
Supporting Mobility in Content-Based
Publish/Subscribe Middleware

Ludger Fiege1, Felix C. Gärtner2, Oliver Kasten3, and Andreas Zeidler1

1 Darmstadt University of Technology (TUD), Department of Computer Science
Databases and Distributed System Group, D-64283 Darmstadt, Germany

{fiege,az}@dvs1.informatik.tu-darmstadt.de
2 Swiss Federal Institute of Technology (EPFL)

School of Computer and Communication Sciences
Distributed Programming Laboratory, CH-1015 Lausanne, Switzerland

fcg@acm.org
3 Swiss Federal Institute of Technology (ETH Zurich)

Department of Computer Science, Distributed Systems Group
CH-8092 Zurich, Switzerland
oliver.kasten@inf.ethz.ch

Abstract. Publish/subscribe (pub/sub) is considered a valuable mid-
dleware architecture that proliferates loose coupling and leverages re-
configurability and evolution. Up to now, existing pub/sub middleware
was optimized for static systems where users as well as the underly-
ing system structure were rather fixed. We study the question whether
existing pub/sub middleware can be extended to support mobile and
location-dependent applications. We first analyze the requirements of
such applications and distinguish two orthogonal forms of mobility: the
system-centric physical mobility and an application-centric logical mo-
bility (where users are aware that they are changing location). We in-
troduce location-dependent subscriptions as a suitable means to exploit
the power of the event-based paradigm in mobile applications. Briefly
spoken, location-dependency refines a subscription to accept only events
related to a mobile user’s current location. Implementations for both
forms of mobility are presented within the content-based pub/sub mid-
dleware Rebeca, drawing from its refined routing capabilities (namely,
covering and merging).

1 Introduction

Location-Based Services. The emergence of mobile computing has opened up a
whole new field of services provided for the benefit of the mobile user. Many
such services can exploit the fact that the mobile device is aware of its current
location. For example, car navigation systems use knowledge about current and
past locations to aid drivers find their way through unknown cities. Location
information can even be combined with other sources of data, e.g., the weather
report, information on traffic jams or free parking spaces. In such cases, the
system can propose routes that avoid places where traffic is high or weather

M. Endler and D. Schmidt (Eds.): Middleware 2003, LNCS 2672, pp. 103–122, 2003.
c© IFIP International Federation for Information Processing 2003



104 Ludger Fiege et al.

conditions are unpleasant, or can direct the driver to the nearest free parking
space. All these are examples for location-based services.

Publish/Subscribe Systems. A convenient way to construct location-based ser-
vices is to build them using event infrastructures, such as those provided by pub-
lish/subscribe systems. Here, producers and consumers are enabled to exchange
information based on message type or content rather than particular destination
identifiers or addresses. This loose coupling of producers and consumers is the
premier advantage of pub/sub systems, which facilitates mobile communication.
Producers are relieved from managing interested consumers, and vice versa. In
this paper we study how to exploit these advantages and what extensions are
eligible in the context of mobile services.

Supporting Mobility in pub/sub Middleware. We argue that support for mobility
should be an issue of the pub/sub middleware itself and not be delegated to
the application layer. Three kinds of application scenarios have to be supported:
i) existing applications in a static environment, ii) existing applications in a
mobile environment, iii) mobility-aware applications. Since pub/sub systems and
applications have been deployed very successfully, extending existing systems
and models is preferred to creating new “mobile” middleware from scratch in
order to facilitate the integration of the first two scenarios. As a consequence,
the middleware must transparently handle some of the new mobility issues. This
allows existing event-based applications to directly interact with and even to be
deployed as mobile applications. On the other hand, the third scenario requires
the middleware to support a (semi-)automated handling of location changes. If
no such support is available, mobility is actually controlled by the application
and not by the movement of the client.

We provide support for two different and orthogonal types of mobility. The
first type of mobility is called physical mobility, where clients may temporar-
ily disconnect from the pub/sub system (due to power-saving requirements or
the network characteristics). This means that applications are not necessarily
aware of the fact that the client is moving, allowing existing applications to
be transferred to mobile environments. The second type of mobility is called
logical mobility, where clients remains attached to the their broker and have
an application-level notion of location, which is described by location-dependent
subscriptions introduced in this paper. As an example, consider a car looking for
a free parking space in the street it is currently driving along. In this situation it
may subscribe to “New free parking space on Rebeca Drive”. However, if Rebeca
Drive is a very long street, the same driver will also receive notifications about
free parking spaces very far down the road (or behind him), which are impossible
to reach in good time. What the user would like to do is to specify a subscrip-
tion such that he receives all notifications about “vacancies in the vicinity of his
current location”. We call these subscriptions location-dependent.

Related Work. Work on middleware for mobile computing usually concentrated
on classical synchronous middleware like CORBA, see [4] for a survey. Only



Supporting Mobility in Content-Based Publish/Subscribe Middleware 105

recently, position papers have stated that pub/sub systems have an enormous
potential to better accommodate the needs of large mobile communities [16,6].
Research in pub/sub systems has mainly focused on static systems, where clients
do not move and the pub/sub infrastructure remains relatively stable throughout
the system’s lifetime, e.g., Elvin [23], Gryphon [15], Rebeca [12], and Siena
[5]. If present at all, mobility support is a concern of the application layer.
Applications detect the need to change a subscription and have to react explicitly
and manually to this detection.

Huang and Garcia-Molina [13,14] provide a good overview of possible options
for supporting mobility in pub/sub systems. They describe algorithms for a
“new” middleware system tailored and optimized to mobile and ad hoc networks,
not so much an extension of an existing system. CEA [1] and JEDI [7], too,
address problems of mobility. JEDI uses explicit moveIn and moveOut operations
to relocate clients. Hence, mobility is controlled by the application, which is not
transparent and even unrealistic since clients usually only can react after having
been moved. The mobility extensions of Siena [3] are very similar. Explicit sign-
offs are required and interim notifications stored during disconnectedness are
directly forwarded to a new location upon request. Cugola et al. [6] proposes a
leader election and group management protocol for dynamic dispatching trees to
dynamically adapt the internals of the JEDI event system, their implementation
model is based on multicast and it groups identical subscribers. An extension for
Elvin allows for disconnectedness using a central caching proxy [24], which is a
potential performance bottleneck. Jacobsen [16] presents some very interesting
ideas on location-based services and the possible expressiveness of subscription
languages. STEAM [18] is an event service designed for wireless ad hoc networks.
Subscribers consume only events produced by geographically close-by publishers.
It relies on proximity-based group communication.

Outline. This paper is structured as follows: We provide some basic background
and terminology on content-based pub/sub and the Rebeca system in Section 2.
We then discuss in more detail the issues involved when supporting mobility
using existing content-based pub/sub middleware in Section 3. We present a
solution for physical mobility in Section 4 and a solution for logical mobility in
Section 5. Section 6 concludes the paper.

2 Content-Based Publish/Subscribe

The following gives an introduction to publish/subscribe systems and the system
model we used as basis for the proposed mobility support. It is based on the
Rebeca notification service [11,20].

2.1 Publish/Subscribe Systems

Processes in pub/sub systems (also known as event-based systems [12]) are clients
of an underlying notification service and can act both as producers and con-
sumers of messages, called event notifications or notifications for short. The
communication interface to the system consists of four primitives only: pub,



106 Ludger Fiege et al.

Fig. 1. The router network of Rebeca.

sub, unsub, and notify . The latter is a function provided by consumers that the
event system calls to deliver notifications. A notification is a message that reifies
and describes an occurred event. Notifications are injected into the event sys-
tem rather than being published towards a specific receiver. They are conveyed
by the underlying notification service to those consumers that have registered
a matching subscription (sub). Subscriptions describe the kind of notifications
consumers are interested in. In some systems producers are required to issue
advertisements to describe the notifications they are about to publish.

The expressiveness of the notification service is determined by its language
used for specifying subscriptions and the data model of the transmitted notifi-
cations. Subject- and type-based addressing exists [22,2,8], but the most flexible
scheme is offered by content-based filtering [19]. Filters are boolean functions on
the entire content of a notification and a common way to implement subscrip-
tions. Together with the typically used name/value-pairs data model, subscrip-
tions look like: (service = “parking”), (location = “100 Rebeca Drive”), (cost <
“3 EURO”), (car-type ≥ “compact”). The Java Message Service (JMS), for ex-
ample, uses a combination of subjects and content-based addressing.

The notification service for our scenario is distributed, of course, to meet the
mobility scenario and scalability considerations. The communication topology
of the pub/sub system is given by a graph, which is assumed to be acyclic
and connected (Fig. 1). The graph consists of brokers and clients. The edges are
point-to-point, FIFO order communication links, e.g., TCP connections, that are
error-free, a common assumption that can be relieved later. This model simplifies
the presentation and opens up implementation-dependent options, like using
Multicast, to improve communication performance. Brokers are processes that
route the notifications along multiple hops to the appropriate clients. Three types
of brokers are distinguished: Local brokers constitute the clients’ access point
to the middleware and are part of the communication library loaded into the



Supporting Mobility in Content-Based Publish/Subscribe Middleware 107

clients; they are not represented in the graph, but only used for implementation
issues. A local broker is connected to at most one border broker. Border brokers
form the boundary of the distributed communication middleware and maintain
connections to local brokers, i.e., the clients. Inner brokers are connected to other
inner or border brokers and do not maintain any connections to clients.

The individual processes are assumed to have local real-time clocks that are
synchronized using a standard protocol like NTP. While we postulate that there
is no upper bound on the message delivery delay, we assume that the delays
satisfy some probability distribution so that an expected delivery time can be
computed statistically.

2.2 Content-Based Routing

Each broker maintains a routing table that determines the decision in which di-
rections a notification is forwarded. Each table entry is a pair (F, L) containing
a filter and the link from which it was received, denoting that a matching sub-
scription is to be forwarded along L. The routing decision is assumed to be an
atomic operation so that the end-to-end sender FIFO characteristic holds. The
routing tables are maintained to correspond to the available information about
active consumers and their subscriptions. Each broker forwards these informa-
tion according to the routing algorithm used.

The simplest form of routing is simple routing : active filters are simply added
to the routing tables with the link they originated from. Obviously, this is not
optimal with respect to routing table sizes, which grow with the number of
subscriptions. A first improvement is to check and combine filters that are equal.
More generally, the covering routing strategy [5] tests whether a filter F1 accepts
a superset of notifications of a second filter F2, and in this case replaces all
occurrences of F2 assigned to the same link in the routing table, significantly
decreasing the table size. In a second step, if no cover can be found in a given
set of filters, merging can be used to create new filters that are covers of existing
ones [19]. Only the resulting merged filter is forwarded to neighbor brokers,
where it covers and replaces the base filters.

3 Publish/Subscribe Systems and Mobility

In this section we analyze and discuss the basic issues involved when adding mo-
bility support to a pub/sub infrastructure. We identify and define two orthogonal
forms of mobility (physical and logical mobility) and discuss the requirements
of a system supporting both types of mobility.

3.1 Mobility Issues in Publish/Subscribe Middleware

Mobile clients have many characteristics, among them the need to disconnect
from the network for different reasons. Be it for geographical, administrative, or
power saving reasons, being connected to the same broker all the time is no longer



108 Ludger Fiege et al.

possible. Hence, we have to take into account that clients will disconnect from
their border broker once in a while. The middleware has to deal with moving
clients and the possibility that a disconnected client reconnects at the same or
a different broker later.

A first step towards mobility is to enhance existing pub/sub middleware to
allow for roaming clients so that existing applications can be used in mobile en-
vironments. This means that the interfaces for accessing the middleware and the
applications on top are not required to change. More importantly, the quality of
service offered by the middleware must not degrade substantially. The resulting
location transparency is necessary to make existing applications mobile, e.g.,
stock quote monitoring seamlessly transferred from PCs to PDAs.

On the other hand, future applications do not want complete transparency,
but rely on awareness of mobility. More specifically, mobility support should
blend out unwanted phenomena, like disconnectedness, and enforce wanted be-
havior, like the location awareness in location-based services. Consequently, ex-
tending the interface of the pub/sub middleware to facilitate location awareness
is a promising open issue, since most existing work concentrated on the trans-
parency only.

When roaming, clients change (at least some portion of) the context they are
operating in, and they might want to react to these changes, e.g., to adapt their
subscriptions. However, an appropriate infrastructure support has to relieve the
application from having to react “manually” to all changes. The middleware
should rather offer an automated adaptation to context changes, i.e., facilitat-
ing location dependency. This leads to a different notion of mobility and we
distinguish:

– Physical mobility : A client that is physically mobile disconnects for certain
periods of time and has different border brokers along its itinerary through
the infrastructure. The main concern of physical mobility is location trans-
parency.

– Logical mobility : A client that is logically mobile is aware of its location
changes. In order to relieve the client from adapting manually to new loca-
tions, the main concern of logical mobility is automated location awareness
within the pub/sub middleware.

Physical and logical mobility are two orthogonal aspects of mobility. Since
the physical layout of a pub/sub system is usually fixed and its layout does
usually not correspond to geographical realities, it seems reasonable to separate
the two notions of mobility. In this paper, we assume logical mobility to be a
refinement of physical mobility in that a client remains connected to the same
broker when roaming logically. The two notions have different quality of service
requirements and therefore different solutions are developed to match both.

3.2 Physical Mobility

Physical mobility is similar to what in the area of mobile computing is called
terminal mobility or roaming. A client accesses the system through a certain



Supporting Mobility in Content-Based Publish/Subscribe Middleware 109

number of access points (GSM base stations, WLAN access points, or border
brokers). When moving physically, the client may get out of reach of one access
point and move into the reach of a second access point which are not necessarily
overlapping. In general we cannot expect to have seamless access to the bro-
ker network but more a sequence of phases of connectedness, e.g., on the daily
route between home and office. In this setting we analyze the quality of service
requirements from the viewpoint of roaming clients:

– Interface. Obviously, the interface to the pub/sub system must not change
as legacy applications are not aware of mobility.

– Completeness. Despite intermittent disconnects, the pub/sub middleware
delivers all notifications for a client eventually. This is the core requirement
for transparency.

– Ordering. Sender FIFO ordering was guaranteed in Section 2 and it is an
eligible feature in the mobile case, too.

– Responsiveness. The delay of relocating a roaming client should be minimal
to maximize the responsiveness of the system. This has to be taken into
account when designing a relocation protocol.

Possible Solutions. One solution would be to rely on Mobile IP [17] for con-
necting clients to border brokers, hiding physically mobility in the network layer.
The drawback, however, is that the communication is also hidden from the pub/
sub middleware, which is then not able to draw from any notification delivery
localities or routing optimizations, thereby possibly violating the requirement
of responsiveness. Such an approach might only be feasible if the physical and
logical layout of a given system is completely orthogonal.

A different, näıve solution to implement physical mobility would be to use
sequences of sub-unsub-sub calls to register a client at a new broker. When a
client moves from border broker B1 to B2, it simply unsubscribes at B1 and (re-)
subscribes at B2, without any support in the middleware. But a client may not
detect leaving the range of a broker and is in this case not able to unsubscribe
at its old location. Even more severely, during its time of disconnectedness, the
client might miss several notifications or get duplicates, even if notifications are
flooded in the network and the location change is instantaneous. This problem
is depicted in Figure 2. Hence, this solution is not complete and we outline an
algorithm in Section 4 that takes into account all requirements stated above.
The complete algorithm is detailed in [25].

3.3 Logical Mobility

While physical mobility is a rather technical issue invisible to the application,
logical mobility involves location awareness. An example for logical mobility is
when clients move around a house or building that is served by only one border
broker. In this case, the user might be interested to receive just those notifications
that refer to the room he is currently located in. Note that a client can be both
logically and physically mobile at the same time.



110 Ludger Fiege et al.

Fig. 2. Missing notifications in a flooding scenario.

A logically mobile client moving from one location to another, e.g., from
one room to the other in a company building, will expect a frictionless change
of location explicitly without a notable setup time after having changed from
its own office to the conference room next door. The adaptation of some location-
dependent subscription should take place “instantaneously”. Intuitively, we
would like to experience the notion of being subscribed to “everything, every-
where, all the time” and increase the reactivity of the system to moving clients.

Location-Dependent Filters. A pub/sub system that offers location-dependent
filters has the same interface as a regular pub/sub system (i.e., it offers the
pub, sub, unsub, notify primitives). However, in specifying subscription filters
for name/value pairs referring to “location” it supports a new primitive to spec-
ify things like “all notifications where the attribute location equals my current
location”. More precisely, we postulate a specific marker myloc that can be used
in a subscription. The marker stands for a specific set of locations that depend
on the current location of the client. For example, a client could issue a subscrip-
tion for all free parking spaces in the vicinity of his current location as follows:
(service = “parking”), (location ∈ myloc), (car-type ≥ “compact”).

The set of locations associated with the marker is taken from a particular
range L of locations. This set is application dependent and can, for instance,
contain all the different rooms of a building, all the streets of a town, or all the
geographical coordinates given by a GPS system up to a certain granularity.
Given a notification with the attribute location, the subscription (location ∈
myloc) will evaluate to true for a particular client at location y if and only if
x ∈ myloc(y) where myloc(y) is the specific set of locations associated with y.
In this case we say that the notification matches the location-dependent filter.

The simplest form of myloc(y) is simply the set {y}. In this case a notification
matches the subscription if x = y. But in the car example, the car driver looking
for a parking space might want to specify:

(location = “at most two blocks away from myloc”)

In this case, myloc corresponds to all elements of L that satisfy this requirement.



Supporting Mobility in Content-Based Publish/Subscribe Middleware 111

Fig. 3. Blackout period after subscribing with simple routing a) and flooding with
client-side filtering b).

A Tentative but Incomplete Solution for Logical Mobility. While location-de-
pendent filters are not directly supported by current pub/sub middleware, one
might argue that it is not very difficult to emulate them on top of currently
available systems in this case. The idea would be to build a wrapper around an
existing system that follows the location changes of the users and transparently
unsubscribes to the old location and subscribes to the new one when the user
moves. However, depending on the internal routing strategy of the event system,
it may lead to unexpected results. The routing strategies deployed in many ex-
isting content-based event systems such as Siena [5], Elvin [23], and Rebeca [10]
lead to blackout periods where no notifications are delivered. The problem is that
it usually takes an unnegligible time delay to process a new subscription. After
subscribing to a filter, it takes some time td until the subscription is propagated
to a potential source. Then it takes at least another td time until a notification
reaches the subscriber. This phenomenon is depicted in Figure 3a. (Note that
the delay td may be different for different notification sources and may change
over time.) If the client remains at any new location less than 2td time, then the
subscriber will “starve”, i.e., it will receive little or no notifications.

An Intuitive but Inefficient Solution. Another basic solution that can be immedi-
ately built using existing technology is again based on flooding. The local broker
can then decide to deliver a notification to a client depending on the client’s
current location (see Figure 3b). Obviously, flooding prevents the blackout peri-
ods, which were present in the previous solution, but it should be equally clear
that flooding is a very expensive routing strategy especially for large pub/sub
systems [21].

Quality of Service of Logical Mobility. Interestingly, while flooding is very ex-
pensive and therefore not desirable, it comes very close to the quality of service
that we would like to achieve for logical mobility, namely to the notion of be-
ing subscribed to “everything, everywhere, all the time”. The problem is that



112 Ludger Fiege et al.

Fig. 4. Defining the quality of service for logical mobility using virtual notifications
ny→z that arrives at the consumer just at the time of the location change from y to z.

it is hard to precisely define the behavior of flooding without reverting to some
unpleasantly theoretical constructions of operational semantics.

With logical mobility there is, however, no danger of receiving a notification
twice because the consumer remains attached to the same “delivery path”. The
quality of service we require for logical mobility therefore is simply stated as
follows: On change of location from x to y, all notifications should be delivered
to the consumer “as if” flooding were used as underlying routing strategy. This
statement is made a little more concrete in Figure 4 where the sequence of
notifications generated by any consumer is divided into epochs that correspond
to when the notification actually arrives at the consumer (the epoch borders
between location y and z are drawn as a virtual notification ny→z). We require
that all notifications matching the current location-dependent subscription from
every such epoch must be delivered. Intuitively, the epochs define the semantics
of flooding.

4 Notification Delivery with Roaming Clients

In this section we sketch an algorithm for extending standard Rebeca brokers
to cope with roaming mobile clients, maintaining their subscriptions as well as
guaranteeing the required quality of service described in the previous section.

Apart from guaranteeing uninterrupted notification delivery together with
transparency of mobility, our algorithm also guarantees that the “old” border
broker (i.e., the broker to which the roaming client was formaly attached) will
eventually receive an equivalent to an explicit sign-off from the client, so that it
can garbage collect all resources allocated to this specific client. In this process
the algorithm also guarantees that any routing path to the old location related
to the client will be deleted.



Supporting Mobility in Content-Based Publish/Subscribe Middleware 113

4.1 Main Idea

The basic idea is to maintain a “virtual counterpart” of a roaming client at the
last known location until some broker at a new location is claiming responsibility
and then merge “actual” and “virtual” client in such a way that no notification
is lost or delivered twice.

In the light of the quality of service requirements from the previous section, a
realistic choice to devise such an algorithm has to employ the following features:

– Reactive model. The relocation algorithm has to be reactive, i.e., no explicit
MoveOut or un-subscribe at the old location should be needed.

– Distribution. To enhance responsiveness, the algorithm adheres to strict lo-
cality; the approach is completely distributed, buffers notifications wherever
necessary, and restricts reconfiguration of the broker network to the smallest
possible subgraph.

– Completeness. By introducing distributed buffers within the border brokers
the algorithm guarantees completeness within the boundaries of time and/or
space limitations of buffering approaches.

– Pub/sub adherence. All communication related to the relocation protocol
is done within and based on the broker network. Other approaches using
some sort of direct, out-of-band communication between old and new broker
might introduce problems of ordering, duplicate detection, or even message
loss. This can be avoided by only using communication mechanisms offered
by the pub/sub middleware.

Example. We illustrate the relocation process using the simple example scenario
on the left of Fig. 5 for a single producer and consumer; the generalization
for multiple producers is indicated on the right of Fig. 5 and a more detailed
description can be found in [25].

Assume client C is moving from the location at broker B6 to another location
at broker B1. This refers to step 1 in the figure. After the client has detected the
change of location and broker it automatically re-issues a subscription together
with the last received sequence number for this subscription (e.g., (C, F, 123),
with 123 being the last known sequence number annotated by the former border
broker; step 3). Broker B1 will detect that this client has moved and must be
relocated. Note that neither client nor broker need to have any knowledge about
the old location B6. Broker B1 then starts the relocation process by sending a
special message to its neigboring brokers.

The goal of the relocation process is to divert the delivery paths from pro-
ducer P to C to the new location. During this process, the brokers propagate
the subscription through B2 and B3 to broker B4. Here the old and new path
from producer P to client C meet (dotted and dashed line, respectively). Broker
B4 is aware of this by inspecting its routing table and its list of received adver-
tisements, and comparing it to the subscription received. As B4 has an old entry
for this subscription, B4 sends a fetch request (C, F, 123, B4) along the old path
to B6 and already starts routing all newly received notifications from P along
the new path.



114 Ludger Fiege et al.

Fig. 5. A moving client scenario with one producer (left) and more than one producer
(right).

When receiving the fetch request along the path to the old broker B6, all
brokers along this path update their routing tables such that they are point-
ing into the direction of B4. B6 as last recipient replays all events buffered in
the virtual counterpart of (C, F ) beginning with the sequence number initially
given by C to B1 (here 124). The counterpart sends a message with a replay
of all notifications received in the meantime along the path into the direction
of B4. As all intermediate brokers have already updated their routing tables,
the replay eventually reaches B1 via B4 and is delivered to C. In the meantime,
B1 has buffered all notifications that have arrived for C and delivers the old
messages from B6 first before delivering the “new” messages from its own buffer
to guarantee the correct delivery order.

Broker B6 at the old location can garbage collect all resources formerly as-
sociated with C, and so can B5, resulting in the new routing path between P
and C as shown in Fig. 5.

4.2 Discussion

This example should give a feeling of how relocation and adaptation of the
delivery paths is performed in a fully distributed fashion. Through the use of
administrative control messages, and buffering and replay mechanisms the algo-
ritm makes good use of the already builtin features of Rebeca. Covering and
merging can be exploited, too, if the fetch request sent by B4 is directed towards
both matching advertisments and covering filters.

5 Location-Dependent Filters for Logical Mobility

We now describe the algorithmic solution to the scenario where clients are only
logically mobile, i.e., they remain attached to a single border broker.



Supporting Mobility in Content-Based Publish/Subscribe Middleware 115

Fig. 6. Network setting for the example.

5.1 Main Idea

Consider an arbitrary routing path between a producer (publisher) and a con-
sumer (subscriber). This path consists of a sequence of brokers B1, B2, . . . , Bk−1,
Bk where B1 is the local broker of the consumer and Bk is the local broker of the
producer (Figure 6 shows the setup for k = 3). Assume the consumer has issued
a location-dependent subscription F . Using the “usual” content-based routing
algorithms, the current value F̃ of F , which instantiates the marker variable
with the current location, would permeate the network in such a way that the
filters along the routing path allow a matching subscription published by the
producer to reach the consumer. Formally, the filters F1, F2, . . . , Fk along the
links between the brokers should maintain a set-inclusion property

Fk ⊇ Fk−1 ⊇ . . . ⊇ F2 ⊇ F1 ⊇ F0 = F̃ .

If F is the only active subscription in the network and if the subscription has
permeated the network, the above formula can be simplified to

Fk = Fk−1 = . . . = F2 = F1 = F0 = F̃ .

Obviously, if for any new value F̃ of F a new subscription must flow through the
network towards the producers, notifications published in the meantime might go
unnoticed. The idea of the proposed scheme is to always have the local broker
of the consumer do perfect client-side filtering (i.e., set F0 = F̃ ), but to let
possible future notifications reach brokers that are nearer to the consumer so
that their delay to reach the consumer is lower once the consumer switches to a
new location.

Let T denote the set of time values, which for simplicity we will assume to
be the set of natural numbers N. Let L denote the set of all consumer locations.
Then we define a function loc : T → L that describes the movement of the
consumer over time. For example, for a location set L = {a, b, c, d} a possible
value of loc is {(1, a), (2, b), (3, d), . . .} meaning that at time 1, the consumer’s
location is a, at time 2 it is b and so on.

We assume that loc is subject to some movement restrictions, which in effect
define a maximum speed of movement for the consumer. We assume that such
a restriction is given by a movement graph such as the one depicted in Figure 7.
The graph formalizes which locations can be reached from which locations in
one movement step of the consumer. One movement step has some application-
defined correspondence to one time step.



116 Ludger Fiege et al.

Fig. 7. Movement graph defining movement restrictions of a consumer.

Given the function loc and a movement graph, it is possible to define a
function ploc : L × N → 2L of possible (future) locations (the notation 2L

denotes the powerset of L, i.e., the set of all subsets of L). The function takes a
current location x and a number of consumer steps q ≥ 0 and returns the set of
possible locations, which the consumer could be in starting from x after q steps
in the movement graph.

Since a possible move of the consumer always is to remain at the same loca-
tion, for all locations x ∈ L and all q ∈ N we should require that

ploc(x, q) ⊆ ploc(x, q + 1). (1)

Taking the example values from above, possible values for ploc are as follows:

ploc(a, 0) = {a} ploc(a, 1) = {a, b, c} ploc(a, 2) = {a, b, c, d}
Now, if the consumer is at location a, for example, every broker Bi along the
path towards a producer should subscribe for ploc(a, q) for some q, which is an
increasing sequence of natural numbers depending on i and the network char-
acteristics. If the time it takes for a broker to process a new subscription is in
the order of the time a client remains at one particular location, then the in-
dividual filters Fi along the sample network setting in Figure 6 should be set
as Fi = ploc(a, i), e.g., F0 = ploc(a, 0) = {a}, F1 = ploc(a, 1) = {a, b, c} and
so on. This requirement should be maintained throughout location changes by
the consumer. For example, whenever a consumer moves from an old location
x to a new location y, the corresponding client node must declare the new lo-
cation by sending a message to its broker B1. This will cause B1 to change the
location-dependent part of filter F0 for client-side filtering from the old to the
new location. Broker B1 updates its routing table appropriately.

In general, broker Bi sends a message with the new location to Bi+1 instruct-
ing it to change Fi from ploc(x, i) to ploc(y, i) and consequently to update the
routing table by removing certain locations and adding new locations. Remov-
ing and adding new locations corresponds to unsubscribing and subscribing to
the corresponding filters. The normal Rebeca administration messages can be
used to do this. Note that Equation 1 guarantees the subset relationship, which
should always hold on every path between producer and consumer.

5.2 Example

As an example, consider the value of loc where at time 1 the client is in location
a, at time 2 at b and at time 3 at d in the movement graph depicted in Figure 7.



Supporting Mobility in Content-Based Publish/Subscribe Middleware 117

Table 1. Values of ploc(x, t) for the example setting.

t x = a x = b x = c x = d

0 {a} {b} {c} {d}
1 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
2 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
3 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

Table 2. Values of filters in example setting.

time t F3 F2 F1 F0

0 {a, b, c, d} {a, b, c, d} {a, b, c} {a}
1 {a, b, c, d} {a, b, c, d} {a, b, d} {b}
2 {a, b, c, d} {a, b, c, d} {b, c, d} {d}

Table 1 gives the values of ploc for all locations and the first four time instances.
For t = 0 the value of ploc is equal to the current location. For t = 1 it returns
all locations reachable in one time step in the movement graph, etc.

Now assume again the setting depicted in Figure 6. The values of Table 1
directly determine the filter settings for F0, . . . , F3 as shown in Table 2. At time
t = 1 the client moves to location b. This means that F0 changes from {a} to {b}
and that F1 must unsubscribe to c and subscribe to d, yielding F1 = {a, b, d}.
At time t = 2 the client moves to d, causing F0 to change to {d} and F1 to
unsubscribe to a and subscribe to c. All other filters remain unchanged.

The example nicely shows that the method does some sort of “restricted
flooding”, i.e, all notifications reach broker B2 but from there the uncertainty is
restricted and so is the flow of notifications forwarded by B2. In fact, the method
described above using the ploc function can be regarded as an abstraction of both
“trivial” implementations discussed in Section 3 (i.e., both implementations are
instantiations of our scheme), as we explain in the following section.

5.3 Adaptivity

The example setting above assumes that processing a new subscription by a
broker takes about as long as a consumer stays at one particular location. Ob-
viously, it will usually take much less time to process a subscription even if slow
or wireless network connections are used (user movement will be in the order
of seconds while network delay will be in the order of milliseconds). We now
present a scheme that adapts the level of “buffering” in the network to the av-
erage movement time of the client. Our algorithm, which for lack of space is
detailed in [9], satisfies this form of adaptivity.

In the following, we denote the average time a client remains at one location
by ∆ and the time it takes to process a sufficiently large batch of sub/unsub
messages between brokers Bi and Bi+1 by δi. If the client moves very slowly,
meaning that the sum of all δi is still less than ∆, we would like the scheme
to behave like the trivial sub/unsub solution. For the example setting from the



118 Ludger Fiege et al.

Table 3. Values of ploc(x, t) for trivial sub/unsub implementation (top) and flooding
with client-side filtering (bottom).

ploc(x, t) for global sub/unsub
t x = a x = b x = c x = d

0 {a} {b} {c} {d}
1 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
2 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
3 {a, b, c} {a, b, d} {a, c, d} {b, c, d}

ploc(x, t) for flooding
t x = a x = b x = c x = d

0 {a} {b} {c} {d}
1 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
2 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}
3 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

Table 4. Values of ploc(x, t) for the example setting with concrete timing values.

t x = a x = b x = c x = d

0 {a} {b} {c} {d}
1 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
2 {a, b, c} {a, b, d} {a, c, d} {b, c, d}
3 {a, b, c, d} {a, b, c, d} {a, b, c, d} {a, b, c, d}

previous section this would mean that ploc has values like in the top part of
Table 3 (note that the algorithm always has to provide information for “the
next” user location to maintain the semantics of flooding). On the other hand,
if the client moves very fast and ∆ is much smaller than δ1, the method should
revert to flooding (i.e., ploc values like in the bottom part of Table 3).

If ∆ is neither very large nor very small, what values should ploc acquire?
The idea is to relate multiples of ∆ to the increasing sum of the δi as follows:
Whenever the sum of δi results in a value larger than the next multiple of ∆
then the value of ploc must “take a step”. As an example, assume the following
values (all in milliseconds): ∆ = 100, δ1 = 120, δ2 = 50, δ3 = 50, δ4 = 20. Now
consider Figure 8 where the sums of these values have been put on a single scale.
The ploc value for client-side filtering (F0) is fixed to the current location of
the client. Since it takes longer for the brokers B1 and B2 to process a location
change than the client moves, the system must insert a level of buffering at this
point, i.e., ploc must cater for one additional step of uncertainty at this stage.

Considering that δ1 + δ2 < 2 · ∆, a location change can be processed fast
enough between B2 and B3 so that no additional buffering is necessary at this
point. However, the sum δ1+δ2+δ3 > 2·∆, and so ploc must have one additional
step between B3 and B4. The resulting values in the example setting for ploc
are shown in Table 4.



Supporting Mobility in Content-Based Publish/Subscribe Middleware 119

Fig. 8. Estimating ploc steps with respect to concrete timing bounds.

5.4 Discussion

The operations “subscribe” and “unsubscribe” in the algorithm refer to oper-
ations performed on the original routing table of the corresponding broker. In
Rebeca, these operations exploit the optimizations of the underlying routing
strategy. For example, in covering-based routing, subscribing to a filter F̃ may
have no effect on the routing table if there already exists a filter F ′ that covers
F̃ . The messages about location changes replace the administrative messages
that are sent to spread the information about new subscriptions.

We have informally analyzed the total number of messages (notifications and
administrative messages) generated by our new algorithm for an arguably realis-
tic network setting, exactly one consumer and two different speeds of consumer
movement: fast movement (∆ = 1s) and slow (∆ = 10s). We compare the results
of these calculations with the total number of messages generated by flooding
in Figure 9 (see [9] for a detailed description of the system assumptions and the
derivation of these numbers). It is interesting to see that although our algorithm
generates administrative messages on all network links for every location change
of the consumer, the fraction of messages saved is still considerable. We also note
that many of the assumptions made in calculating these figures have been very
conservative. For example, we assume that there is only one consumer in the
network and that notifications are generated by the producers according to a
uniform distribution over set of locations. Both assumptions prevent the routing
strategy optimizations of Rebeca to play to their strengths.

6 Conclusions

This paper has presented an approach to support mobility in existing publish/
subscribe middleware. We have analyzed the problem of mobility from the view-
point of the event-based paradigm and have identified two separate flavors of
mobility. While physical mobility is tied to the notion of rebinding a client to
different brokers and can be implemented transparently, logical mobility refers to
a certain form of location awareness offering a client a fine-grained control over
notification delivery in the form of location-dependent filters. We have sketched
how both notions can be implemented within the existing Rebeca event system
to exploit its refined routing strategies.

It is quite obvious that even both of our solutions together cannot claim
to solve all problems related to mobility or together with Rebeca constitute



120 Ludger Fiege et al.

10000

100000

1e+06

1e+07

1e+08

0 10 20 30 40 50 60 70 80 90 100

flooding
new alg. for Delta=1

new alg. for Delta=10

Fig. 9. Total number of messages generated for flooding and two scenarios of the new
algorithm (∆ = 1s and ∆ = 10s). Note that the y axis has a logarithmic scale. The x
axis denotes time in seconds.

a complete mobile computing middleware. In some worst case scenarios both
algorithms may lead to undesirable behavior like missing notifications or even
starvation of a client, i.e., where a client does not receive notifications due to
the latency of the event middleware. For example, this is the case if a client
is just too fast for the infrastructure to adapt or if some network links within
the broker network are too slow. We have attempted to alleviate these problems
by designing adaptive solutions that should work in and can be tuned to most
real world scenarios. A detailed analysis of the behavior of the solutions in more
extreme and dynamic network settings is a point for future research.

Many other interesting problems concerning the combination of mobility and
pub/sub infrastructures remain. For example, location-dependent filters may be
generalized to “dynamic filters” that depend on a function of the local state
of the client (not only its current location), like a client interested in receiving
notifications for sales that he still can afford. Currently, we are investigating
how logical and physical mobility can be integrated to allow for logically mobile
clients roaming beyond the boundaries of a single broker. First results using
the idea of logical mobility to deal with the uncertainty of roaming with mobile
clients and “pre-subscribe” to information at brokers at possible next locations
seem promising but need further investigation.

Acknowledgments

We thank Gero Mühl for his cooperation in the Rebeca project, and Alejandro
Buchmann and Sidath Bandara Handurukande for helpful comments on an ear-



Supporting Mobility in Content-Based Publish/Subscribe Middleware 121

lier version of this paper. Also we would like to thank the anonymous referees
for their suggestions.

References

1. J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spi-
teri. Generic support for distributed applications. Computer, 33(3):68–76, 2000.

2. J. Bates, J. Bacon, K. Moody, and M. Spiteri. Using events for the scalable federa-
tion of heterogeneous components. In P. Guedes and J. Bacon, editors, Proceedings
of the 8th ACM SIGOPS European Workshop: Support for Composing Distributed
Applications, Sintra, Portugal, Sept. 1998.

3. M. Caporuscio, P. Inverardi, and P. Pelliccione. Formal analysis of clients mobil-
ity in the Siena publish/subscribe middleware. Technical report, Department of
Computer Science, University of L’Aquila, Oct. 2002.

4. L. Capra, W. Emmerich, and C. Mascolo. Middleware for mobile computing (a
survey). Research Note RN/30/01, University College London, July 2001.

5. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, 2001.

6. G. Cugola and E. Di Nitto. Using a publish/subscribe middleware to support
mobile computing. In Proceedings of the Workshop on Middleware for Mobile
Computing, Heidelberg, Germany, Nov. 2001.

7. G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure
and its application to the development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27(9), 2001.

8. P. T. Eugster, R. Guerraoui, and C. H. Damm. On objects and events. In
L. Northrop and J. Vlissides, editors, Proceedings of the OOPSLA ’01 Confer-
ence on Object Oriented Programming Systems Languages and Applications, pages
254–269, Tampa Bay, FL, USA, 2001. ACM Press.

9. L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler. Supporting mobility in content-
based publish/subscribe middleware. Technical Report IC/2003/11, Swiss Federal
Institute of Technology (EPFL), School of Computer and Communication Sciences,
Lausanne, Switzerland, Mar. 2002.

10. L. Fiege and G. Mühl. Rebeca Event-Based Electronic Commerce Architecture,
2000. http://www.gkec.informatik.tu-darmstadt.de/rebeca.

11. L. Fiege, G. Mühl, and F. C. Gärtner. A modular approach to build structured
event-based systems. In Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC’02), pages 385–392, Madrid, Spain, 2002. ACM Press.

12. L. Fiege, G. Mühl, and F. C. Gärtner. Modular event-based systems. The Knowl-
edge Engineering Review, 17(4), 2003. to appear.

13. Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile environment.
In Proceedings of the 2nd ACM International Workshop on Data Engineering for
Wireless and Mobile Access (MobiDE01), Santa Barbara, CA, May 2001.

14. Y. Huang and H. Garcia-Molina. Publish/subscribe tree construction in wireless
ad-hoc networks. In M.-S. Chen, P. Chrysanthis, M. Sloman, and A. Zaslavsky,
editors, 4th International Conference on Mobile Data Management (MDM 2003),
volume 2574 of LNCS, pages 122–140, Melbourne, Australia, 2003. Springer-Verlag.

15. IBM. Gryphon: Publish/subscribe over public networks. Technical report, IBM T.
J. Watson Research Center, 2001.

http://www.gkec.informatik.tu-darmstadt.de/rebeca


122 Ludger Fiege et al.

16. H.-A. Jacobsen. Middleware services for selective and location-based information
dissemination in mobile wireless networks. In Proceedings of the Workshop on
Middleware for Mobile Computing, Heidelberg, Germany, Nov. 2001.

17. D. Johnson. Scalable support for transparent mobile host internetworking. Wireless
Networks, 1:311–321, Oct. 1995.

18. R. Meier and V. Cahill. STEAM: Event-based middleware for wireless ad hoc
networks. In Proceedings of the International Workshop on Distributed Event-
Based Systems (ICDCS/DEBS’02), pages 639–644, 2002.

19. G. Mühl. Generic constraints for content-based publish/subscribe systems. In
C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors, Proceedings of the
6th International Conference on Cooperative Information Systems (CoopIS ’01),
volume 2172 of LNCS, pages 211–225, Trento, Italy, 2001. Springer-Verlag.

20. G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology, 2002.

21. G. Mühl, L. Fiege, F. C. Gärtner, and A. P. Buchmann. Evaluating advanced
routing algorithms for content-based publish/subscribe systems. In A. Boukerche
and S. Majumdar, editors, The Tenth IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2002), Fort Worth, TX, USA, October 2002. IEEE Press.

22. B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus—an architecture
for extensible distributed systems. In B. Liskov, editor, Proceedings of the 14th
Symposium on Operating Systems Principles, pages 58–68, Asheville, NC, USA,
Dec. 1993. ACM Press.

23. W. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notifi-
cation service with quenching. In Proceedings of the 1997 Australian UNIX Users
Group, Brisbane, Australia, Sept. 1997.

24. P. Sutton, R. Arkins, and B. Segall. Supporting disconnectedness – transparent
information delivery for mobile and invisible computing. In First International
Symposium on Cluster Computing and the Grid, pages 277–287, Brisbane, Aus-
tralia, May 2001. IEEE/ACM.

25. A. Zeidler and L. Fiege. Mobility support with REBECA. In Proceedings of the
23rd International Conference on Distributed Computing Systems Workshop on
Mobile Computing Middleware, 2003.


	1 Introduction
	2 Content-Based Publish/Subscribe
	2.1 Publish/Subscribe Systems
	2.2 Content-Based Routing

	3 Publish/Subscribe Systems and Mobility
	3.1 Mobility Issues in Publish/Subscribe Middleware
	3.2 Physical Mobility
	3.3 Logical Mobility

	4 Notification Delivery with Roaming Clients
	4.1 Main Idea
	4.2 Discussion

	5 Location-Dependent Filters for Logical Mobility
	5.1 Main Idea
	5.2 Example
	5.3 Adaptivity
	5.4 Discussion

	6 Conclusions
	References

