
  

  

Abstract–This paper proposes a method for achieving 

accurate ego-vehicle global localization with respect to an 

approaching intersection; the method is based on the data 

alignment of the information from two input systems: a 

Sensorial Perception system, on-board of the ego-vehicle, and 

an a priori digital map. For this purpose an Extended Digital 

Map is proposed that contains the detailed information about 

the intersection infrastructure: detailed landmarks accurately 

measured and positioned on the map. The data alignment 

mechanism is thus based on superimposing the sensorial 

detected landmarks with the corresponding, correctly 

positioned map landmarks stored in the new Extended Digital 

Map. The data Alignment Algorithm requires as input, beside 

the information from the two input systems, the ego-vehicle 

driving lane. This information is inferred by using a 

probabilistic approach in the form of a Bayesian Network; the 

uncertain and noisy character of the sensorial data require 

such a probabilistic approach in the quest of the ego-lane.   

I. INTRODUCTION 

The problem of navigation is an intensely research topic in 

the context of driving assistance systems and of autonomous 

driving. Ego-vehicle global localization is one of the 

important matters regarding navigation, in all the driving 

contexts: urban environments (roads, U-turns, intersections), 
highways etc.. Research has been conducted in the direction 

of combining information from various input systems: (1) 

GPS and vehicle sensors (VS), (2) on-board perception 

systems (3) digital maps (standard digital map, RNDF [1]), 

(4) infrastructure monitoring systems and cooperative 

systems (vehicle-to-infrastructure and vehicle-to-vehicle 

communication [2-3]) for achieving accurate global 

localization.  

In [4] a Kalman filter is used to integrate vehicle sensors 

information (in state prediction) with DGPS information (in 

update stage) and for localization. The employed dynamic 

model is a bicycle model. The authors also recognize the 
usefulness of a digital map with high precision for accurate 

localization, in some specific cases (U-turn overlapped with 

GPS outages), but also underlined the shortage of such a 

map for commercial use.  

In [5], the authors propose to combine data from: GPS, 

vehicle sensors (steering angle sensors, odometers), vision 

sensors and a very precise digital map, in an iterative process 

(a Particle Filter) for estimating the localization parameters. 

The vision information provides the position and the 

 
Manuscript received 30

th
 January 2011.  

Voichita Popescu, Mihai Bace and Sergiu Nedevschi are with the 

Technical University of Cluj-Napoca, Computer Science Department, Street 

15, C. Daicoviciu, 400020 Cluj-Napoca, Romania, e-mail:  

voichita.popescu@cs.utcluj.ro, mihaibace@yahoo.com, 

sergiu.nedevschi@cs.utcluj.ro 

orientation of the vehicle, with respect to a lane side; then 

digital map is then used to transform this information into a 

global reference. In this approach, a high definition NavTech 

map is available.  
The problem of accurate vehicle localization is resolved in 

[6] also by using a Particle Filtering based on feature 

extraction from a predicted image. The image is created 

from the map feature data. The approach   combines the 

image landmarks, information from vehicle odometry and 

information from a low-cost Global Navigation Satellite 

System (GNSS) receiver.  

The solution proposed in [7], for vehicle localization in 

urban environments has as a centerpiece a detailed digital 

map of the environment, containing features useful for 

localization: lane markings, tire marks, pavement etc. For 
the building of the map state-of-the-art equipment is used 

(INS, SICK laser range finders, GPS). The built map is then 

used to correlate the on the spot LIDAR measurements with 

the ones on the map.  Table I summarizes the accuracy of 

some of the proposed localization methods.  

The special case of intersection has received a great 

attention; European projects such as SAFESPOT [8] and 

INTERSAFE [9] have dedicated their efforts towards 

improving traffic safety in intersections. In [9] the concept 

of Local Dynamic Map (LDM) [3] is introduced, as a form 

of world modeling. The LDM is a hierarchical structure, 

containing both the static information about the road 
structure (from digital maps), as well as the temporary and 

dynamic information about the environment traffic (from on-

board perception system and from the infrastructure).  

 The idea introduced in [10] is to model the environment 

in the form of a network, a graph of the road. The road is 

structured in the form of a graph, where an edge represents a 

lane and the nodes joints of edges. The advantage of the 

proposal is that the smallest unit in the environment 

representation is now the lane, and not the road, hence 

environment representation becomes much more detailed.  

The same idea of combining the information from various 
resources (on-board sensors, digital map, cooperative 

systems, and route planner) is found in [11]. What the 

approach brings new is the Object Oriented architecture of 

the world model, which has several advantages: 

extensibility, reusability (due to the API), interoperability, 

real-time performance.  

In [12] a Bayesian Network (BN) [13-14] approach is used 

in order to localize a possible intersection; for this the 

information from an on-board detection system is fused with 

the information from a data base that stores minimal a priori 

road information. The idea is continued in [15], where a 
similar mechanism is used, this time for Lane Detection. 
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An accessible solution for Lane Identification is presented 

[16], using only standard GPS receivers and inter-vehicle 

communication. Using that the absolute positioning errors 

are common errors for GPS receiver relatively close to each 

other (the same principle is used by DGPS), the solution 
uses the relative distances between GPS rovers’ 

measurements (in a Markov localization process) to estimate 

the lane positions, of the different vehicles that 

communicate.  

TABLE I COMPARISON OF POSITION ACCURACY IN THE 

LITERATURE 

Ref Sensors Lateral 

Position Error 

Longitudinal 

Position Error  

[5] GPS + VS + Map 

+Vision 

0.08 m 0.48 m 

[6] GPS 

+ odometry + Map 

+Vision 

0.35 m 0.77 m 

[7] GPS + IMU + odometry 

+ LIDAR + built map 

<0.1m <0.3m 

This article continues the idea of fusing the information of 
an on-board visual perception system with the data from an 

a priori digital map, in order to improve the ego-vehicle 

global positioning. The visual perception system (which will 

also be referred to as sensorial, in this paper) detects and 

classifies objects in the environment (road landmarks, other 

vehicles, pedestrians, poles). The idea of the proposed 

method is to align the road lateral and longitudinal 

landmarks obtained through visual analysis (lateral lane 

delimiters and stop-line), with the corresponding map 
landmarks, accurately measured. For this purpose, an 

Extended Digital Map (EDM) that contains the precise 

measurements of the road landmarks, required for the data 

fusion with the visual information, is proposed. This solution 

is especially dedicated to the special case of intersections, in 

the effort of improving safety in this accident-prone segment 

of road. There exist several applications that require the 

accurate localization prior to an intersection: (1) an 

enhanced environment representation -obtained by 

combining the information from the visual perception 

system with the information from the EDM; (2) an 

intersection traversal module - that uses the information 
from the enhanced environment representation in order to 

establish the possible trajectories of the ego-vehicle through 

the intersection;  (3) a collision avoidance system for 

intersections - that establishes the possible collision points.  

This approach uses the specific road landmarks detected by 

the visual perception system (stop-line, lateral lane 

delimiters, painted arrows) for localization, therefore this 

solution is limited to those segments of roads containing the 

upper mentioned landmarks. 

II. THE PROPOSED SOLUTION 

Fig. 1 illustrates the logic scheme of the proposed 

approach. The initial position of the ego-vehicle is given by 

a standard GPS receiver, whose precision is of order of 

meters. This value is used in the map-matching algorithm, in 

order to detect the road-way, joint to the intersection, on 

which the ego-vehicle is travelling, while approaching the 

intersection. The map information corresponding to this 

identified way is the one that is used in the data alignment 

process.  The localization method consists of two steps: 

The first step (Lane Identification) is to identify the lane 

of the road-way, on which the ego-vehicle is travelling on. 
This information is necessary for the lateral alignment of 

sensorial (visual) data, with map data.  The proposed 

approach for Lane Identification is in the form of a Bayesian 

Network, which performs reasoning based on the sensorial 

information and on the additional new map information, 

from the EDM.  

The second step (Data Alignment), consists of 

superimposing the information about the same landmarks: 

stop-line and lateral lane delimiters, from the two data input 

sources, in different Coordinate Systems (CS): Vehicle 

Coordinates (VC) and World Coordinates (WC)). For the 

longitudinal alignment the relative position of the visually 
detected stop-line is required, while for the lateral alignment, 

the ego-lane is necessary.  

Even if the sensorial information is used in both steps, this 

is not redundant since different data are being used: for Lane 

Identification – lateral landmarks (lateral delimiters type, 

painted arrows type and information deduce from reasoning 

on other visually detected objects) and for Data Alignment – 

longitudinal landmarks (the stop-line in VC) (see Fig. 1).  

III. THE SENSORIAL PERCEPTION SYSTEM AND THE 

EXTENDED DIGITAL MAP  

A. The Sensorial Data Preprocessing & Reasoning 

The primary source of information about the surrounding 

environment is an on-board stereo-camera system [17] 

(sensorial perception system). This system is beyond the 

scope of this paper, and only the data provided by it is used 

as input data to the proposed solution. It provides the 

following structured representation of the environment: the 
parallelepiped form of the detected objects, as well as their 

classification (cars, pedestrians, poles, painted road 

markings: lateral lane delimiters, painted arrows, stop-lines). 

Also the information about the ego-lane and lateral curbs is 

provided. For cars, their relative speed with respect to the 

ego-vehicle speed is also provided.  

In the Sensorial Data Preprocessing & Reasoning module, 

the sensorial data is processed such as to provide to the Lane 

Identification module the information in the required format, 

and that is:  

• the type of the Left and Right Delimiters (Double, Single, 
Curb) of the ego-lane,  

• the type of Lane Painted Arrow (forward, left, right, left-

forward, right-forward) detected on the ego-lane,  

the type of the ego-lane (leftmost (LM), rightmost (RM), 

middle (M)) inferred from the information from the other 

vehicles, from the lateral distance to lateral lane markings 

and from the lateral distance to curb. For this, some basic 

reasoning is done using simple decision trees, with 

information from both the sensorial perception as well as 

from the digital map. 
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Fig. 1 Logic schema for accurate global localization using the identified 

lane, in intersection 

It is important to mention that, in this approach, the 

general case when there are three lanes per driving direction 

are taken into consideration. For more lanes per way further 

research is required. 

B. The Extended Digital Map 

In order to perform the data alignment of the sensorial 

information, with the a priori information about the road 

infrastructure, in the demarche of achieving accurate global 

positioning, a system is required to store this accurate and 

precisely measured information about the road. The 
necessity of a detailed digital map, for driving assistance 

systems has been widely recognized and researches exist in 

this direction of building such maps ([18], TeleAtlas, 

NavTech), even if they still are not commercially available.  

Therefore, for the purposes of this approach, a model of such 

a required high precision map has been designed and built, 

using as a starting point the open source digital map Open 

Street Map (OSM) [19].  This map provides only the basic 

information about the streets and intersections. The proposal 

is to extend this information with additional information 

about the detailed road geometry, near the intersections.  
The information required by the data alignment is called 

the necessary information. Examples of such information 

are: the number of lanes per way, the width of each lane, the 

lane lateral delimiters types, the lane painted arrows, the 

global coordinates of the center of each lane and of the stop-

line.  

Additional useful information for improving the ego-

vehicle’s knowledge about the navigation environment (such 

as: the possible directions of navigation through the 

intersection or in-out lane pairs, risk level attributes etc.), for 

a potential driving assistance system, can be added.  

The implementation idea of the EDM is the following: use 

the existing database structure and build on top of it, such 

that the existing information will not be modified. Similar 

tables with the existing ones are created to store the 

additional information proposed and to make the joint with 

the existing tables. An additional primitive is introduced: the 

lane data primitive; this is the smallest unit in the road 

geometry. This way information about each lane (laneWidth, 

leftDelimiter,  rightDelimiter, paintedArrow etc.) is added in  
the database in the form of key-value pairs (e.g. (key = 

laneWidth, value = 3.2), (key = leftDelimiter, value = 

double), (key = paintedArrow, value = forward). Adjoint 

lanes do not share the lane marking information. The 

information about the painted arrows is limited for now to 

their type: forward, left, right, leftForward, rightForward 

etc. The additional information has a similar structure with 

the existing one. Also, the XML formatted structure of the 

.osm file is kept; the new information is structured in a 

compatible way: the attributes are in the form of tags with 

(key, value) pairs.  

IV. LANE IDENTIFICATION USING A BAYESIAN NETWORK 

A. Introduction to Bayesian Networks 

BNs are part of the family of probabilistic graphical 

models, combining principles from mathematical and 

engineering domains: probability theory, statistics, and 

graph theory. They are used to model cause – effect 
relations. A BN is a representation of a joint probability 

distribution (JPD) over a finite set of discrete random 

variable. It has two components: 

(1) G(V,A) the DAG whose nodes {X1, .., Xn} = V correspond 

to the random variables, and whose set of arcs A define the 

direction of influence between nodes. The graph G encodes 

the conditional independence assumption: each variable is 

independent of its non-descendents given its parents in G.  

(2) Θ the set of parameters of the network, i.e. the set of all 

the conditional probabilities of all the variables given its 

parents: 

 { ( | ) : }
ii X i

P X X VπΘ = ∈  (1) 

where πXi stands for the set of parents of Xi. If Xi is a root 

node, then πXi is empty and the expression P(Xi|πXi) simply 
stands for the prior probability of Xi. Together, the 

probabilities collectively quantify the probability distribution 

associated with the variables in the graph. Due to the graph’s 

conditional independence property and by applying the chain 

rule of probabilities, the JPD can be decomposed: 

 
1

1 2( ) ( | ), ,...
i

n

i

i

n XP X P XX X π
=

= ∏  (2) 

The advantage of having the JPD in a factored form is that it 

is possible to evaluate all inference queries by 

marginalization, by summing out over irrelevant variables.   
One of the most important aspects in the BN is the 

inference mechanism [15]. In any BN there are two types of 

nodes (evidence/observed nodes & query nodes). The 

inference mechanism computes the posterior probabilities 
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(or beliefs) for the variables that are queried, given the 

evidence of the observed variables. There are more 

algorithms that perform inference in BN: polytree (Pearl’s 

algorithm [20]), variable elimination algorithm, variation 

message passing, relevance tree and others.  

B. The Modeled BN for Lane Identification 

The uncertain and noisy nature of the sensorial 

information requires a probabilistic mechanism that 

performs well even under such conditions, therefore the 

Bayesian Network for Lane Identification was a suitable 

approach. Based on the theory, the BN in Fig. 2 was 
modeled to suit the current problem.  

 

Fig. 2 The modeled Bayesian Network for Lane Identification; the nodes 

with their corresponding states (LM = Leftmost lane, RM = Rightmost lane, 

M = Middle lane, Fw = Forward). 

Each node has several states (see Fig. 2) with 

corresponding probabilities. The root nodes are defined 

through a priori probabilities; while the child nodes are 

define through CPTs. In the proposed BN: 

(1) the evidence nodes contain either Map or Sensorial 

(Visual) information. All of them are root nodes, so a priori 

probabilities are initially set for them. These probabilities 
change when evidence is being brought to the BN, from the 

EDM or from the sensorial data. 

(2) the query nodes (Left, Right, Arrow and Lane), are child 

nodes and their probabilities are initially set based on  

modeled CPTs. Their beliefs change according to the 

evidence brought by the Map and the Sensorial System, i.e. 

they change according to the evidence nodes, through an 

inference algorithm.  They answer to questions such as: 

“what ego-lane type is inferred from the left side lane 

delimiter information?”; or, the main question, “what ego-

lane type is inferred from all the map and sensorial 

information?”. As it can be seen in Fig. 2, the Left, Right 

and Arrow nodes perform the data fusion of information 

from the two input system. The Lane node is the final node; 

all the other nodes serve as evidence for this node. Its CPT 
table contains 36*22 rows (6 parent nodes with 3 states and 2 

parent nodes with 2 states).  

C. Example of BN Inference  

The algorithm used is in this approach for BN inference is 

Pearl’s (Polytree) algorithm; the belief of a node in a 

polytree is computed by the formula: 

 ( ) ( | ) ( ) ( )Bel X P x e x xαπ λ= =  (3) 

This inference method is also known as message passing; the 

information necessary for belief computation reaches the 

node through messages. There are two types of messages:  

(1) from parents to children π(x)=P(x|e
+
) – transmits the a 

priori evidence of the parent to the node 

(2) from children to parents λ(x) =P(e
-
|x) – transmits the 

likelihood evidence, i.e. the belief of the child node based on 

the evidence of the parent node. 

In the proposed approach the interest is in the causal-

parameters, hence we are interested in the π(x) messages. 

For the case of multiple parents U1,…Up of child X, the 
causal parameter  is compound:  

 

1

1

,... 1

( ) ( | ,... ) ( )j

p

p
U

p X j

u u j

x P x u u uπ π
=

= ∑ ∏  (4) 

Consider the case in which the ego-vehicle is approaching 

the intersection on a segment of road which has the 

following configuration illustrated in Fig. 3(a). This 

observation sets the evidence for the nodes in the Map 
Evidence layer; therefore their a priori probabilities are: 

P(MapLMLeftDelim=Double)=1; P(MapRMLeftDelim= 

Single)=1; P(MapMLeftDelim=Single)=1;  

P(MapLMRightDelim=Single)=1; P(MapRMRightDelim= 

Curb)=1; P(MapMRightDelim=Single)=1; 

P(MapLMPaintedArrow =Left)=1; P(MapRMPaintedArrow 

=Right)=1; P(MapM PaintedArrow=Fw)=1; 

and all the other map probabilities are 0. In order 

exemplifying how the inference mechanism works, let us 

consider the node Left, and imagine the case when the visual 

systems detects as LeftDelimiter a Double line.  The belief of 

node Left is computed according to equation (4), hence 

( ) ... ( | , , , ) ( ) ( ) ( ) ( ) ...LM P LM D S S D D S S Dπ π π π π= + +  

where D is Double, S is Single and LM is Leftmost, i.e,. 

( ) 0 ... 0.9*1*1*1*1 ...0 0.9LMπ = + + + = , 

where the value of P(LM|D,S,S,D) = 0.9 is from the Left 

node’s CPT. Using equation (3) and the fact that  λ(LM)=1 

from the initial conditions of the Polytree algorithm: 

( ) ( )  ( ) = *0.9*1 0.9P LM LM LMαπ λ α= = , 

where α is normalization constant equal to 1, in this case. 

Similarly, ( ) ( ) 0.05P RM P M= = .  
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This demonstrates how the inference mechanism works in 

the BN. In a similar way, the belief of node Lane changes 

according to different observations brought by the visual 

perception systems to the Sensorial Evidence nodes.  For the 

same map evidence as previously,  Fig. 3 (b) illustrate how 
the belief of the node Lane increases when sensorial 

information sustains the Lane=LM.  

   
(a) (b) 

Fig. 3 (a) Map Evidence from the EDM (b)Lane node’s belief when the 

following sensorial information is being added to the BN: 

(1)P(Left=LM)=0.9 (2)P(Right=LM)=0.48 (3)P(Arrow=LM)=0.9  

(4)P(VisualLeftIncoming=LM)=1 (5)P(VisualRightOutgoing)=1 

(6)P(VisualDistToCurb)=1 (7)P(VisualDistToLaneMarks)=1 

V. EGO-VEHICLE GLOBAL LOCALIZATION THROUGH DATA 

ALIGNMENT 

Finally, after obtaining the ego-vehicle driving lane, the 

Alignment Algorithm (AA) can be used to attain the 

accurate global position. The AA is dedicated to the 

intersection scenario. The sensorial landmarks are in VC, 

and represent their relative position with respect to the ego-

vehicle. The same landmarks exist in the EDM, in WC. By 

superimposing the same landmarks, from the two input 

system, through a series of geometric transformations, and 

by applying the same transformations to the ego-vehicle 

coordinates, the improved ego-vehicle global position is 

achieved. The steps of the AA:  
(1) A preprocessing step: in which the data is brought into 

the same CS: East North UP (ENU) [21].  

(2) 1st step: rotate the sensorial stop-line around the ego-

vehicle coordinates such as to superimpose it to the map 

stop-line.  

(3) 2nd step: longitudinally translate the ego-vehicle’s 

coordinates and the previously rotated sensorial stop-line 

until the latter  it superimposes the map stop-line.  

(4) 3rd step: lateral translation - uses the identified ego-lane; 

the ego-vehicle’s coordinates and the previously translated 

sensorial stop-line are again translated, until the latter 
superimposes the map stop-line segment identified to 

correspond to the ego-lane. The new obtained ego-vehicle 

coordinates gives the improved ego-vehicle global 

localization. 

VI. EXPERIMENTAL RESULTS 

A. The Bayesian Network Evaluation 

The BN approach for Lane Identification is considerable 

better than any deterministic if-clause based mechanism, 

since it probabilistically takes into account all the pieces of 

information and fuses it, in order to infer the most probable 

output. It is a suitable method since it works well even under 

conditions of uncertainty, specific to the visual perception 

systems. Experimental results show that as the system 

provides more evidence about the position of the vehicle on 

one lane, the probability of that particular lane increases. If 

the evidence is noisy, uncertain or contradictory, the 
network still performs well according to our experiments. 

For contradictory map and sensorial information the 

probabilities of the lanes will be more distributed, but still 

the lane with the largest accumulated evidence (even if the 

difference in small) will be the winning one.  In Fig. 4 it is 

illustrated how the states of the Lane node fluctuate for 

different situations.  

 
Fig. 4 Example of adding contradictory information to the BN 

(1) same evidence from the sensorial and map data for RM lane, then 

P(RM) = 0.437; (2) if add VisualPaintedArrow as in Map, P(RM) increases 

to 0.52; (3-5) else, if add VisualPainedArrow different from Map,  P(RM) 

decreased (7) if no VisualPaintedArrow, but VisualDistToCurb = RM and 
LeftIncoming = LM, P(RM) increases to 0.482. 

The method was tested for more than 120 situations in 

which, only different input sensorial data was taken into 

consideration,  the results are encouraging (Table II). 

TABLE II BN EXPERIMENTAL RESULTS 

Correct Correct 

(1%-3% 

diff.) 

Incorrect 

(1%-3% 

diff.) 

Incorrect Equal 

probability 

0.75% 0.09 0.01 0.125 0.025 

B. The Alignment Algorithm Evaluation 

The AA method for global localization was successfully 

implemented and experimented in some specific intersection 

scenarios. For this purpose, the infrastructure of the 

intersections in question was modeled in detail using 

satellite images and on the spot high precision 

measurements, done using GNSS equipment (Leica 1200 

Series System). The tests consisted of the ego-vehicle 

approaching the intersection from one of the measured 
roads. The initial GPS ego-vehicle position was obtained 

with a standard GPS receiver (precision ≈ 5 m, update ≈ 1 

Hz). The GPS obtained ego-vehicle position was corrected 

using the AA. Fig. 5 illustrates an example of the GPS 

global localization and of the AA corrected positions; for 

longitudinal positioning the visually detected stop-line is 

used, while for lateral positioning, the lane number (Middle) 

obtained from the BN. GPS_Pos1-2 are the 1st and 2nd GPS 

readings when the stop-line is first detected, at distances 

20m, 15m respectively; AA_Pos1 and AA_Pos2 are the 

corrected positions. Similar, GPS_Pos3-8 are the GPS 
readings when the stop-line is visually detected at distances 

14m, 13m, 12m, 10m, 9m, 8m; AA_Pos3-8 are the 

corresponding corrected positions. Finally, GPS_Pos9-10 are 

the GPS readings when the detected stop-line is at distances 
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3m, 4m respectively, and AA_Pos9-10 are the corrected 

values - the red triangle illustrates the ego-vehicle’s origin 

and the detected stop-line. 

 
Fig. 5 Example of the GPS readings vs. AA corrected positions against a 

road segment prior to an intersection, in LL coordinates.  

The proposed solution considerably improves the standard 

GPS localization, reducing the error from orders of meters to 
orders of centimeters (Table III - the reference point selected 

for comparing the GPS and AA results is the middle of the 

identified ego-lane, at the detected distance to the stop-line).  

TABLE III AA EXPERIMENTAL RESULTS 

Method Mean 

Absolute 

Position Error  

Mean 

Lateral Position 

Error  

Mean 

Longitudinal Position 

Error  

GPS   10.6 m 6.5 m 7.7 m 

AA 0.18 m 0.12 m  0.10 m  

VII. CONCLUSION AND FUTURE RESEARCH 

This method uses an on-board visual perception system 

together with a detailed digital map (based on OSM) in the 

process of accurate global localization prior to an 

intersection. Through this method, the ego-vehicle global 
improves considerably the positioning given by the standard 

GPS. The precision of the AA is given by the accuracy of 

the sensorial perception (the stop-line detection accuracy, is 

in the range of 0.5%.. 3% with better accuracy in the near 

range, up to 10 m the errors are below 2%).  Hence, the 

method’s performance is given by the visual perception 

system’s performance.  

Future research include:  introducing a Dynamic BN for 

temporal inference of the ego-lane, studying the case with 

more than three lanes per way.  
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