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ABSTRACT
This paper presents a proximity-based authentication ap-
proach for the Internet of Things (IoT) that works in-band
by solely utilizing the wireless communication interface. The
novelty of this approach lies in its reliance on ambient radio
signals to infer proximity within about one second, and in
its ability to expose imposters located several meters away.
We identify relevant features sensed from the RF channel to
establish a notion of proximity across co-located low-power
devices. We introduce our proximity-based authentication
protocol and show the feasibility of our approach with an
early prototype using off-the-shelf 802.15.4 sensors and an
evaluation conducted in a real-world environment.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General
– Security and protection
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1. INTRODUCTION
With the advent of the IoT, there is a rise in the number

of smart devices that are empowered with sensing, actuat-
ing and communication capabilities to enhance and create
unique forms of interaction with our immediate surround-
ings. As these devices are integrated in our proximate living
space, they deal with sensitive and private data that can be
misused to infer information about our daily habits. This
consequently raises unique security and privacy challenges
that drive the need for security to be an integral part of any
IoT system. Due to cost, size and energy efficiency require-
ments, commodity IoT devices are designed with minimal-
istic physical interfaces. Among these interfaces, the radio
transceiver is the common physical interface, which makes
it a natural candidate to be utilized for security services.
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Figure 1: Proximity-based authentication of two co-
located devices P and V, in the presence of an ad-
versary E.

The ubiquity of the wireless medium, has given a raise to
the number of RF communication technologies and devices
being used, particularly in the ISM bands. This implies that
there is a form of continuous energy fluctuations in the wire-
less channel, generated by a diverse set of communication
technologies. RF signals constitute a source of electromag-
netic energy that radiates in the channel. As the RF signals
traverse the medium they undergo many propagation effects
that can cause large or small scale energy losses. This en-
ergy is absorbed and scattered in different directions as it
propagates in the space, thus inducing different levels of ob-
served energy spatially and temporally. At the same time,
the perceived RF signals appear to be highly correlated in
two co-located points. The correlation drastically decreases
as the distance between the two points increases. Quanti-
fying these variations of energy in the channel by sampling
the cumulative RF signal strength at a high rate provides
us with a unique time-variant metric that we source for our
proximity-based authentication approach.

In order to protect the communication of two smart de-
vices, traditionally pre-shared keys are used, and recently
Public-Key Cryptography (PKC) has been advocated. The
former does not scale for the IoT, and the latter is not af-
fordable by highly resource-constrained devices. Specifically,
the mere use of PKC-based key agreement protocols, such
as Diffie-Hellman (DH) without authentication, for instance
by means of certificates, leaves the communication vulnera-
ble to man-in-the-middle attacks.

In this work, we propose a proximity-based authentication
approach for low-power IoT devices. This approach is based
on correlating fine-grained samples of channel information
in form of Energy Levels (EL). In order to compensate for
the narrow-band of low-power transceivers, i.e., 2 MHz, we
collect the channel information over several frequencies. In
contrast to existing approaches, we do not require the ex-
change of huge amounts of packets, which increases the en-
ergy efficiency of our protocol in favor of less radio pollution.
We utilize the broadcast nature of the wireless medium and



how electromagnetic signals from uncontrolled transmitters
are propagating and affecting the level of energy perceived
by nodes. The results of our experiments show the feasibility
of our protocol even for underutilized networks.

2. RELATED WORK
The temporal and spatial variations in the radio channel

have been exploited by researchers in RF-based localization,
secure key extraction, and proximity estimation. In RF-
based localization [7, 6], the range between a device and the
reference points is estimated by means of RSSI. Afterwards,
techniques such as triangulation can be used to estimate the
relative location. Key extraction approaches [4, 8, 10] use
the reciprocal behavior of communication links to generate
a secure key between two end-points. These approaches are
complementary to our work, since they aim at securing the
communication between two nodes without prior knowledge,
whereas we provide proximity-based authentication.

Prominent RF-based proximity estimation approaches are:
Amigo [3], Ensemble [2], and ProxiMate [9]. Amigo relies
on observing the channel in promiscuous mode for 802.11
frames. The observed packets and their corresponding RSSI
readings are fed to a classifier which determines proximity.
In order to reach low false positive rates, more than 5 s are
needed. Ensemble relies on RSSI readings of packets gen-
erated by a network of trusted devices. It requires at least
3 trusted devices in communication range, each sending 40
packets per second for 70 s. ProxiMate relies similar to our
approach on ambient RF signal. However, they focus on TV
signals and require software-defined radios to extract the re-
quired features (amplitude and phase) from the signal.

Proximity estimation can as well be achieved by other
means such as Time-of-Arrival (TOA). Rasmussen et al.
[5] introduce an RF distance bounding technique based on
TOA, which requires high processing time in the range of
nanoseconds, since an error of 3 ns results into an estimation
error of approx. 1 m. They achieve this high precision with
a custom designed radio-chip.

In this work, we present a proximity-based authentication,
which is based on captured energy level variations. These
variations exist due to propagation effects on ambient RF
signals from inter/cross-technology devices emitting in the
same frequency bands. Considering the resource-constraints
of smart devices, we limit the number of packet transmis-
sions to a few packets that are required to indicate the next
channel rendez-vous, i.e., frequency, and to achieve loose
synchronization for signal acquisition. During the inter-
packet times, we collect EL readings. The signal acquisition
time is a protocol parameter which is related to the level of
experienced entropy.

3. ATTACKER MODEL
In our attacker model, as depicted in Figure 1, we dis-

tinguish between passive and active attackers, who are not
in the proximity of the genuine device. By design, we are
immune against a passive attacker, who eavesdrops on the
medium aiming at observing a similar physical channel. This
is due to the fact that we rely on the continuous stochastic
channel properties that are uncorrelated in the time and spa-
tial domains. An active attacker who makes use of jamming
by means of emitting energy with certain patterns, aims at
deceiving two not co-located nodes to falsely decide they are
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Figure 2: Signal acquisition stage of our protocol
for two rounds at channels x and y. The Rendez-vous
Packet (RP) indicates the next channel for sampling.
The ACK is used for a synchronized sampling at a
rate of 7.69 kHz, which lasts for 234 ms.

in close range. Due to radio wave characteristics such as fad-
ing, reflection, diffraction and scattering, such an attack is
complex. Additionally, by taking the level of induced energy
which disperses by distance [1] into our algorithm, we make
such an attack more difficult. In future work, we quantify
the effectiveness of an active attacker.

4. SYSTEM ARCHITECTURE
In this section, we describe our authentication protocol.

Signal acquisition and quantization. Proofer (P) initi-
ates the handshake with a request packet. Upon reception
of such a packet, Verifier (V) sends a Rendez-vous Packet
(RP) indicating the next communication channel. As the
low-power transceivers typically communicate over narrow-
band channels, i.e., 2 MHz, certain channels may be exposed
to less variations. Hence, in order to increase the chances
of capturing enough channel variations, we rely on several
channels. Possible rendez-vous channels are the 16 available
channels of 802.15.4. To optimize the channel selection, V
maintains a profile of good channels that exhibit high vari-
ations based on previous observations. After receiving the
RP, P sends a MAC-layer Acknowledgment (ACK) to V.
We use the ACK for a loose synchronization required for an
aligned signal acquisition. This is achieved with a sampling
routine starting immediately after reception of the ACK. P
and V sample the EL at a frequency rate of 7.69 kHZ for the
time unit tel (in our experiments tel=234 ms corresponding
to 1800 readings). After tel, V sends the next RP on the pre-
viously announced rendez-vous channel, where the same pro-
cedure of EL sampling repeats. This procedure, as depicted
in Figure 2, continues n times, until V requests the proof of
proximity from P. Currently, we consider n ∈ {3, 4, 5} which
depends on the quality of the signal acquired by V. The end-
points divide the i ∈ {1..n} collected signal traces, hi

v and
hi
p, into j ∈ {1..45} blocks bi,jv , each consisting of 40 chan-

nel readings. The block size corresponds to 5.2 ms. This
achieves a downsampling from 1800 to 45 values. For each
block bi,jv and respectively bi,jp , we compute the maximum
induced power level which we rely on for the correlation al-
gorithm. At the same time, we validate if all blocks bi,jd from
the two devices d ∈ {v, p} have experienced enough entropy,
i.e., randomness:

R(d, i, j, k) =

 1 if bi,jd [k] > (mean(bi,jd ) + α)

1 if bi,jd [k] < (mean(bi,jd )− α)
0 otherwise

∀ i ∈ [1..n], j ∈ [1..45], R ratio
i,j
d =

∑40
k=1 R(d, i, j, k)

40
> 0.1

(1)

To this end, we require that in each block at least 10% of
the readings deviate by about α=2 dBm from its average
readings. At a higher level, we require that again 10% of all
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(b) Channels at 1 m

Figure 3: CDF of Pearson correlation coefficient
computed over 38400 traces, collected with 802.15.4
motes, at several distances, and over all frequencies.

blocks fulfill the entropy condition:

∀ i ∈ [1..n], R ratio total
i
d =

∑45
j=1 R ratioi,jd

45
> 0.1 (2)

Traces not fulfilling this requirement are discarded, due to
low entropy. V observes the quality of traces during the
handshake and if required increases n, the number of rounds.
Reconciliation. The alignment of traces is achieved by a
synchronized sampling. As illustrated in Figure 2, after the
ACK transmission, P waits ts µs, which is the time required
for V to receive and process the ACK, and enter the sam-
pling routine. This way, both end-points start to sample the
channel at the same time. We decided against exchange of
the channel hopping sequence at the beginning of the hand-
shake, to avoid possible inaccuracies due to channel switch-
ing and clock drifts. Hence, the channel rendez-vous packets
serve as a measure for a synchronized signal acquisition.
Correlation. For each pair of traces hi

v and hi
p, we compute

the degree of correlation by means of the Pearson correlation
coefficient r. We use the induced power levels for the calcu-
lation of the Pearson correlation coefficient. If the majority
of the traces have a high correlation, then physical proximity
can be assumed. We detail our decision for a majority vote
in the next section based on our empirical observations.

5. EXPERIMENTS
In order to validate our assumptions about the correlation

of channel variations at co-located devices, we perform ex-
periments within our offices using TelosB motes, a low-power
sensor node with an 802.15.4 compatible radio transceiver,
and a built-in omnidirectional antenna.

We use Contiki OS for our implementation and collect ap-
prox. 800 traces in each of the 16 channels. The two nodes
are placed in line-of-sight, at distances of 1, 3, and 5 m. Our
measurements are conducted mainly at night, and accumu-
late to more than 38400 traces. We compute the Pearson
correlation coefficient averaged over all channels for these
distances. As depicted in Figure 3(a), for co-located devices
at distance 1 m, 80% of the runs exhibit a correlation coef-
ficient ratio higher than 0.7. For distances 3 and 5 m, only
15% to 20% of the runs have a higher ratio than 0.7. Setting
the threshold for proximity to a correlation ratio of 0.7 re-
sults into 15% false negatives (rejected co-located nodes) and
15% to 20% false positives (falsely accepted far nodes). With
a simple majority vote over at least 3 runs, we reduce the
amount of false negatives and false positives. More impor-
tantly, the randomness of the channel varies over time and
frequency. As depicted in Figure 3(b), the two best channels
exhibit high correlation coefficients, whereas the worse two
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Figure 4: Three selected traces from co-located de-
vices. All traces, experience enough randomness,
measured in form of deviations from the average
value (depicted as a gray line). Traces from channels
23 and 13 have a good correlation coefficient r.

channels behave similarly to distanced nodes. To explain
our majority-vote-based proximity decision, as illustrated in
Figure 4, we selected three traces from co-located devices
at three different channels. The traces exhibit enough ran-
domness. However, only the middle and right traces show a
high correlation coefficient. The first trace has a low corre-
lation coefficient, though we observe a similar trend on the
readings. This is due to different energy levels, which implies
different distances, explaining the low correlation coefficient.

6. FUTURE WORK
In this paper, we introduced our proximity-based authen-

tication scheme, tailored for resource-constrained devices.
We presented the results of our prototype implementation
on TelosB motes. Currently, we are improving our correla-
tion algorithm, and extending our implementation. We plan
to conduct extensive measurements to assess the impact of
cross-technology interference, static environments with low
entropy, mobility and human motion on our protocol.
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