Demo Abstract:

Human—CoAP Interaction with Copper

Matthias Kovatsch
Institute for Pervasive Computing
ETH Zurich, Switzerland
Email: kovatsch@inf.ethz.ch

Abstract—We introduce ‘Copper,” a generic browser for the
Internet of Things based on the Constrained Application Protocol
(CoAP). Current estimates foresee that the number of networked
embedded devices encompassed by the Internet of Things will
be vast. Additionally, most systems will be optimized for the
constrained environment with its limited energy and bandwidth.
These factors make it difficult for users to observe and control
the devices. Thus, a major problem will be node and network
management, as experienced before in large wireless sensor
network deployments. By adopting well-known patterns from the
Web, such as browsing, bookmarking, and linking, we provide a
user-friendly management tool for networked embedded devices.
By integrating it into the Web browser, we allow for intuitive
interaction and a presentation layer that is originally missing in
the CoAP protocol suite.

I. INTRODUCTION

The Internet of Things is the vision of interconnecting
everyday objects and in a further step making them smart. With
the recent advances in the field of wireless sensor networks
(WSNs) and the standardization of 6LoWPAN [5] and its rela-
tives, we can now realize this vision using the Internet protocol
IPv6. Everyday objects connect directly at the network layer
of the Internet. Therefore, current estimates expect the Internet
to grow tremendously at its edge. A trillion of networked
embedded devices will offer information about themselves
as well as their environment. Just like RFID technology is
revolutionizing logistics and supply chain management, they
will improve business processes such as factory automation,
the energy efficiency of buildings and sustainability of entire
cities, and our personal daily lives [11].

The vast number, however, as well as the resource-
constrained nature of these devices turns node and network
management into a challenging task. Although there are mech-
anisms that aim for zero configuration networking [8], humans
will usually be involved to assure correct behavior at the
application layer. To this end, we introduce ‘Copper’ (Fig. 1), a
generic browser for networked embedded devices running the
Constrained Application Protocol (CoAP) [10]. We expect this
protocol, or a further development, to be central for the Internet
of Things, as it combines well-proven concepts from the
Web with efficient mechanism for constrained environments
in a long-lived IETF standard. With Copper, we provide a
management tool that allows to browse devices in the same
fashion users are used to explore the Web.

Freron™ T
I@Cupper; Add-ons for Firefox |mv;0\nlelhzth/He\lme\d x |E|Imm=—sky]./lighl L+

& (] coap://vsD.inf.ethz.ch/HelloWorld Ty - |2~ Google Pl B
S

| € [cag POST PUT |LJ| DELETE Payload PUTme) Observe {2 Discover [T Auto discovery [¥] Retral

| vs0.inf.ethz.ch:5683 (RTT: 105ms)

‘wwewnawm’m‘ ‘Ihdln\’lﬂrldl ‘ Jseparate ‘ ‘ fstorage ‘ ‘ JteUpper ‘

2.05 Content

Header Val

Value Info

Typ:
Codk 0x0DC05S

3 bytels)

Options 2

Payload (30)
Helle World! Seme umlauts: &84

Block-Up

Response optians

Path Location-Query

Fig. 1. Internet of Things browser ‘Copper’ implemented as Firefox extension
http://addons.mozilla.org/en-US/firefox/addon/copper-270430/

II. THE CONSTRAINED APPLICATION PROTOCOL

This section summarizes the features and advantages of
CoAP [10]. It is a Web-oriented protocol, i.e., it adopts features
from HTTP, the Web protocol. The central ones are the (i)
resource abstraction, (ii) RESTful interaction [2], and (iii)
extensible header options. These features allowed the Web to
evolve from a simple document retrieval mechanism (‘World-
Wide Web’) to a thriving application platform (‘Web 2.0%).
Being a successful, long-lived IETF standard, HTTP allows
us to combine different resources or services with very little
scripting effort in so called ‘mashups.” This interoperability
is the key argument for the ‘Web of Things’ initiative [3]
to push HTTP down to the device level. HTTP over TCP,
however, has a one-to-one communication model, no native
push notifications, and is rather heavy-weight for constrained
devices (i.e., 8-bit microcontroller class).

To overcome this downside, CoAP combines (i—iii) with
size-optimized, reliable datagram communication. On the one
hand, it offers URIs (e.g., coap://vsO.inf.ethz.ch/),
the RESTful methods GET, POST, PUT, and DELETE, and
extensions through header options that can be defined indepen-
dently. On the other hand, CoAP uses UDP, which is lighter
than TCP, but moreover allows for efficient IP multicast. Group
communication is a significant requirement for the Internet

of Things, for instance for automation applications. To make
up for the unreliability of UDP, CoAP defines transactions
with retransmissions. Native push notifications for eventing
are supported with the publish/subscibe pattern to observe
resource changes [4]. Finally, a resource discovery mechanism
is provided, which also provides for resource descriptions [9].

III. THE HUMAN IN THE LOoOP

In the following, we argue why in typical situations humans
must remain in the loop. At the network layer, devices can
automatically join a network, retrieve an address, and start
communicating with other nodes without user input. At the
application layer, however, this is hard because bindings (i.e.,
the configuration of endpoints devices should communicate
with) decide about the semantics of an application. With
device profiles, it is possible to automatically bind matching
endpoints (e.g., a switch with a lamp or a dimmer with a
dimmable light). This, however, fails if multiple endpoints
with the same profile are available and an endpoint shall only
control a specific endpoint or a subset.

More extensive descriptions and software agents could help
making such decisions automatically, but first users or pro-
grammers will have to define the rules to be applied. This also
only works when all devices observe the same standard. That
is, however, unlikely with the plethora of slightly different
device types from many different vendors, which might be
unrelated to networking such as home appliances companies
or sensor equipment specialists. Just like Web applications
require some amount of glue code to mash up services,
programmers will have to ensure device interoperability.

Therefore, users require an appropriate tool for the Internet
of Things: to explore devices, test applications, and manage
them both. It would help making bindings, defining correct
rules, and developing glue code. Such a tool is particularly in-
teresting for CoAP, which is designed for machine-to-machine
communication and does not provide a presentation layer.

IV. CoPPER (CU): COAP FOR THE USER

We designed Copper, a generic browser for the Internet of
Things. The idea of such a browser has already been around.
The BIT (Browser for the Internet of Things) framework
provides a “single point of interaction for users when accessing
the services of a variety of tagged objects.” [7] In opposition
to Copper, it is meant for physical artifacts that are linked to
their virtual presence through tags such as RFID or barcodes
and do not provide direct interaction. A comparable solution to
Copper was presented by Schor et al. [8]. Their work allowed
to browse and modify the properties of WSN nodes. They
used, however, an intermediate JavaEE server that rendered
the information in HTML and used corresponding forms to
interact via application-level gateway. This approach is also
used in [3]. Closer to our project, the DPWS Explorer! is a
standalone application that allows exploring DPWS-enabled
devices [6] and provides a Ul for interaction.

http://ws4d.e-technik.uni-rostock.de/dpws—explorer/
’http://sourceforge.net/projects/libcoap/

We developed Copper as an extension for the Mozilla
Firefox Web browser, so it integrates well into the users’ way
of interacting with the Web. The extension registers a protocol
handler for the scheme coap. Thus, CoAP URIs can simply
be entered into the address bar or followed from links on
Web pages. Thereupon, the user can use (automatic) resource
discovery, browse the resouces of the host, and interact through
buttons corresponding to the RESTful methods. Firefox can
also bookmark CoAP resources in the usual way, for instance
by clicking on the star in the address bar. Copper is designed
to support multiple versions of CoAP, as implementations
usually focus on a specific version to be consistent while the
draft keeps changing. We currently support two draft versions:
03, which is supported by the C implementation libcoap?
and the current Contiki-2.x release, and 06, which is the
latest draft. Additionally, we implemented blockwise transfers
[1], observing [4], and a minimal version of the CoRE link
format [9]. The presentation of resources is currently static
and basically a pretty-print for the binary protocol.

In future work, we will make use of Mozilla’s powerful
XUL/XHTML rendering engine to provide more expedient
and intuitive presentations for different types of resources.
We will also investigate the CoRE link format to provide
semantic descriptions for an automatic selection or generation
of presentations.

V. DEMONSTRATION SETUP

Finally, we give an overview of the demonstration. Our
browser will interact with different CoAP implementations
(libcoap, jCoAP3, Californium®*, and CoAP for Contiki) that
run on different systems (the local computer, a server in the
cloud, simulated motes in Cooja, and real motes deployed
on-site). We demonstrate how Copper helps exploring and
managing the nodes and discuss ideas for our future work.

REFERENCES

[1] C. Bormann and Z. Shelby. Blockwise transfers in CoAP. draft-ietf-
core-block-03, 2011.

[2] R. T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. Phd thesis, UC Irvine, 2000.

[3] D. Guinard, V. Trifa, and E. Wilde. A Resource Oriented Architecture
for the Web of Things. In Proc. IoT, Tokyo, Japan, 2010.

[4] K. Hartke and Z. Shelby. Observing Resources in CoAP. draft-ietf-
core-observe-02, 2011.

[51 G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of
IPv6 Packets over IEEE 802.15.4 Networks. RFC4944, 2007.

[6] G. Moritz, E. Zeeb, S. Pruter, F. Golatowski, D. Timmermann, and
R. Stoll. Devices Profile for Web Services in Wireless Sensor Networks:
Adaptations and Enhancements. In Proc. ETFA, Mallorca, Spain, 2009.

[7]1 C. Roduner and M. Langheinrich. BIT A Framework and Architecture
for Providing Digital Services for Physical Products. In Proc. 10T,
Tokyo, Japan, 2010.

[8] L. Schor, P. Sommer, and R. Wattenhofer. Towards a Zero-Configuration
Wireless Sensor Network Architecture for Smart Buildings. In Proc.
BuildSys, Berkeley, CA, USA, 2009.

[9] Z. Shelby. CoRE Link Format. draft-ietf-core-link-format-05, 2011.
[10] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. Constrained Applica-
tion Protocol (CoAP). draft-ietf-core-coap-06, 2011.

J.-P. Vasseur and A. Dunkels. Interconnecting Smart Objects with IP:
The Next Internet. Morgan Kaufmann, 2010.

(11]

3http://code.google.com/p/jcoap/
“https://github.com/mkovatsc/Californium

