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Abstract—Our paper Actinium: A RESTful Runtime Container
for Scriptable Internet of Things Applications presents an archi-
tecture to make programming of Internet of Things applications
significantly easier. Traditional programming models, stemming
from networked embedded systems and wireless sensor network
research, require developers to be knowledgeable in various
technical domains, from low-power networking, over embedded
operating systems, to distributed algorithms. With Actinium, we
bring Web-like scripting to wireless sensor and actuator nodes
and comparable resource-constrained devices. Applications are
split into two components: Thin servers that provide the hardware
functionality of IoT devices through a low-level RESTful interface
and scripted apps that implement the application logic and run
in the Cloud. Using our Actinium (Ac) app-server, Erbium (Er)
REST engine for Contiki, Californium (Cf) CoAP framework,
and Copper (Cu) CoAP user-agent, we demonstrate how to create
IoT application by simply mashing up devices, modular apps, and
other RESTful Web services. All these building blocks are also
publicly available.

I. INTRODUCTION

The Internet of Things reflects the vision of interconnecting
the virtual and the physical world. For this, physical artifacts
endowed with sensing, actuation, computing, and communica-
tion capabilities become the link between computer networks
and the real world. With the rising presence of light-weight
TCP/IP suites [2], [5], these ‘things’ are becoming directly
accessible through the Internet. Creating IoT applications
with such systems remains, however, unnecessarily difficult.
Developers have to cope with different operating systems, deal
with platform-dependent issues, and be aware of low-power
networking.

To this end, the Web of Things (WoT) initiative proposes
to use simple, well-defined RESTful interfaces [11] to access
devices. Currently available WoT solutions usually require
application-level gateways that put the RESTful interfaces on
top of various low-power technologies such as Bluetooth or
ZigBee [3]. We push this idea one step further by moving
the Web servers directly onto low-end devices with only
about 10kB of RAM and 100kB of ROM [7]. For this, we
use CoAP [10] which has two key advantages over HTTP:
First, the UDP-based protocol makes it feasible to run a Web
server directly on devices with a performance comparable to
native WSN protocols. Second, CoAP supports native push
notifications, which are a central element for real-time updates.

Our software design is based on the separation of device
firmware and application-specific logic, which we call the
Thin Server Architecture [8]. Devices only expose their basic

Fig. 1. Actinium mashes up resources directly from IoT devices as well
as other Ac scripts or remote Web services. Our novel runtime container
fully complies with the REST architectural style and even performs dynamic
installation, updates, monitoring, and removal of scripted applications through
RESTful interaction.

features through RESTful interfaces so that the firmware only
handles sensing and actuation. The application logic runs
in the Cloud, i.e., a local app-server or a remote service
provider, both connected through IP. This has two key benefits:
Application development is decoupled from the embedded
domain and the infrastructure becomes usable by multiple
concurrent applications.

II. ACTINIUM (AC)

Actinium is our novel RESTful runtime container for
scripted IoT applications. It takes the experience from scripting
mashups in the Web browser and transfers it to a standalone
app-server for machine-to-machine scenarios. Each running
script is modelled as a resource and the dynamic installation,
update, and removal of scripts is done through a RESTful
API. The internal scripting API adds the possibility for scripts
to also export internal data through such an interface. Thus,
scripts can not only mash up devices, but also other scripts.
More complex applications can be built by reusing other mod-
ules. This example shows how to provide two sub-resources:
var threshold = 0;
// a sub-resource "/config"
var sub1 = new AppResource("config");
app.root.add(sub1);
// that accepts PUT requests
sub1.onput = function(request) {
// to configure the threshold

threshold = request.payloadText;
};

// a sub-resource "/occupancy"
var sub2 = new AppResource("occupancy");
app.root.add(sub2);
sub2.onget = function(request) {



// that returns true or false depending on a given value
request.respond(2.05, value > threshold ?
"true" : "false");

};

To directly access devices running CoAP, Actinium of-
fers the CoAPRequest object API, which behaves similar to
AJAX’s XMLHttpRequest object. Yet, we also cover CoAP’s
new concepts such as observing [4]:

var req = new CoapRequest();
// define the callback for notifications
req.onprogress = function() {
// unlike XHR, only contains payload of last message

update(this.responseText);
};

// request is DONE, i.e., the observe relationship ended
req.onload = function() {

app.dump("Observing terminated"); // to console
};

req.open("GET", "coap://mote1.example.com/sensors/pir",
true /*asynchronous*/, true /*confirmable*/);

req.setRequestHeader("Observe", 0);
req.send(); // non-blocking

III. OTHER BUILDING BLOCKS

Apps hosted by Actinium build on thin servers, which
provide access to device functionality. Those are implemented
with the Erbium REST Engine for Contiki [7]. All device
resources are discoverable through /.well-known/core,
which provides a listing in the CoRE Link Format [9]. Eventful
resources such as those exposing the button are observable and
large resources support blockwise transfers [1].

To install new scripts, change the configuration, and also test
apps as well as devices, we use our Copper (Cu) browser add-
on for Firefox [6] (Figure 2). It allows for direct interaction
with networked embedded devices. It is a tool for configuration
and assessment of correct system behavior like the Web
browser is for classic RESTful Web services.

Fig. 2. The tree on the left shows the resources of a running Actinium
app-server. The current URI is the occupancy sub-resource from the example.

Finally, our Californium (Cf) CoAP framework [8] provides
a CoAP-HTTP cross proxy that can connect normal RESTful
Web services directly with devices.

IV. DEMONSTRATION SETUP

The purpose of our demonstration is to show how embedded
Web technology eases the creation of IoT applications. For
this, we have the following setup (cf. Figure 3):
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Fig. 3. Our demonstrator includes an Actinium app-server, several thin
servers running on wireless sensor motes, an embedded 6LoWPAN border
router, and tools for user interaction and testing.

The central component is Actinium, which runs on a laptop.
We demonstrate how applications can be installed, configured,
executed, and removed through the RESTful interface. As
the latter is based on CoAP, we also demonstrate Copper
and the Californium GUI client to interact with CoAP re-
sources. To show the concept of IoT device mashups and our
CoAPRequest object API, we provide multiple wireless sensor
nodes running Erbium. The wireless sensor nodes form a RPL
network and are connected through an embedded 6LoWPAN
border router implemented on a BeagleBone.
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