. Mattern and C. Floerkemeier. From the Internet of
Computers to the Internet of Things, volume 6462 of
LNCS, pages 242–259. Springer, 2010.

[9] G. Montenegro, N. Kushalnagar, J. Hui, and
D. Culler. Transmission of IPv6 Packets over IEEE
802.15.4 Networks. Request for Comments: 4944,
September 2007.

[10] B. Ostermaier, K. Römer, F. Mattern, M. Fahrmair,
and W. Kellerer. A Real-Time Search Engine for the
Web of Things. In Proceedings of Internet of Things
2010 International Conference (IoT 2010), Tokyo,
Japan, Nov. 2010.

[11] B. Ostermaier, F. Schlup, and K. Römer. WebPlug: A
Framework for the Web of Things. In Proc. of the
First IEEE International Workshop on the Web of
Things (WOT2010), Mannheim, Germany, Mar. 2010.

[12] J. Polastre, R. Szewczyk, and D. Culler. Telos:
Enabling Ultra-Low Power Wireless Research. In
Proceedings of the 4th International Conference on
Information Processing in Sensor Networks: Special
Track on Platform Tools and Design Methods for
Network Embedded Sensors (IPSN/SPOTS 2005),
pages 364–369, April 2005.

[13] Roving Networks. RN-131 Datasheet.
http://www.rovingnetworks.com/Docs/WiFly-RN-
131-DS.pdf.

[14] Roving Networks. RN-134 Datasheet.
http://www.rovingnetworks.com/Docs/WiFly-RN-
134-DS.pdf.

[15] Z. Shelby, K. Hartke, C. Bormann, and B. Frank.
Constrained Application Protocol (CoAP).
Internet-Draft, January 2011.

[16] T. Kindberg et al. People, Places, Things: Web
Presence for the Real World. Mobile Networks and
Applications, 7(5):365–376, 2002.

[17] G. Tolle. Embedded Binary HTTP (EBHTTP).
Internet-Draft, March 2010.

[18] J.-P. Vasseur and A. Dunkels. Interconnecting Smart
Objects with IP - The Next Internet. Morgan
Kaufmann, 2010.

[19] E. Wilde. Putting Things to REST. Technical Report
2007-015, UC Berkeley School of Information,
November 2007.

