
SNIF: A Comprehensive Tool for
Passive Inspection of Sensor Networks

Matthias Ringwald, Kay Römer
Institute for Pervasive Computing

ETH Zurich, Switzerland
{mringwald,roemer}@inf.ethz.ch

ABSTRACT
Deployment of sensor networks in real-world settings is a labor-
intensive and cumbersome task: environmental influences often
trigger problems that are difficult to track down due to limited visi-
bility of the network state. In this extended abstract, we summarize
our ongoing efforts to develop a tool for passive inspection of sen-
sor networks, where the network state can be inferred without in-
strumentation of sensor nodes. We also discuss next steps to make
this tool applicable to a larger class of applications.

1. INTRODUCTION
Deployment of sensor networks in real-world settings is typi-

cally a labor-intensive and cumbersome task (e.g. [5, 6, 12, 13,
15]). While simulation and lab testbeds are helpful tools to test an
application prior to deployment, they fail to provide realistic envi-
ronmental models (e.g., regarding radio signal propagation, sensor
stimuli, chemical/mechanical strain on sensor nodes). Hence, en-
vironmental effects often trigger bugs or degrade performance in a
way that could not be observed during pre-deployment testing. To
track down such problems, a developer needs to inspect the state
of network and nodes. While this is easily possible during sim-
ulation and experiments on lab testbeds (wired backchannel from
every node), access to network and node states is very constrained
after deployment.

Current practice to inspect a deployed sensor network requires
active instrumentation of sensor nodes with monitoring software.
Monitoring traffic is sent in-band with the sensor network traffic to
the sink (e.g., [6, 11, 14]). Unfortunately, this approach has sev-
eral limitations. Firstly, problems in the sensor network (e.g., par-
titions, message loss) also affect the monitoring mechanism, thus
reducing the desired benefit. Secondly, scarce sensor network re-
sources (energy, cpu cycles, memory, network bandwidth) are used
for inspection. Thirdly, the monitoring infrastructure is tightly in-
terwoven with the application. Hence, adding/removing instrumen-
tation may change the application behavior in subtle ways, causing
probe effects. Also, it is non-trivial to adopt the instrumentation
mechanism to different applications.

In contrast to the above, we propose a passive approach for sen-
sor network inspection by overhearing and analyzing sensor net-
work traffic to infer the existence and location of typical problems
encountered during deployment. To overhear network traffic, a so-
called deployment support network (DSN) [1] is used: a wireless
network that is temporarily installed alongside the actual sensor
network during the deployment process (see Fig. 1). Each DSN
node provides two different radio front-ends. The first radio is used
to overhear the traffic of the sensor network, while the second ra-
dio is used to form a robust and high-bandwidth network among
the DSN nodes to reliably collect overheard packets. A data stream

Figure 1: A deployment-support network (rectangular nodes)
is a physical overlay network that overhears sensor network
(round nodes) traffic and delivers it to a sink using a second
radio.

framework performs online analysis of the resulting packet stream
to infer and report problems soon after their occurrence.

This approach removes the above limitations of active inspec-
tion: no instrumentation of sensor nodes is required, sensor net-
work resources are not used. The inspection mechanism is com-
pletely separated from the application, can thus be more easily
adopted to different applications, and can be added and removed
without altering sensor network behavior.

So far, we analyzed and classified problems typically found dur-
ing deployment [7], implemented a basic version of the Sensor
Network Inspection Framework (SNIF) [10], and conducted a case
study on data gathering applications [9] to demonstrate the feasi-
bility and benefits of our approach. Although possible in princi-
ple, it is currently difficult to adopt SNIF to application types other
than data gathering application. Further work is needed to add this
missing flexibility. In the remainder of this abstract, we give an
overview of SNIF’s architecture and discuss next steps.

2. PASSIVE INSPECTION OF DATA GATH-
ERING APPLICATIONS

SNIF supports the detection of specific problems (e.g., node re-
boot) that occur during deployment of a sensor network. For this,
we first need to identify the problems that can occur and that should
be detected by SNIF. Secondly, we need to provide passive indica-
tors for each of the problems, which allow to infer the existence
of a problem from observed packet traces. For this, one needs to
analyze the message protocols used in the sensor network. Finally,
SNIF needs to be configured to implement these passive indicators.

In our work, we focus on so-called data gathering applications
(e.g., [12, 15]), where nodes send raw sensor readings at regular

intervals along a spanning tree across multiple hops to a sink. The
reason for our choice is that almost all existing non-trivial deploy-
ments are data gathering applications. Below, we will first charac-
terize data gathering applications in more detail, before presenting
typical problems with these applications and matching passive in-
dicators.

2.1 Application Model
Systems for data gathering such as the Extensible Sensing Sys-

tem (ESS) [4] need to maintain a spanning tree of the network along
which sensor values are routed to the sink. To support neighbor
discovery, all nodes broadcast beacon messages at regular inter-
vals. Each beacon message contains a sequence number. To dis-
cover neighbors, nodes overhear these messages and estimate the
quality of incoming links from neighbors based on message loss.
Nodes then broadcast link advertisement messages at regular in-
tervals, containing a list of neighbors and link quality estimates.
Overhearing these messages, nodes compute the bidirectional link
quality to decide on a good set of neighbors. To construct a span-
ning tree of the network with the sink at the root, nodes broadcast
path advertisement messages, containing the quality of their cur-
rent path to the sink. Nodes overhearing these messages can then
select the neighbor with the best path as their parent and broadcast
an according path advertisement message. Finally, data messages
are sent from nodes to the sink along the edges of the spanning tree
across multiple hops.

2.2 Problems and Indicators
A indicator is an observable behavior of a sensor network that

hints (in the sense of a heuristic) the existence of a specific problem.
We are interested in passive indicators that can be observed purely
by overhearing the traffic of the sensor network as this does not
require any instrumentation of the sensor nodes.

In [7] we studied existing deployments to identify common prob-
lems and derived passive indicators for them. We classify problems
according to the number of nodes involved into four classes based
on existing deployments: node problems that involve only a sin-
gle node, link problems that involve two neighboring nodes and
the wireless link between them, path problems that involve three
or more nodes and a multi-hop path formed by them, and global
problems that are properties of the network as a whole. Below, we
provide for each category an exemplary problem and passive indi-
cators to detect it.

Node reboot, as an example for a node problem, causes the se-
quence number counter of the affected node to be reset to an initial
value (typically zero). Hence, the sequence number contained in
beacon messages sent by the node will jump to a smaller value af-
ter a reboot with high probability even in case of lost messages,
which can serve as an indicator for reboot.

An isolated node, as an example for a link problem, has no
neighbors in the network topology. An indicator for this problem is
that the node is not listed in any link advertisement messages send
by other nodes.

An orphaned node, as an example for a path problem, has no
parent in the routing tree. Such nodes will either send no path an-
nouncement messages at all or path announcements contain an infi-
nite distance to the sink (depending on the protocol details), which
can be used as a passive indicator.

A partitioned node, as an example of a global problem, is dis-
conneted from the sink, for example due to death of a node on the
path. A node is considered as partitioned if all paths from the node
to the sink involve dead nodes. This predicate requires an approx-
imate view on the network topology which is reconstructed on the

DSN

Radio
Configuration

cc.freq = 868000000;

cc.bitrate = 19200;

cc.sop = 0x55aa;

cc.crc = 0xA001;

Packet Decoder

Packet
Description

struct TOS_Msg {

 uint16_t addr;

 uint8_t type, group, length;

 int8_t data [length];

 uint16_t crc;

};

struct Beacon : Tos_Msg.data (type==1){

 uint16_t node_id;

 uint16_t seq;

};

Data Stream
Processing

Root Cause
Analysis

GUI

filter seqReset

Decision Tree

Operator
Graph

Figure 2: Architecture of SNIF.

base of observed data packets. Periodic checks on the reconstructed
topology serve as a passive indicator here.

3. SNIF
In this section we outline how passive indicators discussed in the

previous section can be implemented in SNIF. For this, consider
the architecture of SNIF as depicted in Fig. 2, which consists of a
deployment support network to overhear sensor network traffic, a
packet decoder to access the contents of overheard packets, a data
stream processor to analyze packet streams for problems, a decision
tree to infer the state of each sensor node, and a user interface to
display these states. The key design goal for SNIF is generality that
is, it should support passive inspection of a wide variety of sensor
network protocols and applications. Below we give an overview of
these components. More details can be found in a [10].

3.1 Deployment Support Network (DSN)
To overhear the traffic of multi-hop networks, multiple radios are

needed, forming a distributed network sniffer. We use a so-called
deployment support network for this purpose, a wireless network
of DSN nodes, each of which provides two radios.

Our current implementation of a DSN is based on the BTnode
Rev. 3 [2], which provides two radio front-ends: a Zeevo ZV 4002
Bluetooth 1.2 radio which is used as the DSN radio, and a Chipcon
CC 1000 (e.g., also used on MICA2) which is used as the WSN ra-
dio. Using a scatternet formation algorithm, the DSN nodes form a
robust Bluetooth scatternet (see [1] for details). A laptop computer
with Bluetooth acts as the SNIF sink that connects to a nearby DSN
node. This DSN node thereupon acts as the DSN sink and forms
the root of an overlay tree spanning the whole DSN. The SNIF sink
can send data to DSN nodes down the tree while DSN nodes send
overheard packets up the tree to the sink.

Time synchronization exploits the fact that Bluetooth uses a
TDMA MAC protocol and thus performs clock synchronization in-
ternally, providing an interface to read the Bluetooth clock and its
offset to the clocks of network neighbors. We use this interface
to compute the clock offset of each DSN node to the DSN sink.
A detailed description of our time synchronization protocol can be
found in [8].

3.2 Physical Layer and Medium Access
DSN nodes need a receive-only implementation of the physical

(PHY) and MAC layers in order to overhear sensor network traffic.
Due to the lack of a standard protocol stack, many variants of PHY
and MAC are in use in sensor networks. Our generic PHY imple-
mentation supports configurable carrier frequency, baud rate, and
checksumming details as illustrated in Fig. 2. Regarding MAC, we
exploit the fact that – regardless of the specific MAC protocol used
– a radio packet always has to be preceded by a preamble and a
start-of-packet (SOP) delimiter to synchronize sender and receiver.
In our generic MAC implementation, every DSN node has its WSN
radio turned to receive mode all the time, looking for a preamble
followed by the SOP delimiter in the received stream of bits. Once
an SOP has been found, payload data and a CRC follow. This way,
DSN nodes can receive packets independent of the actual MAC
layer used.

3.3 Packet Decoder
Again, since no standard protocols exist for sensor networks, we

need a flexible mechanism to decode overheard packets. Since most
programming environments for sensor nodes are based on the C
programming language or a dialect of it (e.g., nesC for TinyOS),
it is common to specify message contents as (nested) C structs in
the source code of the sensor network application. Our packet de-
coder uses an annotated version of such C structs as a description of
the packet contents. This way, the user can copy and paste packet
descriptions from the source code.

The configuration of the packet decoder consists of some global
parameters (such as byte order and alignment), type definitions,
and one or more C structs. One of these structs is indicated as the
default packet layout. Note that such a struct can contain nested
other structs, effectively implementing a discriminated union.

Fig. 2 shows an example of a TinyOS message (TOS Msg) hold-
ing a beacon data unit if the message type of the TinyOS message
equals 1. The result of packet decoding is a record consisting of a
list of name-value pairs, where each pair holds the name and value
of a data field in the packet.

3.4 Data Stream Processor
The resulting stream of packets is then fed to a data stream pro-

cessor to detect any problems with the sensor network. The data
stream processor executes operators that take a stream of records as
input and produce a different stream of records as output. The out-
put of an operator can be connected to the input of other operators,
resulting in a directed operator graph. SNIF provides a set of stan-
dard operators, e.g., for filtering, aggregation over time windows,
or merging of multiple streams into one. In addition, application-
specific operators to detect specific problems in the sensor network
may be required. Fig. 2 shows an simple operator graph that is
used to detect node reboots as described in Sect. 2.2. The first op-
erator (filter) reads the packet stream generated by the DSN
and removes all packets that are not beacon packets. The sec-
ond operator (seqReset) remembers the last sequence number
received from each node and checks if a newly received sequence
number is smaller than the previous one for this node, in which
case the node has rebooted unless there was a sequence number
wrap-around (i.e., maximum sequence number has been reached
and sequence counter wraps to zero).

Figure 3: An instance of SNIF’s user interface.

3.5 Root Cause Analysis
The next step is to derive the state of each sensor node, which

can be either “node ok” or “node has problem X”. Note that the
operator graphs mentioned above may concurrently report multiple
problems for a single node. In many cases, one of the problems
is a consequence of another problem. For example, a node that is
dead also has a routing problem. In such cases, we want to report
only the primary problem and not secondary problems. For this,
we use a decision tree, where each internal node is a decision that
refers to the output of an operator graph, and each leaf is a node
state. In the example tree depicted in Fig. 2, we first check (using
the output of an operator graph that counts packets received during
a time window) if any messages have been received from a node.
If not, then the state of this node is set to “node dead”. Otherwise,
if we received packets from this node, we next check if this node
has any neighbors (using an operator graph that counts the number
of neighbors contained in link advertisement packets received from
this node). If there are no neighbors, then the node state is set to
“node isolated”. Here, the check for node death is above the check
for isolation in the decision tree, because a dead node (primary
problem) is also isolated (secondary problem).

3.6 User Interface
Finally, node states and additional information are displayed in

the graphical user interface. The core abstraction implemented by
the user interface is a network graph, where nodes and links can
be annotated with arbitrary information. The user interface also
supports recording and playback of executions. A snapshot of
an instance of the user interface is shown in Fig. 3. Here, node
color indicates state (green: ok, gray: not covered by DSN, yellow:
warning, red: severe problem), detailed node state can displayed
by selecting nodes. Thin arcs indicate what a node believes are its
neighbors, thick arcs indicate the paths of multi-hop data messages.

4. RELATED WORK
Most closely related to SNIF is work on active debugging of sen-

sor networks, notably Sympathy [6] and Memento [11]. However,
both systems require instrumentation of sensor nodes and introduce
monitoring protocols in-band with the actual sensor network traffic.
Also, both tools only support a fixed set of problems, while SNIF
provides an extensible framework.

Tools for sensor network management such as NUCLEUS [14]
provide read/write access to various parameters of a sensor node
that may be helpful to detect problems. However, this approach
also requires active instrumentation of the sensor network.

5. NEXT STEPS
As mentioned in Sect. 2.1, our current work is focused on data

gathering applications. As other types of applications such as track-
ing and event detection are deployed, we will analyze experiences
gained from deployments and add support for inspection of these
applications to SNIF. For this, novel indicators may have to be im-
plemented in SNIF. While SNIF supports this flexibility in principle
through composition and parametrization of data stream operators,
currently Java code needs to be written and the developer has to be
familiar with SNIF internals. One of the next steps is therefore the
development of appropriate high-level specification techniques to
support more convenient configuration of SNIF for different types
of applications. In particular, we envision a graphical notation, al-
lowing a user to devise these specifications using a graphical user
interface.

Ultimately, we want to achieve (semi-)automatic generation of
these specifications from application programs. For this, we will
work on analyzing high-level declarative program specifications
such as SNlog [3]. These capture the application semantics in a
more direct way than procedural programs, such that it may be pos-
sible to derive SNIF configurations without explicit annotations.

6. ACKNOWLEDGMENTS
The work presented in this paper was partially supported by the

National Competence Center in Research on Mobile Information
and Communication Systems (NCCR-MICS), a center supported
by the Swiss National Science Foundation under grant number
5005-67322.

7. REFERENCES
[1] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable

Topology Control for Deployment-Sensor Networks. In
IPSN 2005.

[2] BTnodes. A Distributed Environment for Prototyping Ad
Hoc Networks. www.btnode.ethz.ch.

[3] D. C. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis,
S. Shenker, and I. Stoica. The design and implementation of
a declarative sensor network system. Technical Report
UCB/EECS-2006-132, EECS Department, UC Berkeley,
October 2006.

[4] R. Guy, B. Greenstein, J. Hicks, R. Kapur, N. Ramanathan,
T. Schoellhammer, T. Stathopoulos, K. Weeks, K. Chang,
L. Girod, and D. Estrin. Experiences with the Extensible
Sensing System ESS. Technical Report 61, CENS, 2006.

[5] P. Padhy, K. Martinez, A. Riddoch, H. L. R. Ong, and J. K.
Hart. Glacial Environment Monitoring using Sensor
Networks. In REALWSN 2005.

[6] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler,
and D. Estrin. Sympathy for the Sensor Network Debugger.
In SenSys 2005.

[7] M. Ringwald and K. Römer. Deployment of Sensor
Networks: Problems and Passive Inspection. In WISES 2007.

[8] M. Ringwald and K. Römer. Practical Time Synchronization
for Bluetooth Scatternets. In BROADNETS 2007.

[9] M. Ringwald, K. Römer, and A. Vialetti. Passive Inspection
of Sensor Networks. In DCOSS 2007.

[10] M. Ringwald, K. Römer, and A. Vialetti. SNIF: Sensor
Network Inspection Framework. Technical Report 535,
Departement of Computer Science, ETH Zurich, 2006.

[11] S. Rost and H. Balakrishnan. Memento: A Health
Monitoring System for Wireless Sensor Networks. In
SECON 2006.

[12] R. Szewcyk, A. Mainwaring, J. Polastre, J. Anderson, and
D. Culler. An Analysis of a Large Scale Habitat Monitoring
Application. In SenSys 2004.

[13] J. Tateson, C. Roadknight, A. Gonzalez, S. Fitz, N. Boyd,
C. Vincent, and I. Marshall. Real World Issues in Deploying
a Wireless Sensor Network for Oceanography. In REALWSN
2005.

[14] G. Tolle and D. Culler. Design of an
Application-Cooperative Management System for Wireless
Sensor Networks. In EWSN 2005.

[15] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner,
K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and
W. Hong. A Macroscope in the Redwoods. In SenSys 2005.

