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Abstract—Unlike traditional networked embedded systems,
the Internet of Things interconnects heterogeneous devices
from various manufacturers with diverse functionalities. To
foster the emergence of novel applications, this vast infras-
tructure requires a common application layer. As a single
global standard for all device types and application domains is
impracticable, we propose an architecture where the infrastruc-
ture is agnostic of applications and application development is
fully decoupled from the embedded domain. In our design, the
application logic of devices is running on application servers,
while thin servers embedded into devices export only their
elementary functionality using REST resources. In this paper,
we present our design goals and preliminary results of this
approach, featuring the Californium (Cf) CoAP framework.
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I. INTRODUCTION

The recent years of research in the field of wireless
sensor networks (WSNs) have led to the standardization of
Internet technology for constrained embedded devices1 with
6LoWPAN as central standard [10]. While consensus was
found up to the transport layer to interconnect these devices
in an Internet of Things (IoT), an open application layer is
yet to emerge. We are working on an architecture that fully
complies with the de facto application layer of the Internet,
the World Wide Web.

The idea of this Web of Things (WoT) [2, 19] started
with smart gateways that run a Web server and provide
access to different devices in a RESTful manner [3, 18].
The gateways can shield resource-constrained devices from
too many requests, bridge between different communication
technologies, and provide additional services for device
management and discovery. On the downside, however,
changes in the application and device capabilities also affect
these gateways, as they carry a piece of the application logic.

To push the WoT idea one step further, i.e., the servers
directly onto the devices, a working group of the Internet
Engineering Task Force (IETF) is currently standardizing the

1In this paper, we are considering the 8-bit microcontroller class with
about hundreds of kilobytes of ROM and tens of kilobytes of RAM.
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Figure 1. The thin server architecture to the extreme: A washing machine
whose every button, actuator, and sensor is modeled as a resource. The
application logic runs in the Cloud.

Constrained Application Protocol (CoAP) [14]. Being Web-
oriented, this protocol also leverages the REST architectural
style to interact with resource-constrained devices. In addi-
tion, it provides native push notifications [5] and efficient
UDP-based group communication. A transparent mapping
to HTTP facilitates Web integration through application-
independent proxies, which may also reduce the load for
embedded devices through the REST caching mechanisms.

To foster interoperability at the application layer, we
propose the thin server architecture that—analog to the thin
client architecture—relieves embedded servers from the bur-
den of application logic, but rather utilizes them as a wrapper
for the device’s sensors and actuators. Application servers
then provide the logic, leveraging not only the RESTful API
provided by the device in question, but potentially also other
resources of the Web.

For example, think of a washing machine where every
button, actuator, and sensor is modeled as a resource (c.f.,
Figure 1). The machine does not, however, store any washing
program locally. Whenever a button is pressed, a request
is sent to an application on the Web that hosts the wash-
ing machine’s decision logic. While this approach seems
unconventional, it offers a number of benefits: Washing
programs may be optimized continuously, new features may



be introduced, other applications may leverage functionality
of the machine (e.g., send notifications when the washing
program has finished) and the machine can be monitored
continuously to detect possible defects early. In contrast,
today’s washing machines are offline and delivered with
a firmware that can only be changed by a trained service
technician.

We argue that scripting languages are a suitable solution
for specifying the application logic of devices, as they are
relatively easy to understand, widely deployed and already
used for similar purposes. To describe this architecture that
is based on thin servers and script-based application logic in
the cloud, we first introduce our design goals, then describe
the proposed architecture in greater detail, and finally present
our preliminary results in an effort to create a prototypical
infrastructure based on the described concepts.

II. DESIGN GOALS

As a basis, we build upon a strictly layered architecture for
the Internet of Things to handle complexity and interoper-
ability. Energy concerns, for instance, can be handled by an
application-independent radio duty cycling layer, which also
enables multiple applications within the same low-power
network. In addition, we have the following motivation for
our proposed architecture.

A. Full Web Integration

The vision of the IoT is to extend the virtual world
into the real world and augment physical everyday objects
with additional services. This development brings with it the
ability to manage real-world processes in real-time and in an
automated manner that allows computers to react and adapt
to physical phenomena in the real world. The World Wide
Web evolved to de facto application layer of the Internet and
most large-scale distributed applications are nowadays Web-
based. A full and seamless integration of embedded systems
with the Web, leveraging the plethora of existing services
and tools, is thus a central goal of our architecture.

B. Intuitive APIs

The big players in the Web sphere mostly define their
own application programming interfaces (APIs) for their
public services, and still are able to interconnect seamlessly.
Also for third parties, the integration of different services is
comparatively easy. This is possible because of the REST
constraint for uniform interfaces. The APIs are compatible
to each other, but their individual interfaces are designed
according to the service semantics. Thus, they can provide
self-descriptive names and intuitive interaction, which in
turn facilitates productive usage, enables better assertions
of the correct behavior for complex distributed systems, and
eventually lowers the integration costs.

C. Decoupling of Infrastructure and Applications

The Internet was able to evolve because of a simple
constraint: the end-to-end principle. Intermediate nodes are
kept free from application-specific functions and only serve
as transport between the end hosts of the network. A similar
principle is required for the IoT infrastructure. The vast
number of nodes providing sensing and actuation capabilities
cannot be reprogrammed for every change of the application.
Application-specific functionality on these nodes would also
prevent concurrent applications from leveraging the same
infrastructure. Even though less in number, the same applies
for application-specific gateways. Thus, devices in the IoT
must be agnostic of the application. They must be con-
strained to simple intermediate nodes to the physical world
through their sensors and actuators.

D. End-User Programming

Although most functionality of today’s consumer devices
is realized in software, users are limited to use products as
designed by the manufacturers. By providing an interface
to the elementary functions of a device, users can change
and extend its functionality and smoothly integrate it with
existing infrastructure without modifying the original device
firmware. This adds significant value to the product since
users can adopt their devices to their specific needs. Also,
by publishing the added functionality, the value of the whole
infrastructure increases according to Metcalfe’s law.

III. ARCHITECTURE

A. Thin Server Model

Based on the idea of thin clients, we define a thin server as
a device in the role of a server that does not host any applica-
tion logic. This enables an IoT infrastructure that is agnostic
of applications. Corresponding to a thin client, which is
only equipped with the necessary interfaces to interact with
the user such as display and keyboard, thin servers only
provide a low-level API to their elementary functionality,
such as sensor and actuator access and configuration of
device parameters to interact with the physical world. A
central implication is that a device can continuously evolve
during its lifetime, as new functionality can be added by
providing a new app. Not only can an application like
an updated washing program enhance the environmental
sustainability, but also extend usage of the hardware itself.

The thin server model introduces new challenges that have
to be addressed. An open question is where exactly to make
the cut in the functionality and place the API. Considering
the washing machine example from the beginning, a central
constraint is hard real-time for control loops between sensors
and actuators. Often, this cannot be met because of the round
trip times to the Cloud service. Thus, these control loops
must be realized locally and only their parameters can be ex-
ported through the API. A second challenge is safety, which
must be ensured independent from fluctuating network link



quality. For any API input the washing machine must enforce
local safety rules, for instance to avoid escape of water due
to improper valve control or hazardous imbalance by an
overdriven motor. The security and privacy challenges are
independent from the thin server model, as the requirements
apply to any architecture. Given a specific hardware platform
class, however, the model has the advantage that hardware
resources that are freed by removing the application logic
can be allocated for the security suite.

B. Interface Model

Within our architecture, the APIs of thin servers and apps
are RESTful and usually implemented with CoAP, but HTTP
is also used, for instance for more powerful devices such as
low-power Wi-Fi systems-on-a-chip [11]. To ease the job
for developers, our design only employs human-readable,
self-descriptive APIs supported by concise descriptions like
the CoRE Link Format [13] and Microformats2. This also
enables tech-savvy users to understand in which way their
devices publish and consume data, so they can write scripts
to modify or extend the functionality. The gained flexibility
comes at the price of glue code to integrate a system
from different manufacturers. Web development has shown,
however, that the integration costs are low and can be done
by developers with different backgrounds. Ideally, tools can
automatically create components for graphical programming
languages like Yahoo! Pipes or ClickScript only from the
descriptions.3

This is a compromise between fully specified device
profiles and mobile code as the other extreme, where devices
completely lack the notion of their provided service. Device
standards by industry alliances traditionally strictly specify
the possible actions within an application domain and force
devices into knowing these profiles. In the IoT, however,
devices are not part of a specific application domain and
the number of involved manufacturers and device types
is expected to be vast. We therefore argue that no global
standard can emerge to manage this heterogeneity and rather
advocate the implementation of self-descriptive, REST-based
interfaces that can be understood and used by humans as
well as devices in M2M scenarios.

This does not mean, however, that devices in our ar-
chitecture must not support standards for their primary
application domain. Recently, industry alliances also employ
RESTful interfaces as a basis for their profiles such as the
ZigBee Smart Energy Profile 2.04 or the IPSO Profile5.
Unfortunately, they do not fully carry out the incorporated
Web concepts. The protocol overhead for human-readable,
self-descriptive URIs goes to waste by using cryptic one-
/two-letter identifiers, which have no advantage over tra-

2http://microformats.org
3http://pipes.yahoo.com/pipes, http://clickscript.ch
4http://www.zigbee.org/Standards/ZigBeeSmartEnergy
5http://www.ipso-alliance.org/technical-information

ditional, binary-coded profile protocols. Still, both profiles
can be supported by the thin server model through a simple
proxy that converts the low-level REST API to the specified
resources and representations of the profile. Such proxies
can also be realized as an app and thus retrofitted, again
extending the lifetime of a device.

C. App Model

The app model enables the reuse of deployed devices for
different applications without changing the firmware [6] and
leverages a programming model similar to Web 2.0 mashups.
For interoperability and multiple concurrent applications that
leverage the same infrastructure, it relies on the thin server
model. With this setup, apps implement the application logic
separated from the firmware of the devices and run in the
Cloud. The latter can be a remote server by a service
provider or a local host that is always available, such as
a router or a digital video recorder. The separation from the
firmware also allows developers that are not specialized in
the embedded domain to create applications using commonly
known languages and tools.

D. Infrastructure Integration and Discovery

A general requirement for IoT architectures is to support
the management and look-up of devices, which requires
a robust discovery mechanism to integrate newly arriving
devices into the infrastructure and remove them once they
become inactive or disconnected. To enable user-friendly
and efficient look-up, the functionality offered by devices
and apps has to be extracted and stored as service represen-
tations. Our approach to enable this is to embed metadata
like names, brands, tags, or geographical information into
the resource representations. These annotations, however,
should be simple enough to allow not only programmers
but also tech-savvy Web developers to annotate smart things
and thus help foster a community around the generation and
publishing of device-related metadata. Though, care must
be taken to not overload constrained devices with metadata,
which would have severe effects on network performance
and device battery consumption. Instead, we propose to pro-
vide annotations separately and link them to the associated
device using Web Linking techniques specified in the CoRE
Link Format [13].

We have been exploring the use of different lightweight
markup languages, like Microformats and Microdata6, to
annotate the services offered by our devices. To this end,
the development to using Microdata is gaining traction
in the research community as well as industry, as many
vocabularies have started to emerge. They define extensive
collections of concepts like Person, Event, or Organization
(e.g., data-vocabulary.org or schema.org). While many of
the definitions in these initiatives are based on earlier

6http://www.whatwg.org/specs/web-apps/current-work



and less successful formats like FOAF7, these vocabularies
attract a lot of attention in the industrial domain and are
supported by big players like Google and Yahoo!. This
represents a trend towards creating community metadata
that is, rather than being based on rigid and globally stan-
dardized models or types, driven by bottom-up annotation
of resources according to publicly agreed-upon definitions.
To our knowledge, however, there is currently no effort to
standardize a description vocabulary for services provided by
physical devices, which could be a practicable approach to
creating lightweight, easily understandable, and expressive
annotations for smart things.

We have created a discovery system for smart things and
their resources that is based on the application of multiple
semantic identification strategies (e.g., for recognizing Mi-
crodata) onto the resource representation [9]. This system is
designed to enable the creation and updating of strategies at
runtime and thus is decoupled from any specific annotation
format for resources. When the system is not yet able to
understand annotations provided by a smart thing, a new
strategy for interpreting the contained resources’ annotations
can be published to our system, which allows for a future-
proof resource discovery service. While this approach is
well integrated with the WoT initiative, it is not yet in line
with the concepts for constrained RESTful environments.
Here, essentially, a transparent mapping to the CoRE Link
Format has to be established. In the other direction, WoT
device discovery can make use of the CoRE Resource
Directory [15] to discover new smart things and find the
entry point to their REST interface.

IV. PRELIMINARY RESULTS

We have implemented several building blocks of a pro-
totypical infrastructure and testbed for our architecture. As
a case study for our upcoming evaluation, we chose smart
home environments. Private homes provide a plethora of
heterogeneous device types such as household appliances,
multimedia equipment, sports and simple healthcare prod-
ucts, toys, and home automation sensors and controllers.

A. Back-end Framework: Californium (Cf)

One main contribution of this paper is Californium (Cf),
a CoAP framework in Java. It is designed for back-end
clients and servers, as well as CoAP proxies. To fulfill
the different roles, Cf follows a modular design. The stack
is configurable through different Communicator classes.
The default configuration is shown in Figure 2a. The gray
AdverseLayer is included in the framework, but not active by
default. It allows to test the behavior under different packet
loss rates. New layers (e.g., for DTLS) can easily be added,
as any of the UpperLayer classes can be stacked on top of
each other. Only the base layer connecting to the transport
system is fixed.

7http://www.foaf-project.org
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Figure 2. The Californium framework can fulfill three different roles:
(a) CoAP server in the back-end, (b) CoAP client for unconstrained
environments, and (c) CoAP-HTTP proxy. At the time of writing, caching
and the CoAP-to-HTTP mapping are not included.

Californium is designed for rapid deployment of CoAP
resources in the back-end. A server extends the LocalEnd-
point class and defines the initial resources in its constructor.
Resources can again have multiple sub-resources, which can
also be added dynamically. Figure 2b illustrates a subset
of our demonstration server8. The framework also provides
a stub to handle the creation of resources via PUT when
resources along the path do not exist at the time the request is
received. Depending on the visibility, Cf will automatically
create the CoRE Link Format for /.well-known/core.

Full proxy capabilities with caching and full HTTP map-
ping have not yet been implemented. Still, Californium can
already bridge between HTTP and CoAP using the default
Java HttpServer. Such a setup was shown by another group
that already uses the framework [1]. The source code is
publicly available on GitHub9.

At the time of writing, we were in the process of integrat-
ing JavaScript support into Californium. Scripted apps are
instantiated as a CoAP resource of an app server and can eas-
ily export user-defined information through sub-resources.
For client functionality, we are specifying a coapRequest
object API similar to the xmlHttpRequest object.

B. Smart Appliances

Our second building block are prototypes of smart appli-
ances based on different platforms. Figure 3 shows the proto-
types created to date: several Tmote Skys that serve as simple
sensors and routers, smart thermostats on each radiator in
our office area using the Dresden Elektronik deRFmega12810

wireless module, and smart power outlets for electricity
metering and switching using modified Ploggs11 with an
AVR Jackdaw. These are based on the Erbium (Er) REST
Engine [7]. In addition to the device functionality, we export
debug information such as the neighbor table and a resource
to reconfigure the IEEE 802.15.4 channel during runtime.

8coap://vs0.inf.ethz.ch:5683
9https://github.com/mkovatsc/Californium
10http://www.dresden-elektronik.de/shop/prod148.html?language=en
11http://www.plogg.co.uk
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Figure 3. Prototypes of smart appliances that follow the thin server model
and export all their functionality through a RESTful API. All ‘volatile’
values such as temperature or power consumption support CoAP’s observe
option. The Tmote Skys provide all onboard functionality, the thermostats
can be set to a target temperature or controlled manually by setting the
valve. The smart power outlets measure current values and cumulative
consumption.

Technically speaking, all these appliances are ‘dumb,’
as they implement the thin server model. From a user
perspective, however, they appear smart due to apps running
on top of the sensing and actuation capabilities they provide.
The appliances already serve a few Cf -based applications
following the app model. The remote control and logging
of the thermostats and power outlets is straight-forward.
Another application uses the temperature values from the
thermostats to calibrate the temperature sensor of the Tmote
Skys: Due to an unfortunate design of the sensor nodes, their
power supply heats up the onboard STH11 and the formula
from the datasheet cannot be directly applied. The required
correction function also varies for battery- and USB-powered
motes. The upcoming scripting support for Californium will
foster additional applications that leverage the thin server
model.

C. Configuration and Management Tool: Copper (Cu)

A central tool in the WoT idea is the Web browser, as it
enables the inspection of RESTful Web services. We created
Copper, a corresponding tool for constrained environments
based on CoAP. With it, developers can explore, test, and
configure the elementary device APIs and the applications
running in the back-end. Users can use it directly as univer-
sal remote control for their devices. Copper is implemented
as a Firefox extension, so CoAP resources integrate fully
with the main Web tool, the browser. CoAP links and
bookmarks can be used in the normal way. Cu provides fine-
grained options to customize outgoing requests and renderers
for several content-types of responses as shown in Figure 4.

V. RELATED WORK

Many other concepts and frameworks exist that aim to
enable the interconnection of real-world devices and their
sensors and actuators within ecosystems of smart things. The
“Web of Things plug and play experience” [17] requires
all participating parties to have a common understanding
about how resources should be addressed and controlled
and about the handling of event notifications. The authors
discuss a support infrastructure for interconnected Web-
enabled devices that represents devices as resources and
manages discovery using a centralized resource repository
that also holds data about the context of available sensors
and actuators. For interaction with the resources, a REST
API is used and notifications are channelled over an XML-
RPC-based push mechanism (blog ping).

The WebPlug framework [12] extends this idea of a
plug and play experience to provide a generic approach
for the interaction with Web-enabled objects and the con-
struction of mashups that incorporate functionality provided
by their sensors and actuators. WebPlug describes a number
of components like typed resources, collections, or pollers
(which emulate push-functionality for resources outside the
framework) and connects them using the Observer pattern
via URL callbacks to propagate knowledge about events.
The framework follows a uniform URL-based approach
that does not depend on HTTP extensions nor on a single
serialization format like Atom to implement versioning and
the manipulation of collections.

The Simple Measurement and Actuation Profile (sMAP)
[16] has been designed to relay real-world information
from sensors and actuators over HTTP using defined JSON
schemas. Resources are modeled with URIs in the form
of point/type/channel, where point represents a

Figure 4. The Copper (Cu) CoAP user-agent allows for direct interaction
with networked embedded devices. It is a tool for configuration and
assessment of correct system behavior like the Web browser for classic
RESTful Web services.



physical point of information, type specifies either a meter,
sensor, or actuator, and channel represents a particular
stream of readings (e.g., temperature). The readings them-
selves are sent as JSON objects with strict formats and data
semantics that are defined in a set of JSON schemas. The
architecture supports resource-constrained devices through
proxies that translate between JSON and binary JSON. The
ideas presented in sMAP are somewhat reminiscent of earlier
attempts to establish Web Service specifications for devices.
The Devices Profile for Web Services (DPWS) initiative de-
fined implementation constraints for SOAP Web services so
they can be used in machine-to-machine communication that
is more constrained than server systems. Current research
in this field targets the adaptation of DPWS for highly
resource-constrained devices like the Tmote Skys used in
our architecture [8].

A very different approach to enabling ecosystems of
sensor nodes is dinam-mite [4]. It is a fully self-contained
wireless sensor network development environment that elim-
inates the setup overhead for the development infrastruc-
ture. The entire tool-chain is served by each sensor node,
including the IDE, libraries, code, data, and visualization.
While this setup is very appropriate regarding the simplified
rapid prototyping of applications on powerful motes (e.g.,
80 MHz PIC32 microcontroller with 128 kB of program
memory, 32 kB of RAM and additional storage memory [4]),
it cannot be run on the inexpensive, resource-constrained
nodes envisioned in our proposed architecture.

VI. CONCLUSION AND FUTURE WORK

The proposed thin server architecture promotes a Web-
like application layer with a common programming model
for constrained networked embedded devices. The key idea
is to separate the application logic from the firmware to
enable application developers with different backgrounds to
provide applications for the heterogeneous device types from
many different vendors found in an Internet of Things en-
vironment. With our prototypical infrastructure, we showed
how the presented design goals can be realized and that
the architecture is feasible. Devices running the Erbium
(Er) REST Engine export their functionality without hosting
any application logic. Thus, they can serve multiple appli-
cations running on the back-end without reprogramming.
Also multiple concurrent applications are supported, for safe
operations. The applications could be developed without
any knowledge of the embedded domain and details of the
system running on the devices. The implementation of the
application logic itself is fostered by the presented Cali-
fornium (Cf) CoAP framework, which provides a large code
base for clients, servers, and proxies. While we acknowledge
that security is a crucial aspect that has to be addressed in
order to enable a wide real-world deployment of an IoT
architecture, we do not address this issue at this time.

As a next step we will fully integrate scripting support
for the application logic. With that, we will be able to
develop various application classes for the evaluation of
the architecture in our testbed. A comparison with a native
implementation of selected application kernels will show the
feasibility and limitations of our architecture, depending on
the application class.
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