
POSTER: Computations on Encrypted Data in the Internet
of Things Applications

Laurynas Riliskis, Hossein Shafagh*, Philip Levis
Computer Science Department, Stanford University

*Department of Computer Science, ETH Zurich, Switzerland
{lauril, pal}@cs.stanford.edu, *shafagh@inf.ethz.ch

ABSTRACT
We identify and address two primary challenges for comput-
ing on encrypted data in Internet of Things applications:
synchronizing encrypted data across devices and
selecting an appropriate encryption scheme. We propose
a caching mechanism that operates across the three devices,
enabling interactive order-preserving encryption schemes on
resource-constrained devices. Additionally, the system can
use a high-level description of an IoT application to
select automatically appropriate encryption for the data on
corresponding tiers and their mathematical operations. This
assists in fine-tuning and choosing the core parameters for
underlying data structures.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General -
Security and Protection

Keywords
Internet of Things; System; Computing on Encrypted Data

1. INTRODUCTION
The Internet of Things (IoT) encompasses a huge variety

of applications, ranging from fitness trackers and home au-
tomation to smart cars and smart cities. A common thread
ties most of these applications together, however. At a sys-
tem level, they operate across three tiers of devices as shown
in Figure 1: embedded, gateway and cloud. Each tier has
different storage, computation and energy resources. Em-
bedded devices collect, compute on, and react to sensitive
and private information such as vital signs and living habits.
After collecting the information, embedded devices send the
data to gateways, which compute, display, and/or further
relay it to the cloud.

The tiers have different processors, run different operating
systems, and use different programming languages. This
diversity creates a huge attack surface. Ideally, to protect

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
CCS’15 October 12-16, 2015, Denver, CO, USA
ACM 978-1-4503-3832-5/15/10.
http://dx.doi.org/10.1145/2810103.2810111.

Figure 1: An example of common IoT architecture.

user data, an application should perform its computations
on encrypted data, only decrypting when its owner views it.

IoT applications need new security architectures to sup-
port computing on encrypted data. Existing practical sys-
tems that process encrypted data, such as CryptDB [6],
are designed for web services. For example, CryptDB se-
lects and performs necessary cryptographic operations on a
data flow between the app server and database, consider-
ing only the cloud as untrusted. In contrast, an IoT ap-
plication stores and processes data on gateways as well as
the cloud. This introduces an additional untrusted entity.
Smartphones can be root-kitted, which would give an adver-
sary access to personal data. Additionally, there are many
IoT systems with a untrusted gateway, for example, home
automation gateways can run arbitrary software.

IoT applications need new cryptographic algorithms and
protocols. The resources available to IoT devices vary by up
to six orders of magnitude (i.e., kB to GB of RAM and MHz
to GHz of CPU power). Each tier has a different system ar-
chitecture and communication interface (i.e., BLE and Zig-
Bee, to WiFi, LTE, and Ethernet). Gateway and IoT devices
are battery powered and so need careful power management.
A traditional energy conservation technique is radio duty-
cycling: the radio turned on only for brief periods, saving
energy but increasing latency [2]. This approach works well
for bursts of traffic (e.g., web browsing), but works poorly
for interactive exchanges of small packets, such as used in
Order-Preserving Encryption. mOPE [7] requires O(log n)
rounds for an insert in the worst case. In the IoT context,
this results in increased energy consumption and higher com-
munication latency due to unstable connectivity.

IoT applications must be able to support delay-tolerant
operations [3], that is, networking when devices are not
always connected. As in the case of an athlete viewing his

performance metrics and vital signs in the field, or a BLE en-
abled smart door lock, the user wants a functional app even
if an associated smart phone gateway briefly does not have
data coverage. Therefore, rather than relying on always-on
Internet connectivity, each tier must locally store a subset
of the data and synchronize when connectivity is available.

2. PROBLEM STATEMENT AND
CONTRIBUTION

We identify and address two primary challenges to facil-
itate computation on encrypted data in IoT applications:
(i) synchronizing encrypted data between devices for order-
preserving schemes, and (ii) automatically selecting an ap-
propriate encryption for the corresponding tier and mathe-
matical operation.

As a further contribution, we describe a programming ap-
proach that analyzes the high-level description of an IoT
application and subsequently synthesizes protocols from the
available cryptographic primitives. The program investi-
gates relations between data computation and distribution,
and underlying link layer properties. Finally, the program
generates the necessary code to adapt the appropriate en-
cryption scheme to the three-tier architecture of the IoT
application.

3. RELATED WORK
Homomorphic encryption [1] allows arbitrary mathemati-

cal operations on encrypted data. Such operations are yet to
become practical. Currently, they require quixotic compu-
tational resources. Thus, many alternative paths have been
explored.

Encryption Mechanisms. The foundation of most SQL-
like databases rests on simple mathematical operations such
as equality, order, sum and mean. Consequently, much of
the research has focused on encryption models that allow
these mathematical operations at a more practical compu-
tational cost. Given the constraints of IoT applications, we
consider four classes of encryption schemes as economical
to use. These encryption schemes based on complexity and
required resources are divided into two categories.

The first category includes random and deterministic en-
cryptions, which use efficient AES-based schemes. Random
is a probabilistic encryption with the highest degree of se-
curity, but does not allow any computation. Deterministic
encryption enables equality check but has a lower level of
security. The second category includes high complexity and
high overhead schemes: order-preserving and additive ho-
momorphic encryptions. The order-preserving encryption
allows ordering of the encrypted data. Additive homomor-
phic homomorphic encryption enables addition while pre-
serving high security. Both perform the computation of the
plaintext values in the ciphertext space.

Existing Implementations of the Mechanisms:
• CryptDB, an encrypted query processing system for web

services, uses a proxy to intercept communications be-
tween an application server and the database. CryptDB
also applies the cryptographic schemes, translates queries,
performs necessary crypto operations and handles the key
management. In contrast, an IoT application has a sec-
ond untrusted party: the gateway, that demands a more
sophisticated approach. Additionally, the system needs
to handle disconnects and operates on both locally stored
data as well as in the Cloud.

Enc(55)

Enc(77)Enc(48)

Enc(32)

mOPE Tree
on the server

Enc(44)

0 1

10

ciphertext! mOPE encoding
[path]10..0!

Enc(44) []10..0!

Enc(32) [0]10..0!

Enc(55) [1]10..0!

Enc(48)! [10]10..0!

Enc(77) [11]10..0

IoT Device Cloud Gateway

mOPE Client

insert Enc(77)

Bigger than
Enc(44)?
Yes

Bigger than
Enc(55)?
Yes

[]

[1]

[11]

Figure 2: mOPE is an interactive order-preserving
encryption approach relying on Binary Search Tree
(BST) to order encrypted data.

• mOPE [7] is an interactive encryption mechanism with
mutable ciphertext. That introduces a challenge: how to
maintain the consistency of data among different tiers of
IoT? mOPE assumes a client-server approach (see the
upper part of Figure 2), where the server that stores the
data is honest-but-curious [5]. The server maintains a
balanced binary search tree (BST) whose nodes are en-
crypted values. The path from the root to the node con-
taining the value depicts the order-preserving encoding,
resulting in the server learning only the order informa-
tion and nothing more. Such a solution is not applicable
in a three-tier architecture because the different devices
cannot store same size trees. Moreover, each insert takes
O(log n) round trips that would have a significant per-
formance impact. The authors suggest usage of a local
cache table to reduce insert overhead, however, that does
not solve the three tier architectural challenge. In an at-
tempt to address the communication overhead of mOPE,
the authors in [4] maintain the tree and encodings locally
and only insert the encoding in the database. Although
this reduces the interaction for inserts to O(1) time the
required storage to maintain the local tree is too large for
the IoT devices. Moreover, this approach implies exten-
sive communication after tree rebalances, (i.e., mutation),
which renders it as not suitable for our scenario.

• AutoCrypt [8] is a compiler that transforms a plain C
application to one that computes on encrypted data. Au-
toCrypt combines and converts between partially-
homomorphic encryption (PHE) schemes. Similarly as
AutoCrypt, we generate code for the user but across all
tiers of the IoT architecture. AutoCrypt requires exten-
sive computational resources, for example, one MB com-
putation needs 2 GB of RAM. In our work, we perform
reasoning on which algorithm is feasible for the corre-
sponding class of device.

4. INITIAL RESULTS
Attacker Model. Our system addresses the threat model

of database/system compromise. In this threat model, the
attacker is interested in gaining access to the data stored
on either of the tiers. In case of the Cloud, the attack can
be launched internally by a curious database administrator
of the Cloud, or externally by malicious entities. On the
gateway or the IoT device, the attack could be initiated
by malware or physical capture. Our system addresses this
threat model by storing the data in encrypted form on each
tier and facilitating computation on all encrypted data.

Figure 3: Example of caching strategy for dis-
tributed mOPE.

Synchronizing encrypted data between tiers. The
three-tiered architecture complicates maintaining the con-
sistency of interactive mechanisms, such as mOPE (see the
lower part of Figure 2). Consider an IoT device that collects
and encrypts 1024 data samples locally with mOPE. Once
the IoT device connects, it uploads its data to the gateway.
The gateway stores 8192 values locally and synchronizes its
data when connected with the Cloud. When the embedded
device or gateway reach storage limit, they start discarding
local data according to a policy, like FIFO or LIFO. Thus,
the challenge boils down to the synchronization of the in-
creasingly smaller, balanced BST’s of the Cloud, gateway,
and embedded device.

Approach. Rather than synchronizing trees, we use a
caching mechanism that locally stores most frequently used
pathways of the global tree. The mechanism operates on a
similar idea as L1 and L2 caches in a modern CPU. The em-
bedded device (with the smallest amount of storage) main-
tains the smallest cache; the gateway keeps a larger cache
and the Cloud stores a full tree. The cache table consists of
access time, value, and a path in the tree, and a synchroniza-
tion flag. Additionally, the cache maintains the information
about leaves. Consider the tree depicted in Figure 2 and
shown in a table in Figure 3. The embedded device stores
red colored pathways in the cache. A new value, 20, has to be
inserted in the tree, but the pathway ends at 00. The cache
has to retrieve the next node from the gateway. If there is
no connection, the local view of the data still signifies valid
information so that the last value is the smallest in the local
tree. When connected to the gateway, the embedded device
will ask for a cache lookup and may or may not find the leaf
to place 20. The gateway responds directly with the discov-
ered pathway in the local cache, or after requesting it from
the Cloud.

On successful lookup, an additional value will be added
to the local cache. Given the table size of 6 entries, the
last accessed value must be deleted due to space limitations
resulting in a“broken”tree. Because we are caching the path
and values, we can insert the value – let say 60 – without
knowing the root of the tree but by looking up the path and
comparing the next value.

While, cache misses result in communication overhead,
the lookups can piggyback on the reliable data delivery mech-
anisms. On the other hand, cache hits containing exactly
the same value; thus we need only to transmit the metadata
hence saving energy on the data transmission.

In this initial work, we are in the process of evaluating
a variety of caching mechanisms and possible approaches
minimizing cache misses. It is our belief that the appropriate
caching mechanism will depend on the type of application
(e.g sensory data arrival model).

Table 1: Our system creates an access table from
the computations performed on the fields of the data
model. This knowledge allows selection of a suitable
encryption mechanism.

Device Gateway Cloud
Time None → RAND Order → OPE Order → OPE

HR None → RAND Comp →DET
Comp → DET
Addition → HOM

ID None → RAND None → RAND None → RAND

Selection of the encryption mechanisms. There are
frameworks where an IoT application is developed by de-
scribing it in a high level of abstraction. These approaches
emphasize that IoT applications have a holistic data model
spanning all three tiers, even though it is being implemented
in several different languages across various types of devices.
We depend on this fact to construct the access table of the
data model as shown in Table 1. The encryption mecha-
nisms are selected as follows: first we assume the base-case
of encrypting all data with the highest level of security (ran-
dom). Then we walk through the data access, and we de-
termine how a particular field needs to be encrypted. The
selection of encryption mechanism depends on the mathe-
matical operations executed on the fields. For example, a
gateway comparing heart rate values would imply determin-
istic encryption. Similarly, in the Cloud, when accessing
the data with regards to the order and computing averages,
order-preserving and additive homomorphic encryption are
needed. Note, that data is never decrypted outside a trusted
space across all tiers. As a result, the view from the Cloud
will return the encrypted results that are decrypted on the
owners device when viewed.

5. FUTURE WORK
This poster presents an initial result of the mechanisms

that enable processing of encrypted data in the Internet of
Things. We are in the process of implementing prototypes
of the described mechanisms. We will evaluate the usabil-
ity and performance of them by assessing the overhead and
quantifying all possible computation, latency, and energy
costs.

6. REFERENCES
[1] C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices.

In Annual ACM Symposium on Theory of Computing
(STOC), 2009.

[2] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A close examination of performance and power
characteristics of 4G LTE networks. In ACM MobiSys, 2012.

[3] S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant
Network. In SIGCOMM, 2004.

[4] F. Kerschbaum and A. Schroepfer. Optimal average-complexity
ideal-security order-preserving encryption. In ACM CCS, 2014.

[5] Oded Goldreich. Foundations of Cryptography: Volume 2,
Basic Applications. Cambridge University Press, 2004.

[6] R. A. Popa, C. M. Redfield, N. Zeldovich, and H. Balakrishnan.
CryptDB: Protecting Confidentiality with Encrypted Query
Processing. In ACM SOSP, 2011.

[7] R. A. Popa, Frank H. Li, and N. Zeldovich. An Ideal-Security
Protocol for Order-Preserving Encoding. In IEEE Symposium
on Security and Privacy, 2013.

[8] S. Tople, S. Shinde, Z. Chen, and P. Saxena. AUTOCRYPT:
Enabling Homomorphic Computation on Servers to Protect
Sensitive Web Content. In CCS, 2013.

