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Abstract—The Internet of Things (IoT) envisions cross-domain
applications that combine digital services with services provided
by resource-constrained embedded devices that connect to the
physical world. Such smart environments can comprise a large
number of devices from various different vendors. This requires
a high degree of decoupling and neither devices nor user agents
can rely on a priori knowledge of service APIs. Semantic service
descriptions are applicable to heterogeneous application domains
due to their high level of abstraction and can enable auto-
matic service composition. This paper shows how the RESTdesc
description format and semantic reasoning can be applied to
create Web-like mashups in smart environments. Our approach
supports highly dynamic environments with resource-constrained
IoT devices where services can become unavailable due to device
mobility, limited energy, or network disruptions. The concepts are
backed by a concrete system architecture whose implementation
is publicly available. It is used to evaluate the semantics-based
approach in a realistic IoT-related scenario. The results show
that current reasoners are able to produce medium-sized IoT
mashups, but struggle with state space explosion when physical
states become part of the proofing process.

I. INTRODUCTION

The Internet of Things (IoT) is expected to turn our sur-
roundings into smart environments by combining sensing and
actuation with digital services. For this, tiny communicating
computing devices are embedded into everyday objects. They
usually have limited processing power (megahertz MCUs),
memory (kilobytes of RAM and Flash), and communication
bandwidth (low-power wireless transceivers). Furthermore,
they will often miss proper user interfaces, in particular input
devices and displays, which makes configuration cumbersome.
The overall challenge, however, is service composition in
smart environments due to the high number of IoT devices
from various vendors and different application domains. Be-
cause of this heterogeneity, classic approaches with device and
service IDs or API documentation and manual composition
do not scale. Service descriptions need to be abstract enough
to cover multiple application domains, but still allow for
automatic service composition. Moreover, smart environments
can be highly dynamic with devices joining, moving around,
and temporally failing. Thus, service providers and consumers
must be loosely coupled and able to evolve with a changing
environment [17]. To remedy this situation, we present new
concepts to facilitate the self-configuration of IoT applications
in such environments and provide a quantitative evaluation.
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Fig. 1. By providing a goal, user agents or machine clients can use a
semantic reasoner to automatically create Web-like mashups among resource-
constrained IoT devices and services.

A. The Web of Things

Our approach follows the Web of Things initiative by
applying patterns from the World Wide Web to realize the
application layer of the IoT [6]. We expect all IoT devices and
services to provide RESTful APIs [4] that can be combined
into Web-like IoT mashups. REST enables loose service
coupling and defines the low-level protocol semantics through
URIs, standard methods, and well-defined representations of
the resource state that is exchanged. This enables wide inter-
operability among different IoT devices—even across different
application domains. Yet the WoT is missing the hypermedia
controls (i.e., representation formats and link relation types)
that would allow machines to learn the high-level application
semantics. Thus, IoT mashups are usually defined manually
using a scripting language [10] or visual tools [2].

The Semantic Web community has been working on ap-
proaches to make the Web machine-readable [1], [12]. The
Resource Description Framework (RDF) defines a metadata
model to describe the data semantics independently from the
application domain. For this, the model uses three data types:
Resources are the central entities in RDF and are identified
by Internationalized Resource Identifiers (IRIs)—a superset
of URIs that can also include abstract resources that are not
part of the Web. Properties describe specific aspects of a
Resource such as an attribute or the relationship between two
resources. Statements are triples that consist of a Resource
(“subject”), a Property (“predicate”), and the value of the
Property (“object”), where this value can be another Resource
or a literal.



1 { # Antecedent: set of preconditions for the implication
2 ?degreesFahrenheit a dbpedia:Temperature;
3 ex:hasValue ?fahrenheitValue;
4 ex:hasUnit "Fahrenheit".
5 }
6 => # Implication
7 { # Conclusion: set of postcondition Statements
8 ?degreesCelsius a dbpedia:Temperature;
9 ex:hasValue ?celsiusValue;

10 ex:hasUnit "Celsius";
11 ex:derivedFrom ?degreesFahrenheit.
12

13 # Request description added by RESTdesc
14 _:request http:methodName "POST";
15 http:requestURI ("http://conv.example.com/degf2cel");
16 http:reqBody ?fahrenheitValue;
17 http:resp ?celsiusValue.
18 }.

Listing 1. RESTdesc description of a Fahrenheit to Celsius conversion
service. Variables that are substituted with matching Resources from the
knowledge base start with a ?. The prefix definitions for the Resources are
omitted.

B. Reasoning and RESTdesc

Given a set of RDF triples, machines can only understand
Statements that are explicitly given. The Notation3 (N3)
syntax1 adds support for logical formulas and quantification.
With this expressiveness, a semantic reasoner (a.k.a. proof
engine) can derive new Statements through first-order logic
(see Lst. 1): If the preconditions in the antecedent are true for
a specific substitution of the variables, then the postconditions
in the conclusion also apply and Statements with the same
substitutions may be added to the knowledge base.

The RESTdesc format [18] leverages these inference rules to
describe the functional semantics of RESTful APIs. To do this,
it adds additional blank nodes (_: namespace) that describe
the REST requests required to realize the postconditions in
the conclusion of a rule. The request arguments (e.g., URI or
request body) are configurable through the substitutions given
in the antecedent. The response usually provides a literal that is
substituted in one of the postconditions (e.g., ?celsiusValue
in Lst. 1).

By combining RESTdesc and semantic reasoning, the reach-
ability of specific Statements can be proven. Hence, users
can define a goal they want to achieve as Statements: if
the goal can indeed be reached, the reasoner outputs all
necessary requests to reach it. There can be dependencies
between requests when a precondition includes a variable that
is quantified in the conclusion of a different rule. The resulting
ordered list of requests including their parameterization is
called execution plan. It tells a client how to use RESTful
APIs to achieve a certain goal.

C. The Constrained Application Protocol (CoAP)

Resource-constrained IoT devices require lightweight pro-
tocols that fulfill the requirements of limited memory and
processing power as well as low-power networking. Based
on the success of low-power IP for the IoT, the Internet
Engineering Task Force (IETF) has standardized a new Web

1http://www.w3.org/TeamSubmission/n3/

protocol for constrained RESTful environments: the Con-
strained Application Protocol (CoAP) [15]. Following the
REST architectural style, CoAP was designed from scratch
with the above-mentioned requirements in mind. It uses URIs
to address resources, enables interaction through the uniform
methods GET, POST, PUT, and DELETE, and uses standard
Internet Media Types to transfer data (i.e., resource repre-
sentations and action results). Additional features allow to
observe resources [7] (i.e., servers can push notifications when
the resource state changes) and to use IP multicast for group
communication.

D. Contributions

Due to the similarities between CoAP and HTTP, we
successfully transferred and extended the results from current
research in semantics-based service composition for uncon-
strained WoT devices [13] to constrained RESTful environ-
ments. In particular, we contribute:

• Extensions for RESTdesc to better handle physical states
(Sec. II-A) and IoT mashups (Sec. II-B), and the concept
of open questions that enable interactive feedback from
the user or other devices (Sec. II-C).

• A working CoAP-based system that applies this technol-
ogy to constrained environments (Sec. III).

• The Semantic IDE, which fosters the study and develop-
ment of semantics for RESTful IoT devices (Sec. III-D).

• An IoT-related evaluation of the semantics-based ap-
proach to automatic service composition (Sec. IV).

Our implementations are publicly available on GitHub.2

II. PRACTICAL SEMANTICS FOR THE IOT

RDF and RESTdesc have been developed for machine-
readable linked data and classic Web services. These deal with
knowledge bases of mainly static information. By contrast,
IoT systems must be able to handle frequently changing
information and services on devices in the physical world
whose availability is much less stable. In this section, we
present the current body of related work together with our
extensions to practically apply semantic reasoning in the IoT.

A. Physical States

IoT devices provide a lot of information that is primarily
about real-time states of the physical world. This includes
sensor readings, but also the state of actuators or the devices
themselves. The challenge here is not the frequency with
which the states can change, since the reasoner is always
invoked with a momentary snapshot of the environment. Cre-
ating an execution plan that changes the environment requires
that different Statements can be true during the same reasoning
process, that is, before and after a state change. In first-order
logic, however, reasoners cannot invalidate once proven facts,
and hence are not able to produce a proof for execution plans
that include state changes [5]. To remedy this situation, Mayer
et al. introduced an ontology that enables RESTdesc to handle

2https://github.com/mkovatsc/iot-semantics



state transitions [13]. The value of a state Resource is modeled
as a container, a parent state, in which transitions can be
chained to describe state changes during reasoning. The last
element of this chain contains the currently valid Statements.

The disadvantage of the available ontology is that each
transition must fully match the previous Statements, and hence
must include the ‘old’ environment state to be chained. This
adds complexity to the goal definition and in some cases the
values can even be undefined, making it impossible to define
a valid transition. Thus, we extended the state ontology by
introducing a new state transition Property called replaced.
It defines a list of Statements that can always be added to the
parent state, while all previous Statements with the same sub-
ject and predicate are invalidated (i.e., all related Statements
are replaced with the new ones). As an example, the RESTdesc
description in Lst. 2 replaces any “old” temperature values
from the parent state with the ?new value; the given PUT
request applies this transition to the physical environment.

1 {
2 ?new a dbpedia:Temperature;
3 ex:hasValue ?tempValue;
4 ex:hasUnit "Celcius".
5 # there is a modifiable state
6 ?state a st:State.
7 } => {
8 # transition replacing the temperature for the location
9 [ a st:StateChange;

10 st:replaced { ?location ex:hasTemperature ?new. };
11 st:parent ?state ].
12

13 _:request http:methodName "PUT";
14 http:requestURI ("http://ac.example.com/setpoint");
15 http:reqBody ?tempValue.
16 }.

Listing 2. State transition that changes the current temperature using our
extended state ontology.

Statements about physical states can also be used as pre-
conditions, which helps to include the current device state
into the reasoning process. Here, the frequent changes in the
knowledge base can pose a problem, since the reasoner always
requires a fresh snapshot to produce valid execution plans.
We propose to split the semantic description of a device into
a static description of its services and a dynamic description
of its current state. Furthermore, we use the CoAP observe
mechanism to keep the snapshot at the reasoner in-sync with
all device states. Sec. III describes this feature in more detail
based on our system implementation.

B. Device Mashups

Real-world settings such as smart home and office en-
vironments usually have multiple devices that provide the
same functionality but in different contexts (e.g., multiple
ambient lights or air conditioners in different rooms). Their
semantic descriptions can be identical and defined Resources
could overlap. However, devices need to provide individual
definitions to model the different context. Therefore, we intro-
duce a device-local namespace, which can be used to define
device-specific Statements. The local: namespace is similar
to the empty namespace, which is the local namespace of a
document, but it spans all description documents of the same
device.

We use an extension at the reasoner to manage the device-
local namespaces. It uses the dynamic network addresses of
devices to guarantee uniqueness. This also allows devices to
use relative URIs in the request definitions. The semantic
documents can then be defined as a static file (i.e., served
from ROM), simplifying the implementation for resource-
constrained devices. The absolute URI that includes the dy-
namic network address is generated at the reasoner. It provides
a statement to substitute a device-local ?uri variable, the
base URI, which is then concatenated with the relative URI of
the request definitions (e.g., _:request http:requestURI

(?uri "/set/temperature")).
The HTTP ontology used in RESTdesc is a basic model

for requests and responses. Since CoAP is also an imple-
mentation of REST, we were able to apply the RESTdesc
request statements unchanged. The base URI (?uri variable)
simply uses the coap scheme to identify CoAP-based services
(e.g., coap://ac2.example.com). This allows to apply the
semantic approach to resource-constrained IoT devices.

Instead of having the reasoner perform the requests in the
execution plan, the plan is transmitted to the client, which
has to execute it itself. This allows for a fine-grained security
model: Instead of a central entity that requires access to all
devices in an environment, the client that defines the goal
requires the right authorization to manipulate the environment.
This can be enforced through the coaps scheme using DTLS
with client-side authentication and the upcoming mechanisms
of the Authentication and authorization in Constrained Envi-
ronments (ACE) working group within the IETF.

C. Open Questions

To simplify the commissioning process in smart environ-
ments, we introduce a uniform device configuration interface.
This allows each device to define a series of open questions as
part of its (static) semantic description. The open questions can
either be answered directly by the end user or by combining
information from other devices using inference rules.

A semantic question is defined by creating an RDF Resource
of the type :question. If the answer to the question differs
for each instance of the device, the question must be defined
in a device-local namespace. Each :question Resource must
define a human-readable version of the question using the
predicate :text, which can displayed to the end user (see
Lst. 3). In addition, each question must define an answer type
using the predicate :replyType. This is used to provide the
end user with suggested answers based on answers to other
questions with the same type. For example, if a question
defines the answer type :location, a list of previously used
locations to choose from can be provided to the end user.

1 local:devicelocation a :question;
2 :text "Where is the air conditioner located?";
3 :replyType :location.

Listing 3. Defining a question.

Questions can then be answered by POSTing corresponding
Statements about an :answer Resource to the REST API of
the reasoner. The triples must contain the Property :answers



with the corresponding question as value. An answer is typed
according to the :replyType of the question and contains
further Statements to define the answer such as the location
:name in Lst. 4.

1 config:ans1 a :answer;
2 :answers device_1:devicelocation;
3 a :location;
4 :name "Living Room".

Listing 4. Statements that answer the question from Lst.3: here, the name
of the requested location is given. Depending on the definition of :location,
providing other information (e.g., coordinates) is also possible.

Each question must come along with an inference rule
that allows to properly match its answer within the reasoning
process. In the case of the location example, a rule defining
the :locatedAt Property for the device Resource with the
answer as value can then be used to determine the room
controlled by the air conditioner in question (see Lst. 5).

1 {
2 local:devicelocation :hasAnswer ?a.
3 } => {
4 local:airconditioner :locatedAt ?a.
5 }.

Listing 5. Derive the :locatedAt Property from an answer.

In some cases, the knowledge base might contain State-
ments that define these Properties directly. For instance, there
might be a localization system that can identify devices
automatically and defines the triple local:airconditioner
:locatedAt ?a. To mark the related questions as answered,
we must also define a rule that derives the :hasAnswer

Statement from this precondition (cf. Lst. 5 with swapped
antecedent and conclusion).

To retrieve unanswered questions for dynamic answering,
we introduce the semantic type :openquestion. It is as-
signed to all questions that have an empty answer set. This
can be achieved using the logic rule eye:findall, which
is built into the reasoner. In the precondition of the rule, we
match the subject ?q with the semantic type :question and
then find all ?a that satisfy the pattern ?q :hasAnswer ?a.
If the substitution of eye:findall returns an empty set (),
we can conclude that the question is unanswered and assign
the semantic type :openquestion to the subject ?q.

1 @prefix eye: <http://eulersharp.sourceforge.net/2003/03
swap/log-rules#>.

2 {
3 ?q a :question.
4 ?SCOPE eye:findall ( ?ANY
5 { ?q :hasAnswer ?ANY }
6 ()
7 ).
8 } => {
9 ?q a :openquestion.

10 }.

Listing 6. This inference rule marks all unanswered questions with the type
:openquestion

The semantic reasoner can retrieve all open questions for
a client similar to an execution plan query. For this, we
again use the eye:findall rule, but also include all the
possible answers that match the reply type. This way, the
open questions query returns all questions together with a list
of answers from which a human user can choose. Machine
clients usually rely on the :replyType directly.

Fig. 2. We use emulated IoT based on Californium to focus on the design of
the APIs and their semantic descriptions. Besides simple, constrained devices
such as lightbulbs, we have a couple of more complex devices such as the air
conditioner, whose RESTful API is shown on the right.

III. SYSTEM ARCHITECTURE FOR IOT SEMANTICS

In this work, we focus on the design of RESTful APIs for
IoT devices and the modeling of their semantic descriptions.
We use a set of emulated CoAP devices that provide a good
mixture of simple and complex APIs. We do not follow a
specific API style to demonstrate the semantic interoperability.
Rather, each device simulates internal processes such as power
consumption or sensor readings and visualizes its current state
through a graphical representation as shown in Fig. 2. The
devices are implemented using Californium [11], which allows
for rapid prototyping and easy deployment based on Java.
Based on our experience with actual IoT hardware, we can
confirm that the results learned for the emulated devices can
easily be transferred to constrained implementations such as
Erbium [9]. The overall architecture is depicted in Fig. 1.

A. CoRE Resource Directory (RD)

CoAP-based systems usually use a CoRE resource directory
(RD) for service discovery [16]. We use the default Cf-RD
provided in the californium.tools repository3 to be aware of
all devices or services in our smart environment. Each device
registers with the RD by POSTing a list of their provided
Web resources as CoRE Link Format [14] to a standard
interface. The Link Format contains Web linking attributes
for each resource, which allows to identify specific resources
such as the semantic descriptions and the dynamic state de-
scriptions (Fig. 2 /restdesc and /statedesc, respectively).
An update mechanism, where devices regularly need to send
POST requests to a registration handle URI at the RD, ensures
freshness of the discovered services.

B. Reasoning Server

In this work, we use the Euler Yet another proof Engine
(EYE).4 EYE is a semi-backward reasoning engine enhanced
with Euler path detection. As stated earlier, it is based on
first-order logic. We encapsulated the Prolog-based EYE in a
Californium-based server that provides several features to use
the reasoner within smart environments.

3https://github.com/eclipse/californium.tools
4http://eulersharp.sourceforge.net/2003/03swap/



1) Notation3 Parser: All interaction with the EYE reasoner
is based on N3 documents. While previous projects used
a combination of regular expressions and string matching
strategies to parse N3 files containing the reasoner proof,
we implemented a new parser covering the entire Notation3
grammar. It is based on ANTLR v45 and extends the Turtle
grammar created by Alejandro Medrano,6 which is a subset
of Notation3. We also provide an abstract syntax tree (AST)
visitor to modify N3 documents and store them back as files.

2) Knowledge Base: The reasoning server caches all se-
mantic descriptions of the smart environment locally. For that,
it periodically checks the RD, retrieves the descriptions of
new devices, and removes those of devices that disappeared.
Furthermore, it observes all dynamic descriptions of the cur-
rent device states (e.g., /statedesc in Fig. 2). This way,
the reasoning server always has an up-to-date snapshot of
the environment to provide valid execution plans. Finally,
the knowledge base automatically manages the device-local
namespaces and the dynamic network address of each device
to provide absolute URIs in the execution plans.

3) Query Interface: The query interface allows clients to
access the knowledge base, for instance to retrieve the list of
open questions or to query the location of a specific device.
Queries are defined like goals, that is, a list of preconditions to
define the resources the client is looking for and postconditions
to define the output (see Lst. 7). The semantic reasoner is used
to process the query given the knowledge base of the server
and the resulting proof is parsed to return an N3 document
that contains the Statements specified in the postconditions.
For now, interacting with the knowledge base requires clients
(these could also be IoT devices) to be able to parse N3.

1 { # look for devices in the "Living Room"
2 ?device :locatedAt ?location.
3 ?location :name "Living Room".
4 ?device :name ?deviceName.
5 } => { # output the device names
6 ?device :name ?deviceName.
7 }.

Listing 7. Query that retrieves all the devices in the living room and a triple
containing the device resource and name.

4) Execution Plan Interface: Clients use this interface
to request an execution plan for their user-defined goal. A
goal definition is an implication (=>) that has the desired
Statements as preconditions and an empty consequent, as the
preconditions simply need to hold true without any specific
conditions. In addition, the reasoner requires the definitions
of the goal values as input (e.g., the value of the desired
temperature), which must be given in a separate N3 document.
At this point, we use a delimiter (a line containing at least ten
number signs) to implement a very simple multipart request
body that contains both goal and input (see Lst. 8). Given the
goal, the input, and the knowledge base, the EYE reasoner
is called to produce a proof, which is encoded in N3. The
lemmas of the proof include the necessary requests defined by
RESTdesc as well as dependency information. Our reasoning

5http://www.antlr.org/
6https://github.com/antlr/grammars-v4/blob/master/turtle/TURTLE.g4

(a) User Agents (b) Semantic IDE

Fig. 3. (a) The Android-based user-agents demonstrate how the interaction
with a smart environment works when using our system architecture.
(b) The screenshot of our Semantic IDE gives an idea of our Web-based tool to
develop semantic descriptions. The IDE supports multiple workspaces, allows
to store and load device and goal configurations, provides syntax-highlighting
for Notation3, and can visualize execution plans.

server parses the output and the interface returns the execution
plan. The plan is a JSON-encoded list of request definitions
that uses references to link responses of one request to the
arguments of another request.

1 {
2 ?goal a st:State;
3 log:includes {?s ex:hasTargetTemperature ?t}.
4 ?t ex:derivedFrom :input.
5 } => { }.
6 #############################
7 :input a dbpedia:Temperature;
8 ex:hasValue "23";
9 ex:hasUnit "Celcius".

Listing 8. A simple multipart request for the execution plan interface that
includes the goal definition and the input triples separated by a delimiter.

C. User Agents

To better demonstrate our practical approach, we imple-
mented two Android user-agent applications that allow to
interact with the reasoning server and our IoT devices. The
green user agent depicted in Fig. 3(a) uses the query interface
to retrieve the list of open questions and provides the list of
suggested answers. When the user saves his answer, it is sent
to the reasoning server and stored in the knowledge base. The
blue user agent in Fig. 3(a) provides a front end to define goals
and automatically runs the execution plan when the reasoning
server finds a proof.

D. Semantic IDE

The Semantic IDE provides a development environment for
semantic device descriptions. It consists of an HTML5 front
end that communicates with a RESTful back end using HTTP.
The IDE provides a Notation3 editor that supports syntax-
highlighting and code completion, a dialog to answer open
questions, form-based access to the query interface, and access



to the execution plan interface where the resulting requests are
also visualized. There are two modes:

1) Connected: By providing the base URI of the reasoning
server, the workspace attaches to a real system with its stan-
dalone reasoning server and available IoT devices. The editor
can be used to browse and debug the RESTdesc descriptions
of the devices. When an execution plan is found, it can also
be executed directly from the IDE, that is, it performs the
requests on the actual devices.

2) Virtual: The IDE can also simulate environments by
instantiating an internal reasoning server and feeding the
knowledge base directly from the Notation3 editor. The de-
scriptions are stored as virtual devices that can be enabled
and disabled dynamically in the environment. Furthermore, the
RESTdesc format can be edited during runtime, which fosters
easy experimentation with RESTdesc and rapid prototyping of
semantic mashups.

In both modes, the workspace configuration including de-
fined queries and goals can be stored and loaded again later.
The screenshot in Fig. 3(b) gives an idea of our Semantic IDE
front end.

IV. EVALUATION

The flexibility of mashup creation is the central motivation
for using semantics. For this, execution plans must be calcu-
lated dynamically to take into account all available services
as well as the current physical state of the environment. The
practical feasibility of this approach thus depends on the time
required to calculate an execution plan: not only do users
expect their smart environments to be responsive, we also
need the input states to still be valid upon termination of the
reasoning process (i.e., upon execution of the mashup).

In this section, we evaluate how properties of the envi-
ronment affect the reasoning times when creating execution
plans. In the long run, we assume about 250 smart devices to
be present in a typical environment, which is a reasonable
assumption for future smart environments according to the
literature [3], [8], [19]. Each device can provide multiple
services such as power-on/off, set-parameter, read-sensor, and
actuate. We expect many simple devices that only provide a
single service such as motion sensors or light bulbs, but also a
few complex devices with many services such as infotainment
systems or cleaning robots. To dimension our experiments, we
use scenarios with about 250 devices and four services each
on average (i.e., about 1,000 services in total). Note, however,
that 250 devices is not an upper bound and does not represent a
technical limitation for the approach put forward in this paper.

We intentionally neglect the time required for communi-
cation, e.g., to transmit execution plans or execute requests
within the resulting mashups. While these times can be signifi-
cant in constrained environments, they are mostly independent
from the concrete approach used for composing services
in a smart environment: even statically configured mashups
experience a similar overhead when invoking service requests.
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Fig. 4. The reasoning time grows exponentially with the number of services.
The execution plan length describes the complexity of a mashup, that is, how
many services need to be chained to meet the given goal.

A. Experiment Setup

In our evaluation, we measure the time required to de-
rive an execution plan in different smart environments while
varying different parameters. As described in Sec. III, the
reasoning server caches all service descriptions locally and
updates the environment state in real time by observing the
dynamic descriptions. The experiments are done on a Ubuntu-
14.10 laptop with Intel(R) Core(TM) i7-4600U@2.10GHz
using SWI-ProLog 6.6.6-amd647 to run the EYE reasoner
7433/2014-09-30 (which only runs on a single core) and
Oracle Java 1.8.0 45-b14 to execute the reasoning server and
our evaluation wrapper. Each experiment series is repeated 20
times and error bars indicate ±1 standard deviation.

B. Number of Services

As a baseline, we show how the semantic service compo-
sition approach scales for a growing number of abstract ser-
vices.8 We calculate execution plans for up to 2,048 available
services (i.e., 512 devices) to see how the approach performs
when environments go beyond our assumption of 250 devices.
In addition, we show results for a stepwise increase in the
complexity of the execution plan: the reasoner has to chain
more and more services that depend on each other to achieve
the given goal.

Fig. 4(a) shows a log–log plot of the reasoning time over
a growing number of services. The plotted series represent
different execution plan lengths. For up to about eight services,
we see the startup cost of the EYE reasoner, which dominates
the runtime independently of the number of services. From
there onward, the curves are approximately linear, indicating
that the heuristics of the proofing tactics employed by EYE
run in polynomial time.

Fig. 4(b) shows how the length of derived execution plans
affects the reasoning time. For this, we fix the number of

7http://www.swi-prolog.org/
8Since the total mashup derivation time is the most relevant metric for end

users, we report that number in all our graphs. This is different from [13]
and [18], who differentiate between the time required for parsing and the
reasoning itself.
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reasoning time for 256 devices with a varying ratio of (x) relevant and
(256 − x) non-relevant services for the goal (see Sec. IV-D).

services to 1,024 and gradually double the required service
chain length through the goal definition. Increasing execution
plan lengths exhibit the exponential growth of the underlying
satisfiability problem. This impact can also be seen in the
different slopes of the series in Fig. 4(a).

In general, the numbers are much higher than in previous
work [13], [18], where the range of seconds is reached at
about 4,096 services. The reason is that we use fully functional
descriptions of conversion services (similar to Lst. 1), while
[13] and [18] only use single triples as service description.

We conclude that the primary challenge for semantic
mashup composition lies in the amount of service depen-
dencies. For a medium execution plan length of ten service
interactions (requests), the response times enter the critical
order of seconds at about 256 services in the environment.
For 1,024 services, corresponding to our assumption of about
250 devices, the reasoning time is already in the order of
multiple seconds on a relatively strong CPU (i.e., not feasible
for Raspberry Pi types of devices).

C. Mashup Complexity

In this experiment, we define a realistic IoT scenario with
devices that host multiple services and goals that require
complex mashups out of different stateful services. For this,
we use the air conditioner (AC) device presented in Fig. 2
that provides four services in its semantic description (power-
on/off, set-temperature, set-intensity, and set-mode). To include
stateless services in the experiment, we added two additional
conversion services to each AC to convert between degrees
Fahrenheit, degrees Celsius, and Kelvin, resulting in six ser-
vices in total.

We measure the reasoning times for six different goals, each
requiring a more complex execution plan than the previous:
a) Set the temperature at one specific location (length 1)
b) Like a), but the AC must be powered on first (length 2)
c) Like b), but the input must be converted once (length 3)

d) Like b), but the input must be converted twice (length 4)
e) Like d), but the goal also specifies the mode (length 5)
f) Like e), but the goal also specifies a specific fan intensity

(execution plan length 6)

The different series in Fig. 5 show how the linearly in-
creasing mashup complexity impacts the reasoning time. In
this case, the growing offset of the curves is not caused by
the execution plan length (which is relatively small), but by
the state ontology. With stateful IoT services, a proof must
consider the possible environment states which significantly
increases the state space for the reasoner, leading to longer
execution times. In contrast, the stateless conversion services
have almost no impact on the reasoning time: the two series
with the cross markers behave almost identical to goal b)
without the conversions.

For 250 devices, the reasoner can compute execution plans
with up to three stateful services in reasonable time. With four
stateful services, the calculation time is already at 3.7 sec-
onds for 250 devices. This requires significant improvement
considering that smart environments in the IoT are primarily
about services to manipulate the state of the physical world
through actuators. Sensing, however, does not require the
state ontology (in case no dynamic configuration is required).
Hence, typical mashups with a mixture of sensor and actuator
services can already be generated in reasonable time using the
semantic composition approach.

D. Service Diversity

Verborgh et al. state that the EYE reasoner can “discriminate
between relevant and non-relevant descriptions,” so that a large
number of non-relevant services do not significantly affect the
reasoning time [18]. The experiments in [18] indicate this for
stateless services. We examine this feature in our IoT setting
with four stateful services identical to Sec. IV-C. The exper-
iment fixes the total number of devices to 256 and gradually
change the ratio between relevant services (number of ACs)
and non-relevenat services (non-trivial random dummy devices
with the same number of services) from one AC to 256 ACs
out of 256 devices.

The dashed gray line in Fig. 5 shows an almost constant
calculation time over the ratios. When the state ontology is
involved, the reasoner is thus not anymore able to discriminate
between relevant and non-relevant descriptions. We explain the
slight decrease in the calculation time for a growing number of
ACs through synergy effects when more descriptions become
identical (except for the location Property).

E. Open Questions

Finally, we evaluate the overhead of our open question
configuration feature. So far, the device locations were given
through an explicit Statement in the device descriptions. In
this experiment, we compare this with device descriptions that
define an open question for the location. When calculating the
execution plan, the answers are already given and stored in
the knowledge base.
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Fig. 6. With our open questions, context information such as the location can
be configured dynamically through user feedback or other IoT devices, e.g.,
through a localization system. This indirection requires additional inference
steps for each device and causes an overhead in the execution plan calculation.

Fig. 6 shows a comparison for the “Power On + Set Temp +
2 Conversions” goal from Sec. IV-C. At 256 devices, the over-
head for open questions in relation to the static configuration,
which takes 920 ms to compute the proof, is 43% or 391 ms.
While this mechanism thus enables more dynamic config-
uration through interactive feedback, the reasoner requires
additional inference steps to produce the necessary Statements.
This could be optimized by adding explicit Statements to the
knowledge base when a questions is answered—at the cost of
losing flexibility in dynamic environments.

V. CONCLUSIONS

In this paper, we show multiple extensions to semantics-
based service composition in smart environments. In particular,
we build on the approach presented in [13] by facilitating
the management of stateful services in physical mashups and
demonstrate the general feasibility of RESTdesc and semantic
reasoning in resource-constrained environments using CoAP.
We also introduced the concept of open questions, which
allows for dynamic configuration and interactive composition
by enabling the reasoner to fetch additional information from
(potentially human) users of the system.

Since providing semantic descriptions for RESTful APIs—
in particular in the context of the IoT—is relatively new, we
developed a tool that fosters the experimentation and design of
RESTdesc descriptions for IoT devices. Our Semantic IDE can
attach to live environments to help debugging the distributed
system and can simulate devices for rapid prototyping. It
supports developers with a comprehensive RESTdesc editor,
Web-based reasoner interfaces, execution plan visualizations,
and configuration management.

The power of using a semantic reasoner is that service com-
position becomes automatic, dynamic, and more fault-tolerant
in smart environments. Our evaluation results show that the
time required by the reasoner to calculate an execution plan
represents a potential obstacle to applying this approach. [13]
and [18] demonstrated that parsing the service descriptions is
indeed a major overhead. On top of this, we found that the time
required for a proof is significantly increased when including

stateful services, which are natural to physical mashups. At
present, semantics-based service composition is feasible for
smart environments with about 250 devices when the goal is
reachable through medium-sized execution plans with around
ten requests involving a low number of stateful services.

There are still open research questions to improve the
heuristics of reasoners to deal with the state space explo-
sion for complex proofs. Optimized implementations that can
also leverage multiple cores could further improve execution
plan calculation times. There are, however, further possible
improvements at the system level: for instance, the knowledge
base could cache results from inference steps, which can
in particular improve our dynamic configuration approach
through open questions. Furthermore, our reasoning server
could leverage additional service descriptions such as the
CoRE Link Format to pre-select the relevant services, and
hence reduce the state space. Solving these issues will enable
a dynamic approach for service composition that is applicable
across different application as envisioned in the IoT.
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