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Abstract

A fundamental paradigm shift is currently taking place in the field of computing: due

to the miniaturization of computing devices and the proliferation of embedded systems,

tiny, networked computers can now be easily integrated into everyday objects, turning

them into smart things . In the resulting Internet of Things , physical items are no longer

disconnected from the virtual world but rather become accessible through computers and

other networked devices, and can even make use of protocols that are widely deployed in

the World Wide Web, in a paradigm that we call the Web of Things . Eventually, smart

things will be able to communicate, analyze, decide, and act – and thereby provide an

invisible background assistance that should make life more enjoyable, entertaining, and

also safer. However, in an environment that is populated by hundreds of Web-enabled

smart things, it will become increasingly difficult for humans to interact with devices that

are relevant to their current needs, and to find, select, and control them.

The objective of this thesis is to investigate how human users could be enabled to con-

veniently interact with individual smart objects in their surroundings and to interconnect

devices and configure the resulting physical mashups to perform higher-level tasks on their

behalf. To achieve basic interoperability between devices, we rely on the World Wide Web

with its proven protocols and architectural patterns which emphasize scalability, generic

interfaces, and loose coupling between components.

As a first step to facilitate the interaction with smart things on top of the basic Web

principles, we propose the embedding of metadata for automatically generating user inter-

faces for smart devices. Our specific approach enables not only the generation of more in-

tuitive graphical widgets but also the mapping of interactive components to gesture-based,

speech-based, and physical interfaces by describing the high-level interaction semantics of

smart devices instead of specifying purely interface-specific information. The provision-

ing of an interaction mechanism with a smart object is thus reduced to the embedding

of simple interaction information into the representation of the smart thing. Before users

can start interacting with a smart device, it must, however, first be selected . To permit

users to choose which of the many smart objects in their surroundings should be involved

in an interaction, we propose to use technologies for optical image recognition.

The visual selection of smart things and automatically generated user interfaces enable

end users to conveniently interact with individual services in their surroundings that

are embodied as specific physical objects. To complement the direct interaction with

smart devices, the second part of this thesis focuses on more complex use cases where



multiple smart objects must collaborate to achieve the user’s goal. Such situations arise,

for instance, in home or office automation scenarios, or in smart factories, where machines

or assembly lines could adjust to better support the operator.

To put users more in control of entire environments of smart devices, we present

a system that records interactions between smart things and with remote services and

displays this data to users in real time. To do this, we use an augmented reality overlay

on the camera feed of handheld or wearable devices such as smartphones and smartglasses.

Next, we propose a management infrastructure for smart things that makes the services

they offer discoverable and composeable, and fully integrates them with more traditional

Web-based information providers. This system enables humans to find and use data

and functionality provided by physical devices and allows machines to support users in

finding services within densely populated smart environments and even to discover and

use required services themselves, on behalf of the user. The basis for these applications

is a generic mechanism that allows smart devices to provide semantic descriptions of the

services they offer. Specifically, our infrastructure supports the embedding of functional

semantic metadata into smart things that describes which functionality a concrete object

provides and how to invoke it. Based on this metadata, a semantic reasoning component

can find out which composite tasks can be achieved by a user’s smart environment and can

provide instructions about how to reach concrete goals, thus enabling the configuration

of entire smart environments for end users.

As a concrete use case, we present a platform that applies our proposed interaction

modes with smart things to automobiles: a mobile application recognizes cars, downloads

information about them from a back-end server, and displays this information – as well as

interaction capabilities with the car and its services – on the user’s interface device. The

back-end server furthermore exposes functional metadata about the capabilities of indi-

vidual cars to make their services automatically usable within physical mashups. Finally,

it records client interactions to enable car owners to monitor in real time who accesses

which kind of data and services on their vehicles.

The overarching objective of this thesis is to show how current technologies could sup-

port the interaction of end users with Web-enabled smart devices. To achieve this, we

make use of a number of technologies from different areas of the computer science dis-

cipline: A management infrastructure makes smart things discoverable for human users

and machines and builds upon current research in the distributed systems domain. State-

of-the-art computer vision technologies allow users to select devices in their environment

using handheld or wearable computers such as smartphones or smartglasses. Novel meth-

ods from the field of computer-human-interaction enable the embedding of metadata that

allows for automatically generating user interfaces. Finally, semantic technologies enable

flexible compositions of smart things that collaborate to achieve the user’s goal.



Kurzfassung

Anhaltende Fortschritte bei der Miniaturisierung von Mikroelektronik und Sensorik so-

wie bei Kommunikationstechnologien ermöglichen die Einbettung von vernetzten Kleinst-

computern in Alltagsgegenstände. Solche sogenannten
”
Smart Things“ – schlaue, wenn

auch nicht im eigentlichen Sinne intelligente Dinge – sind Geräte, die mit einer virtuellen

Präsenz im Internet der Dinge gepaart sind. Sie können miteinander und mit Menschen

kommunizieren, ihre Umwelt durch Sensoren wahrnehmen, autonom Entscheidungen tref-

fen und auf die Welt mittels ihrer Aktoren einwirken. Wenn dies im Sinne der menschlichen

Benutzer geschieht, agieren vernetzte, schlaue Dinge wie eine unsichtbare Hintergrundas-

sistenz, die unser Leben angenehmer, unterhaltsamer und auch sicherer machen kann.

Sollten diese Geräte zudem die Fähigkeit mitbringen, Kommunikationsprotokolle, welche

im World Wide Web eingesetzt werden, zu verwenden, so sprechen wir vom
”
Web of

Things“, dem Web der Dinge.

Das Ziel dieser Arbeit ist, zu untersuchen, wie menschliche Benutzer dabei unterstützt

werden können, sich in Umgebungen zurechtzufinden, die hunderte schlauer Dinge ent-

halten. In solchen smarten Umgebungen ist es für Benutzer insbesondere schwierig, jene

Geräte, die sie gerade benötigen, effizient aufzufinden und intuitiv auszuwählen, und mit

ihnen in geeigneter Weise zu interagieren. Zudem soll es Benutzern ermöglicht werden,

Geräte in derartigen Umgebungen so zu konfigurieren, dass sie in kooperativer Weise

Aufgaben erledigen können, welche für ein einzelnes schlaues Ding zu komplex sind. Die

Basis für diese Arbeit bildet dabei das World Wide Web, das durch seinen Aufbau und

seine offenen Protokolle eine grundlegende Interoperabilität zwischen schlauen Dingen

ermöglicht.

Zunächst wird in der vorliegenden Arbeit die direkte, unmittelbare Interaktion von Be-

nutzern mit schlauen Dingen behandelt: Hierfür stellen letztere Metadaten zur Verfügung,

welche die automatische Erzeugung von Nutzungsschnittstellen auf tragbaren Geräten wie

Smartphones, Tablets und Smartglasses ermöglichen. Indem schlaue Dinge ihre Interak-

tionssemantik auf hoher Ebene beschreiben, anstatt nur schnittstellenspezifische Infor-

mationen bereitzustellen, ermöglicht unser Konzept nicht nur die automatische Erzeu-

gung von grafischen Widgets, sondern gleichzeitig auch gestenbasierte Interaktion sowie

Sprachsteuerung. Darüber hinaus vereinfacht unser Ansatz das Beschreiben der Inter-

aktionssemantik selbst, sodass dies sogar Laien ermöglicht wird. Bevor allerdings eine

Nutzungsschnittstelle geladen werden kann, um mit einem schlauen Gegenstand zu in-

teragieren, muss dieser vom Benutzer ausgewählt werden. Hierfür verwenden wir aktuelle



Technologien aus der optischen Bilderkennung: Um die Interaktion mit einem Gerät zu

initiieren, müssen Benutzer in unserem Ansatz lediglich mit der Kamera ihres Smart-

phones oder Tablets auf das Gerät zielen – falls sie über Smartglasses verfügen, ist es

ausreichend, das Gerät einfach nur anzusehen.

Im zweiten Teil der Arbeit wird die Interaktion mit smarten Umgebungen als Gan-

zes untersucht, wobei mehrere schlaue Dinge selbstständig zusammenarbeiten sollen, um

Benutzer bei komplexeren Aufgaben zu unterstützen. Mithilfe der in dieser Arbeit ent-

wickelten Technologien können beispielsweise Automatisierungsszenarien zu Hause und

in Fabriksumgebungen umgesetzt werden – dort sollen sich in Zukunft einzelne Geräte

oder ganze Fertigungsanlagen automatisch abstimmen und schnell anpassen, um den Pro-

duktionsprozess effizienter zu gestalten, insbesondere bei kleinen Losgrößen. Zunächst

beschreiben wir eine Managementinfrastruktur, die das Auffinden und Zusammensetzen

von Diensten, die von schlauen Dingen bereitgestellt werden, vereinfacht. Dieses System

unterstützt insbesondere die Suche nach Geräten und Diensten in dichten smarten Umge-

bungen und ermöglicht durch eingebettete semantische Beschreibungen anderen Geräten,

diese im Sinne des Benutzers anzusteuern. Auf Basis dieser semantischen Metadaten, wel-

che die Funktionalität von einzelnen schlauen Geräten charakterisieren, stellen wir sodann

ein System vor, welches ermitteln kann, welche Aufgaben Geräte in schlauen Umgebun-

gen gemeinsam erledigen können. Hierfür gibt der Benutzer lediglich den erwünschten

Zielzustand seiner Umgebung an, und unser System findet mithilfe eines semantischen

Reasoners selbst heraus, ob und wie dieser Zustand erreicht werden kann. Um die Kon-

trolle über solche dynamischen Abläufe in smarten Umgebungen zu behalten, stellen wir

ein System vor, welches Interaktionen zwischen schlauen Dingen protokolliert und sie

in Echtzeit auf Geräten wie Smartphones oder Smartglasses in Form einer Augmented-

Reality-Einblendung visualisiert.

Abschließend wird ein konkreter Anwendungsfall der in der vorliegenden Arbeit vorge-

stellten Konzepte und Technologien behandelt:
”
Connected Cars“. Eine von uns entwickel-

te Anwendung erkennt Fahrzeuge optisch und erzeugt automatisch Schnittstellen, welche

benutzerfreundliche Interaktion mit Fahrzeugsensoren und -aktoren ermöglichen – bei-

spielsweise das Auslesen des aktuellen Tankfüllstands und des Treibstoffverbrauchs oder

die Bedienung der Fahrzeugverriegelung. Zusätzlich visualisiert die Anwendung Interak-

tionen zwischen Fahrzeugen und anderen schlauen Dingen, wie auch mit Online-Diensten,

um insbesondere unberechtigte Zugriffe auf die durch das Fahrzeug bereitgestellten Daten

und Dienste aufzuzeigen. Des Weiteren ermöglichen eingebettete semantische Metadaten

die Einbindung von Fahrzeugdaten in zusammengesetzten Anwendungen, welche komple-

xe Aufgaben übernehmen können.

Das übergeordnete Ziel dieser Arbeit besteht darin, zu zeigen, wie aktuelle Technolo-

gien aus verschiedenen Bereichen der Informatik die Interaktion zwischen Benutzern und

schlauen Dingen substantiell vereinfachen können. Die Arbeit vereint dazu Methoden aus

der grafischen Datenverarbeitung, künstlichen Intelligenz, Mensch-Maschine-Interaktion

und verteilten Systemen, um Nutzern das Auffinden und Auswählen von schlauen Dingen

zu ermöglichen und mit ihnen, sowie mit smarten Umgebungen insgesamt, zweckmäßig

und effizient zu interagieren.
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CHAPTER 1

Introduction and Motivation

Augmenting physical objects by embedding communication and information technology

and thus transforming them into smart things enhances their utility beyond their tradi-

tional use and generates substantial added value for individuals as well as for enterprises.

Such smart things are capable of perceiving their context using sensors, interacting with

their surroundings, making autonomous decisions, and of communicating with each other

and with humans. They are expected to form the basis of a responsive and adaptable

computing infrastructure that is woven into the fabric of everyday life. On the long run,

it is expected that this development will lead to the formation of a world-wide distributed

system of smart objects that is several orders of magnitude larger than the Internet [127],

and will have a huge economic impact: Gartner, a research firm, predicts that by the year

2020, the total economic value-added that can be attributed to the proliferation of smart

devices will be $1.9 trillion dollars across a broad range of industries including healthcare,

retail, and transportation [275].

Isolated smart devices can already provide useful services to human users. However,

the real potential of embedding smart things in our everyday environments lies in the

interconnection of the services they provide: physical objects will no longer be discon-

nected from the virtual world but rather become accessible through computers and other

networked devices [126]. Enabling two-way communication between people and smart

things or even interactions between objects that do not require human administrators

will allow for sophisticated applications across virtual/physical boundaries. We expect

that one of the first effects of this trend will be a transformation of our private homes [29]

and that it will have a profound impact on industrial environments as well, for instance by

supporting the rapid reconfiguration of manufacturing systems [111]. Smart devices that

are aware of their surroundings will also be valuable in the healthcare domain, both in

the context of ambient assisted living and by supporting doctors in medical environments.

At home and at our workplaces, we expect that the proliferation of smart objects will

significantly affect our daily lives as we will be able to use ubiquitous computing devices

for interacting with the real world from almost anywhere, at any time. For instance, in

smart homes, connected household appliances and entertainment devices will allow for



2 Introduction and Motivation

services such as remote monitoring and control, social media integration, and over-the-air

firmware updates – potentially, the entire control logic of an appliance could be hosted

remotely, thereby making local updates redundant altogether [107]. Smart electricity me-

ters will enable us to query our environment for its current electricity consumption [80],

have the system propose ideas for saving energy, and immediately implement our decisions

by configuring devices such as smart thermostats. Information about the occupancy state

of a smart home can be used to automatically infer heating schedules that reduce energy

waste while still providing a comfortable indoor temperature level [102]. Meanwhile, in

the background, a smart grid will optimize the distribution of electrical power and will

allow for applications such as peak leveling and time-of-use pricing – for instance, to use

energy more efficiently, cold appliances can be remotely controlled by utility companies

to adapt their cooling cycles and avoid peak loads in the energy grid [10]. It will probably

also become possible to query search engines for the location and state of many physi-

cal things [60, 126, 136, 167], thereby supporting users in finding and interacting with

smart devices. Eventually, we expect that some things will be aware of relevant aspects of

their context and thereby able to decide and act by themselves1 – this emerging invisible

background assistance will enable a plethora of applications beyond the smart home do-

main and ranging from improving energy efficiency to entertainment, security, and smart

manufacturing.

1.1 Current Developments and Challenges

Some effects of the increasing interconnection of everyday devices are already apparent

today: in the last few years, more and more everyday devices such as home appliances,

consumer electronics equipment, and cars as well as industrial machines are being con-

nected to the Internet [126], and the World Wide Web [78]. Having become a commodity

in the developed world, Internet access is now spreading to embedded devices that can

support the IP protocol despite their often constrained resources [240]. This development,

termed the Internet of Things (IoT) [66, 126], represents the next step in the evolution of

the Internet by enabling the physical world to produce and consume data automatically

and communicate information to anyone and anything. The long-term implications of

the development of Internet-enabled smart environments are manifold: Companies, for

instance, will benefit from the ability to react to events in the physical world that brings

along the possibility to control and manage the underlying processes in an informed and

rapid or even automatic manner. For individuals, the consequences range from the em-

powerment of consumers to new ways of organizing society as a whole within a process

that represents an important technical and social challenge [126]. The IoT is a “means of

enriching the Internet with trillions of new nerve endings” [58], a metaphor that has also

been taken up by large companies such as IBM within its Smarter Planet initiative [282].

1Within the context of the “Social Web of Things” project, researchers at the Ericsson User Expe-
rience Lab have produced a video that represents a compelling aggregation of ideas at the core of this
development [273]. I personally value this video a lot, both as a way of introducing many of the core
ideas of ubiquitous computing to novices, and as a reminder of what the final outcome of work in this
research domain could look like.
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Linked together, these nerve endings can provide humans with a tool that opens the door

to many new findings, applications, benefits, and also risks [165]. Especially as smart de-

vices may handle context information (e.g., individuals’ whereabouts) or may be closely

interlinked with critical infrastructures (e.g., power supply) [266], this development gives

rise to severe security and privacy issues [109].

In this thesis, we focus on another important challenge in the ubiquitous computing

domain that concerns the interaction of human users with smart environments. Particu-

larly in the smart home domain, some experts already issue warnings about a possible loss

of control by smart home inhabitants [185] due to the increased difficulty of managing and

interacting with smart devices. To make the IoT widely usable and drive its successful

adoption in people’s homes and at their workplaces, the human element must be taken

into account: it is crucial that the effort required from end users to set up smart devices,

interact with them, and configure them to behave in smart ways remains manageable.

A first step to achieve this is to consider the direct interaction of humans with smart

devices: current studies in the field of Human-Computer Interaction (HCI) [108] provide

valuable insights regarding how to enable users to interact with embedded and thus vir-

tually disappearing computers . This term refers to the miniaturization of processing units

and their integration into everyday objects as well as to computers that are not anymore

perceived as such (mental disappearance) [218]. Especially in the first case, current devel-

opments thus lead to user interfaces that are much less palpable and obvious than those

of traditional computing devices – in particular when considering environments that are

populated by many heterogeneous smart things, it is difficult for users to find and utilize

services that provide the functionality they require [219]. This necessitates steps to en-

able the intuitive interaction with smart objects when digitally augmenting them [94]. In

this context, both the selection of smart devices to interact with and the provisioning of

suitable and intuitive user interfaces must be considered.

On the longer term, we believe that this requirement does not only apply to the direct

interaction of humans with individual smart things but also to interactions with entire

smart environments. Especially the coordination of device collaborations is challenging for

end users [29] and we therefore believe that it would be beneficial to push the management

of such compositions to a more abstract level by allowing users to specify goals with respect

to their environment instead of having them combine devices and services themselves in a

process-driven way. Possible applications for this approach include individual well-being

such as controlling the ambient temperature, and reconfigurations of smart environments,

for instance in industrial automation scenarios. In all these applications, making smart

things collaborate to achieve higher-level goals must be simple enough for end users.

In summary, it is not yet clear how the interaction with smart devices can be facilitated

for human users nor how networked devices will be enabled to interact in smart ways with

each other on behalf of the user – providing answers to these questions is, however, highly

relevant to ensure that users want to adopt the IoT in their homes and workplaces, and

thus to unlock the potential benefits of a highly connected smart world.
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1.2 Research Goals and Contributions

The overall goal of this thesis is to investigate how human users can be supported in their

interaction with individual smart devices and with entire smart environments. Specif-

ically, the research questions that we consider relate to the selection of smart things,

the proposition of suitable user interfaces for them, the administration of devices within

densely populated smart environments, and the collaboration of multiple smart things to

reach higher-level goals.

Selecting Smart Things: How can we enable everyday users to initiate interactions with

individual smart devices?

We address the question of how end users can be enabled to intuitively select devices in

their smart environment that provide a desired functionality. To achieve this, we propose

to use methods from the field of visual object recognition. By deploying these on users’

handheld or wearable devices, we enable them to select smart things by pointing the

camera of the device at an object or – in the case of smartglasses – by merely looking at

a smart device to interact with.

User Interfaces for Smart Things: How can smart things provide information about

adequate interfaces to interact with them?

After having selected a smart thing or service to interact with, human users will in most

cases require a user interface to control that device. We propose that smart things embed

information about suitable interfaces that can be looked up and rendered on demand

by mediating devices such as smartphones or smartglasses. To this end, we propose an

interaction description language for smart things that is simple to create and embed into

devices yet expressive enough for many use cases in the pervasive computing domain.

Administering Smart Things: How can protocols and patterns from the World Wide Web

be utilized to create an infrastructure for the Internet of Things that is able to administer

the magnitude of potentially integrated smart devices?

In densely populated smart environments, it will get increasingly difficult for machines

and human users to find , select , and utilize services that are provided by smart things in

a fast, reliable, and user-friendly way. The task of finding relevant smart things is signif-

icantly more complicated than searching for documents, not only because smart things

should be identified according to dynamic, contextual information but also due to the

lack of a uniform way of describing the things, their properties, and the services they

provide: a smart thing does not necessarily express its functionality in a way that tradi-

tional search engines – being geared toward finding textual documents – can process. To

facilitate the search for smart devices and their services, we propose a scalable, Web-based

infrastructure that simplifies the interconnection of heterogeneous embedded devices and

is optimized for managing large numbers of interacting smart things.
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Collaborating Smart Things: How can physical mashups that involve multiple services

from different devices be created by end users?

Whenever an individual smart thing is not able to fulfill the user’s requirements by

itself, it can in principle collaborate with other smart objects and services that could help

achieve the user’s goal. For this to succeed, smart things must have access to informa-

tion about what tasks other devices and services can achieve, and how this functionality

can be invoked by them to fulfill a higher-level user goal. To enable this, we propose

a method of outfitting smart things with functional semantic metadata that enables a

semantic reasoner to automatically create composite services by combining information

and functionality from multiple smart devices.

1.3 Thesis Outline

This thesis is structured as follows: In Chapter 2, we discuss how smart things that

we consider throughout this thesis are connected to each other and how they communi-

cate with clients using well-known and proven mechanisms and patterns from the World

Wide Web. Based on these principles, we propose in Chapter 3 an approach to embed

metadata into smart things’ representations that enables user interaction devices such as

smartphones, tablets, or wearable devices (e.g., smartglasses and smartwatches) to render

suitable user interfaces for the direct interaction with smart things. We show that, by

describing the high-level semantics of an interaction, our proposed model-based interface

description scheme is expressive yet easily producible for creators of interface descriptions

and that it supports the generation of intuitive modality-independent user interfaces. To

initiate the interaction with a specific smart thing, we propose to use state-of-the-art vi-

sual object recognition technologies for identifying devices. The integration of computer

vision methods with our user interface description scheme is discussed in Chapter 4, where

we also discuss other approaches to the selection and identification of smart devices.

In Chapter 5, we move from considering the interaction with individual devices to user

interactions with entire smart environments and present a system that enables humans to

perceive communication flows within a smart environment in real time using visual object

recognition technologies in combination with an augmented reality interface. Next, in

Chapter 6, we introduce a Web-based management infrastructure for smart things that

facilitates their discovery and look-up within densely populated smart environments. This

chapter also includes a discussion of the metadata that the discovery component of our

infrastructure tries to obtain by analyzing the Web representation of a smart thing when

encountering the device for the first time. Finally, in Chapter 7, we demonstrate how users

can be enabled to not only control individual, isolated smart devices, but also to manage

compositions of services that are available in their smart environment – ideally, a user’s

smart environment would be aware of which high-level user goals could be achieved if all

devices and services in the environment collaborated with each other, and would make

this information available to the user. We discuss two approaches of how we attempt to

provide this functionality: Our first method relies on developers who publish the relevant

information and thus represents a crowd-based approach to service composition. As a
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second approach, we propose to embed functional semantic metadata into services, which

can then be used by a semantic reasoner to deduce service compositions at runtime.

To demonstrate the different systems for facilitating the interaction with smart things

that we present in this thesis in the context of a real-world use case, we discuss how our

software supports users when interacting with Web-enabled automobiles in Chapter 8. We

show that our proposed user interface descriptions, their integration with object recogni-

tion technologies, the visualization of device communications, and the embedding of se-

mantic metadata are indeed useful to support users when interacting with Web-connected

cars. We conclude and highlight avenues for further research in Chapter 9.



CHAPTER 2

Connecting Smart Things to the Web

To enable convenient interaction with smart things requires solutions to challenges on

several layers of the “interaction stack:” prior to addressing the selection of smart objects

to interact with, the generation of adequate interfaces that facilitate the interaction with

them, and the automatic collaboration of devices in smart environments, smart things

must be enabled to communicate seamlessly with each other. This “Device Accessibility

Layer” [73] forms the basis of all approaches to smart things interaction that are presented

in this thesis – the objective of this chapter is thus to describe how devices and services

that we consider are connected to each other, and how people can access them using

interaction devices.

After giving an overview of the IP-enablement of smart devices, we discuss their in-

tegration on the application layer and the main architectural style that we adopt for

modeling smart things and the services they provide. Within this discussion, we cover

many properties of devices and services that we consider throughout this thesis and that

will be frequently referred to in the subsequent chapters.

2.1 Convergence in the Internet of Things

Much of the current effort to interconnect more and more everyday devices is carried out

under the umbrella of the Internet of Things vision. The core idea of the IoT is that

the Internet shall be extended into the real world and include content that is generated

by sensors, and by applications that in turn use the data and functionality these offer to

provide higher-level services. Smart things – digitally enhanced, communication-capable

objects such as wireless sensor nodes, mobile phones, and home appliances – could, for

instance, be networked together to create environmental monitoring applications [240]. In

the IoT, each smart thing is given its own IP address [52], so as to be able to communicate

and interact with other things and services. By opening up new modes of interaction

among things, the development toward the IoT will enable us to monitor the real world in

real time by collecting up-to-date information directly from networked physical objects,

and also control these devices remotely.
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While the IoT makes it possible that smart things and the services they provide

are reachable via the Internet, it does not directly target convergence aspects in smart

environments – the IoT often requires humans and machines that want to make use of the

capabilities of a smart device to have access to specialized client software and software

libraries: the development of applications that integrate the functionality of multiple

smart things consequently remains a challenging task because it requires expert knowledge

of each involved platform on many layers, ranging from rather low-level know-how of

embedded systems to high-level user interface design [190]. One major risk of failing

to overcome this convergence challenge is that “Intranets of Things” are created that

are not interoperable but rather form isolated islands on the application layer [73]. This

development has in the past been particularly visible in the sensor networks domain [196]:

today, such networks of spatially distributed sensor nodes are gradually being integrated

with the Internet, a development that represents a major opportunity for traditional

sensor networks applications as the usage of novel Internet- and Web-based interaction

and management schemes for distributed sensor networks facilitates their deployment and

operation.

2.2 The Web of Things

Unlike the IoT, where the network-level connectivity plays the central role, targeting the

convergence of smart things on the application layer and facilitating IP-enabled devices

from different manufacturers to cooperate with each other is the prime goal of the Web

of Things (WoT) development. This goal, proponents of the WoT argue, can be achieved

by exposing device application programming interfaces (APIs) that are simple to use for

end users and by making Web-enabled smart things accessible for humans as well as other

devices via standard software (e.g., the Web browser) and widely deployed protocols and

standards (e.g., the Hypertext Transfer Protocol, HTTP) [77, 78]. Ultimately, smart ob-

jects shall become “first-class citizens” of the World Wide Web and therefore findable,

usable, and shareable like any other hyperlinked resource [78] – devices can be connected

using traditional Web concepts such as Uniform Resource Identifiers (URIs, [287]) and

hyperlinks, and many mechanisms and patterns that make the Web scalable and success-

ful are directly inherited by smart devices (e.g., caching, load balancing, and the stateless

nature of the HTTP protocol). Fully leveraging the Web’s architectural principles and

patterns fosters device interoperability and scalability while facilitating user interaction

and openness. Having the entire interaction with a smart thing happen via Web proto-

cols furthermore eliminates many compatibility issues that could otherwise occur due to

vendor-specific protocols, and also lowers the barrier of entry for end users [176]. Finally,

the WoT allows to use traditional Web services – in particular Web search engines – in

conjunction with physical devices, thereby extending their utility beyond their traditional

functions, and, in the case of Web search engines, allowing humans and machines to

“query the real world” [136, 167, 197].

Today, tiny Web servers can already be embedded in many devices [50, 52, 53, 89,

240] that are, for instance, based on building-management technologies such as KNX
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or enOcean [24], and – with the help of so-called smart gateways – the WoT can even

extend to devices that are not IP-enabled [78, 227]. Integrating devices in the WoT

should, however, also be possible in a way that is lightweight enough to be applicable

to resource-constrained devices,1 a requirement that lies at the heart of the Constrained

Application Protocol (CoAP) which is currently in the final phase of being standardized

by the Internet Engineering Task Force (IETF) [257]. This train of thought culminates in

the idea of the “Thin Server Architecture” [107] that advocates that smart objects such

as home appliances merely expose Web APIs to their basic components (i.e., sensors and

actuators) and that most of the program logic of the devices and their services be deferred

to remote servers.

2.3 Representational State Transfer

The smart devices that we consider in this thesis and that we strive to make simple to

interact with for human users all form part of the WoT. In this section, we review the

main underlying patterns and principles of the World Wide Web and, consequently, the

WoT, because these form the architectural basis of the interaction mechanisms that we

discuss in the subsequent chapters.

A large part of the success of the World Wide Web stems from its scalable architecture,

generic interfaces, and loosely coupled components. In its idealized form, we refer to

the basic architectural style that the Web adheres to as Representational State Transfer

(REST) [56]. In REST, the primary abstraction of objects that provide information

and functionality are resources that are identified in a uniform way using URIs (this is

commonly referred to as the Resource-oriented Architecture, RoA). These objects can be

queried and manipulated using a limited and fixed set of verbs (in HTTP, these are GET,

PUT, OPTIONS, etc.) that have generally understood semantics (e.g., for HTTP, GET is

considered to be free of side effects). Messages that are exchanged between client and

server are self-descriptive and their structure is considered common knowledge, which is

supported by a content negotiation mechanism used to determine the concrete resource

representation that is transmitted between communication endpoints.

Fully subscribing to RoA and REST distinguishes the WoT from traditional WS-*

Web Services [176] in that it does not use HTTP only as a transport protocol to convey

specification-conform data, but rather directly exposes the functionality of smart things

by adopting a REST-driven, resource-oriented architecture [189]. Although HTTP was

designed as an application protocol with particular focus on scalability, many Web ap-

plications use it only as a transport protocol and therefore only utilize a fraction of its

functionality: for instance, Web applications that rely upon WS-* technologies use only

the HTTP POST operation to perform API calls on URI-identified endpoints and do not

expose the manipulated resources themselves. Practices like these prevent applications

1By this, we refer to hardware that falls into the categories Class 1 or Class 2 according to the
IETF (see [106]): Class 1 devices are capable of directly connecting to the Internet but cannot operate a
full HTTP protocol stack and thus require lightweight and energy-efficient alternatives. Class 2 devices
almost exhibit the characteristics of “unconstrained” hardware, but can still benefit from lightweight
protocols.
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from taking full advantage of the Web architecture because they neglect the semantics of

the interaction verbs: for instance, a GET could be used to signal that a specific interaction

is free of side effects and therefore cacheable.

2.3.1 Basic REST Concepts

The REST architectural style is defined in terms of a set of constraints on the server

interface and the client-server interaction. The goal when formulating these constraints

was to explain what properties of the Web are responsible for its desirable qualities such

as performance, scalability, simplicity, and modifiability [57]. In this section, we review

the most important properties of systems that conform to the REST constraints (we refer

to such systems as being RESTful) [189]. Although all of the concepts introduced here

are crucial for the REST architectural style, we emphasize selected properties that are of

particular interest in the context of the interaction with Web-enabled smart things.

Any RESTful system is based on a client-server paradigm, where requests are sent

by clients to a server that processes them and returns a response. The main factor that

distinguishes RESTful architectures from other client-server systems is that the inter-

action is centered around resources that reside on servers: clients can retrieve resource

representations and modify the state of server resources by using these entities. This

property is what gives REST its name: the client sends a request to the server whenever

it is ready to perform a transition of a server resource to a new state, by changing the

representation of that resource. The definition of what a resource is has seen multiple

amendments during the history of the Web. Resources were originally defined to be “any-

thing that has an identity” by the IETF in the year 1998 [286]2 – that definition also

included several examples for resources (an image, a service, etc.) and the notion that

a resource does not have to be network-retrievable: for instance, human beings can also

be resources. The currently valid definition of a resource was produced by the IETF in

the year 2005 and forms part of the specification of Uniform Resource Identifiers (URIs)

[287]: this document defines resources as “whatever might be identified by a URI,” and

extended the scope of URIs to abstract concepts such as relationship types or numeric

values. The WoT explicitly treats real-world objects as Web resources, including their

physical parts (e.g., an actuator of a device) and virtual components (e.g., the currently

measured value of a sensor). Sensor values can, for instance, be obtained from a device

by using HTTP GET requests and actuators can be controlled by setting their state using

HTTP PUT.

Apart from the client-server paradigm, the other REST constraints are statelessness ,

caching , layering , the code-on-demand constraint, and a constraint that is especially cru-

cial when considering the interaction of humans and machines with Web servers: the

uniform interface. REST requires that the communication between client and server

must be stateless , meaning that a client request must include all information necessary

to process it. The client can thus not directly use (possibly temporary) aspects of the

server context that are not addressable by a URI. Statelessness governs how servers can

2Already in the year 1994, the IETF published an informational document that implicitly defines
resources as anything that can be addressed [283].
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manage recoveries from failure and the migration of states between machines, and is thus

crucial for achieving fault-tolerance and load-balancing within RESTful systems. The

cache constraint determines that clients in principle are able to cache server responses

and that servers must specify whether their responses are cacheable (in HTTP, this is

done using the Cache-Control header field). This constraint thus helps to avoid redun-

dant requests to servers, which improves the scalability and performance of the system.

The layering constraint targets the scalability and modifiability of a REST system: it

emphasizes the necessity to reduce client-server coupling via information hiding, thereby

also supporting caching as it should remain opaque to the client whether a request has

been served directly by the addressed server or by an intermediary that has cached an

earlier server response. The code-on-demand constraint specifies that clients can be tem-

porarily customized by downloading and executing mobile code (i.e., client-side scripts).

This improves the extensibility of REST systems because it reduces the number of fea-

tures that need to be implemented client-side, but impedes the self-descriptive nature of

requests, and was therefore defined as an “optional” REST constraint.

2.3.2 The REST Uniform Interface

Finally, the REST architectural style specifies a set of constraints on the client-server in-

teraction itself by dictating that all communication between clients and servers must take

place through a uniform interface. The four uniform interface constraints – identification

of resources, manipulation of resources through representations, self-descriptive messages,

and hypermedia as the engine of application state – are fundamental to RESTful systems

because they allow to decouple clients and servers, thus enabling both parts of a client-

server application to evolve independently. In HTTP, for instance, servers only process

a finite set of commands with defined semantics (GET, POST, PUT, etc.; these are referred

to as the HTTP “verbs”) – because server interfaces allow only these verbs, servers and

client browsers can evolve independently: it is not necessary to update the browser for

accommodating updates on a particular website.

REST mandates that individual resources be identified in requests, for instance using

URIs – the usage of uniform identifiers for resources enables clients and servers to transfer

information about the resource relevant to a request without pre-negotiated agreements.

Whenever such information is passed in the context of a client-server interaction, it is in

the form of a specific representation of the resource that can be parsed and manipulated

locally by the client. The corresponding resource on the server is often modified or deleted

during the onset of the interaction. To support the client when interpreting a resource

representation – and the server when processing client requests – REST requires messages

that are exchanged in either direction to be self-descriptive. One major mechanism to

satisfy this constraint in HTTP is the usage of common Internet media types,3 as well as

binding registration procedures for such types that have been defined by the IETF [295].

Arbitrating between different representations of a resource in HTTP is the task of its

3Originally, these media types were conceived as a common way of referring to non-ASCII parts
of email messages. For this reason, their definition is part of the IETF Multipurpose Internet Mail
Extensions (MIME) specification [284, 285].
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<html> .... </html>

GET en.wikipedia.org/wiki/REST

<html>....</html>

GET en.wikipedia.org/wiki/HATEOAS

Link Extraction

/world_wide_web
/HATEOAS
/Hyperlink

Link Selection

/world_wide_web
/HATEOAS
/Hyperlink

Client Context

Page contents

Figure 2.1: Illustration of the HATEOAS principle: users interact with Wikipedia by request-
ing an initial resource and interpreting its HTML representation. Hypermedia controls are
provided by the resource and rendered by browsers in a way that makes them apparent as
hyperlinks. Users select one of these depending on their context (e.g., personal interests) and
the page contents (e.g., an advertisement) and invoke the matching hypermedia control.

content negotiation mechanism – for this thesis, this is particularly interesting as it allows

to serve different representations of a resource (which represents a smart thing or one of

its services) depending on whether the client that wishes to interact with it is a human

or a machine.

The final and – in the context of this thesis – most important uniform interface con-

straint is the hypermedia as the engine of application state (HATEOAS) constraint. In a

system that respects HATEOAS, clients can only perform state transitions on resources

using actions that are provided within the hypermedia that the server delivers, for in-

stance using hyperlinks. The core idea behind HATEOAS is that no knowledge about a

Web application should be implemented in Web clients other than the ability to follow

hypermedia links. This approach is central to avoid tight coupling between clients and

servers: the client code can remain static even when the server code changes, because it is

the task of the server to guide client actions by providing appropriate links for the client

to interpret and follow.4 In short, as illustrated by Fig. 2.1, the HATEOAS principle puts

all possible state transitions in a Web application under the control of the server.

At this point, it is interesting to note that most Web browsers actually break the

HATEOAS constraint: the Back and Refresh buttons, standard components in all widely

used browser implementations, provide to users the ability to re-send their most current

request – and several earlier requests – on the click of a button. The reason why us-

age of these buttons often breaks Web applications (often in the context of e-commerce

applications or booking systems) is precisely because they provide a way to circumvent

HATEOAS: the server is no longer in control of the interaction.

4Colloquially, this principle is referred to as “follow your nose” [272].
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Figure 2.2: Relative interest over time for the search term “HATEOAS” (Apr. 2014 = 100)
from Google Trends [278].

Having been widely neglected for a long time and often dismissed as a purely aca-

demic concept, the HATEOAS constraint has recently been attracting more attention by

a broader audience including industry, as can be approximated by doing a Google Trends

analysis of the term “HATEOAS” over the last four years (see Fig. 2.2). We believe that

this rise in interest in this particular constraint is mainly driven by increasing demand

for machine clients that automatically or semi-automatically use Web applications on

behalf of human users. As is exemplified in the above example with the Back and Re-

fresh buttons, humans are able to recover from failures that arise from the client breaking

the HATEOAS contract – machines, however, in most cases are not able to react in an

adaptive way to such failures.

To summarize, HATEOAS is what adds flexibility to REST systems. It is what allows

Web applications and Web browser implementations to evolve independently, because

browsers are merely general-purpose tools that provide to users the ability of following

links in hypermedia documents: clients discover links at runtime and will therefore auto-

matically adapt if links change, given that they have a way of interpreting what a specific

link signifies. While humans certainly are able to do this, we will discuss several options

for implementing such smart behavior for machine clients in Chapter 7, and propose a

way of how machines can interpret and use functionality that is provided by services

within ubiquitous computing scenarios. In our opinion, applying the uniform interface

constraints, and in particular the HATEOAS constraint, to Web applications that are

provided by physical devices represents one of the core advancements of the WoT over

generic IoT systems. Uniform interfaces are crucial for achieving convergence between

smart things, for enabling the orchestration of smart things, and for facilitating the in-

teraction of human users with environments that are populated by them.

2.3.3 REST and WS-*

The main alternative to adopting the REST architectural style as an application layer

for physical devices is using more traditional protocols and standards that are referred to
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collectively as Web services or, in short, WS-*. The main difference between these and

REST is that, for WS-*, URIs are used to denote service invocations themselves – this

is the reason why WS-* and similar approaches are said to implement a service-oriented

architecture, or SOA.

The main technologies of the vast WS-* protocol stack are SOAP5 for providing service

access, the Web Services Description Language (WSDL) for describing service capabili-

ties, and the Universal Description Discovery and Integration (UDDI) initiative for the

discovery of services – other WS-* standards define more meta-services such as address-

ing and security. At the time these technologies were conceived (the years 1995-2000),

their purpose was to make services on the Internet discoverable and usable for clients in a

language-independent way, since the APIs of service offerings on the Internet had at the

time become very heterogeneous, for instance with respect to the format in which they

consumed data and delivered their results.

The novel requirements of applications in the IoT, where services are usually not

provided by enterprise servers but by – often resource-constrained – devices such as mo-

bile phones or sensor platforms, necessitate that the suitability of the two approaches

be assessed in light of their deployment on devices with rather limited capabilities [76].

Although WS-* applications have successfully been deployed on resource-constrained de-

vices [184], widespread consensus has been established in recent years that the REST

architectural style is better suited for typical IoT applications, for reasons of higher per-

formance on constrained devices [240] and better scalability [78], as well as better usability

for programmers [76] – more lightweight forms of WS-* services, such as the Devices Pro-

file for Web Services (DPWS) [312], have come and disappeared again due to a lack of

interest in these technologies by relevant parties mainly in the industry. Furthermore,

given the ubiquitous usage of Web browsers and the fact that people are already used to

exploring the Web using a browser, we can safely assume that REST-based systems are

also simpler to access for end users than Web services. Also due to the discontinuation

of WS-* systems by major companies,6 REST, which was only a few years ago merely

considered for purposes of “tactical, ad-hoc integration over the Web” and not for “pro-

fessional enterprise application integration scenarios” [174, 176], is today increasingly seen

as the de-facto standard for device integration when using Web protocols.

In our own work [76], we investigated how developers assess the two styles when being

confronted with the task of learning both technologies and using them in the context

of a mobile phone application that retrieves sensor data, both using a REST API and

a system based on WS-*. Our study among 69 novice developers in the year 2010 was

motivated by the assumption that APIs that are easy to learn and use are necessary

when applications are to be developed by a broad community [43] – as is the case at the

moment with the IoT, where companies increasingly rely on external developers to build

innovative services, and, thus, create added value for end users. Our study revealed highly

significant differences in the perceived ease and speed of learning of the two technologies

(see Fig. 2.3): for instance, 70% rated REST easy or very easy to learn while under 10%

5The abbreviation originates from the “Simple Object Access Protocol.”
6UDDI was discontinued by IBM, Microsoft, and SAP in the year 2006, and the functionality was

removed from the Windows Server operating system in 2010. Google discontinued its WS-* APIs in 2011.
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Figure 2.3: Results from our study to elicit the developers’ perspective on REST and WS-*.
Participants rated the speed and ease of learning on a 5 point Likert scale (1=Not fast/easy
at all ... 5=Very fast/easy). The results show that REST was perceived as being easier (a)
and faster (b) to learn than WS-*.
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Figure 2.4: Results from our study to elicit the developers’ perspective on REST and WS-*:
(a) Participants believe that REST is better suited for IoT applications that involve mobile
and embedded devices. (b) Results from a replication of the study in the year 2011 indicate
higher preference for REST in all three application domains.

said the same about WS-*. The results also show that REST was significantly preferred

for applications that involve mobile and embedded devices (see Fig. 2.4(a)), while the

preference of WS-* for “business applications” was not statistically significant. When we

repeated the study in the year 2011, we discovered that the preference for REST was now

even stronger across all three application domains (see Fig. 2.4(b)).

2.4 Summary

In this chapter, we introduced the vision of the Internet of Things, an Internet that ex-

tends into the physical world and will provide us with huge amounts of real-time data

and functionality. In our opinion, the IoT represents the next logical step in the evo-
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lution of the ever more dynamically evolving Internet that has recently undergone its

last pronounced transformation, toward enabling faster and more integrated collabora-

tion between humans: the IoT will do the same for physical devices. We expect that

this development will generate substantial added value for consumers by allowing for new

modes of interaction between static documents, services, smart things, places, and peo-

ple. The IoT also enables the real-time management of business processes, for instance

in logistics, and will allow businesses to rapidly react and adapt to events in the physical

world, for instance in industrial manufacturing.

After an introduction to the Web of Things, we discussed two possible architectures

to achieve coherence in the IoT on the application layer: REST and WS-*. We showed

that, while others established that REST provides higher scalability and performance

than WS-* on resource-constrained devices, our results from a study among novice devel-

opers show that REST also stands out as the preferred architecture from a developer’s

standpoint. We discussed the REST architectural style in greater detail, as we will re-

fer to specific properties of such architectures – specifically the uniform interface and

HATEOAS – in later chapters of this thesis: In the next chapter, we show how REST

supports the embedding of information about the interaction capabilities of a smart thing

and about user interfaces that are suitable to control it, directly in its Web resources.

In Chapter 6, we present an implementation of an IoT management infrastructure that

is based on REST, and show that REST features can be leveraged to accelerate search-

ing for services that are provided by smart things in such an infrastructure. Finally, in

Chapter 7, we discuss the integration of service offerings across multiple smart devices and

services in smart environments – there, we show to what extent the HATEOAS constraint

enables the creation of collaborative applications, where it fails to do so, and what other

technologies are available to offset its shortcomings in this domain.



CHAPTER 3

User Interfaces for Smart Things ∗

Once a smart device is integrated into the Web of Things and provides a Web API to

access it, humans and machine clients alike can in principle invoke its services via ordinary

Web requests. Because the smart things we consider are additionally based on the REST

principles and feature a resource-oriented architecture, we can assume that each basic

functionality that a device provides – for instance, accessing its measured sensor values

or controlling its actuators – is embodied in the form of a Web resource. Humans can

thus directly access and control a smart thing using a Web browser, a widely available

tool that most users are familiar with [15, 39]. In this case, all user interaction typically

happens via the human-readable Web representation of the smart device (i.e., HTML, in

most cases) that displays sensed values and provides a simplistic, form-based, interface

to control actuation of the smart thing (Fig. 3.1(a)). While such an interface is easy to

deploy or can even be generated automatically, it is often neither intuitive nor efficiently

usable and the interaction itself may be cumbersome, especially when using a mobile

device to interact with the smart thing. As a remedy, interfaces may be provided that

are manually tailored to specific smart things (Fig. 3.1(b)). However, these usually are

expensive to create and not flexible enough to adapt to different platforms and scenarios.

To bring Web-enabled smart things into peoples’ homes and to their workplaces and

enable humans to better interact with smart environments, more intuitive but still easily

deployable interaction mechanisms are required. In this chapter, our focus is on supporting

explicit human interaction with smart things which emphasizes the direct and immediate

monitoring and control of such devices – a concept different from smart environments

providing invisible background assistance. Such immediate interaction is relevant espe-

cially if the controlled devices provide information or perform actions of immediate value

to the user (e.g., monitoring electricity meters or controlling multimedia systems).

To enable the automatic generation of user interfaces for smart devices, a model-based

approach seems to be best suited [63, 161]: The smart thing embeds a description of how

other devices can interact with it in the form of a User Interface Description Language

∗Parts of this chapter have been published in ACM Transactions on Computer-Human Interaction 21
(2) (2014), as Mayer, S., Tschofen, A., Dey, A.K., Mattern, F.; User Interfaces for Smart Things – A
Generative Approach with Semantic Interaction Descriptions. [143]
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(a) (b)

Figure 3.1: (a) Browser-based interface to toggle a Web-enabled LED [135]. (b) Manually
tailored mobile user interface of a smart electricity meter [236].

(UIDL), and interaction devices (e.g., remote controls or smartphones) use this infor-

mation to provide an appropriate concrete interface to the user. Such a system enables

plug-and-play interaction within smart environments with no configuration effort other

than embedding the appropriate descriptions. Thereby, it greatly reduces the amount of

time and work needed to create appropriate and easily usable user interfaces for smart de-

vices [161] – this is crucial when targeting the direct and immediate interaction of human

users with devices in the WoT.

In this chapter, we present a high-level description scheme for smart things that cap-

tures the semantics of an interaction with the device rather than providing an explicit,

concrete encoding of an appropriate type of user interface or its appearance. Based on this

approach, we propose a modality-independent taxonomy of interaction semantics for mon-

itoring and controlling devices. We furthermore present a concrete description language

that captures interaction semantics and, based on this language, a prototype implemen-

tation of a universal remote control application for smartphones. This application as well

as our description scheme have been evaluated within a controlled laboratory environ-

ment, with mock-up smart devices, in deployments in private homes, and in a study that

targeted the understandability and simplicity of the proposed description scheme.

Our focus is to allow the provisioning of interaction descriptions for smart devices

by adding a minimal amount of markup that is easy to understand and simple to pro-

duce for developers. Still, the description scheme is general enough to be applicable to

a wide range of interaction use cases, where we primarily consider devices that monitor

and control physical quantities in the real world. Such devices are widespread in home

and building automation systems (e.g., light dimmers, window blind motors, or household

appliances) but can also be found in cars (e.g., air conditioning), electric musical instru-

ments, toys, and many other devices that we interact with in our daily lives. More and

more, these traditionally simple, isolated devices are being equipped with processing and

communication capabilities, thus transforming them into smart things. Since the main

functionality that such devices offer is to sense and/or actuate the physical world, they

can be modeled as actuators, sensors, or sensor-actuator-composites. A light dimmer, for



3.1. Terminology 19

Figure 3.2: An interactor (light dimmer) and a stateful atomic interactive component
(dimmable lamp) whose state can be queried and manipulated.

example, is a simple actuator that controls the electric power supply of a lamp and con-

sequently its brightness. A toy robot, in contrast, might have multiple motors to control

its movable parts, and sensors to perceive its environment.

After discussing our terminology for referring to the different components that are

involved in an interaction with a smart device, we introduce our approach of describing

the high-level semantics of interactions in Section 3.2. We detail how these interaction

semantics can be captured in Section 3.3 and discuss elements of a language to describe

them in Section 3.4. In Section 3.5 we show a prototype application that interprets

our interaction descriptions and can be used as a generic mobile user interface in smart

environments. We present an evaluation of our language with respect to its generality,

usability for end users, and producibility for developers in Section 3.6 and discuss the

positioning of our approach with respect to related work in Section 3.7.

3.1 Terminology

We consider an atomic interactive component to be a physical or virtual object that

provides a specific functionality to the user and is not reasonably divisible (e.g., a light

switch). In contrast, a more complex device such as a VCR can be subdivided into mul-

tiple atomic interactive components, for instance its Play/Pause buttons and its volume

controller. An atomic interactive component either provides its current internal state as

data (sensor) or performs an action when reacting to a command (actuator).

We differentiate between two types of actuators: A stateful actuator is an actuator

whose state can, in addition to being manipulated by sending commands, also be queried.

One example for this is a dimmable lamp (see Fig. 3.2) whose state is the lamp’s current

intensity/brightness. A stateless actuator can be manipulated like a stateful actuator but

does not hold a representation of its internal state: It can be triggered but not queried. An

example is a digital doorbell that plays a sound when triggered by a button press. Every

stateless actuator can in principle be transformed into a stateful actuator by exposing

its current state. However, for this type of actuator, representing the state is often not

necessary or results in too much overhead because the state does not play an important

role or is hard to capture.

The device or software abstraction that a human uses to interact with an interactive

component is called an interactor . In the example depicted in Fig. 3.2, this is the light

dimmer knob. Interactors can take many forms ranging from traditional graphical user

interfaces (GUIs) to gesture or speech-control interfaces and to physical buttons or knobs.
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3.2 Interaction Semantics and Atomic Interactive Com-

ponents

We postulate that an interaction description scheme should be usable by heterogeneous

interaction devices, involving gesture-based, speech-based, graphical, or physical interfaces

such as physical buttons or sliders [166]. Furthermore, to foster widespread adoption and

actual usage in practice, a user interface modeling language should, in addition to being

expressive enough, be easy to understand for developers [124]. Ideally, it should thus

enable the embedding of interaction descriptions with only a few lines of easily producible

markup. Approaches to providing UIDLs proposed to date are limited in their support

for these requirements. Most target the provisioning of interface descriptions for complete

devices (see Section 3.7 for a thorough discussion of related work): the user interface of a

VCR, for instance, is usually specified in a single document that, apart from describing the

interfaces to each of the VCR’s components (e.g., the Play-button), lists all dependencies

between components of the device. An example of such a dependency is that the fast-

forward button of the VCR should only be active when a video is playing. Instead of

describing devices as a whole in this way, we claim that especially within a Web context

it is more beneficial to embed interaction information directly into the devices’ atomic

functional components and not explicitly specify such dependencies. Other projects in

the domain of UIDLs have also advocated the decomposition of appliances into their

atomic interactive components (e.g., XWeb [164], the URC standard [246], the PUC

project [161], or MARIA [171]), but have not explored this further as an approach that

could yield simpler yet expressive interface description languages.

The traditional way of describing how one can interact with atomic interactive compo-

nents is to associate them with data type information: An element which has an integer

or float type with a range can be graphically represented by a slider; an enum type corre-

sponds to a drop-down menu, etc. We argue that providing such a data model , however, is

only a specification of the program interface to an interactive component. While this en-

ables rudimentary interaction with devices, the specification of data types is not sufficient

for creating intuitive interfaces which, in our opinion, requires capturing the semantics

of the interaction. We therefore propose to abstract from user interface descriptions to

interaction descriptions , meaning that we do not model concrete interface elements but

instead the semantics of the interaction of the user with a device (what exactly we mean

by interaction semantics is discussed in detail in Section 3.3.2). The possibility of adding

more abstract information about interface elements has also been expressed by the authors

of the above-mentioned PUC papers and the URC standard, but has not been further

explored as a possibility to simplify user interface descriptions.

When analyzing traditional (built-in or remote) user interfaces for devices such as

the ones mentioned above, one notices that certain types of interactors (e.g., various

kinds of knobs, combinations of buttons, etc.) occur again and again but control very

heterogeneous types of actuators and sensors. For instance, from a user interface point

of view, a light dimmer knob and a thermostat knob are equivalent: although certainly a

little unusual, it would be possible to control a lamp’s brightness with a thermostat knob.



3.2. Interaction Semantics and Atomic Interactive Components 21

This interchangeability is not confined to interactors with similar physical appearance.

In fact, both brightness and temperature could also be controlled by a graphical slider

widget, or with speech commands (“increase/decrease brightness/temperature”). The

reason for this is that the semantics of interaction are the same for the two interactive

components: In both cases, the user scales a physical intensity .

We argue that this observation can be generalized: in the following, we propose a clas-

sification of interactive components into semantic interaction categories which suggest

appropriate interactors, but are still general enough to be applicable for a wide variety

of smart things. Interestingly, although this idea originates from the analysis of physical

actuators and sensors, it can also be applied to a range of appliances and software appli-

cations whose actuators and sensors are virtual, because they employ physical metaphors

(e.g., switches or scroll bars) for their control. We hence take a different point of view

on user interfaces: rather than considering a “knob” as a physical entity that is emulated

in GUIs, we consider the interaction semantics of knobs and argue that such “conceptual

knobs” occur in different forms which all encode the same interaction intention, namely

scaling a value. We furthermore show that different interaction semantics do not exist

by themselves but rather can be arranged in a semantic interaction hierarchy, with the

most specific interaction types that carry most semantic constraints at the bottom and

the most generic interaction types at the top.

Building on these concepts, we suggest that it is possible to create interfaces that

represent a substantial improvement over traditional type-based widgets by implementing

only a relatively low number of abstractions to capture interaction semantics. This can

be leveraged to reduce the developers’ effort for providing interface descriptions and thus

fosters their widespread adoption. Furthermore, specifying interaction descriptions on

this more abstract level allows human interaction with smart things regardless of the

type of interaction device or the modality of the interaction (e.g., gestures, haptics, or

speech). Finally, the selected level of abstraction and the hierarchical structuring of

interaction semantics enable the interaction device to adapt the manifested interface to its

own capabilities and/or user preferences. For instance, an interactor without a graphical

interface could still be able to generate an interface for switching between different modes,

or for scaling (e.g., using its gyroscope). We thus claim that a scheme which describes

interactions semantically is, in general, more suitable to support user interaction within

smart things environments than other approaches to user interface modeling proposed in

the literature (e.g., [161, 164, 171, 246]).

Restricting our scheme to the description of the atomic interactive components (i.e.,

in our case, URI-identified resources) of a smart thing leads to a low entry barrier for

users (e.g., Web developers) to create interaction annotations for devices. Our approach

is thus well-adapted to the devices that are our main concern: in the context of the WoT,

smart things are rather simple devices whose capabilities (i.e., interactive components)

are hierarchically structured due to the adoption of a hierarchical resource-oriented archi-

tecture (see Chapter 2). For this reason, it is possible to view such a device as a structured

collection of its sensors and actuators rather than as a single entity that supports com-

plicated tasks.
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However, even if interactive components of a smart thing are described independently,

they can still be aggregated within composite user interfaces without explicitly modeling

semantic relationships between components. This is the case because the user interface

should usually only reflect a devices’ internal state and not introduce further constraints.

As an example, consider a simple user interface for a television set that comprises a volume

level and an on/off switch. Showing the volume level interface as inactive when the device

is switched off is then not a constraint that is introduced by the user interface but rather

reflects the fact that the volume cannot be set without switching on the television set.

In our proposed concept, one would independently describe the switch and the volume

level and leave the decision whether the volume level is active or not to the controlled

device itself rather than to the interactor that renders the user interface. We thus argue

that the proposed language can also be used to describe interfaces for composite devices

with dependencies between components and refer to the discussion of this property in

Section 3.6.

Apart from keeping descriptions simple to understand and produce, the decomposition

of devices into their atomic interactive components has further advantages regarding the

generation of user interfaces: while it remains possible to create thing-centric interfaces

(i.e., to meld all capabilities of a device into a single interface), the proposed approach

adds the possibility to create task-centric interfaces by integrating components of differ-

ent smart things within a single user interface. Examples for interfaces that are tailored

around a specific task are an interface that displays information from all temperature

sensors within one building or an interface geared toward watching a movie that incorpo-

rates sensors and actuators from the television, stereo set, and DVD player. This property

thus allows different devices or persons to view “their” smart environment from different

perspectives.

3.3 Describing Interaction Semantics

In classical model-based approaches, interactive components are modeled mainly or ex-

clusively using data types. While our proposed description methodology also makes use

of data type information, it merely does so to describe the exchanged data and not the

user interface of the component per se. In fact, we propose to describe components by

using interaction descriptions that consist of two parts, data type information for the

data exchanged with the component and information about the high-level semantics of

the interaction.

3.3.1 Data Types

In the proposed interaction description format, every atomic interactive component has an

associated data type which represents the type of the entity state for sensors and stateful

actuators. For stateless actuators, it gives the type of the argument that should be

supplied when triggering the actuator. Our description supports the data types boolean,

integer , number , enum, and string , where the well-known types have the usual semantics.
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enum requires the definition of allowed values, which can be given as a static list of values

or as a dynamic list referenced by a URL. Optional arguments include defining the value’s

unit and the allowed values or range. Allowed values for the string type can be described

as a regular expression or a definition according to the JSON Schema format [291]. Again,

we stress that these types are not given to derive an appropriate user interface but rather

to populate derived interfaces with meaningful values.

3.3.2 Semantic Interaction Abstractions

Knowledge about the data type already specifies how to interpret the component’s state

and which values are allowed as state and thus enables basic type-safe interaction. Consid-

ering as an example a window blind controller with the states “down,” “stop,” and “up,”

a graphical interaction device could, for instance, generate a drop-down list using only

the type information (in this case, enum). However, this interface is hard to understand

and use, and unnatural: it demands that users perform the mapping of their interaction

intent (moving the blind) to the choice of a state of the blind motor. Furthermore, to

bring the blind down just a little bit, the user would have to open the drop-down list twice

in rapid succession to start and stop blind movement, respectively. These problems arise

because the data type is only a specification of the program interface to an interactive

component and does not consider the semantics of the interaction. As a way of capturing

these interaction semantics, we propose the concept of semantic interaction categories for

interactive components which we call interaction abstractions . We have identified about

a dozen distinctive interaction abstractions that capture interaction semantics related to

sensing as well as stateless and stateful actuation.1 Clearly, not every interaction with

any smart thing falls into one of these categories and the classification should therefore

be considered as a proof of concept that can be extended as required. However, we found

that the proposed categories already cover all of the use cases that we encounter within

our deployments. The set of abstractions was obtained by considering typical devices in

several core domains where smart things play, or are supposed to play, an important role:

� Home and building automation systems: lighting, HVAC, curtain & blind control,

audiovisual equipment, security, electricity metering, etc.

� Home and office appliances: washing machines, coffee machines, etc.

� Auditorium control systems: lighting, A/V selection and controls, controls for pe-

ripherals such as blackboards or projectors

� Cars: air conditioning, drive controls, comfort controls, etc.

� Public services: ticket machines, vending machines, etc.

� Electronic toys and musical instruments

Three of the proposed interaction abstractions apply to sensors, two to stateless actu-

ators, and eight to stateful actuators. For sensors (Table 3.1), an interaction abstraction

1Interestingly, a similar number of so-called conceptual transitions have been identified that describe
dependencies and interactions between entities in conceptual dependency theory [204].
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Name
Example
Symbol

State Description Example

get data General data. Display current song.

get value Ordered domain. Display temperature.

get

proportion

Ordered domain with fixed
range.

Display load of a server.

Table 3.1: Interaction abstractions for sensors.

Name
Example
Symbol

Description Example

trigger Trigger an action. Reset button.

goto
Adjust one-dimensional

state.
Change track on hi-fi

unit.

Table 3.2: Interaction abstractions for stateless actuators.

captures the nature of the measured data. The get proportion abstraction, for in-

stance, suggests that the value measured by a sensor should be considered with respect

to its possible range and rendered appropriately, for instance as a progress bar or gauge.

For actuators (Tables 3.2 and 3.3), the interaction abstraction stands for a primitive of

actuation which provides information with respect to three dimensions: the abstraction

of actuation, the semantics of values in the domain of the actuator, and the suggested

interaction pattern. As an example, consider the move abstraction (see Table 3.3) with

data type enum for the window blind controller that was described before:

� The abstraction of actuation refers to the physical (or metaphorically physical) ac-

tuation that the actuator can perform. The move interaction primitive, for instance,

implies that the performed actuation refers to a movement.

� The semantics of values associate the values in the domain of the interactive com-

ponent with a meaning or function. For move, the domain is ordered with a neutral

value in the middle, the neutral value corresponds to no movement, and values below

and above correspond to a movement in one or the other direction.

� Concerning the suggested interaction pattern, a move interaction is usually composed

of two parts: starting and stopping the movement. An interactor can implement

this by, for instance, falling back to the neutral value (stop) when the user activity

ends (e.g., when the user releases the corresponding button).

Some interactors that satisfy these requirements for the move abstraction are shown

in Fig. 3.3 on page 26. Other components with the interaction abstraction move are, for
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Name
Example
Symbol

State Description Example

set General data.
Set text displayed on a

screen.

set value Ordered domain. Set minutes until alarm.

level
Ordered domain with a

neutral value.
Scale an image.

set intensity
Ordered domain with fixed

range.
Set loudspeaker volume.

switch mode Operating mode. Switch ventilation mode.

switch On or off. Switch on/off lamp.

position
Point in one-dimensional

space.
Position window blind in
one-dimensional space.

move
One-dimensional

movement.
Move window blind.

Table 3.3: Interaction abstractions for stateful actuators.

example, a robot arm motor, or an actuator that supports rewinding and fast-forwarding

a video (by “moving” the current point in time). As Fig. 3.3 suggests, interaction ab-

stractions are modality-independent and can be mapped to graphical widgets, physical

interactors, and speech or gesture commands. Furthermore, a particular interaction ab-

straction usually can be superimposed on interactive components of multiple different

data types. This is the case because it encodes the high-level semantics of an interac-

tion, while the data type depends on the implementation of an interactive component.

As an example, a more sophisticated blind control could be of type integer (instead of

enum), where the absolute value of the state would correspond to the speed of the blind

movement. Still, the appropriate interaction abstraction for this controller is move.

The interaction abstractions can be organized in hierarchical taxonomies (Fig. 3.4),

where the root abstractions get data, trigger, and set are the most abstract ones pos-

sible. These three abstractions yield simple, solely type-based interactors. Descending

within the hierarchy, the semantic information gets more concrete. As an example, con-

sider level, the parent abstraction of move. It suggests that the domain of the actuator’s
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(a) (b) (c) (d)

Figure 3.3: Example user interfaces for (vertical) move actuators. (a) and (b) represent
graphical interfaces, (c) a gesture-based interface and (d) a speech interface.

"General Data"

sensors stateless actuators

Push Me!

stateful actuators

trigger

goto

get data

get value

get proportion

enter state

set

position

+-

levelset intensity

switch

on off

move

switch mode

0

105

set value

Figure 3.4: Interaction taxonomies for sensors, stateless actuators, and stateful actuators.

state is ordered with a neutral value which should be reflected by corresponding inter-

faces, e.g., a knob that snaps into place in the middle position. The move abstraction

adds information about the effects of setting this state: a movement.

The hierarchical organization of interaction abstractions can be exploited as a fallback

mechanism: if an interaction device does not know or does not support a particular inter-

action abstraction, it can traverse the tree upward until it finds a more general abstraction

that it can handle. This enables the scheme to also be used by simple interactors that

only support a subset of the available abstractions. Furthermore, the taxonomy stays ex-

tensible as new abstractions do not have to be known by all interaction devices from the

beginning. One can thus build large taxonomies with arbitrarily specialized interaction

abstractions at their leafs.

Within our implementation of this concept, we aimed at generating small taxonomies

to make the descriptions easy to understand, embed, and interpret for developers. We

found, however, that the small set of abstractions proposed above already covers a large

set of interactive components (see Section 3.6).
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3.4 Elements of a Semantic Interface Description Lan-

guage

The classification of interaction semantics together with the described taxonomy can be

used to define a concrete semantic interface description language by embedding infor-

mation about the appropriate data type and interaction abstraction as metadata into

the interactive components of devices. In this section, we present elements of an im-

plementation of such a language that is based on the interaction abstractions shown

above (Tables 3.1-3.3), and that allows user interface devices to render interactors when

confronted with a corresponding interactive component. This language was used in a

prototype implementation of a generic mobile user interface for smart things which is de-

scribed in Section 3.5 below. For reasons of legibility and understandability, the reference

implementation of our proposed language is shown in JavaScript Object Notation (JSON)

[262]. A description of the window blind controller mentioned above, for instance, then

looks as shown in Listing 3.1.
The proposed concepts of our language can, however, be expressed and embedded

in multiple formats, for instance as XML documents or as HTML-based Microformats

markup. For annotating Web-based smart things, we found HTML Microdata [331] to

be particularly convenient, because it allows to embed information that is meaningful

for humans and machines within the same document. Using Microdata thus allows us

to create a document that looks like an ordinary website to humans, but still contains

all information that is necessary for interaction devices to generate user interfaces (see

Listing 3.2). An alternative to this direct embedding of interaction metadata in the Web

representations of our smart things is to store the descriptions on a remote server and

have devices provide links that point to them, for instance using Web Linking [292] – this

is particularly useful for annotating resource-constrained smart objects.

1 {

2 "type" : {

3 "name" : "enum",

4 "values" : ["down","stop","up"]

5 },

6 "abstraction" : {

7 "name" : "move",

8 "orientation": "vertical"

9 }

10 }

Listing 3.1: Semantic interface description of a window blind controller in JSON format.

1 To <span itemprop="name">move</span> the blinds <span itemprop="orientation

">vertical</span>ly, set the controller to one of the values <span

itemprop="type-range">[down,stop,up]</span> (data type: <span itemprop

="type-name">enum</span>).

Listing 3.2: Semantic interface description of a window blind controller as Microdata markup.
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1 {

2 "id":"ch.ethz.inf.vs.wot.ui.move",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the move interaction abstraction: temporarily

level a value of a device property negatively or positively. Implies a

virtual or physical movement.",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "name": { "type":"string", "enum":[ "move"] },

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors",

13 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.neutral",

14 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.orientation"

15 }

16 },

17 "$ref":"ch.ethz.inf.vs.wot.ui.type"

18 }

19 }

Listing 3.3: JSON Schema document that describes the move interaction abstraction.

Our proposed interaction description language has been built around a small kernel

that consists of data type and interaction semantics information to keep descriptions sim-

ple to understand and write for humans, and easy to parse for machines. To enhance

the experience of using an interface created from these descriptors, we additionally pro-

pose optional properties that allow for the refinement of the interaction abstraction, for

instance, to specify details of the actuation or to define dedicated values. We briefly

describe two such properties that we found to be particularly helpful for augmenting au-

tomatically generated interfaces, anchors and orientation. Anchors can be used to add

special meaning to certain values or value ranges. For instance, specific values (e.g., the

range of 95-100% when displaying the load of a server) can be marked as potentially harm-

ful (or particularly desirable) which then can be reflected in the user interface. Similarly,

especially for the move and position abstractions, the desired interface orientation can

be specified, for instance, as vertical for a window blind controller. Additional proper-

ties could be defined for increased customization of user interfaces – doing so excessively,

however, could potentially corrupt the language’s simplicity. To allow for the possibility

of manually tailored user interfaces and the mixing of these and automatically generated

interfaces, our proposed description scheme also includes the possibility of specifying links

to dedicated Web interfaces that can be displayed by interaction devices.
We used JSON Schema, a specification used to define the structure of JSON data,

to create a formal definition of our language. This definition includes a human-readable

documentation of the language and contains all information necessary for structural vali-

dation of interaction descriptions which is useful in automated testing. To give an example

of such a specification, JSON Schema document in Listing 3.3 shows the structural defi-
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nition of the move abstraction. The schemas that are required to validate an interaction

description using this document (e.g., anchors or type) are defined in separate definitions.

These, as well as schema documents for all other interaction abstractions, can be found

in Appendix A of this thesis.

3.5 A Generic Mobile User Interface for Smart Things

To evaluate the discussed concepts in practice, we implemented a prototype application

for mobile devices running the Android operating system. This application interprets our

interaction descriptions and allows end users to interact with devices via automatically

generated interfaces. End users can also store interfaces locally on their interaction device

and can aggregate multiple of these within composite interfaces (i.e., as widget lists).

Specifically, using the application, users can create new task-centric composite interfaces

and give them a name that one can better relate to, such as “My Lecture Hall Controls.”

To populate a composite interface with widgets, users can then select from the stored

interactors. Composite interfaces can also be associated to specific locations: for instance,

an individually tailored lecture room interface could be loaded whenever the user enters

that room. Operation within secured environments is enabled by prompting the user to

enter a username and a password to interact with restricted device components.

Our interactive components embed interaction descriptions as Microdata within their

HTML representations, which is mapped to our JSON reference format using a discovery

service that can handle smart things with embedded semantic descriptions (this service is

discussed in detail in Chapter 6). When the mobile application discovers such a compo-

nent, it retrieves its interaction description and instantiates an appropriate interactor. If

multiple suitable interactors are found, one of them is rendered and the user is given the

Swipe to adjust the 
brightness of the Red LED!86%

Shake to switch the 
device on/off!

Figure 3.5: Interfaces for controlling the brightness of a LED (“set intensity”, left and
middle) and a power switch (“switch”, right).
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Figure 3.6: Rotating the smartphone to move a toy robot arm (“move”).

opportunity to browse through the other interactors. From this point on, the application

uses HTTP requests to get and update the state of the component by exchanging plain

values that correspond to the type definition of the interactive component. Our appli-

cation immediately provides multiple different interactors to users because the prototype

was created to load interfaces with different interaction modalities for demonstration pur-

poses. For a final system that is used by end users, a single interactor could be rendered,

with the possibility of loading more interfaces if desired by the user.

We implemented various graphical interactors (e.g., gauges, click wheels, knobs) that

correspond to the defined abstractions (see Fig. 3.5 for some examples). Some of these

also capture the optional definitions (for instance, a knob with a value range as anchor

that causes vibration and turns red when this range is entered). Furthermore, we used

smartphones as haptic input devices and mapped interaction abstractions to physical

movements of the handset or interaction with the touchscreen. For instance, the handset

can be tilted or turned like a knob to switch between operation modes or to move a robot

arm (see Fig. 3.6). One can trigger or switch by shaking the handset, and by swiping

over the screen, one can use the goto abstraction for stateless actuators. The implemented

generic mobile user interface for smart things shows that it is indeed possible to map the

interaction abstractions to heterogeneous, also nongraphical, modes of interaction.

For further facilitating the interaction with smart devices for end users, we ported

our application to user interface devices beyond smartphones, in particular to personal

wearables such as smartwatches (see Fig. 3.7) and smartglasses. The motivation for

considering wearable devices was to “reduce the time between intention and action” [215],

i.e., the time that the user requires for taking his mobile phone out of the pocket and

activating the application, in our case.

To further explore the modality-independence of the proposed description scheme,

we also investigated speech-based interaction where appropriate speech commands are

inferred based solely on the semantics captured by the interaction abstraction. The only

additional information needed to enable actuation commands is related to the selection of

the interaction target (e.g., by using the target’s name): for a volume controller, the target

could be “Volume”, for a window blind motor, “Blind”, and so on. This information is

not captured by the interaction abstractions since it is specific to every single actuator

and determined by user preferences. It can thus be provided either by the interactive
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Figure 3.7: Interfaces for controlling the volume of a stereo set on a smartwatch (“set
intensity”).

component (e.g., as an additional name-annotation) or alternatively by giving the user

appropriate means to name smart devices himself. We defined speech commands such as

“move target up/down” and “stop target” for vertical move actuators. Note that, besides

leveraging the semantic information of the interaction abstractions to choose appropriate

command phrases to listen for, we can also benefit from associated information about

the interaction pattern. For instance, the pattern in a move interaction is to start the

movement and then stop it again when the moved object has reached the desired position.

For speech interaction, this pattern translates to listening for a “move target up/down”

command, followed by a “stop target” command rather than only a single command,

such as, for instance, for a switch. Finally, the automatically created speech interfaces

also allow users to select their desired mode of interaction, for instance, by choosing

which of the commands “increase/decrease target” or “set target to value” to use for set

value interactors. We implemented speech-based interfaces for all proposed interaction

abstractions in our application and found that, in all cases, these were appropriate and

easy to use for controlling smart devices.

To start controlling a smart device, the user interface device must initiate a connection

with the device and retrieve the embedded information about its interface. Because our

prototype application deals with smart things in a Web context, we assume interactive

components to have a Uniform Resource Locator (URL). Given such URLs for smart

things, resource association in our mobile prototype application can be performed by

various means: Apart from manually entering the URL of the object to interact with, the

application is able to decode 2D barcodes that encode device URLs. Furthermore, when

installed on a device that features an active near field communication (NFC) component,

an appropriate interactor is displayed automatically when the phone comes close to an



32 User Interfaces for Smart Things

NFC tag that encodes a resource URL. By making use of geographical location information

offered by many of our prototype devices, we also added context-sensitive behavior to the

application: using the GPS module of the mobile device, interfaces that are stored on it

are ranked with respect to their distance to the user and the closest interfaces are directly

presented in the application’s main interface. Finally, we explored how smart devices

could be selected by the help of current image recognition technologies – we discuss this

in greater detail in Chapter 4.

3.6 Evaluation

The proposed description language and the mobile prototype application have been de-

ployed in various environments to determine whether our approach is general enough to

capture the interaction semantics of typical devices in Internet of Things scenarios. We

demonstrate the generality of the language by discussing the multitude of devices that

were annotated using the language and give details about the concrete deployments in our

laboratory and in private homes in Section 3.6.1. Next, in Section 3.6.2, we demonstrate

that our proposed interaction descriptions are producible not only by experts who are

already familiar with our system but also by individuals with little prior training. To

show this, we conducted a user study among 780 students from all faculties of our insti-

tution whose task was to create interaction descriptions for 19 scenarios from the home

automation domain. This study thus elicits the developers’ perspective with respect to

the creation of user interface descriptions. Finally, in Section 3.6.3, we show that the

interfaces that are generated from our descriptions can be efficiently used by end users.

After discussing how users interacted with annotated devices from our deployments, we

elaborate on two case studies: The first shows how our language can be used in the

context of a lecture hall control system. Here, we particularly consider the creation of

composite, task-centric, user interfaces. The second case study, a user interface for a

music player, demonstrates that our interaction descriptions can be used to create user

interfaces for devices with a complex internal state, even though they do not explicitly

model dependencies between interactive components of a device.

3.6.1 Assessing Generality: Laboratory and Real-World Deployment

To assess the generality of our proposed language, we first deployed the system in a lab-

oratory environment. We added interaction annotations to several existing deployments

of smart things present in our lab: SunSPOT sensor nodes (sensors: temperature, light,

acceleration, orientation; actuators: tri-colored LEDs), Ploggs electricity meters (sensor:

electricity meter; actuator: power switch), a toy robot (sensor: ambient light; actuators: 3

motors), a remote-control toy car, mobile loudspeakers, and a smart thermostat. In addi-

tion, we created mock-up implementations of a home automation system with embedded

interaction annotations (lighting, blinds, stereo set, TV) and a lecture hall control system

(volume and microphone controls, lighting control, A/V, peripherals, etc.). Specifically

for the lecture controls, we modeled the exact capabilities of the system installed in our
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institution’s lecture halls, which had not been considered earlier when designing the in-

teraction abstractions. To evaluate the performance of the scheme with respect to more

complex devices, we also created a Web proxy for the iTunes music player application and

modeled interfaces to its functionality (e.g., controlling playback, adjusting the volume,

choosing a track to play from a playlist) using our interactions markup. Both, the lecture

hall controls and the music player, are discussed in more detail in Section 3.6.3.

Our scheme and the prototype application were also tested outside of a laboratory

setting, as two members of our research group deployed the system in their private homes.

These individuals have used the system about once per day, to control entertainment

equipment and smart electricity outlets with metering and switching capabilities. At the

time of writing, one of the private deployments still exists and has been running for a year

(intermittently). We found that our proposed interaction descriptions covered all sensors

and actuators present in our laboratory deployment, in the home automation scenarios,

the lecture hall control mock-up, and the music player.

3.6.2 Assessing Producibility: User Study

Apart from exploring whether our language is suitable for describing user interfaces in

our use case scenarios, we also investigated the producibility of our proposed interaction

description language. A preliminary evaluation showed that for members of our research

group it was easy to create the interaction markup for typical use cases: after a two-minute

introduction to the language, these individuals were able to apply the data type informa-

tion and interaction abstractions to all devices and software components described above.

However, to assess the accessibility of the description scheme and the ease of creating such

interaction abstractions for individuals that had not been exposed to the system before,

we conducted an online user study. Participants (N = 780) were asked to select appro-

priate interaction annotations and data types from the set described in Section 3.3 for 19

different scenarios ranging from a simple doorbell button and lighting scene controls to

the description of interactive components of a VCR. Our test concentrates on the selection

of appropriate abstractions and data types instead of having the participants implement

a description because the implementation step can be fully automated by providing an

application that takes the selected abstraction/data type pairs as input and produces

annotations in the JSON reference format (see Section 3.4).

The study participants were students from all faculties of ETH Zurich with a self-

reported average proficiency with information and communication technologies (ICT) of

3.65 (SD = 0.82) on a 5 point Likert scale (1=No Knowledge, 2=Basic Knowledge,

3=Good Knowledge, 4=Advanced Knowledge, 5=Expert Knowledge). The participants

had no prior knowledge of our project and no training with using the interactions scheme.

They were presented with a one-page description and reference document during the

survey which they were asked to study for about 2 minutes before working on the scenarios.

For every scenario, the participants were asked to complete four tasks: (1) Select the

most appropriate interaction abstraction, (2) select the appropriate data type, (3) give a

confidence level for their choice in (1), and (4) give a confidence level for their choice in

(2), where they selected the confidence levels on a 5 point Likert scale (1=Not confident
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Figure 3.8: Performance and timing values for each of the 19 scenarios in our study of the
producibility of the proposed interaction descriptions.

at all ... 5=Very confident). We also recorded the time taken by the participants to work

on the individual scenarios.

Across all scenarios, the participants selected a correct interaction abstraction in 84.2%

(SD = 6.99%) of the cases on average. To do all four tasks associated with a scenario,

they needed on average 40.3s, where the high standard deviation of 16.7s is due to a

large part from the high average time of 93s that participants spent working on the first

scenario (a doorbell button) and can thus be largely attributed to habituation effects,

as the order of the scenarios was not randomized. The self-reported confidence level of

the participants was 4.09 on average, with minor fluctuation across all scenarios (SD =

0.26). Evaluating the performance of participants with an ICT proficiency of (5/Expert

Knowledge) (N = 170) separately revealed that these performed a little better than the

average, selecting an appropriate abstraction in 88.7% (SD = 10.47%) of the cases (16.9

correct answers out of 19).

Fig. 3.8 shows the average performance of the participants as well as their timing values
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for each of the 19 scenarios. We present two distinct values to assess the participants’

performance: the values for Exact Abstraction show how many of the study participants

selected the interaction abstraction which captures best (in our opinion) the semantics

of the described scenario, while the Correct Abstraction designates the percentage of

participants who selected a sub-optimal abstraction that is appropriate for the scenario

but captures less of the semantic information. For each scenario, the Exact Abstraction is

stated in brackets. In general, the set of Correct Abstractions for a given scenario is the

Exact Abstraction plus all abstractions on the path of the most appropriate abstraction to

the tree root in the taxonomy (see Figure 3.4). From the data, one can see that, for some

of the scenarios, people strongly agree with each other and with our assessment concerning

the type of abstraction to be used (e.g., for the Light Switch, Lighting Scene, and Display

Track Name tasks). For others, though, there is considerable disagreement about which

abstraction of interaction to use. As an example, consider the Picture Size scenario, where

participants were asked to specify the appropriate abstraction to set the zoom level for a

digital picture frame between 20% and 200% where 100% is considered the neutral value

of the interaction. In our opinion, the Exact Abstraction for this scenario is level as

it allows the specification of 100% to be the neutral value of the interactive component.

31.2% of the participants indeed selected the level abstraction, however, another 39.1%

chose to either model the interaction as set intensity or as set value. This is not

wrong but rather represents a different way of interpreting this interaction which does

not emphasize the modeling of a distinct neutral value. For the Equalizer scenario, where

the Exact Abstraction is also level and it is more obvious that the neutral value should be

explicitly modeled, agreement between participants is much higher: 70.3% of participants

selected the level abstraction, in this case.

For other categories, such as move (scenarios Blind (Move) and RC Car), abstract-

ing from the scenario to the appropriate interaction specifier and especially matching the

states of the interactor (up-button pressed, down-button pressed, no button pressed) to

the corresponding actuator states (up, down, stop) was more subtle and hard to grasp

for the participants. Another interesting scenario is Blind (Position): here, only 23.2% of

the participants selected the position category while 44.9% selected its parent abstrac-

tion set value which demonstrates that they did not include the semantic information

regarding the positioning in one dimension. A possible explanation for this behavior is

that scrollbar-based window blind controls are not widespread and thus were considered

unnatural by the study participants.

Because our interaction abstractions are modeled on “natural” types of interaction

with devices and software abstractions, we did already expect that individuals would

be able to annotate devices before seeing the results of the user study. However, we

were still surprised by the high accuracy and high degree of agreement with our choices,

and especially by the very low amount of time that participants required to produce the

descriptions, which was under one minute per scenario in most cases. Summarizing, the

results of our study show that the proposed scheme is very accessible, and not only for

people with good knowledge of ICT systems: most participants were able to productively

use it within minutes and with only negligible prior training. Considering the timing
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and confidence values, the tasks were also fast and easy to perform. We expect the

discrepancies between the choice of optimal and sub-optimal abstractions to strongly

decrease when individuals approach the task of modeling more rigorously and in the

context of actually providing user interfaces rather than answering questions in a survey.

3.6.3 Assessing Usability: Deployments and Case Studies

After discussing the generality of our language and its producibility for developers, we

discuss the usability of interfaces that are created from our descriptions in this section.

In Section 3.5, we introduced a concrete implementation of a mobile application that

generates interfaces for all defined interaction abstractions and enables the user to create

composite, task-centric, interfaces. We want to point out that, due to our interaction

descriptions being language- and device-independent, this application represents only one

way of interpreting our interaction abstractions, where the interaction abstractions were

mapped to simple Android widgets or made use of the Android API for sensor access

and haptic feedback. Our prototype application was tested by several members of our

research group and used to control and monitor the devices described above.

Test subjects reported that the generated interactors felt intuitive and appropriate

for controlling and monitoring all devices. Specifically, giving only very little information

(i.e., only the data type and name of the interaction abstraction without any of the

optional properties) in most cases was sufficient for creating an intuitive user interface,

as our descriptions consider the high-level semantics of interactions on multiple levels, as

detailed in Section 3.3.2. Test subjects especially enjoyed those interactors that bridged

multiple modalities by, for instance, making use of the sensors of the mobile device (e.g.,

shaking the phone or speech input). When we enriched the descriptions with some of the

defined optional description elements, test subjects in particular liked the haptic feedback

capabilities of the prototype application (e.g., vibrations and sounds triggered by anchor

annotations).

The usability of the interfaces that are generated by our specific prototype is, however,

grounded in the usability of the underlying Android widgets and therefore does not allow

to conclude that our description language necessarily leads to usable and intuitive user

interfaces in all cases. Still, our prototype shows that the language can definitely be used

to create good user interfaces, even though only simple mappings between our abstrac-

tions and Android widgets are employed. One could also implement device controllers

that map our descriptions to different, more customized, final interfaces, or to interfaces

that support even more modalities, such as gesture-based interaction. Furthermore, ap-

plications could be created that allow for more sophisticated composite user interfaces –

our prototype uses rather simple widget lists for this purpose.

In the following, we discuss two case studies to illustrate different aspects of our

language and the prototype application: The first targets personalized composite user in-

terfaces in the context of a lecture hall control system. The second demonstrates that our

language can indeed be used to describe devices with a complex internal state, although

the interaction descriptions do not specify dependencies between different interactive com-

ponents of a device.
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(a) (b)

Figure 3.9: (a) Picture of the lecture hall control system in use at our institution. (b)
Individually composed task-centric interface for accessing frequently used controls, rendered
on an Android smartphone.

3.6.3.1 Case Study: Lecture Hall Controls

To test our approach within a real-world setting, we created a mock-up that emulates

the specific auditorium controls that are in use in our institution2 (see Fig. 3.9(a)). From

past experience, we know that users who were not familiar with this system had trouble

navigating its different tabs (Lights , Room, etc.) in search of their desired controls, a

common mistake being that the Video tab was selected when looking for the controls to

select the system’s video input source. We also experienced that non-German speaking

individuals had trouble with some of the interface labels due to poor translation, for ex-

ample with the “Beamer Power” controls (top left corner of the system in Fig. 3.9(a); the

term “Beamer” is commonly used in Germany to denote a “Video Projector”). Our goal

was to recreate all atomic interactive components of this lecture hall control system and

let users configure composite interfaces that are customized according to their individual

preferences using our prototype application. We had not considered this specific audito-

rium control system, or lecture room controls in general, when creating the interaction

abstraction categories and designing our language.

To test our idea, we created a mock-up lecture room automation back-end, added all

interactive components of the auditorium control system as endpoints to that server, and

described them using Microdata annotations. In total, we needed less than half an hour

to annotate all 28 components, which include the room lighting (setting the lighting level

and mode), shades and blinds controls, ventilation mode settings, and controls for the

video and slide projectors, sound system, and blackboards. Some of these components

2An AMX LLC Level 3 Modero Auditorium Control System.
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iTunes music player

(a) (b) (c)

Figure 3.10: Example user interfaces for the iTunes application, rendered on an Android
smartphone: (a) Composite interface that displays several interactors associated with the
iTunes application. (b) Full-screen user interface for the volume controller (“move”). (c) Man-
ually created Web interface to select songs.

have strong dependencies between each other: for instance, the projector shutter is only

available when the projector itself is switched on.

The composite interface that results from combining a specific user’s most frequently

used controls is shown in Fig. 3.9(b). To create that interface, one uses our prototype

application to access the URL of the mock-up (e.g., by scanning a barcode or an NFC

tag that is attached to the physical device, or to a proxy) which causes it to load all

interface descriptions of the individual components and store the corresponding interfaces

locally. He then instantiates a new task-centric interface, gives it a name (in Fig. 3.9(b),

this is “My Lecture Controls (HG F 7)”), and selects which of the 28 loaded components

this composite interface should contain. The user can also choose to interact with each

of the components individually by accessing the corresponding “full-screen interactor”

(some examples of these were shown in Fig. 3.5 on page 29). Components can also be

rearranged, and can be removed from a composite interface.

3.6.3.2 Case Study: Music Player

Our description language does not allow to explicitly model logical dependencies between

interactive components of a device. This means that it cannot be used to express how

different resources that all belong to the same smart thing influence each other and how

they affect the global state of the device. For instance, and referring to the example shown

in Section 3.2, switching a television set off using its on/off button has an immediate

consequence on the internal state of the device (i.e., it is now switched off) and also

affects its other interactors: it is not anymore possible to control the volume of the TV, or
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change the channel. Although such dependencies cannot be modeled in our system, it can

still handle complex devices whose components are tightly coupled: using our generated

interfaces to interact with the iTunes application – a smart thing with strong dependencies

between its actuators and sensors and a complex internal state – is intuitive and effective

(see Fig. 3.10). Although only the smart thing itself (i.e., the iTunes application) keeps

the global application state and delivers only partial views to the interaction application

on the smartphone, the generated interface for the music player creates the illusion of the

mobile application being aware of the full application state. This is possible because the

interaction between the smart thing and the smartphone application is, indeed, two-way:

the interaction application can permanently update the state of the rendered interactors,

by querying the smart thing. Therefore, if, for instance, a specific interaction becomes

impossible (such as controlling the volume of the TV set in the example above), the user

interface can immediately reflect that change. Example interactive components that we

modeled for the iTunes application are its volume control (set intensity), Play/Pause

switch (switch), Rewind/Fast Forward (move), an interface to skip tracks (goto), and

the current track name display (get data).

3.7 Related Work

Model-based user interfaces have been investigated for a long time, initially with the goal

of relieving application programmers from the task of manual GUI creation. [100] and

[159] represent examples of early work that focused on the automatic generation of GUIs.

This investigation led to the emergence of several model-based user interface description

frameworks (see [160] for an overview and classification). However, the automatically

generated interfaces were often not well adapted to the application which led to poor user

experience [158] and the process of creating the models themselves proved to be rather

cumbersome [161].

The Personal Universal Controller (PUC) / Pebbles project represents a pivotal step

in the development of automatic user interface generation that would transform hand-

held computers into universal control devices [161, 162]. There, a description concept and

concrete UIDL was proposed for appliances such as televisions, telephones, VCRs, and

photocopiers. The proposed UIDL focuses on enabling high-quality interfaces, where some

specifications consist of as many as 100 functional elements. The authors emphasized the

producibility of interface descriptions and thus have designed the language to be easy

to learn and use. This has been verified in a user study where subjects needed only an

hour and a half of studying a tutorial document to be able to write specifications for a

VCR interface. In [163], the authors present an extension of their system and introduce

“smart templates” such as media-controls or time-duration, to better encapsulate the

meaning of interactors – the media-controls template, for instance, contains Play and

Stop controls. In contrast to our work, appliances are thus viewed as collections of tightly

coupled “appliance objects” and their descriptions explicitly include logical dependencies

between these functional units. Other approaches to mitigate the problem of interface

specifications that are hard to create include the development of specialized authoring
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software to allow developers to produce user interface descriptions, which has been done,

for instance, in the MARIA project [171].

The tight coupling of functional user interface components makes interface descriptions

hard to produce and, as we have shown, is not necessary to create usable and intuitive

interfaces. Rather, following our approach, only the atomic interactive components of a

smart thing are described on a level that allows to exploit metaphors that developers are

already familiar with (i.e., the example symbols that are associated with our interaction

abstractions). This usage of meaningful abstractions to avoid dealing with low-level de-

tails indeed represents the main motivation for model-based approaches – by focusing on

making our interaction metadata simple to understand, produce, and embed, we thus at-

tempt to “overcome the traditional separation between end users and software developers”

[170]. Furthermore, in our approach, the generated interfaces are understood as a repre-

sentation of the internal state of the device which is continuously updated. [116] refers to

such interfaces, which feature bidirectional communication between the controlled smart

thing and the interactor, as complementary , duplicated , or detached user interfaces, de-

pending on what kind of (attached) user interface the controlled device itself provides.

This feature directly enables to transfer interfaces from one device to another at runtime

in a process called user interface migration [170]. Due to the platform-independence of

our language, this can involve migrating user interfaces between heterogeneous devices

with diverse capabilities, for instance from a smartphone to a physical switch or but-

ton. Because our language specifies the high-level semantics of concrete interactions, it

also supports multiple contexts of use and preserves usability under these adaptations,

properties which are referred to as multi-targeting and plasticity [31].

Our work fully integrates multi-modal user interfaces for heterogeneous interactors,

and thus differs from approaches such as PUC which are aimed at “traditional” mobile

user interfaces with touch panels or small keys [222]. This is important as the rise of

the ubiquitous computing paradigm – where a person uses multiple networked computing

devices that are embedded in everyday real-world objects – has led to a broadening of

the design space of automatic user interface creation [181]. In the ubiquitous computing

paradigm, interactions often take place in a spontaneous, ad-hoc fashion. Content and

user interfaces now have to be adapted to a wide variety of devices with varying screen sizes

(e.g., mobile phones vs. public displays) and heterogeneous capabilities (e.g., networked

physical buttons vs. tablets with touchscreen, gyroscope, and accelerometer). This has in

turn led to user interface models being increasingly abstracted from concrete GUIs to place

more focus on user interaction on more abstract levels which in particular targets multi-

device interfaces [13, 170]. One of the first examples for this development is presented in

[88], which introduces the notion of “universal interaction” and represents a first step in

the development of a service architecture that supports heterogeneity in interactors and

the controlled objects.

Another approach that targets the automatic provisioning of user interfaces that sup-

port multiple modalities of interaction is the XWeb project [164]. In XWeb, user interface

information is conveyed using XView descriptions that contain information about inter-

face elements such as icons, field names, layout, and help texts and can also be used to
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generate speech interfaces. In that respect one should also mention Interplay [150], which

focuses on device and content integration as well as on the interaction with devices at the

level of the task to be accomplished. To this end, this work provides valuable insights

about speech analysis to enable the system to map spoken commands to specific tasks.

An ambitious project that focused on enabling people with disabilities to control everyday

devices using their specialized controllers – for instance, user interfaces that are attached

to wheelchairs – is the Universal Remote Console / V2 (URC) specification [246]. There,

target devices (e.g., ATMs) transmit a description of their abstract input/output behavior

to the controller which then renders an appropriate user interface. Finally, the SUPPLE

project [63] addresses the provisioning of alternative user interfaces by stating interface

generation as a discrete constrained optimization problem that can be solved on the fly,

where, for instance, a person’s motor impairments are modeled as a cost function to guide

the optimization. This paper furthermore includes a discussion of some other approaches

to model-based user interface generation that have been published in the last decade. In

contrast to our approach, the projects mentioned in this paragraph require user interface

descriptions that are difficult to create for users or, especially in the case of SUPPLE, can

only be created by experts.

With respect to related work in the domain of model-based user interface descriptions

that discusses various abstraction levels of user interface design [149, 171], the main novel

features of our interaction description language affect the level of the “Abstract User In-

terface” [332]. At this level, the descriptions of “Abstract Interaction Objects” [149] are

independent of the concrete platform and interaction modality and are, rather, described

in terms of their “semantics” [170]. While Paternò and Meixner refer to the semantics

of user interfaces, we consider the semantics of the interaction itself and identified three

concrete components, or dimensions, of the interaction semantics that we detail in Sec-

tion 3.3.2. With respect to the concrete interaction abstraction categories, our language

is related to the Dialog and Interface Specification Language (DISL) [86] and to XForms

[327]. DISL proposes eight basic widgets for user interaction (variablefield , textfield , etc.).

XForms controls include abstractions such as trigger (activation of a process) and secret

(entry of sensitive information in a form). We also propose a set of basic interaction

abstractions, but do not mix information that relates to the type of data exchanged with

the high-level semantics of an interaction (see Section 3.3). This abstraction and sep-

aration of concerns, combined with the bidirectional communication between interfaces

and interactive components, is the key to our descriptions being easy to understand and

produce and still being expressive enough to cover all our considered use cases.

3.8 Summary

Most user interface description languages model user interfaces as composites of inter-

actors such as text input, value selection, and output widgets where the appropriate

interactor for an interactive component is selected based on its data type. We instead

propose a way to express the semantics of an interaction which enables the generation

of more intuitive graphical widgets, but also the mapping of interactive components to
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gesture-based, speech-based, or physical interfaces. One main advantage of our approach

is that the provisioning of a live interaction mechanism is reduced to the embedding of

simple interaction information into the representation of a smart thing. Decomposing

devices into atomic components and adding a small amount of simple information to col-

lections of resources has proven to be well-suited for describing resources in an expressive

but still easy-to-use way. The high level of abstraction of this information allows for the

generation of modality-independent user interfaces while taking into account the capabil-

ities of the target device. Smart things themselves do not need to be aware of what types

of devices (e.g., PCs, handheld devices, or even other smart things such as Web-enabled

knobs or switches) use this information and what kinds of interfaces these provide for

users to control them.

Based on this approach, we presented a taxonomy of typical high-level interaction

semantics and a description scheme that allows for the automatic generation of intuitive

user interfaces for smart physical things and software components. We described a mobile

device controller that generates user interfaces for smart things that embed a description

of their interaction semantics according to our proposed language. The evaluation of the

prototype in a laboratory deployment as well as in several deployments in private homes

produced good results in terms of the usability of the generated interfaces and the gener-

ality of the description language: the application can generate convenient user interfaces

where the user can choose between graphical, haptic, and speech-based interfaces. Our

taxonomy of interaction abstractions covers all devices (physical and virtual) that we tried

to include in our deployments as well as via mock-ups such as a lecture theater control

system. Finally, a study of 780 participants showed that our proposed concepts for a user

interface definition language can be used by tech-savvy individuals without any special

training.



CHAPTER 4

Object Recognition for Direct Interaction with Smart Things ∗

In the previous chapter, we focused on the direct interaction between humans and smart

devices, and showed how information about an appropriate user interface for controlling

a specific smart thing can be embedded in the Web representations of the individual

components of that device. We also mentioned several methods of selecting smart de-

vices that range from simple approaches – for instance, entering the URL of the device

– to more advanced ones, such as scanning barcodes or passive NFC tags, or using in-

formation about the location of the device to interact with. In this chapter, we discuss

the use of computer vision techniques – in particular, fiducial markers and visual object

recognition methods – for recognizing and interacting with smart things. Exploring how

these and other technologies can be used by people to select and interact with devices in

smart environments is a topic that is core to the domain of Physical Mobile Interaction

(PMI) [25].

4.1 Interacting with Smart Environments

PMI encompasses research related to the use of Near Field Communication (NFC), Radio-

Frequency Identification (RFID), and visual identification by means of tags (barcodes or

2D tags) or using markerless object recognition methods for interacting with physical de-

vices. Handheld devices (e.g., smartphones) and personal wearables (e.g., smartglasses)

increasingly support these technologies, thus allowing the interaction with other physi-

cal objects and enabling applications such as mobile product identification, mobile pay-

ment, and electronic keys. Relying on similar technologies and sharing the vision of

user-centricity, developments within the PMI domain are also closely related to the In-

ternet of Things and are an important enabling factor for the digital augmentation of

our lives. Since the early examples for linking everyday objects with digital resources

using RFID tags were presented in 1999 [234], many approaches to mobile interaction

with physical objects have been investigated: the techniques of touching (NFC), pointing

(laser pointer), and scanning (Bluetooth) have been implemented and thoroughly com-

∗This chapter is based on the following published articles: [141, 142]
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pared in [202] in the context of smart home applications, and the benefits of interacting

with RFID-tagged paper maps using handheld devices were investigated in [187]. To en-

able the intuitive and direct interaction with displays, “Touch & Interact” [83] uses a grid

of NFC/RFID tags that is attached to a screen and NFC-enabled mobile phones.

Already in the year 2007, researchers in the PMI domain considered mobile phones

(i.e., today’s “feature phones”) and personal digital assistants (PDAs) to be suitable

user interfaces for querying and controlling devices in smart environments because of

their wireless connectivity, RFID/NFC tag detection capability, sufficient computational

resources, and programmable screen and keyboard [194]: mobile devices have the potential

to provide additional information about the state of an appliance that is not readily visible

on its traditional interface and, to extend and personalize the user interface of the device.

However, in the year 2007, a user study among 23 participants [194] showed that users

are indeed faster when interacting with a device using its traditional user interface rather

than an interface implemented on a mobile phone for everyday tasks (i.e., tasks that are

most typical for a device and are performed very frequently, such as brewing a coffee on

a coffee machine). According to [194], mobile user interfaces thus merely offer greater

value to users than the traditional, attached interface of a device for problem solving

tasks (e.g., resolving malfunctions of the device), control tasks (i.e., adjustments of device

settings), and – to a lesser extent – repeated control tasks (i.e., control tasks that the user

is familiar with). However, also with respect to these task types, the authors conclude that

the added value of a mobile interface should not be attributed to the capabilities of the

mobile device but that it “stems from the shortcomings of the physical user interfaces and

the corresponding manuals.” The study also revealed that for 74% of the participants it

was not an option to access all functions of the appliances only using the mobile interface.

We believe that it is time to revisit these observations, for several reasons: in the

past few years, personal wearable computers such as smartglasses and smartwatches have

appeared that set out precisely to increase the convenience and reduce the time needed for

users to interact with smart devices in their environment [142] and with remote services

[215], in particular to support users with everyday tasks. Furthermore, projects such as

MARIA [171] and our own work on automatic user-interface generation (see Chapter 3)

enable the creation of interfaces that support multiple interaction modalities and allow

to take into account user preferences when generating an interface. Users might also be

getting increasingly accustomed to using more dynamic interfaces than in the past – in

a comparative study that was carried out in the year 2010 [84] all participants preferred

the NFC-based interaction with dynamic displays to interacting with traditional screens.

Another reason that leads us to believe that the usage of mobile devices to interact

with smart things for accomplishing everyday tasks should be investigated anew is that

the above-mentioned study focuses on tasks that require interactions of comparable com-

plexity when executed directly on the appliance and when using the mobile interaction

device [194]. In our view, this takes away one of the main advantages that remote user

interfaces can offer because one of the main strengths of virtual, software-based interfaces

is that they can be reconfigured to match the tasks that a user requires most frequently.

Additionally, they can be personalized for specific users on their own interaction devices,
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and allow the creation of task-centric user interfaces that do are not necessarily dedicated

to enabling interaction with a single device (see Section 3.2). Indeed, remote user inter-

faces are now commonly classified according to the functionality they provide with respect

to the attached user interface of a device, as complementary , duplicated , or detached [116].

This emphasizes that the main idea behind the development of mobile interaction devices

is not to replace traditional user interfaces, but to augment them with added functionality,

tailor them to specific use cases, and personalize them for more efficient user interaction.

This is exemplified by a study among user interface/experience designers described in [46]:

participants chose more often to offer tasks only on the mobile interface (50%) than only

on the physical interface (14%), and frequently made use of both (37%). When asked

to explain their approach, the study participants referred to three factors that influenced

their decisions: how frequently the task had to be performed, how complex it was, and

whether the user needed to be at the appliance to accomplish the task.

4.2 Device Selection using Visual Object Recognition

Apart from providing users with intuitive interfaces to interact with smart things in

their environment, for instance by using embedded interface descriptions (see Chapter 3),

universal mobile user interface devices require a way of identifying the device a user wants

to interact with. To resolve this “active device resolution problem” [97], one technology

seems to stand out as an ideal candidate, due to recent advancements in that domain:

visual object recognition. Theoretically, if it were possible to identify smart things in the

user’s surroundings with high accuracy using only a camera – a standard component of

smartphones and many wearable personal devices such as smartglasses – we would be

able to make device selection simple for end users, in a non-intrusive way: users would

merely need to look at a smart thing to interact with while wearing their smartglasses

and the system could identify that device and load an appropriate interface for the user

(see Fig. 4.1). The advantages of this approach are manifold: using a camera to select

devices represents a straightforward and easy to understand mechanism for end users. In

particular, smartglasses make it possible to know exactly what the user is looking at and

do so in a non-intrusive way, meaning that the application could run in the background

and provide “always-on device interaction assistance” to the user.

The underlying computer vision technologies that are required to accomplish this goal

are, however, non-trivial to implement and tune to the task at hand, and error-prone:

while the usage of visual object recognition methods therefore seems to represent an ideal

solution to the active device resolution problem, it is, at the moment, limited to scenar-

ios where devices have enough distinctive features to allow the software to differentiate

between them. Furthermore, they depend on environmental conditions, such as enough

lighting.

After a discussion of several prominent methods for visual object recognition in Sec-

tion 4.3, we present the results of a study of the performance of these methods when

applied in the context of the device selection in smart environments in Section 4.4. Af-

terwards, in Section 4.5, we present an extension of our generic mobile user interface
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(a) (b)

Figure 4.1: Selecting and interacting with a smart thing using visual object recognition on a
handheld device (a) and on smartglasses (b).

application (see Section 3.5) with computer vision technologies and briefly discuss the

results of a study of its usability for end users. We also present a system that combines

visual object recognition on smartglasses with automatically generated user interfaces on

smartwatches which, in our opinion, represents an ideal combination of the respective

strengths of these two types of wearable devices.

4.3 Foundations of Visual Object Recognition

The domain of visual object recognition is a highly researched area that receives much

attention from both, academia and industry. In particular, we have witnessed a surge of

new startup companies in the image recognition domain over the last few years who aim

to exploit this technology for marketing and advertising purposes and augmented reality

applications – for instance, recognizing devices in supermarket shelves could revolutionize

the way people shop, as detailed information about product properties such as their carbon

footprint, allergy warnings, and competitive offers would be readily available [299]. One

example of an application that can recognize everyday items such as ketchup bottles and

DVD covers is Blippar [252]. Given an object with a distinctive pattern such as a logo or

distinctive design and without occlusions, Blippar achieves impressive results on ordinary

handheld devices such as smartphones.

Several approaches have been proposed in the literature to visually recognize objects

in an image – these are based on a variety of metrics such as similar general image prop-

erties (dominant color, etc.), appearance/pixel values, geometric structure, part-whole

relationships, or enough similar descriptors of distinctive image features such as corners

or edges [253]. The general idea of systems that are based on matching feature descrip-

tors is to first detect common features in training images of an object (see Fig. 4.2(a)).

A representation of the complete object is then computed over these descriptors, where

the individual descriptors can also be quantized, for instance using the closest “visual

words” [41] (see Fig. 4.2(b) for an example visual vocabulary). Once a database of such
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(a) (b)

Figure 4.2: (a) Visualization of feature points on a picture of a device. Each circle represents
a detected feature of the image and also indicates characteristics of its descriptor, in this case
the dominant direction of features (the lines inside circles) and the scale at which the feature
point was detected (the sizes of the circles). (b) Example visual vocabulary (from [115]).

representations has been created for all objects that are relevant to an application, the

representation of a new image can be compared with all trained representations to find

the object that best matches the image contents. Although this procedure sounds like

a simple and straightforward categorization task, one must bear in mind that there ex-

ist about 10000 to 30000 object categories [19], and thousands of different objects per

category.

A project that targets the augmentation of physical things with graphical user inter-

faces that are displayed on a handheld device in much the same way as we propose to is

presented in [87]. This system exemplifies the difficulties of using visual object recogni-

tion techniques for this task: while it allows to render sophisticated 3D scenes on top of

physical objects, it depends on 3D models of the devices and requires them to be printed

with distinctive textures. We, in contrast, aim to create a system that enables users to

select devices using their original visual features without any modifications and that only

requires a few snapshots of the device for training its classification algorithm. Generally,

our approach follows this procedure: for each camera frame, our software first extracts

distinctive image features using one of several techniques and computes descriptors for

each of these features (see Section 4.3.1; we additionally discuss the results from a com-

parative evaluation of many feature detectors and descriptors in smart environments in

Section 4.4). Next, the application clusters the features of an object and matches each

cluster center to a codevector from our visual codebook (the codebook itself is constructed

from the most representative features of training images). The image itself can now be

represented by a histogram that counts the number of occurrences of each of these code-

vectors – this is compared to histograms that have been obtained by applying the same

procedure to a number of training images, typically between 10 and 20 for each object.

Finally, to find out which object is contained in a given image, the application feeds the

codevectors histogram into several binary Support Vector Machines (SVMs; each of these
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SVMs is trained to give a binary response with respect to a single object from the training

set) and chooses the object that corresponds to the SVM with the highest response value.

In the following, we describe this procedure in more detail – note that the methods

that are discussed here are not only used for object recognition but also in other domains

such as scene modeling and tracking, robot localization and mapping, and panorama

stitching – for instance, the AutoStitch algorithm [27] was one of the first applications of

SIFT features (see below).

4.3.1 Feature Detection and Description

In computer vision, the concept of feature detection refers to the extraction of interesting

“keypoints” of an image. Extracted features represent a more abstract representation of

the information contained in an image – thus, they can be obtained from training data

and then used to classify new images and the objects contained therein. Most approaches

to feature extraction are based on detecting high-contrast regions of the image such as

edges and corners, which remain detectable under illumination changes and other noise.

However, in their most basic incarnations, these often have deficiencies: for instance,

simple template-based matching is often sensitive to changes in image scale and thus not

suitable for matching images of different sizes – depending one its curvature, a corner

might be classified as an edge on a different scale, and vice versa. In time, however,

advanced techniques for feature detection and description have been developed that are

not only robust to scaling, but also to rotations and general affine transformations of the

image – this in principle enables robust classification even under larger viewpoint changes.

After detection, features have to be described and stored in a way that preserves their

distinctiveness and at the same time allows for fast matching. The idea behind such

feature descriptors is that these shall capture the main visual characteristics of the local

image region that surrounds a feature – processing the same feature as seen from different

viewpoints and under different lighting conditions should yield similar descriptors, which

is why invariance to affine transformation and lighting is important [42].

In the following, we review several methods for feature detection and description before

showing a comparative evaluation on a training set with objects relevant in the context of

pervasive computing. In particular, we emphasize the features’ invariance characteristics

with respect to different image transformations and aim at capturing the essence of the

developments that were achieved in this field over the last 15 years. One general trend

that is visible in the domain of computer vision algorithms is that they are increasingly

tuned to run on mobile devices with lower computing power and memory – for this reason,

the last few years have seen many techniques that use binary features which allows for

fast comparison and matching [3].

SIFT. Perhaps the most well-known feature detector and descriptor is the Scale Invari-

ant Feature Transform (SIFT) [118]. In essence, SIFT makes use of standard operators

(i.e., edge and corner detectors) to detect features and then uses local information to

refine their descriptions: after detection, SIFT computes for each keypoint a distinctive

descriptor vector from the keypoint’s surrounding region. This vector contains 16 gradi-
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ent orientation histograms each of which encompasses 4x4 pixels from a 16x16 pixel local

neighborhood of the feature. Because each of the orientation histograms has 8 bins (one

bin per directional unit vector), the SIFT descriptor vector has 128 dimensions. Once

computed, the vector is normalized and a threshold is applied for better invariance to

illumination changes. The SIFT representation of a feature is invariant to uniform scal-

ing of an image and to changes in orientation. SIFT can partially cope with local affine

distortions (i.e., it exhibits limited viewpoint-invariance).

SURF. The Speeded-Up Robust Features (SURF) algorithm [12] is a scale- and rotation-

invariant feature detector and descriptor that achieves much higher performance than

SIFT with often only a small shortfall regarding the repeatability and distinctiveness

of the detected feature points. Its high performance stems from SURF using integral

images and describing the orientation of a keypoint by approximating given block patterns

rather than explicitly computing gradient histograms [201]. Since they contain only 64

dimensions, SURF feature vectors are also considerably smaller than those of SIFT.

FAST. The Features from Accelerated Segment Test (FAST) algorithm [200] detects

keypoints by considering, for each pixel, a circle of other pixels around that keypoint

candidate and measuring the difference in saturation between the candidate and each

pixel on that circle. If a sufficient number of pixels on the circle are brighter than the

center pixel, that pixel is classified as a corner – for instance, the 9-16 mask of FAST

requires 9 consecutive pixels in a 16-pixel circle to meet this criterion. The primary goal

when creating FAST was to construct a keypoint detector that can be used in real-time

applications at frame rate [200]. Indeed, in the tests shown in [201], FAST requires below

7% of the available inter-frame processing time when applied to a live video stream while

other detectors are not able to operate at frame rate in this setting (for instance, SIFT

requires 300% of the available processing time). For this reason, FAST is widely considered

one of the best methods for keypoint detection in real-time scenarios [201] – in particular

for use cases that require simultaneous localization and mapping [103]. However, FAST

must be augmented using pyramid schemes to enable it to detect keypoints at different

scaling levels and it does not include an orientation operator [201].

ORB. Oriented FAST and Rotated BRIEF (ORB) features [201] represent an amalgam

of modified FAST keypoint detection and the Binary Robust Independent Elementary

Features (BRIEF) [30] descriptor. It has been demonstrated that ORB is multiple orders

of magnitude faster than SIFT but often exhibits similar precision in object detection,

which is to a great part due to BRIEF being a binary descriptor and thus allowing for

matching based on the Hamming distance between two vectors (instead of the Euclidean

distance that is used for SIFT and SURF) [201]. For computing the orientation of FAST

features, the authors use the intensity centroid of each corner feature, a simple yet effective

method of estimating the dominant orientation of a feature [199]. After detecting such

oriented FAST keypoints, ORB consequently makes use of modified, “rotation-aware”

BRIEF feature descriptors (BRIEF, by itself, is very sensitive to image rotation and scale
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changes [113]). As suggested by [201], our implementation furthermore uses a pyramid

scheme to detect keypoints at multiple scales.

BRISK. The Binary Robust Invariant Scalable Keypoints (BRISK) algorithm [113] is a

method for keypoint detection and description that, similar to ORB, is based on FAST for

keypoint detection. It also achieves scale-invariance by sampling at multiple scales using a

pyramid scheme. However, to determine and describe the orientation of a keypoint (and,

thus, achieve robustness to rotation), BRISK samples the neighborhood of a keypoint

in a distinctive pattern of locations on concentric circles around the keypoint. From a

subset of the intensity values at these sampling points that only includes points that are

sufficiently spaced apart, the overall pattern direction of the keypoint is computed and

used for its description. Although BRISK achieves a matching performance that is only

slightly worse than that of SIFT and SURF, it was shown to be much faster to compute,

with a detection and extraction time per keypoint of only 0.037 ms compared to 0.428 ms

for SURF and 6.156 ms for SIFT [113].

FREAK. The Fast Retina Keypoint (FREAK) descriptor [3] is based on BRISK but uses

a sampling pattern for orientation-estimation that mimics the distribution of ganglion cells

in the human retina. Because this pattern is less dense than the BRISK pattern, FREAK

descriptors can be computed still faster while delivering equivalent or superior results

than BRISK, SURF, or SIFT with respect to the number of correct keypoint matches

under rotation, scaling, viewpoint changes, brightness shifts, and Gaussian blur [3].

Other feature detection techniques. In this overview of feature detection and de-

scription techniques, we did not cover methods that are computationally too expensive for

our use cases, such as approaches that are based on dense features (e.g., DAISY [223]) and

techniques that we discarded after a preliminary study (e.g., STAR [1] or MSER [123]).

4.3.2 Visual Vocabulary and Quantization

After image features have been extracted and described using one of the methods outlined

above, they are aggregated to yield a representation of the image contents as a whole.

In our work, we use the Bag of Words (BoW) model [41] to accomplish this. BoW

has its roots in texture recognition (textures can be represented as histograms of the

frequencies of their basic repetitive elements) and in word frequency counting as applied

in the text mining domain (e.g., to generate orderless representations of documents such as

word clouds) [300]. To apply this technique when describing arbitrary images, the image

features are first clustered and each cluster center becomes a codevector from a codebook,

or visual vocabulary . This process is tightly coupled with quantization, as the size of the

codebook can be varied and feature vectors are mapped to the nearest codevector in the

codebook. After this process, each image can be represented as a histogram that contains

the relative frequencies of the occurrences of the individual “visual words” in the image,

i.e., a histogram over the codewords from the visual vocabulary.
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4.3.3 Image Classification

The final step of our object recognition pipeline is the classification step, where the descrip-

tive image vectors that have been obtained either directly from the individual features or

using approaches such as the BoW model are compared. For the comparison, our method

of choice are binary linear SVMs that attempt to identify the hyperplane that maximizes

the margin between the positive and negative examples for the occurrence of an object in

an image [300]. As recommended in the literature [51], our classification step combines

multiple binary SVMs – one per trained object – to reach a decision about which object

is present in an image. In particular, we adopt a “one vs. others” approach, meaning

that we train an SVM for each object by treating all images from our training set that

do not contain this object as negative examples. In the classification, we then query all

SVMs and take the result of that machine with the highest decision value. Alternatively,

in a “one vs. one” approach, an SVM would be created for each pair of classes and the

classification phase would involve a vote from each of these SVMs.

4.4 Comparison of Feature Detectors and Descriptors

The above review of different feature detection and description techniques already hints

at the main trade-off that is involved when selecting an “optimal” object recognition algo-

rithm: high-quality algorithms such as SIFT are invariant to a number of transformations

but computationally too expensive whereas feature detectors and descriptors that can

work in real time (such as FAST) suffer in terms of reliability and robustness [113]. A

number of techniques (e.g., ORB, BRISK, and FREAK) aim to fill the void, to varying

degrees of success in different scenarios. However, “choosing good features usually [is]

the hardest part” [253] and, consequently, a number of extensive evaluations of feature

detectors and descriptors exist in the literature (e.g., [113, 156]).

For our use cases, it is important to use a method that is sufficiently fast to compute on

wearable devices with limited processing power and memory: for achieving high usability

of the application, we want to be able to compute the feature descriptors fast enough

for interactive usage – it should thus be able to classify at least 3 frames per second

(FPS) on these platforms (higher performance is required for multi-object recognition,

see Chapter 5). Our aim is to take into account as many features as possible within

this time, but not to over-fit the trained model: features should not include irrelevant

characteristics of the training images that are prone to changes but rather “high-quality”

features that are suited for distinguishing objects. Finally, we want to find out to what

extent the training can be delegated to end users themselves and, consequently, elicit the

reactions of our system when training images are used that are not taken under highly

controlled conditions.

We informed our decision on which of the available techniques to use via a comparison

of several feature detection and description techniques in pervasive computing scenarios.

Our evaluation comprises 16 different objects and is based on three sets of images per

object at a resolution of 320x240 pixels. For training, we use up to 58 images per object

from different perspectives and with a plain background (see Fig. 4.3(a)) – note that, to
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(a) (b) (c)

Figure 4.3: Example images from our training set (a), Plain test set (b), and Challenge test
set (c).
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Figure 4.4: Comparison of the performance of several feature detectors and descriptors on
our Plain test set.

simulate how users would register new objects in our system, the training images were

intentionally not taken under laboratory conditions. For testing, we use two sets: the first,

which we refer to as Plain was taken under the same conditions as the training images

and consists of 190 images per object. This training set contains additional perspectives

of the objects (see Fig. 4.3(b)) and we use it to find out how well the recognition methods

perform under close-to-ideal conditions. The second, Challenge, comprises 190 images per

object that were taken in environments with a lot of background clutter (see Fig. 4.3(c)) –

these also contain perspectives of the objects that differ strongly from those present in the

training set and that were taken under varying lighting conditions. We use the Challenge

set to make statements about scenarios where end users train and use an object recognition

system themselves, without any supervision. All training and test images were obtained

by recording the scenes for up to 15 seconds and then splitting these videos to obtain the

individual images – we consider this method an ideal approach also for end users who

wish to extend the system’s capabilities by teaching it to recognize new objects.

We used the OpenCV framework [317] to evaluate the different feature detectors and

descriptors – for this study, we used the default settings in OpenCV for each of the meth-

ods. The results of our evaluation on the Plain set are shown in Fig. 4.4: The ORB and

BRISK detectors achieve a precision of over 90% while being the fastest in the set of eval-
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Figure 4.5: Comparison of all object recognition algorithms in our evaluation using a custom
efficiency index that measures percentage-points per millisecond required for classification.

uated techniques (8.21 and 8.66 ms per test image on average).1 The FREAK descriptor

(in combination with a FAST detector) outperforms all other methods with respect to

the precision of its object recognition (97.43%) but requires about twice the time needed

by BRISK and ORB to classify an image. Considering the given dates of publication

of the different methods, one can see the large performance gain that resulted from the

conception of binary descriptors (SURF → BRIEF) and the iterative improvement of bi-

nary descriptors since 2010 (BRIEF → BRISK/ORB → FREAK). Note that the inferior

performance of the BRIEF descriptor is mainly due to its high sensitivity to rotation,

a drawback that is explicitly targeted by ORB. Because we strive for high precision as

well as good performance, we additionally used percentage-points per millisecond of time

required (per image) as an efficiency metric to rank the evaluated object recognition tech-

niques: Fig. 4.5 shows that the ORB and BRISK descriptors/detectors are superior to

the other methods with respect to this metric.

In response to our findings, we removed the FREAK (SURF) method that is clearly

dominated by FREAK (FAST) and re-evaluated the performance of all techniques on the

Challenge data set (see Fig. 4.6). In this setting, ORB keeps delivering good results at

very high efficiency (57.86% at 10.06 ms per image) while higher precision can be obtained

when using FREAK descriptors with FAST keypoint detection (63.42% at 24.01 ms per

image).2 Next, we removed all methods that are Pareto-dominated by others and opti-

mized the remaining ORB and FREAK (FAST) methods further by modifying their input

parameters and investigating their sensitivity to the number of training images.

Fig. 4.7 shows the performance of ORB and FREAK (FAST) on our Challenge test

set in more detail. The algorithms clearly fail to reliably recognize the WaterBottle,

Kettle, LegoRobot , and LoudspeakerOffice objects – for the kettle and loudspeaker, this

1These evaluations were carried out on an Intel Core i7-3520M platform with 2.9 GHz and 8 GB of
RAM.

2More detailed results for the performance of the FREAK (FAST) descriptor/detector with these
settings including a confusion matrix with all objects can be found in Appendix B.
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Figure 4.6: Comparison of the performance of several feature detectors and descriptors on
our Challenge test set.
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Figure 4.7: Performance of ORB and FREAK (FAST) on our Challenge test set.

is due to the test images having been taken from a wholly different perspective than

the training images (see Fig. 4.8), suggesting that users should be instructed to try and

capture training images from as many perspectives as possible. With respect to the water

bottle and the toy robot, we attribute the poor performance of both methods to the very

challenging set of test images (see Fig. 4.9). For other devices, however, such as the Drone

(see Fig. 4.3(c)), especially the FREAK descriptors yield very encouraging results.

It is interesting to note that the two methods seem to complement each other on

our test set (see Fig. 4.7; the correlation coefficient between their normalized recognition

precision numbers is only 0.34), suggesting that a combination of both descriptors, while

certainly being computationally more expensive, could lead to great improvements in the

object recognition performance. Hypothetically, if we were able to select the better-suited

algorithm for each individual object in our test set, such a fused approach would deliver

a precision of 79.18% on average over all objects.
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(a) (b)

Figure 4.8: Example images from our training set (a) and Challenge test set (b).

(a) (b)

Figure 4.9: Example images from our training set (a) and Challenge test set (b).

Our evaluation of the algorithms’ sensitivity to variations in the number of training

images (see Fig. 4.10) shows that this is rather low and that around 20 training images

are sufficient to achieve good results (68.39% and 64.38%, respectively). The algorithms

still perform satisfactory (66.15% and 61.25%, respectively) when using only 10 training

images, provided that these cover enough different perspectives of the object (as expected,

due to the BoW quantization, the time required for classifying an image is not influenced

by the number of training images used).

To improve the performance of the algorithms, we tested different settings for both:

For the FREAK (FAST) approach, we varied the threshold values for the FAST detector

and the pattern scale and number of octaves used for the FREAK descriptor. For ORB,

we used different settings for the pyramid approach that ORB uses for scale invariance,

for the number of features that are retained from a single image, and for the size of

patches that are considered when constructing the descriptor. Finally, we varied the

number of codevectors in the BoW codebook that is generated from the training images.

In our tests, the influence of almost all of these parameters on the performance of the two

algorithms was negligible. However, we were able to increase the precision of the ORB

approach to 65.63% by making it invest a little more effort: we increased the size of the
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Figure 4.10: Influence of the number of training images on the performance of the ORB and
FREAK (FAST) techniques on our sample set Challenge.

BoW codebook from 800 to 1600 entries and the number of features per image that the

algorithm aims to extract from 100 to 200, which increases the time needed to classify a

single image by about 60% to 16.24 ms.3 Increasing these values beyond 1600/200 did

yield small precision gains (66.38% for 300 features per image and a BoW codebook size

of 3200 codevectors) but at a steep cost: with these settings, the time required per image

increased to 32 ms. When deployed on a Nexus 5 mobile phone,4 the time required by

both techniques for classifying a single image increased by about a factor of 12, to 115 ms

when considering 100 features per image and to 200 ms for 200 features per image for the

ORB algorithm (these numbers were obtained at a codebook-size of 1600 codevectors).

The FREAK (FAST) method requires about 322 ms to classify an image.

From our evaluation, we conclude that ORB and FREAK (FAST) descriptors rep-

resent good choices of visual object recognition algorithms for typical use cases in the

pervasive computing domain. We expect their classification precision in real-world set-

tings to settle in-between the performance numbers achieved on our two test sets, at

about 70% to 80% – this, however, strongly depends on the concrete setting, especially

the number and quality of object features, the number of trained perspectives, and the

lighting conditions. For the deployment on mobile devices that have similar processing

capabilities as current smartphones and on wearables with less computing power, we rec-

ommend using the ORB feature detector/descriptor for visual object recognition tasks:

when deployed on a Nexus 5 smartphone, ORB can classify camera images at about 5

FPS, compared to about 3 FPS for FREAK (FAST).

3More detailed results for the performance of the ORB descriptor/detector with these settings includ-
ing a confusion matrix with all objects can be found in Appendix B.

4The Nexus 5 phone has a 2.3 GHz quad-core Snapdragon 800 processor and 2 GB of RAM.
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4.5 A Universal Remote Control for Smart Things

We used the process for recognizing objects using visual features described above to

augment our universal user interface application discussed in Section 3.5 with advanced

device selection capabilities. Using the basic version of that application, users had to scan

an attached 2D barcode, use the NFC reader of their handheld device, or enter the URL of

a smart thing to select it and start interacting – with the introduced modifications, they

need merely point the camera of their user interface device at the smart thing to initiate an

interaction. In the following, we discuss the integration of vision-based object recognition

technologies with our interaction application for handheld devices in Section 4.5.1 and

present the results from a brief study among users of the integrated application that

aims at evaluating its usability for end users. Furthermore, we discuss an approach

for interacting with smart things using a combination of personal wearable devices: in

particular, the application that we describe in Section 4.5.2 uses smartglasses to recognize

objects and then transmits an interface for the recognized device to the user’s smartwatch.

4.5.1 Intuitive Interaction with Smart Things on Handheld Devices

We extended our generic mobile user interface for smart things with an object classification

algorithm to categorize items in its camera view. After recognizing a smart thing and

thereby obtaining its URL, our application contacts the device to load a description of its

user interface in the form of our user interface description language that was presented in

Chapter 3. From this description, the handheld device renders a user interface and displays

it as an overlay of the camera feed that is shown to the user (see Fig. 4.11(a)) while

preserving the modality-independence of the interaction description (see Fig. 4.11(b)).

The handheld device is thus transformed into a “magic lens” [20] that can render data

provided by the smart thing and enables users to directly interact with devices using

interaction primitives such as knobs or buttons (see Fig. 4.12), thereby extending and

augmenting the attached user interface of the device, or replacing it altogether.

Typical use cases for such a system are abundant in the smart home domain, for

(a) (b)

Figure 4.11: Interacting with a loudspeaker: (a) The application renders a clickwheel-like
volume controller. (b) Users can also control the volume using a gyroscope-based interactor.
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(a) (b)

Figure 4.12: (a) Interacting with a toy robot: the application renders buttons to lower and
lift the robot arm. (b) Interacting with a wireless sensor node: the application displays the
currently sensed temperature.

instance to support user interaction with home automation systems, audio/video devices,

smart thermostats, or toys. Additionally, we believe that our approach can be applied in

industrial or medical environments, where already deployed devices could be augmented

with a detached interface that gives operators more direct access to their sensors, and

better control over their functions. Lastly, we discuss another use case for our interaction

application in Chapter 8: interacting with Web-connected automobiles.

4.5.1.1 Visual Object Recognition

For recognizing smart things in the camera view of the user interface device, our software

uses ORB features that are invariant to scale and lighting changes and exhibit limited

invariance to viewpoint changes. We quantize the extracted features using a BoW model

and use an individual SVM classifier for each object in our database to classify each camera

frame. The classifiers are trained with 20 images per object from the training set described

in Section 4.4. Depending on the quality of the training data, the visual features of the

objects, and the amount of background clutter, we have shown this approach to be able

to differentiate between up to 16 different devices: our application needs approximately

200 ms to process a single frame on a Nexus 5 smartphone, thus yielding an interactive

frame rate of about 5 FPS (see Section 4.4 for details about the algorithms used and

their performance) – however, because the recognition is done on a separate thread in the

background, the implied lag is not noticeable by the user.

In our prototypes, the object recognition algorithms are implemented directly on the

user interface device. A different option that we considered is to have the recognition

step performed by a remote service, thus trading the challenge of processing on devices

with limited capabilities for the issue of uploading frames fast enough to a Cloud ser-

vice. We decided to implement our algorithms locally for three main reasons: First, our

local classification algorithms already achieve satisfactory performance and sending im-

ages to a remote server for processing would yield higher response times [95]. Second,

doing it remotely makes our system dependent on a persistent and high-quality Internet

connection. Third, providers for object recognition services usually do not make their
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1 2 3 4 5

 1=Strongly Disagree ... 5=Strongly Agree 

(1) I think that I would use this system frequently.

(2) I found the system unnecessarily complex. 

(3) I thought the system was easy to use. 

(4) I think that I would need the support of a technical person to be able to use this system. 

(5) I found the various functions in this system were well integrated. 

(6) I thought there was too much inconsistency in this system. 

(7) I would imagine that most people would learn to use this system very quickly. 

(8) I found the system very cumbersome to use. 

(9) I felt very confident using the system. 

(10) I needed to learn a lot of things before I could get going with this system. 

Figure 4.13: Results of a survey among 23 participants using the standard SUS questionnaire.
Answers were given on a 5 point Likert scale (1=Strongly Disagree ... 5=Strongly Agree).

code open-source, meaning that our applications would depend on the benevolence of a

company that might, at some point, decide to remove the functionality altogether.

4.5.1.2 Usability Evaluation

To get an impression of the usability of our prototype application, we conducted a survey

among 23 participants – because of its small reach and because the study was conducted

at a ubiquitous computing conference, its results can give an indication of our system’s

usability but cannot be generalized. All participants used our system on a tablet computer

to interact with a toy robot and a loudspeaker for about 1.5 minutes per participant.

After using the tablet application, we asked them to evaluate the system using the ten

standard questions from the System Usability Scale (SUS) [26], a popular questionnaire

for subjective usability assessments [114]: our system achieved an average score of 75.76

on this scale. Although this number cannot be interpreted in a straightforward way, it

shows that the usability of our system is higher than the average usability of systems

tested using the SUS [114], and in the top-30% of tested systems according to [324]. The

results of our survey are shown in greater detail in Fig. 4.13: in general, participants

praised that the system was easy to learn and use (questions three, seven, and ten) but

also mentioned that the system had too much inconsistency and that its functions were

not well integrated (questions five, six and, to a lesser extent, question two).

During the survey, we used an early prototype of our application – we have since

upgraded the feature detection and object classification from SURF features to ORB

descriptors, as discussed above. The application can now also aggregate decisions for

multiple consecutive frames to achieve more stable recognition results. Furthermore, we

have made modifications to the interface of the application: for instance, in the version

used during the study, the smart device to interact with had to be kept within the camera

frame at all times during the interaction – as a consequence of the obtained SUS scores

and feedback by users about this shortcoming, we changed the selection routine of the

application to a two-step process: when the smart thing to interact with is recognized,
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Figure 4.14: The second version of our universal smart things interaction application displays
a button to initiate the interaction with recognized devices and shows the confidence of the
classifier as well as an optional bounding box.

Figure 4.15: Our universal interaction application at ETH Unterwegs 2013/2014.

users are prompted to touch the screen to confirm their selection (see Fig. 4.14). The

application then loads and displays an interface to interact with the device until the

user explicitly ends the interaction with the object by again touching the screen. As a

side-effect of this change, the application disables the object recognition thread while a

user is interacting with a selected object, which results in a longer battery lifetime of

the interface device. Furthermore, to increase the confidence of users when using the

application, we now show a measure of how confident our system is about its decision

and optionally display a bounding box to support users with aiming the camera at an

object. An intermediary version of our application that already incorporated the changes

to the user interface but not the novel classification algorithm was part of ETH Unterwegs

2013/2014 , a traveling exhibition organized by ETH together with about a dozen Swiss

secondary schools (see Fig. 4.15). During this exhibition, which aims to spark interest

among students for ETH’s degree courses in engineering and the natural sciences, the

benefit of our changes to the application interface was confirmed.

4.5.2 Interacting with Smart Things using Personal Wearables

As already mentioned in the discussion of device selection techniques at the beginning

of this chapter, a clear trend toward wearable computing is visible that is driven by the

goal to reduce the time between a specific user intention and triggering the corresponding
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action [215]. In an effort to combine the advantages of wearable devices with our approach

of using visual object recognition methods for selecting devices, we present a system

that combines personal head- and wrist-worn wearables to enable intuitive and efficient

interaction with smart things for end users. Specifically, we propose to move the device

selection task to the user’s smartglasses while enabling users to interact with selected

devices using their smartwatch: the smartglasses run a visual object recognition algorithm

to identify smart things in the field of view of the user and, subsequently, an appropriate

user interface is rendered on the smartwatch while taking into account a description of

the interaction semantics of the target device (see Chapter 3). We refer to this separation

of concerns between a head- and a wrist-worn device as “user interface beaming” – it

enables users to discover and use interfaces of devices in their surroundings seamlessly

and our approach could be applied for instance when interacting with appliances in smart

homes, with medical devices in healthcare scenarios, and with devices in a smart factory.

In our opinion, the main advantage of smartglasses with respect to the interaction

with smart devices in the user’s surroundings is that they perceive the world from the

user’s perspective and can visualize information directly in front of users’ eyes. However,

the input capabilities of today’s smartglasses are limited: Google Glass only provides a

slim touchpad which severely limits its suitability as an interface for controlling a smart

thing. Because using the built-in accelerometer of smartglasses that are available today as

an additional input device is limited to few scenarios, the primary input of smartglasses is

speech, an interaction mode that is often cumbersome to use, aggravated by shortcomings

in speech recognition: especially when using speech commands in public, the recognition

must be perfect to avoid annoyance and embarrassment. In contrast to smartglasses, the

applicability of smartwatches to select devices using their camera is very limited – however,

these enable convenient interaction with smart things due to the wrist-worn touch-enabled

graphical user interface and advanced gesture recognition. Thus, as smartglasses seem to

be ideally suited for device selection tasks and smartwatches provide rapid and convenient

interaction capabilities, combining them and beaming user interfaces that are suitable for

interacting with a target device to the smartwatch appears to be a prudent approach to

achieve universal interaction of users with smart devices.

Our prototype system consists of smartglasses, a smartwatch, and a smartphone (see

Fig. 4.16(a)). We use a Samsung Galaxy Gear smartwatch that provides a touch-sensitive

320x320 pixel resolution display and runs a custom Android on a single-core 800 MHz

CPU. The watch can communicate with selected smartphone models via Bluetooth, but

provides no direct Internet connection. For this reason, we use a Samsung Galaxy S4

smartphone as communication hub to communicate with the interactive components of

the target device on behalf of the smartwatch. We selected the Google Glass device as

the head-worn component of our system. Glass features a dual-core 1.2 GHz CPU and a

camera with a resolution of 720p.

For the object recognition, we ported the application that we described in Section 4.5.1

to Glass – this required only minor modifications to the application, as Glass also runs

an Android operating system. Due to the limited memory and processing capabilities of

that platform, our application runs considerably slower, but is still able to classify image
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Figure 4.16: (a) System overview: the smartglasses recognize a smart thing based on its visual
features; the smartphone downloads the user interface description from the Web representation
of the identified device and beams it to the smartwatch; the user can control the object using
the watch. (b) A recognized smart device seen through the display of Google Glass (images
adapted from [142]).

(a) (b)

Figure 4.17: Interfaces for controlling a stereo set on a smartwatch: (a) A graphical interface
to control the volume. (b) An interface that switches the stereo set on/off upon shaking the
smartwatch.

frames at a rate of about 0.5 FPS (see Fig. 4.16(b)). Whenever the device recognizes a

smart thing, it can resolve its URL using a local database and send this information to

the smartphone. The smartphone is responsible for fetching a description of a suitable

user interface for the target device from the Web interface of the smart thing. It transmits

the obtained interface description to the smartwatch that displays the described interface

and allows the user to control the target using its touch screen and sensors (see Fig. 4.17).

We have implemented several example scenarios for our proposed system that include

controlling the volume of an audio/video system, managing the temperature of a room

by controlling the setpoint of a smart thermostat, and controlling a toy robot. For the

A/V system, a graphical knob, gyroscope-based orientation knob, or virtual buttons can

be used to control the volume of the system. Additionally, it can be switched on and off

by shaking the smartwatch. The setpoint of the smart thermostat can be controlled using
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interfaces similar to those for controlling the volume. Finally, the user can lower and lift

the robot’s arm using graphical buttons or an orientation switch that is triggered by the

gyroscope of the smartwatch.

4.6 Summary

In this chapter, we discussed the challenge of supporting users when selecting smart

things to interact with from a set of devices. We proposed to use visual object recognition

techniques for this task, discussed several of the most common approaches in this domain,

and showed an evaluation of how these methods performed in typical IoT settings. We

furthermore presented an approach that enables users to interact with Web-enabled smart

things on smartphones and tablets, as well as across boundaries of wearable personal

devices, a technique we call “user interface beaming.” This system enables users to

monitor and control devices using an amalgam of object recognition methods and user

interface metadata provided by devices (see Chapter 3). We demonstrated that our system

fully supports interface primitives that make use of different interaction modalities and

that it is suitable for enabling convenient user interaction with different kinds of smart

devices: in this chapter, we demonstrated its usage within the context of audio/visual

equipment, smart toys, and devices common in smart homes such as thermostats and

show that the proposed method can also be applied to facilitate user interaction with

Web-connected vehicles in Chapter 8. We also envision the presented interaction system

to be applicable beyond these domains, for instance in industrial and healthcare scenarios.

Our prototype applications on smartphones, smartglasses, and smartwatches represent

initial steps toward seamless user interaction with smart things. However, in particular

the capabilities of our object recognition software are limited – it supports only a prede-

fined set of smart things and requires enough images of these for training the SVMs that

we use for classification. To enable our prototype to operate within more dynamic set-

tings in principle, we added the capability of automatically updating the SVM classifiers

at runtime: when our application detects a significant change in the user’s context (for

instance, if the user moves to a different room), it can load classifiers for devices present

in this new environment from a back-end server – and, consequently, unload classifiers for

absent devices. This technique certainly does not eliminate the challenge of accurately

classifying devices using their visual features – however, by dividing the problem of rec-

ognizing many different objects to a sub-problem with a smaller number of devices, it

enables our proposed system to scale beyond enabling the interaction with only a handful

of smart things.

In the future, we expect that it will be possible to further increase the accuracy of

visual object recognition techniques used in systems such as ours – there has been sig-

nificant progress in this domain since the conception of SIFT and SIFT-like detectors,

descriptors, and quantization methods, especially in the last few years: ORB, BRISK,

and FREAK, the detectors/descriptors that we determined to be most valuable for our

deployments, have been proposed only in the years 2011 and 2012. Specifically, we believe

that the integration of methods from beyond the visual object recognition domain can
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yield significant progress for solving the active device resolution problem – for instance,

expectations about which devices can be found in a typical living room, or a kitchen, can

be used to constrain the set of objects from which the correct device must be selected,

thus increasing the precision of the classification. Incorporating such ideas with tradi-

tional visual object recognition systems would allow computers to recognize devices in a

way that comes ever closer to how humans achieve that task.5 In our opinion, the incorpo-

ration of information beyond the appearance of an object is necessary on the long run, as

systems that only rely on visual information are inherently constrained. Rather, context

information such as the user’s location, interaction history, and current activity as well

as simple clues such as the current time should be taken into account when attempting

to find out which device users wish to interact with in a given situation.

5The influence of expectations on the object recognition performance of humans has been demon-
strated, for instance, in [28].



CHAPTER 5

Real-time Visualization of Device Interactions ∗

In the previous chapters, we discussed how Web technologies, embedded semantic infor-

mation, and object recognition technologies can enable users to seamlessly interact with

smart devices in their surroundings. The proposed technologies, however, restricted users

to the direct interaction with individual devices – neither did we consider that these de-

vices might be communicating with other smart things and services, nor did we allow for

collaboration between devices in smart environments to better support the user.

In the rest of this thesis, we discuss these aspects of environments that are populated

by Web-enabled smart devices: First, in this chapter, we show how the methods that we

initially proposed for the interaction with smart things can be used to inform users about

which services their devices are interacting with at any given moment, thus surfacing

“device whispers” in smart environments. In Chapter 7, we propose a technique that

enables devices to fuse their individual services for achieving higher-level functions by

making them aware of what they are capable of doing by themselves and using semantic

reasoning to automatically deduce service mashups. Because this approach requires a

greater degree of control over the individual devices present in a specific environment and

information about the services they provide, we precede this discussion with a proposal

for a supporting management infrastructure for Web-enabled smart things in Chapter 6.

5.1 Eliciting Device Interactions in Smart Environments

We believe that keeping users informed about what their connected smart things are do-

ing – and why – will become increasingly important as the Internet of Things penetrates

our daily lives and many of our once isolated devices start interacting with each other

and with remote services. In particular for the smart home domain, we expect that con-

nected household appliances and entertainment devices will enable services such as remote

monitoring and control, over-the-air firmware updates, and demand-side electricity load

management. Thus, we expect that devices in future smart homes will not only interact

with each other and with user interface devices as was stipulated in the previous chap-

∗This chapter is based on the following published articles: [133, 137]
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ters, but also with services that are hosted remotely by utility companies, manufacturers

of household appliances, or firms that analyze a household’s data to provide advanced

services to its inhabitants.

The development of increasingly automated sensing and actuation technologies will en-

able powerful new services and applications that support smart home inhabitants. How-

ever, this development also gives rise to a number of challenges that, if not properly

addressed, might hinder the widespread adoption of smart homes because people could

lose trust in the smart things present in their homes and the remote services these devices

use [185]: data that is produced by sensors in smart homes contains detailed information

about the lives of its inhabitants that could be very valuable to companies. For instance,

by analyzing only the aggregate electricity load curve of a household, it is possible to

determine with high accuracy whether its inhabitants are employed, and to estimate the

household income [14]. From the same data, the household occupancy pattern can be

obtained and, potentially, it can be predicted when – and for how long – the home will

be unoccupied on a specific date in the future. Having access to data of this kind could

be of great value to insurance companies or providers of targeted advertising and we are

duly witnessing increasing worldwide debate about the preservation of individual privacy

in an increasingly connected world. Beyond the issue of sensitive data leaving the smart

home, a “fear of pirating,” i.e., unauthorized control commands from outside that actuate

devices in the home, constitutes the most severe anxiety of people regarding the usage

of remote services by their devices: according to the authors of [192] who conducted a

user study among smart home inhabitants, it is therefore imperative that “the user must

always remain in control of the system” – this requirement includes that the user must

be able to find out what services devices in his home communicate with and what the

transmitted data is used for by service providers.

This is challenging because devices in smart environments form complex networked

systems where communication takes place invisibly and “behind the back” of users and

because devices potentially make decisions fully autonomously. Moreover, users already

find it challenging to configure and maintain the rather simple device networks that are

present in their homes today, mainly because of the “invisibility of settings and configu-

ration information” as well as “poor strategies for diagnosis and troubleshooting” [182].

Managing a network requires inhabitants to use tools that are hard to use for them [72]

and some expect that, as smart homes are growing increasingly complex, users will suffer

a loss of control of their environment [185].

5.1.1 Network Management Tools for Commercial Installations and

Home Networks

The above-mentioned challenges are neither new nor constrained to networks in smart

homes: many commercial tools already exist that provide supervision and management

support for computer networks. Examples for such tools are the HP Network Manage-

ment Center that obtains traffic information by attaching a passive router as “Route

Analytics Management System” and creates a real-time and historical record of routing.
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Another example for such a system is the network management suite from SolarWinds,

Inc. that contains a dashboard to monitor network traffic usage and can automatically

detect anomalies. Other management tools include capabilities such as predicting fu-

ture network statistics and are often extensible using plug-ins that can perform advanced

analytics on collected traffic data. All the mentioned systems, as well as a plethora of

other commercial products, however, focus on large networks in companies or univer-

sity campuses and are usually designed for use by trained network administrators [72].

Consequently, they are not suited for usage by private users [182].

As the complexity of networks in private homes increased over the last decade, manage-

ment tools have also been designed for this domain – these provide simpler user interfaces

but typically are a lot less powerful than their counterparts in industrial installations. In

particular, home network management systems often used to focus on static properties

of networks such as parental controls or media prioritization. However, this seems to be

changing with modern products such as the LinkSys SMART Wi-Fi software suite that

provides the functionality to monitor which devices are using the network in real time.

The Private Eye application lets users monitor which remote services their computer is

communicating with – a concept that has already been demonstrated in the NetFlow

project [153].

Many researchers today believe that the lack of adoption of tools for home network

management such as those described above is due mainly to user interface issues, i.e. a

failure of presenting the output of these tools in a way that is easy to understand for

users [8] – this has been identified as the main reason for many home network users still

relying on the indicator lights on their routers and cable modems to monitor and debug

their networks [182]: granted, a tri-colored LED can only convey a very limited amount

of status or activity information. However, it does so in a highly intuitive way.1 Con-

sequently, to bring the functionality of advanced network monitoring tools to everyday

users, applications have been created that aim for higher usability by providing graphical

representations of events that occur in the network. For instance, VISUAL [8], a tool that

is part of the Network Eye security visualization architecture, enables administrators to

understand traffic patterns and identify threats to the network by providing a graphical

representation of incoming and outgoing connections. Indeed, many network management

applications are targeted at intrusion detection, and the training of novice network ana-

lysts by visualizing what is considered “normal” network behavior – TNV [69] and [38]

are examples of such tools, the latter can also be used via a mobile interface and shows

detailed traffic data statistics. Finally, an interesting project outside traditional network

management that, however, also allows for the visualization and analysis of network infor-

mation such as association and disassociation events of mobile devices with access points

is [172]. The authors demonstrate their system in the context of the analysis of crowd

movements in a football stadium.

1A very early project that visualized network activity very intuitively was presented by the artist
Natalie Jeremijenko: the Live Wire system consists of a string attached to a stepper motor that twitches
to dynamically indicate the amount of network traffic. Mark Weiser called the Live Wire prototype one
of the first examples of calm technology [235].
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Figure 5.1: Device whispers in smart environments (mock-up; images adapted from [133]):
We want to enable users to monitor traffic flows between devices using a handheld or wearable
interface as a “magic lens” [20]. The application could also classify interactions as “safe”
(green), “unusual” (yellow), or “critical” (red).

5.1.2 Moving Network Management into the Physical World

Recently, network monitoring tools have started to consider network nodes as embod-

ied devices and applications such as CANVIS [154] were created that allow individuals

to select networking devices using their smartphones to obtain information about how

and how much they communicate with others. We propose to use visual object recog-

nition technologies and methods known from the domain of augmented reality to take

these approaches to the next level, by visualizing data about connections between devices

and services on mobile devices as an overlay for the real, physical, world (see Fig. 5.1).

This approach could allow users to easily and intuitively monitor information flows be-

tween nodes inside their home networks and with remote services and thereby get more

in control of their network installations – similar ideas are applied for visualizing urban

infrastructures, for instance in the Vidente project [203] where underground tubing is

visualized using an augmented reality application on a smartphone. Our approach should

enable users to better understand device associations in their smart home and to perceive

unwanted interactions, where we aim to go beyond currently available network monitor-

ing approaches also with respect to the inspection depth that our system allows: it is,

using our methods, possible for users not only to see HTTP packets that are transmitted

between devices, but also to inspect their contents in near real time. This has only rarely

been done before, for instance in the EtherPeg tool [255] that can display a network graph

and visualize image files as they are passed from one network node to another. Finally,

our proposed network analysis software can not only be used by administrators to mon-

itor information flows between devices, but also to control them using an approach that

is known as software-defined networking : our system gives users the ability to control the

flow of packets between devices in a smart home and remote services by configuring net-

working restrictions directly on their home networking hardware, by “cutting” visualized
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connections on the user’s handheld device.

In the rest of this chapter, we will present our network monitoring and control system

in greater detail, starting with a discussion of how the necessary raw data about traffic

flows in a network is obtained by our system. Next, in Section 5.3, we propose several

methods of how this data can be presented to users: Our system can visualize the data in

several different ways on traditional interfaces, for instance as an animated graph or on a

timeline. It can furthermore track fiducial markers that are attached to devices to render

device associations as a basic augmented reality overlay. Finally, it makes use of the

object recognition techniques presented in Chapter 4 to associate devices to networking

data about them and display this data as an augmented reality overlay on the camera

stream of handheld user interface devices such as smartphones or tablets. In Section 5.4,

we discuss several interesting services that are enabled by our system, in particular by its

capability if inspecting HTTP packets and relating to software-defined networking, and

propose multiple use cases for the proposed system.

5.2 Collecting Network Traffic Data

Before our application can visualize networking information, we must create a system

that collects the necessary data in real time from the networking infrastructure or the

networked smart things themselves. We implemented two different methods of collecting

this data: First, we created an application that is deployed on devices that are part of the

networking infrastructure (in our case, on a router) and passively “sniffs” packets that

pass through this hardware. Second, we implemented several modifications to widely used

software libraries for HTTP servers and clients that transparently add the functionality

to log HTTP packets to applications that use them. We discuss both approaches in

the following – the main advantage of the passive sniffing of packets is that the logger

application can in principle record all packets that are exchanged in a computer network

without modifications to the individual network nodes. However, low-level packet sniffing

has several drawbacks: most prominently, it does not enable us to inspect message contents

on the application layer, thus limiting the capabilities of our system with respect to a more

in-depth analysis of the transmitted information.

5.2.1 Approach 1: Passive Sniffing

The first approach that we implemented to analyze interactions between Web-enabled

devices and other services was a low-level packet sniffing application that is deployed

on the network router (see Fig. 5.2). In our deployment, we used a Linksys WRT54GL

router, a device that is widely used in home networks and that can easily be accessed

and reconfigured because it runs the Linux-based OpenWRT operating system [316]. Our

network sniffing application can thus in principle be deployed in private households as an

add-on module to the router and without any changes to the networking infrastructure.

The sniffer applications makes the collected data directly accessible for client devices via

a Web interface.
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Figure 5.2: Our sniffer application is deployed on the network router. It records information
about packets exchanged between network devices and makes this data available to user
interface devices via a Web interface.

Sniffing packets with the help of the Linux netfilter firewall [308] is straightforward as

it merely requires adding a new rule to the kernel firewall using the iptables command.

We added a rule to log all packets that are not intended for local delivery, by modifying the

FORWARD chain of the firewall (chains are the firewall’s abstraction for grouping together

filtering rules). This rule causes information about all packets that pass through this

chain to be written to a local system log by the syslog daemon – our application can then

fetch the required information, process it, and store it to a local in an in-memory hash

table that maps IP addresses of network nodes to information about their connections

with other nodes. Already at this stage, our system was straining the resources of our

hardware platform: we needed to use the uthash library [280] since GLib [276] proved

too resource-hungry for our hardware. For the same reason, attempts to inspect network

packets in more depth using the packet capture (pcap) API proved infeasible.

The router provides the collected data about device interactions, as well as information

about these devices such as their name, a short description, and their URL, to clients via

a REST API. By specifying the source and destination IP addresses of devices they are

interested in within an HTTP request, clients can ask for information about interactions

of these devices in one of three different modes:

a) Client defines source IP address: The interface returns data for all IP addresses

that the specified IP address has in the past established connections with.

b) Client defines destination IP address: The interface returns data for all IP

addresses that have in the past established connections with the specified IP address.

c) Client defines source and destination IP address: The interface returns data

for connections only between the two specified IP addresses.

For each request, the response includes information about the number of packets

transmitted between two IP addresses as an account of the strength of their connection
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and the protocols that were used in the communication (e.g., TCP, UDP, or ICMP).

An evaluation of the implemented system showed that our approach of relying on

firewall rules to collect interaction metadata works in principle, but that the router hard-

ware is not capable of handling heavy traffic, for instance during file downloads. Another

drawback of the described system is that our hardware (and also many other network

routers) behaves like a network bridge when handling traffic between wireless clients, to

reduce packet processing overhead: consequently, packets that are transmitted from one

wirelessly connected device to another are never passed to the kernel firewall, and thus

never seen by our application.2 While it is, thus, possible to collect device interaction

data using networking hardware and without modifications to the communicating network

devices, we showed that this poses multiple challenges due to the router’s limited hard-

ware resources. Since we, however, want to obtain not only information about packets

passed between wireless endpoints but also more detailed information about the payload

of network packets as well as the full source and destination URLs, we decided to adopt

an active logging approach instead.

5.2.2 Approach 2: Active Logging

To overcome the disadvantages of the passive sniffing, we decided to deploy logging clients

directly on the smart devices whose interactions we want to monitor and have these mod-

ules report metadata about communications between devices to a central storage back end

(see Fig. 5.3). This component persists recorded messages and forwards the information

in real time to visualization clients that are connected using HTML5 WebSockets [329].

Alternatively, user interface devices can query the REST interface of the back end to

obtain information about past device interactions.

With this approach, we are not required to record communication metadata on the

network level as for the passive sniffing, but can instead record interactions on the level

that is most relevant for users in WoT scenarios: we directly log HTTP messages, includ-

ing their headers, the full request URL, and the request and response payloads. However,

as we now record this information in a distributed way, it is possible that the causal order

of observed interactions at the back end is inconsistent with the global ordering of inter-

actions between devices. Since one main purpose of our system is to help users monitor

the causes and effects of device interactions in their smart environment, it is, however,

important that the visualization of message flows between devices reflects the true causal

ordering of these interactions. To enable this, we record the causal relations between

interactions using the vector clock algorithm [125]: The vector clocks are piggybacked on

HTTP messages between devices and our logging software takes care of merging the local

and incoming vector clocks upon receiving a request or response.

To additionally capture interactions with external services and unobserved devices

(i.e., endpoints that are not under our control), our system uses a combination of server-

side and client-side logging, where the concrete setup is chosen dynamically based on

which of the two endpoints in an interaction is directly observed by our software: If both

2A potential remedy to this problem is to use a mechanism called ethernet bridge firewalling . However,
this technique is too resource-heavy for our hardware platform.
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Figure 5.3: The logger application is deployed directly on network nodes. It records informa-
tion about HTTP requests and responses between endpoints and sends this data to a central
server. This server makes historical data available to clients via a REST interface and pushes
real-time information about interactions to registered clients using HTML5 WebSockets.

the server and the client are observed, we record the HTTP request on the server side

and the HTTP response on the client side. If only the client is observed, it takes care

of logging requests and responses from external services and unobserved devices that it

interacts with. Conversely, if any observed node receives a request from an unobserved

client, it logs that request/response pair.

Monitoring Interaction Chains Since most Web interactions in a Web of Things con-

text are part of a task that involves multiple HTTP requests and responses, our system

does not only record isolated requests but aggregates them to interaction chains : all

requests and responses within a chain are the consequence of a single initial HTTP re-

quest. By visualizing entire interaction chains, our tool thus enables users to inspect Web

interactions within their context, allowing them to better decide whether, for instance,

a specific request to an external service was intended and facilitating the monitoring of

complex distributed interactions. To enable our system to visualize series of interactions

between devices, each captured HTTP interaction must be assigned to an interaction

chain. However, due to the stateless nature of HTTP we cannot understand the causal

relationships between HTTP requests by merely observing network communication. Our

logging software therefore adds an HTTP header entry that contains the identifier of

the current interaction to each outgoing request. Additionally, whenever a logged Web

server receives a request that contains an interaction chain identifier, it stores that ID

and attaches it to each outgoing HTTP request that it generates while processing the

incoming request. While this technique represents a sound heuristic of assigning requests
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to interaction chains, it may happen that a server generates a new request while process-

ing another (and, thus, assigns the two requests to the same interaction chain) although

the requests have no causal relationship. Likewise, new requests that are generated after

the processing of another request has finished are assigned to different interaction chains

although they might be related to the previously received request. Assigning requests cor-

rectly to interaction chains in these scenarios, however, would require our logging system

to reconstruct the entire logic of applications running on the smart devices, which is not

the focus of our project.

5.2.3 Discussion of Logging Methods

In contrast to the non-intrusive logging presented in Section 5.2.1, the active logging ap-

proach requires that server applications report observed interactions to a central back

end, attach the required HTTP headers to outgoing requests, and merge vector clocks of

incoming responses. However, to avoid burdening developers of smart devices and other

Web services with having to manually modify their implementations, our system uses

Java Agents which can modify the bytecode of Java classes using so-called class trans-

formers . Using this approach, the logging client can be deployed to Web servers that are

based on the Grizzly NIO framework [319] and use HttpURLConnection to make requests

without the need of modifying a single line of code, by merely attaching our transformers

when invoking the application (using the javaagent JVM parameter). We believe that

this small change to the instruction that deploys applications on monitored smart things

is worthwhile for several reasons and that the active logging approach should be preferred

to passive sniffing: First, by logging requests at the application layer, the logging system

is able to trace the execution path of a request and thus can reconstruct interaction chains

from HTTP messages – information about which requests are related to one another is

relevant for users when monitoring interactions between network devices. Second, we

gain access to the full URI of an endpoint which allows to differentiate between different

resources (e.g., sensors and actuators) that are served by a single server. In case the mes-

sage is unencrypted, we also obtain its full payload which is valuable when attempting

to automatically classify requests and warn users about interactions that seem suspicious

– however, even when considering encrypted messages, the base functionality of our sys-

tem, i.e., enabling users to monitor which devices and remote services their smart objects

communicate with, is preserved. Finally, logging on the application layer is reasonable be-

cause it is not susceptible to routing optimizations that handle frames already on the link

layer and where we consequently lose access to the source and destination IP addresses.

5.3 Visualizing Interactions

Both proposed approaches to collect information about network interactions involve a

back end that can deliver recorded interaction metadata via a REST interface. In the

active logging approach, visualization clients may additionally register to the back end to

receive new data in real time via a WebSockets interface.
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(a)

(b) (c)

Figure 5.4: Different ways of visualizing the collected interaction information: Our Web
application displays interactions between clients and smart devices in a force-directed graph
and on a timeline (a). Our augmented reality interface overlays interaction information on the
camera feed of a mobile device, either using fiducial markers to recognize objects (b) or using
visual object recognition techniques (c).

We have implemented several different interfaces to display the collected data to end

users who want to monitor device interactions: they can either use a Web application

that visualizes the captured interactions as a force-directed graph and on a timeline (see

Fig. 5.4(a)), or use an augmented reality (AR) application on a mobile device. The

mobile application features two different modes of selecting devices whose interactions

should be displayed – our initial prototype relies on fiducial markers that are attached to

devices (see Fig. 5.4(b)) while another version makes use of the visual object recognition

techniques presented in Chapter 4 to recognize smart devices in the field of view of the

camera of the mobile device and then associates the recognized devices with nodes in the

interaction graph and displays interactions between them as an overlay on the camera

view (see Fig. 5.4(c)). In the following, we discuss all visualization methods, beginning

with the Web application.
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(a) (b)

Figure 5.5: (a) Thanks to the underlying force-directed graph, the graph view of our Web
application can visualize large numbers of interacting devices (image from [137]). (b) The
timeline view of our Web application. The highlighted interactions (in blue) all form part of
the same interaction chain.

5.3.1 Web Visualization Interface

To visualize logged interactions between devices, we implemented a HTML5 application

that allows end users to inspect Web interactions between devices and remote services

in real time and to replay recorded interactions. Our Web application provides two

visualization modes – a graph view and a timeline view – as well as a split view that

displays both modes next to each other. Because the travel time of a message in a local

network is only a few milliseconds and users would thus not be able to trace interaction

chains, our application virtually increases the latency of each interaction to one second

for the purpose of the visualization. Consequently, using the vector clocks that give

a consistent causal ordering of interactions between devices, our application delays the

visualization of some messages – still, the start of each new interaction chain corresponds

to the actual beginning of that chain, in real time.

Graph View The graph view of our Web application renders and animates a dynamic

force-directed graph where devices or services are represented as nodes and interactions

between them are visualized as dots that travel on the graph’s edges – the graph is aware

of interaction chains, as illustrated in Fig. 5.5(a). Interacting nodes exert an attractive

force on each other and unrelated nodes are repelled. The graph topology is updated

on each frame with the most recent interactions – nodes that do not participate in any

interactions gradually disappear from the graph.
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Timeline View The timeline view visualizes Web interactions between devices in chro-

nological order by connecting send and receive events on different devices that are arranged

along the y-axis of the timeline (see Fig. 5.5(b)). This view can be used to inspect the

exact order of the interactions. In contrast to the graph view, however, it does not provide

any information about the topology of the communication.

Inspection and Filtering Apart from having the application display interactions be-

tween Web endpoints, users can inspect details of each interaction (HTTP headers, status

codes, and message payload) by clicking the corresponding edge in the graph and timeline

views. They can also navigate to related messages using previous/next buttons. Finally,

the interface allows users to configure filters that change the visibility or color of interac-

tion chains with specific properties. These properties can be set by the user via a simple

domain-specific language. For instance, to filter all requests from the “TV” node to the

google.com endpoint, the user would use this expression:

Request(from=TV)->Request(to="google.com")

5.3.2 Fiducial Markers-based Augmented Reality Interface

The described Web interface gives a convenient overview of interactions between devices,

but fails to achieve our goal of presenting device interactions using a “magic lens” meta-

phor. As a first step to enable this, we created a mobile application that can augment

the camera view of handheld devices with an overlay of live connections data. This ap-

plication tracks networked devices in the live camera feed of the handheld device using

fiducial markers and uses the sniffer application to obtain connection information about

these devices. It then renders this information within the camera image as an augmented

reality overlay: When a marker is recognized in the camera image, the picture of the as-

sociated device is superimposed over the marker. If markers of multiple networked nodes

are recognized and our back end indicates that the respective nodes have been commu-

nicating with each other in the past, the devices’ pictures are connected by a line in the

augmented camera image. If a node has connections to other nodes whose markers are

not visible in the camera image, their pictures are displayed as hovering above the node

to make the user aware of the connections. Multiple connected devices are arranged in a

circle around the central node. If no pictures are available, the application uses a single

placeholder image that represents multiple devices – in this way, we avoid overloading

the viewport with too many images and rather emphasize those nodes that have been

registered by the user.

Fig. 5.6 shows our demonstration setup that involved a Sun SPOT wireless sensor

node with a Web interface and a mobile phone that both carry a fiducial marker. Our

augmented reality application is deployed on a tablet and all devices are connected to an

OpenWRT router with Internet access that is running our sniffer application. For Figs.

5.6(a) and 5.6(b), we deactivated all background update and synchronization services on

the mobile phone and used it to access the Web interface of the wireless sensor node and

to browse the www.cnn.com website (represented by the CNN logo). These connections
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(a) (b) (c)

Figure 5.6: (a) Augmented Reality overlay of connections between the Sun SPOT, mobile
phone, and CNN website. (b) The same situation without the Sun SPOT’s marker being visible
to the tablet’s camera. A placeholder image shows that an additional connection exists, in
this case to the nameserver used to resolve cnn.com. (c) The same situation with the mobile
phone’s background synchronization services enabled. Services without registered pictures are
aggregated using a placeholder image.

are recorded by the sniffer application and relevant data about them is passed to the

tablet device that identifies and tracks the markers and overlays the information about

network connections on the camera image.

Fig. 5.6(a) shows a screenshot of the tablet application with all markers present while

the Sun SPOT’s marker was removed and thus no longer visible to the tablet’s camera in

Fig. 5.6(b). As a consequence of the previous interactions between the devices, the mobile

phone is shown to have been connected to both the Sun SPOT and the www.cnn.com

website. The line connecting the mobile phone and the Sun SPOT is thicker because of

the stronger connection between these devices (i.e. because the Sun SPOT was accessed

more often). Additionally, a placeholder image is shown as being connected to the mobile

phone, which indicates that the phone had established a connection to one additional

server which the application cannot provide a visual representation of. In this case, this

unknown endpoint is the name server used to resolve the www.cnn.com domain. Enabling

the mobile phone’s background synchronization leads to many more such connections – to

avoid overloading the viewport of the tablet device, multiple connections to unregistered

endpoints are represented as a single placeholder icon (see Fig. 5.6(c)).

5.3.2.1 Augmented Reality Implementation

To recognize and track devices in the camera feed, we have experimented with two pub-

licly available toolkits for augmented reality applications: Qualcomm Vuforia [320] and

ARToolKit [249].

Vuforia is a free augmented reality software development kit from Qualcomm that is

available for a variety of mobile operating systems including Android. Vuforia provides a

comprehensive API and comes with a good documentation and a lot of example projects.

Our tests have shown that the toolkit runs very stable also when tracking multiple mark-

ers. On the downside, its source code is not publicly available which hinders extensions

and customization of the SDK. The greatest drawback of the Vuforia SDK, though, is that
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Figure 5.7: Examples of augmented reality markers that carry unique numerical IDs and can
be used by ARToolKit (from [59]).

important parts of the image recognition are done on Qualcomm servers which makes any

application using the toolkit highly dependent on that company. Finally, developers need

to agree that usage statistics are sent to a remote server and the toolkit only supports a

maximum of 512 markers.

ARToolKit for Mobile from ARToolWorks is the free mobile version of the open-source

ARToolKit augmented reality software development kit. ARToolKit can track multiple

markers and performs all image processing on the mobile device, which is the main reason

for us to choose this platform for our application. ARToolKit can track 2D codes and

general user-defined image markers. A strong black border is required around the markers

to support the marker detection algorithm. The major disadvantage of allowing user-

defined images as markers is that having a large number of such images drastically reduces

the recognition performance as a detected marker must be compared against all registered

images. For this reason, the toolkit also allows specialized ID markers that do not contain

a user-defined image but rather a binary 2D array with a resolution of either 9, 16, 25,

or 36 pixels (see Fig. 5.7). As the markers have to be rotation-invariant and thus at least

three pixels need to be fixed to compute the marker’s orientation, there is a maximum

of 2n∗n−3 unique IDs for a grid of size n ∗ n (i.e., 64 unique IDs for a 3x3 grid, 8192 for

a 4x4 grid, etc.). Following the recommendation by the toolkit developers to use either

3x3 or 4x4 grid sizes, we have configured our application to use markers of size 3x3 which

we generated using an online tool [322]. In our mobile application, such markers are

associated to devices and used to identify and track these devices in the AR view. Using

ARToolKit, we process camera images in five main steps:

1. Conversion of camera image to black and white to enable detection of marker borders

and locate the marker

2. Calculation of marker position and orientation relative to the camera

3. Extraction of marker ID

4. Realignment of camera scene according to coordinate system of marker using the

transformation matrix determined by step two

5. Execution of drawing commands in the scene
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Figure 5.8: Alternative representations of the connections metadata: (a) The text view of
the application shows information about the connections of a selected device in textual form.
(b) The graphical view displays the connections using an abstract graph-like representation.

5.3.2.2 Obtaining Connection Data from the Passive Sniffing Back End

The augmented reality interface resolves AR markers of devices to their IP addresses (this

information must be given by the user when scanning a new AR marker for the first time).

These addresses are subsequently used to query the back end about further information

on the identified device – the back end delivers connection information such as contacted

IP addresses, protocols, connection strength, and traffic direction (inbound vs. outbound

connections) as well as other data such as a node’s human-readable name, a description,

and a picture. To be able to provide this information, the user has to manually register

newly encountered tagged devices by scanning their AR-tag and providing their name,

picture, etc. Whenever an AR marker is encountered for which a look-up at the back end

yields no further identity information, a reverse DNS look-up is attempted to resolve the

host name of the device, as this is assumed to be more meaningful for human users.

5.3.2.3 Discussion

Our evaluation within the demonstration setup showed that the proposed system works

and that the mobile application and its augmented reality view is responsive enough to

display connection information between devices and remote services in real time. Using

ARToolKit to track the markers is stable, where we have tested the system with up to

four simultaneously tracked tags without performance problems. When tracking more

markers, we observed several crashes of ARToolKit that are most likely due to the toolkit

running out of heap space. Furthermore, the camera of the handheld user interface device

has to be brought rather close to the marker (about one meter) to identify it correctly,
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(a) (b)

Figure 5.9: (a) Our application visualizes HTTP messages that are exchanged among devices
as dots that travel along arcs between the objects. It uses visual object recognition techniques
to identify devices in the camera view of the user interface. (b) The application can recognize
multiple objects on a plain background using spatial clustering of FAST features.

which reduces the screen real estate available for displaying connection information and

metadata. Finally, the battery lifetime of the mobile device running the visualization ap-

plication is reduced considerably as AR operations are costly in terms of system resources.

Alternative Visualization Modes Apart from visualizing connections between end-

points using the augmented reality overlay described above, our application prototype

offers two other ways for users to access connections information: it can summarize all

incoming and outgoing connections of a selected node textually (see Fig. 5.8(a)) and draw

an abstract graphical representation of the connections (see Fig. 5.8(b)). To select a net-

worked smart thing, the user can either scan its QR-code or point the camera of the

handheld device at the AR marker of the smart thing, both of which yield the IP address

of the device that can be used to query its connections metadata at the back end.

5.3.3 Visual Object Recognition-based Augmented Reality Interface

Recognizing devices based on fiducial markers has several disadvantages, most promi-

nently the requirement to attach these rather conspicuous tags to smart things for en-

abling our system to track them and display their interactions. For a second prototype

application that shares the goal of intuitively visualizing device interactions for human

users, we therefore chose to use the visual object recognition techniques discussed in

Chapter 4 as a means of identifying devices in the camera view of the user interface. This

application is able to recognize up to four devices from a pre-trained set of about a dozen

objects on each camera frame, associate the recognized devices to URLs and contact our

logging back end to obtain interactions metadata – to obtain this information in real time,

it registers with the back end via HTML5 WebSockets. The application then visualizes

HTTP messages between devices as an augmented reality overlay (see Fig. 5.9(a)).
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Multiple Object Recognition For the device recognition, our application proceeds sim-

ilarly to the system described in Section 4.5.1: it first resizes camera frames to a resolution

of 320x240 pixels and then applies an ORB feature descriptor to detected features. To

separate objects, we spatially cluster keypoints using the DBSCAN [55] algorithm with a

search radius of 30 pixels and extract ORB descriptors for each keypoint within a cluster’s

bounding box (see Fig. 5.9(b)).3 The object classes are described in the Bag of Words

model and binary SVMs are trained for each class. At runtime, the mobile application

applies brute force matching in the descriptor space using Hamming distances [71]. The

SVMs determine the most probable object classes visible in the camera image. For the

clustering of the multi-object recognition, it is necessary that the objects are sufficiently

textured (i.e., contain at least 40 keypoints) and that there is little background clutter.

If these conditions are met, our application achieves a frame rate of about 3 FPS when

simultaneously recognizing six devices on a Nexus 5 smartphone, and up to 5.3 FPS when

recognizing only a single device in the camera frame.

5.4 Applications

As already set forth in the motivation to this chapter, we envision the systems presented in

this chapter to be applicable in a number of use cases that range from enabling inhabitants

of smart homes to track what kind of information is leaving the domestic environment, and

where control commands to their devices come from to visualizing interactions of different

components of an industrial manufacturing line. Perhaps, the proposed system could even

be helpful to educate students about distributed algorithms and for debugging distributed

systems. In this section, we discuss several real-world use cases that illustrate the merit

of our proposed approach to visualizing Web service interactions. We discuss another

application of our system – monitoring interactions with Web-enabled automobiles – in

the context of a case study about interacting with smart cars in Chapter 8.

Smart Homes Providing smart home inhabitants with a tool that enables them to

stay aware of data that enters and leaves their home, as well as of interactions between

smart devices within their domestic environment represents the original motivation for

the work presented in this paper. Our system can clearly facilitate the monitoring of

devices that handle privacy-sensitive data for end users, for instance with respect to

smart electricity meters [188] – to find out which remote endpoints are accessing the

domestic smart meter using our tool, users are merely required to point the camera of

their handheld at the device and observe the overlaid interactions (see Fig. 5.10(a)).

Using the Web interface, users can additionally examine individual messages and play

3Note that the FREAK (FAST) detector that was shown to yield comparable or even superior results
to ORB in Section 4.4 is not well-suited for this application. This is due to FREAK depending on many
more keypoints than ORB which makes it more sensitive to background clutter: because more features
are extracted and described, DBSCAN detects more clusters, thus strongly decreasing the performance
of the algorithm and yielding false positives. In our tests, we observed the algorithm extracting up to
15 clusters in situations where ORB only detects a single one, which strongly increased this method’s
processing time of the entire frame, in some cases to more than 1300 ms.



82 Real-time Visualization of Device Interactions

(a) (b)

Figure 5.10: (a) Screenshot of the AR interface of our tool that visualizes interactions in
smart homes in real time, for instance between a smart meter and utility companies or other
parties that handle personal data. (b) Visualization of interactions of network endpoints that
execute a distributed wave algorithm.

back earlier interactions between the domestic device and remote servers. Our system

also enables users to monitor control commands that are sent to devices in their smart

home, for instance to smart thermostats that are controlled by a remote service – this is

especially relevant in scenarios where the control logic of appliances is provided by cloud

services, as stipulated by the “Thin Server Architecture” paradigm [107]. Finally, our

tool helps to monitor interactions between devices in smart environments – while this is

not demanded by users at the moment, we believe that the accelerating deployment of

home automation solutions will make it increasingly relevant to track such “behind-the-

back” communication, especially when considering current research in the Web of Things

domain that targets the ad-hoc creation of physical mashups based on user goals [139].

In such scenarios, users should be provided with a tool that helps them to monitor and

manage interactions between devices, if only to give them a feeling of being in control of

their smart home.

Smart Factories Production processes in factories increasingly involve dynamic inter-

actions between individual manufacturing devices, to enable rapid reconfigurations which

allow the process to evolve and adapt to the mass customization of products [111]. The

technologies proposed in this chapter could support operators within such environments to

rapidly determine which devices talk to each other and what data is transmitted between

them at any given moment. This is especially helpful when devices that are involved in a

process start to be aware of their functionality, thus enabling the dynamic reconfiguration

of the system at run time (see Chapter 7).

Smart Firewalls With respect to both, smart homes and smart factories, we believe

that it could be beneficial to combine the systems presented in this chapter with network

infrastructure that can be remotely configured by users. In this case, if users discover an

interaction between devices or with a remote service that they feel uncomfortable about,

this connection could be instantly terminated and prevented in the future literally at the

fling of a finger by configuring a firewall rule at a network router. We believe that this
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combination of software-defined networking with our augmented reality interfaces that

display interactions holds great potential to facilitate not only network monitoring but

also the management of networks at home and the workplace. As a proof of concept, we

implemented this functionality in a private home network – however, because we were

unable to configure the firewall rule directly on the Zyxel NBG5715 router present in that

network, we created a simple wrapper for the iptables program which allows remote users

to set local firewall rules by specifying the IP address of the device to be denied access to

a smart thing. With the help of this program, users of our visualization application are

now able to define basic policies that govern which devices are allowed to communicate

with which endpoints within a home network.

Smart Debugging and Education We believe that our system could be applied in

educational environments, similar to visualization tools for algorithms and data structures.

Several studies in the domain of algorithm visualization have shown that students believe

such tools support them in learning rather abstract programming methods such as sorting

or line sweep algorithms, and examination results also reflect these benefits [98]. By

visualizing interactions between distributed agents, our tool extends the scope of the

broad domain of software visualization [183] beyond individual programs. This is, for

instance, relevant with respect to advanced topics in the domain of distributed algorithms

(e.g., regarding leader election, distributed termination detection, and with respect to

general wave algorithms, see Fig. 5.10(b)). Our system can be used to illustrate these

because it also takes care of preserving the causal relationships within interactions that

stretch over multiple exchanged messages – at the same time, the tool itself represents

a very convincing example to demonstrate the benefits of vector clocks in classrooms.

We recommend using the Web visualization interface for these use cases – potentially,

however, the magic lens interface of our visualization tool can be used in educational

settings as well, for instance in robotics courses.

5.5 Summary

In this chapter, we presented a system that allows to visualize interactions between net-

worked smart things using different techniques. Among these is an application that visu-

ally recognizes devices in the field of view of the camera of handheld or wearable devices

and renders an augmented reality overlay to visualize interactions between them and

with remote services. To record the necessary communication metadata, we proposed two

different systems, the first of which has the advantage of not requiring any specialized

network infrastructure and, indeed, no changes to the networked devices themselves. This

passive sniffing system was successfully deployed on a commodity router platform that is

present in many private homes, but fails to deliver the in-depth information about net-

work interactions that we seek to display to users. Therefore, we also proposed an active

logging system where logging clients are deployed on the communicating smart things

and services themselves and report their interactions to a central back end. Although

this approach requires system components to be modified, we succeeded to keep these
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modifications to a minimum, by using Java agents to rewrite bytecode just before its

execution.

We envision such a system to be deployed in smart homes, where it would enable

end users to monitor communication patterns of networked devices inside their home and

with services in the cloud. By using the application, inhabitants could keep track of which

of their smart devices interact with each other and whether a device inside their home

uploads possibly privacy-sensitive data to remote services or receives control commands

from the outside. Other application areas that we believe such a system to be useful for

encompass the monitoring of interactions in smart manufacturing scenarios and training

and debugging of distributed systems and algorithms.



CHAPTER 6

A Web-based Infrastructure for the Internet of Things ∗

In the previous chapter, we discussed how Web technologies and visual object recognition

methods could be combined to make humans aware of device interactions in a smart

environment. This is important especially in the context of smart homes because it can

help inhabitants trust their smart devices, ultimately putting them in control of what

information their smart things transmit to the outside world, and what commands they

receive. In this chapter, we discuss another fundamental issue that must be dealt with

to make the Web of Things widely usable: making it possible for computers and human

users to find services that are provided by smart things.

Up to this point, we implicitly assumed that each service in a smart environment is

embodied in a specific object that can be selected using technologies such as NFC, by

using fiducial markers, or via the visual object recognition methods that we detailed in

Chapter 4. We now drop this assumption: a client that wishes to use a service provided

by a smart device should no longer be bound to having direct physical access to this

device for selecting it, but should rather be enabled to find and use the service from

anywhere, at any time. By the same token, our discussion now also encompasses services

that are not embodied in physical objects and therefore cannot be selected by pointing,

scanning, or touching in any case. These services are “virtual” by their very nature and

sometimes do not even directly influence our physical environment, for instance in the

case of translation services.1

In this chapter, we present a mechanism that makes services in smart environments

searchable in a reliable, fast, and user-friendly way. In the “traditional” Web that is

composed of static documents, and the “Web 2.0” that focuses on the importance of

user-generated content, the task of making billions of documents findable was handled

by Web search engines such as Yahoo! or Google. However, making smart things and

their services findable is significantly more complicated than enabling the searching for

∗This chapter is based on the following published articles: [129, 134, 136]
1If a user wishes to, such virtual services can of course also be assigned to physical objects, thereby

enabling the techniques for device selection that we discuss in Chapter 4 for them as well: for instance,
a user could choose to associate a language translation service with a physical dictionary and access the
service via that object.
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documents for a number of reasons [197, 220, 136]: First, services provided by smart

devices often should be identified based on dynamic, contextual information such as their

location or their current state. Second, there is no uniform and widely accepted way of

describing smart things and their services. Third, clients of services that are provided

by smart devices in many cases are computer programs themselves and therefore require

descriptions that are provided in a format that is easy to parse and interpret for machines.

Furthermore, a machine-readable description format for smart devices must also include a

mechanism that allows machines to find out how the service can be used (i.e., information

about its machine API) – information provided for devices is thus different in kind from

information that is targeted at human users, and is not necessarily expressed in a way

that is easy to index for traditional Web search engines that are geared toward finding

textual documents which were created for humans.

For these reasons, before smart things and the services they provide can be made

findable, a method is required that allows search engines to obtain the above-mentioned

information about their context, dynamic properties, and service interface. This process,

that we refer to as “resource discovery” [226], takes place after the network presence of

a smart device has been established and an entry point – such as an authoritative URL

or hostname – to its services has been found. A search engine that can discover and

index services in this way would not only be able to allow humans to interact with smart

things by enabling them to find and use the data and functionality they provide, but

would do the same for machine clients, thereby allowing them to support users in finding

services and even to use these services themselves, on behalf of users. From the user

perspective, the main benefit of discovery and search mechanisms for the WoT is a major

simplification of human-machine and machine-machine interaction in smart environments

that gives humans greater power to configure and control ubiquitous smart devices.

Apart from facilitating the interaction with the WoT for humans and machines, a

search engine for smart things and their services must overcome another major challenge

that is associated with the expected very large number of networked devices in future

smart environments: according to many, the Internet of Things is expected to have a

much larger overall scope than the Internet of computers [127]. This renders a centralized

solution that enables the discovery and searching for smart things undesirable, if not

entirely impossible, and calls for designing a WoT search engine in a way that can scale

to billions of connected devices while enabling smart things to cooperate on a global scale.

In the following, we first discuss several approaches to the description of smart de-

vices as well as infrastructures that aim at administering large numbers of smart things

in IoT scenarios. Next, we describe our own proposal for a Web-based management in-

frastructure that makes smart devices and their services searchable and, in particular,

discuss its hierarchical structuring and its resource discovery and look-up components.

This infrastructure has been used in multiple projects to facilitate the usage of services in

smart environments for humans and machine clients. It also represents a cornerstone of a

method that we propose to enable smart devices to cooperate automatically, by sharing

functional semantic metadata about their capabilities – this system, and the role of our

management infrastructure in its context, is discussed in detail in Chapter 7.
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6.1 Middlewares for the Internet of Things

The challenge of making services in an ecosystem of billions of devices searchable and find-

able is part of what has been termed the “Findability Layer” of the WoT [73]. Overcoming

this challenge is important in the IoT domain, most prominently because we expect that

a reliable and usable search engine for smart things will allow us to realize the dream

of being able to “query the real world” – and thus enable us to look for smart devices

and their services in a way similar to how we use traditional search engines to locate

information on the Web. Furthermore, such a service is necessary to enable the composi-

tion of services in smart environments within physical mashups that provide higher-level

functionality than their individual constituents [6, 139].

Consequently, to make smart things findable and easily usable for clients, many in-

frastructures and middlewares that manage devices in smart environments have been pro-

posed. Examples of very early, groundbreaking projects are Hewlett-Packard’s CoolTown

[45, 101] and the E-speak project [61]. More recent research initiatives range from

projects by individual research groups (e.g., [6, 36, 217] as well as our own projects

[136, 225, 226]) to massive international endeavors, for instance in the context of the

Seventh Framework Programme of the European Commission (e.g., the SMART [265]

and IoT-Architecture [268] projects). Often, however, management infrastructures that

provide a search mechanism for smart devices were created for specific use cases, most

prominently approaches that facilitate the publishing and consumption of data in sensor

networks [96, 178], or have been tailored to the specific mode of interactions between

devices, for instance emphasizing device mobility in dynamic environments [221].

A survey of many of the most prominent IoT middlewares is presented in [9] – the

authors classify the diverse systems according to the functionality they provide: each of the

considered infrastructures provides a way of managing devices internally (including device

discovery), but only a few of them are compatible regarding their programming platform.

For instance, HYDRA [110], and ASPIRE [264] follow the OSGi platform model while

the SIRENA [22] and SOCRADES/SOA4D [267] middlewares use a DPWS-based service

integration system. This formation of islands on the level of IoT middlewares does, in our

opinion, hinder the proliferation of the IoT as a whole.2 Some even argue that, since none

of these infrastructures is without its shortcomings and thus none will perhaps prevail

over the long term, we will witness the creation of ever more (incompatible) platforms in

the future [169]. The situation is similar in industry, where standards have been proposed

that target specific use cases – an example for this is the system created by the Digital

Living Network Alliance (DLNA) [260] that aims at establishing interoperability between

multimedia devices.

In the design of our own management infrastructure that we propose in this chapter,

we fully embrace the application-level convergence and interoperability put forward by

the Web of Things vision: our main goal is to make full use of Web standards by providing

uniform interfaces that are easy to understand for clients both when searching for smart

things and when registering their own devices and services, and that additionally facilitate

2This is also one of the main arguments brought forward by the FP7 IoT-A project [268].
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the application-level integration with other middlewares. We have shown that, due to

the adoption of Web standards, our infrastructure is compatible with projects by other

research groups, for instance from the body area networks domain [205], and with other

middlewares that target event-based interactions between smart devices [40], or aim at

semantically enriching smart things [68].

6.2 Finding and Describing Smart Devices

Before smart things can be indexed and made findable using a look-up service, there must

be a way of how this service can obtain information about devices and their capabilities.

Indeed, the description and discovery of services have been identified by some as two of the

four main research challenges in the “Future Internet” [91] which, in this context, refers

to the Internet of devices and services (the other two challenges relate to service access

and service composition). In particular, the authors of [91] highlight the importance of

future IoT systems being able to handle heterogeneous service descriptions.

Describing services that are provided by smart things within the WoT is very simi-

lar to the more general challenge of providing machine-understandable specifications for

Web services. To describe these, many languages and frameworks have been proposed

in the past – in the context of the WoT, the most prominent include Microformats [304]

and Microdata [331], both of which represent ways of enriching HTML documents with

machine-readable metadata to make the services that are represented by these documents

discoverable for humans and machine clients [129]. We believe, however, that discovery

services should not be constrained to only considering specific ways of embedding service

information – rather, we propose a discovery service that remains extensible regarding

future description formats (see Section 6.3.2).

Apart from the representation format of service descriptions, it is also important to

determine what kind of information should be part of a service description. For the WoT

domain, the Smart Things Metadata (STM) model has been proposed [73, 77] which

specifies the contextual information and metadata that any infrastructure should be able

to obtain from a smart thing to make it searchable. This model has been created while

considering other approaches to describing smart things [2, 23, 48, 92] as well as our

own experiences when designing earlier versions of our management infrastructure. It

incorporates two types of information about a smart device: static properties such as

a description of a device and its services, and dynamic characteristics that are related

to the object’s context and to quality of service parameters.3 This model represents a

recommendation of what kind of information should be provided by smart things (and,

thus, should be considered when creating description frameworks) but is not exhaustive –

nor is it mandatory that a device provides every bit of information that is specified in the

format. Rather, we envision search infrastructures for smart things to mimic traditional

Web search engines in that they should aim at interpreting all available information about

a Web resource to be indexed [73, 134].

3We do not reproduce a diagram of the STM model in this thesis – the complete model can be found
in [73].
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Given past experience, we are skeptical that the proposed STM model – or indeed

any currently proposed guideline of what information should be contained in Web service

descriptions – will become the predominant method of describing smart devices and their

capabilities. For this reason, focusing on the interoperability of discovery services has

been defined as an important area for future IoT research in [91] and frameworks that can

handle heterogeneous service descriptions have been proposed also in the context of other

middlewares, for instance in [155] and [186]. Likewise, we also propose that our manage-

ment and search infrastructure for smart things should not be tied to a single description

format but rather make use of an extensible discovery mechanism that incorporates many

of the above-mentioned strategies for discovering services. Similar to other recent projects

in the domain of Web service discovery, our discovery service has been created with broad

interoperability in mind, and is thus not tied to our management infrastructure. Rather,

it provides “Discovery as a Service” [54] for any client that requires this functionality via

open Web APIs. In Section 6.3.2, we introduce this service, and in particular discuss its

ability to be extended at runtime with new resource discovery strategies. Each of these

strategies handles one of the description frameworks that have been proposed for smart

things (e.g., Microformats or Microdata) by mapping it to a common internal descrip-

tion format. Our system can also publish its internal descriptions in many formats, thus

making it a universal translation framework for smart things metadata.

Already at this point, we mention that the challenge of identifying and matching

Web services has also attracted much interest from the Semantic Web community – a

central argument here is that, by basing descriptions of Web services (and, by extension,

of services that are provided by devices in the WoT) on semantic technologies would

not only facilitate the discovery of these services but also their automatic behavioral

control, and enable the automatic composition of device functionality to yield higher-level

services [99]. Consequently, the Resource Description Framework (RDF) [334] has been

proposed as a general approach to describing Web service capabilities, most prominently

in the context of describing sensors and sensor systems using SensorML [23]. We discuss

the usage of semantic technologies for describing the characteristics and capabilities of

Web services, as well as of approaches from the domain of service-oriented architectures

(e.g., the Web Services Description Language, WSDL) in greater detail in Chapter 7,

where we focus on the semantic interoperability of Web services. For now, we focus on

best-effort discoverability and searchability of WoT devices and their services via the more

conservative method of embedding structured metadata.

6.3 A Web-based Infrastructure for Smart Things

In this section, we present an implementation of a distributed hierarchical Web-based

management infrastructure that can discover smart devices, interpret service descriptions

that they provide, and make the services searchable for clients. Similar to other infras-

tructures that enable the searching for services provided by smart devices (e.g., [77, 193]),

our infrastructure includes three core components: a way of discovering and interpret-

ing resource descriptions, a resource repository that stores discovered descriptions, and
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a search component that is responsible for the service look-up itself. After introducing

the major requirements that our management infrastructure shall satisfy and discussing

several design decisions that we made in response to these, we describe the discovery and

look-up components of the system in greater detail.4 Regarding the discovery of smart

devices, we in particular discuss the run-time extensibility of our universal discovery ser-

vice, while our presentation of the look-up service will focus on its treatment of queries as

REST resources , which enables automatic load-balancing across the infrastructure, and

allows for an advanced query caching mechanism that reduces the time and number of

messages required for service look-up.

6.3.1 Requirements and General Design Principles

As already mentioned, we want our proposed management infrastructure for smart devices

to be interoperabile with other middleware solutions to avoid creating an island solution.

We aim to achieve this goal, as well as a high degree of user-friendliness , by having all

client-facing APIs of the infrastructure adhere to widely accepted Web principles such as

uniform interfaces, thereby making them simple to use. The infrastructure should also

be able to administer the expected high number of digitally augmented devices in future

smart environments: this scalability shall be achieved by a distributed, hierarchical struc-

turing of its individual nodes. Finally, because the adoption of a decentralized structure

impedes the simple management of our infrastructure, its nodes should exhibit a certain

degree of self-management , which includes the ability to recover from individual node

failures. We discuss each of these goals in more detail in the following.

6.3.1.1 Interoperability and User-friendliness

As indicated in the previous section, we aim to implement the discovery and look-up

components of our management infrastructure in a way that is “future-proof” regarding

prospective developments in the IoT domain and, more broadly, with respect to future

methods of describing Web services. Therefore, we have adopted a requirement for inter-

operability as the most important principle in the design of this system: the management

infrastructure should be interoperable with other search engines and description formats.

To satisfy this requirement, our system makes use of an extensible universal discovery

mechanism (see Section 6.3.2) and provides a uniform REST look-up interface for clients

that search for smart devices and their services (see Section 6.3.3). Responses to queries

to that interface are given in a format that can again be translated into many broadly used

device description formats using our discovery service. Thus, the discovery component is

central to the design of our management infrastructure – still, this service can also be used

by clients directly, as it is an external, standalone, component of the proposed ecosystem.

Closely connected with the requirement for interoperability but shifting the emphasis to

human users of our infrastructure, we demand that its interface be easily understandable

and usable not only for machine clients but for people as well. This requirement will be

4The implementation of its resource repository and an earlier version of its discovery service is based
on work that was carried out prior to this thesis [128, 226].
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Figure 6.1: The nodes of our proposed management infrastructure are structured hierarchi-
cally according to logical place identifiers. In this example, nine nodes are spread across two
floors with three offices each in the building MainBuilding .

reflected in the design of its look-up service that can not only handle structured queries

from machines, but also unstructured, keyword-based, requests.

6.3.1.2 Scalability

Another major requirement on our management infrastructure is that we require it to

specifically address the challenge of scaling to huge numbers of connected interacting

smart devices that produce large amounts of traffic in IoT environments. It will most

probably not be possible to utilize traditional centralized approaches to service look-up

in smart environments that are populated by billions of smart devices [270] – rather, we

propose to sub-divide our search space hierarchically, where we use the location of a smart

device as its key dynamic feature for segmentation [226]. This is beneficial because smart

things interact much more frequently with other devices in their immediate environment

than with objects that are situated at an entirely different location [238]. We can exploit

this locality of interactions within rooms, floors, and buildings to limit the messaging

overhead when administering devices at different locations and propose to arrange the

individual nodes of our infrastructure hierarchically, where each node is responsible for

a specific spatial domain. This approach allows to contain look-up operations to their

relevant subtree and avoids the global routing of search queries within our infrastructure.

Still, our system retains the ability for clients to search globally if they wish to do so.

Fig. 6.1 shows an example for the hierarchical structuring of our management infras-

tructure that we will refer to at multiple times throughout this chapter to explain how

the discovery, and look-up of smart devices and their services works in our case: in the

example, the infrastructure sub-divides a building into multiple hierarchically structured

administrative domains, each of which is managed by an individual infrastructure node.

For instance, the node that is responsible for an office has, as transitive parents, the node

that administers the floor this room is situated on and the management node responsible

for the entire building. “Management,” in this case, refers to the respective node storing

information about services that are provided by smart things in its domain and taking
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care of correctly routing received search queries (we explain how the routing works in

more detail in Section 6.3.3). Purely virtual services that are not embodied by any de-

vice can in principle be registered to any node – still, it might be beneficial to use the

look-up history for such services to determine the infrastructure node that is closest to

their most frequent clients and moving information about the service to that location (or

replicating/caching it there).

Note that, in our system, we restrict the direct communication between management

nodes to direct interaction between neighboring nodes in the hierarchical structure (i.e., a

node can only communicate directly with its parents and children). This means that indi-

vidual nodes can remain ignorant about most others in the system: they need only know

their direct neighbors for the infrastructure to perform its functions. This guarantees that

the system remains scalable in terms of extending the hierarchy by adding more adminis-

trative domains. Furthermore, the interaction between two devices that are administered

by the same management node only concerns that very node, and such devices can find

each other without triggering a look-up that concerns any additional management nodes.

Likewise, two devices in the same building can interact without affecting any management

nodes that are responsible for places in the outside world.

Regarding the individual nodes, we and others have proposed that only management

nodes that administer more fine-grained domains (e.g., rooms or floors) be “embodied,”

for instance as wireless routers or network-attached storage devices [226, 227]. Such

embodied nodes are, in addition to their tasks that relate to the administration of smart

things in their domain, responsible for linking devices that do not directly provide Web

connectivity to the rest of the system, i.e., act as smart gateways [226].

6.3.1.3 Self-management

The adoption of a distributed hierarchical structure as one of the main architectural

principles of our management infrastructure brings with it a requirement to keep manual

administration of the individual nodes to a minimum, for the system to remain manageable

even in extensive settings. For this reason, we have embedded the ability for structural

self-configuration in our system, meaning that only the assignment of nodes to their

locations must be done by hand – given this indication of their administrative domain

and the URL of a single common “top-level” node, all other infrastructure nodes are able

to take their place within the hierarchy automatically. The same mechanism makes the

infrastructure resilient with respect to individual nodes becoming unreachable: in this

case, the system rearranges its nodes such that global connectivity is, again, guaranteed.

When nodes recover from failure, they are again integrated into the system and the original

configuration can be restored.

The proposed self-management of nodes is possible because the entire topology of

the system is induced by the names of its administrative domains – only if all of them

are assigned according to uniform naming conventions, we can guarantee the functioning

of the routing algorithms: for instance, the same location identifier must not be used

more than once within the infrastructure, and the names must be built in a way that

reflects their hierarchic ordering (e.g., “Building/Floor/Room,” for instance in “Main-
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Building/Floor6/602”). This is not straightforward, as users who set up management

nodes in their private homes are not automatically prevented from calling the adminis-

trative domain of their node “ETH,” or even “Switzerland.”

Location identifiers that we use in our deployments are derived from a strictly hier-

archic symbolic location model, meaning that the infrastructure nodes remain ignorant

about whether these identifiers are associated to any absolute geometric location such as

GPS coordinates. We decided to base our naming system on a centrally controlled vo-

cabulary, since, although many location models have been proposed (e.g., [11, 16, 238]),

there is, at the moment, no widespread standard of how locations – in particular, indoor

locations – are modeled [225]. In principle, however, our system is capable of handling

any location model that allows for location hierarchies – such models are the subject of

current research and standardization efforts, most prominently by the Open Geospatial

Consortium whose Geosemantics Domain Working Group [314] is working on creating a

semantic framework for representing geospatial knowledge, specifically with a focus on

the Internet of Things and the Web of Things [315].5

6.3.2 Smart Things Discovery

One of the two main modules of our management infrastructure is its discovery component

that, given the URL of a smart thing, is responsible for gathering information about this

device and the services it provides. The device discovery system of our infrastructure is, in

fact, a standalone discovery service and exists detached from the individual management

nodes. It can therefore also be used by other clients that wish to obtain information about

a Web resource of interest, and as an on-the-fly translator for smart things metadata.

One of the biggest weaknesses that haunt software used to parse non-standard formats

is that they become outdated as soon as amendments to current description schemes are

made, or when these schemes are replaced by newer formats. For this reason, we created a

service that can be extended at runtime with new strategies of parsing service descriptions

and thus is future-proof with respect to new description formats. Our system allows

developers to inject new methods of parsing service descriptions on demand, whenever

they discover a resource that cannot be handled by any of the currently implemented

strategies. In this way, this resource, as well as all resources that are described in a

similar way, immediately become usable for all clients of the service.

To enable this behavior, the service analyzes the reference to a resource (e.g., the

resource URL, an already downloaded resource representation, etc.) that a client sends

as part of its query as well as information about the resource that can be obtained from the

client’s query (e.g., by downloading representations of the resource in multiple different

multimedia types) using all its currently registered discovery strategies (see Fig. 6.2). The

information that it obtains from the individual strategies is then merged and consolidated,

and used to create an internal representation of the resource. This information constitutes

the answer of the service to the client request and can be transmitted in one of multiple

formats (this is under the control of the client, using HTTP content negotiation).

5See [82] for an overview of current approaches to semantically modeling locations and a concrete
example of such a model.
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Figure 6.2: Interaction of a client with our discovery service: The client sends an HTTP GET

request to trigger the semantic discovery of a resource. The discovery service uses information
that is contained in the query to obtain representations of the resource in several different
formats. Multiple discovery strategies are applied to these representations, their outputs are
consolidated, and the resulting resource description is returned to the client.

The Web interface of our discovery service itself is based on REST – the main HTTP

verbs map nicely onto its functions and provide an intuitive and user-friendly interface:

GET is used to invoke the main function of the service, i.e., to obtain resource descriptions

and to get information about registered strategies, each of which is represented as a Web

resource. POST, PUT, and DELETE are used to create, update, and delete discovery strate-

gies. The discovery service furthermore provides information about its own capabilities

using Microformats markup and an OpenSearch description [247].

6.3.2.1 Internal Representation of Web Resources

As already mentioned in the introduction to this chapter, multiple models exist that at-

tempt to capture the most important metadata about Web services. Considering a broad

range of these models is crucial for our discovery service, since all information gathered

about a service is merged into an internal service representation. However, the inter-

nal service representation constitutes a potential bottleneck concerning the extensibility

of our discovery service: even if the service was able to parse every single way of how

properties of Web services can be described, all of this information would still be consol-

idated into a common internal representation before sending it to the client. Therefore,

if a description format incorporates information about a characteristic of a service that

cannot be accommodated in the internal representation, this information is potentially

lost during the consolidation phase.

We address this challenge in two ways: First, our internal description format is based

on the STM model [73, 77] that we briefly described in Section 6.2 and that considers

several different approaches to describing smart devices and their services [23, 92] as well

as our own experience [2, 48]. Second, to guarantee the compatibility of our service with

completely new device properties, our system allows not only the dynamic creation of new

discovery strategies but furthermore is based on a dynamic internal resource description

format, meaning that it is automatically extended using reflection when a new discovery

strategy considers device properties that are not part of the STM model.
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1 {

2 "name":"Temperature Sensor",

3 "provides":{

4 "result":"current temperature",

5 "unit":"degrees celsius"

6 },

7 "rating":3.4,

8 "xyz":"Example"

9 }

Listing 6.1: JSON representation of a Web-enabled temperature sensor.

1 [

2 {"name":"Name"},

3 {"provides.result":"Services.Output"},

4 {"provides.unit":"Services.Unit"},

5 {"rating":"Review.Rating"},

6 {"xyz":"A.New.Identifier"}

7 ]

Listing 6.2: JSON document that a client sends to the JSON strategy stub of our discovery
service for adding a new mapping that corresponds to the temperature sensor description in
Listing 6.1.

6.3.2.2 Extension of Strategy Stubs

Our proposed discovery service enables clients not only to discover smart things metadata,

but also to extend the service at runtime by injecting new ways of resolving representations

of Web resources: clients can create new discovery strategies and also extend existing

ones using the REST interface of the service. We distinguish between two approaches of

extending our discovery service: clients may create completely new discovery strategies,

and may extend already existing strategy stubs. The service already features such stubs for

formats that are widely used to describe Web services, such as Microformats or Microdata,

and also for descriptions that are based on the JSON and XML languages: whenever a

client desires to add discovery capabilities that make use of one of these formats, it is

sufficient to submit a new mapping between the service descriptions to be parsed and the

representation that our service uses internally (this is explained in more detail below).

As an example for our discussion of how clients can extend the discovery capabilities of

our service, we use the simple JSON representation of a Web-enabled temperature sensor

shown in Listing 6.1.
As briefly hinted at above, we consider a single discovery strategy to be a composite

of a strategy stub and a corresponding strategy mapping. To make a Web service that

is described in the same form as the temperature sensor in Listing 6.1 discoverable by

our service, a client would extend its JSON strategy stub by submitting a corresponding

mapping of the sensor’s metadata format to the internal representation of the service.

This is accomplished by sending a POST request to the Web resource which represents the

JSON strategy stub with the content shown in Listing 6.2.

From this information, our discovery service creates an internal mapping from resource



96 A Web-based Infrastructure for the Internet of Things

1 {

2 "description":"Temperature Sensor JSON Schema",

3 "type":"object",

4 "name":{

5 "type":"string"

6 },

7 "provides":{

8 "type":"object",

9 "properties": { ... }

10 },

11 "rating":{

12 "type":"number",

13 "pattern":"[1-4]{1}[\.]?[0-9]*

14 },

15 "xyz":{

16 "type":"string"

17 }

18 }

Listing 6.3: JSON Schema document that a client sends to the JSON strategy stub of the
discovery service to add a mapping that corresponds to the temperature sensor description in
Listing 6.1 (the service properties have been omitted for conciseness).

descriptions to its internal format where, for instance, a JSON result element that

is nested in a provides element would be mapped to the Output identifier within the

Services structure of our internal description format. The identifiers that can be used

for mapping to the correct internal structure are exposed via the REST interface of our

service which also gives provides description of the type of information that is contained

in each of the specified identifiers. The identifiers correspond to the STM model that was

described above and that we expect them to cover much of the metadata that Web service

providers could wish to expose about their services. If, however, our discovery service

encounters a new mapping that contains an unknown identifier as a target location, such

as in the example given above (the A.New.Identifier-field), it uses reflection to add

this field to its internal representation of resources.6 To summarize, by injecting a new

mapping into an existing strategy stub, a client creates a new, purely syntactic, mapping

of data fields in external descriptions to the internal description format.
While it is convenient for clients to inject new mappings in the way described above,

this method is not suitable for every type of resource representation. For this reason, our

service also comprises another mechanism for the extension of strategy stubs that uses

data schemas (e.g., JSON Schema or XML Schema information) to create new mappings.

In this case, the client would proceed in a two-step-process, first submitting a new schema

that describes the service metadata, and then submitting the corresponding mapping to

insert the correct syntactical mapping. To give an example, the JSON Schema document

for the above temperature sensor description is given in Listing 6.3. The integration of

a new mapping in this “schema-driven” way requires more client interaction with the

6We propose that newly created fields should be monitored by a privileged user and that they be
pruned from the structure if deemed too application-specific in nature.
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service. However, it enables clients to specify the type of the information in service

descriptions as well as concrete permissible patterns for the contained data, as can be

seen in Listing 6.3 for instance for the rating field of the service. This means that the

discovery service is able to automatically discard values that do not correspond to the

pattern or data type specified in the schema. This is not possible in the case of schema-

less injection of mappings – in this case, the discovery service proceeds in a best-effort

manner and guess the data type of newly created fields. We recommend that mappings

which include submitting a new schema should be adopted where required, but that the

simpler approach of directly injecting mappings should be preferred for formats that do

not specify explicitly typed data (e.g., Microdata).

6.3.2.3 Creation of new Discovery Strategies

Our discovery service supports the creation of entirely new ways of parsing resource de-

scriptions, by allowing clients to inject new discovery strategy stubs (in the form of Java

classes) at runtime. To mitigate the major security risks that are inherent to this ap-

proach and to block malicious code from being inserted into the service, we suggest a

semi-automatic injection mechanism, meaning that novel strategies are first reviewed by

a privileged user.

6.3.2.4 Data Integration and Strategies Conflict Handling

Because our discovery service applies all registered strategies to device representations

that are submitted by clients, conflicts between the strategies may arise: for instance,

different parts of a single service description may correspond to different strategy matcher

patterns, or the service might derive differing information from different representations

of the same Web resource (e.g., if the resource provides an XML representation as well

as a representation in the JSON format). After applying all strategies to a submitted

description, our service attempts to merge all returned descriptions into a single instance

of the internal resource representation. This merging is not straightforward when treating

conflicting data for the same field: in this case, we use a confidence score that depends

on the ratio of correctly matched fields in the resource representation (i.e., a measure

of how well the individual strategies fits the resource representation) to break ties. To

avoid conflicts altogether, our discovery service additionally provides clients direct access

to individual strategies – in this way, the client can control which strategy is applied when

analyzing a submitted resource representation.

6.3.2.5 Implemented Discovery Strategies

Our discovery service already contains strategy stubs that consider several description

formats for Web services (a more detailed account of these is given in [129]). In particular,

it can parse multiple lightweight markup languages that are used for describing Web

services, such as Microdata and Microformats – the main properties of these formats are

discussed below. The service also supports resource descriptions that are based on JSON,

XML, and RDFa. The JSON format is particularly interesting as its importance in the
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1 <div class="service">

2 <p class="label">ACME Hotels</p>

3 <div class="operation">

4 The operation is invoked using a

5 <span class="method">GET</span> on

6 <code class="address">http://example.com/h/{id}</code>, with

7 <span class="input">the hotel ID replacing <code>id</code>.</span>

8 </div>

9 </div>

Listing 6.4: hRESTS service description markup, adapted from [105].

Web domain has grown steadily over the last few years, starting in the year 2010 [261]. It

is also easier to parse and typically has a smaller footprint compared to XML. We believe

that the JSON format would be suitable as an interchange format to transmit information

about Web services – our discovery service exposes its internal resource representation as

JSON as well meaning that, because it contains a strategy that can map its own format,

load-balancing is possible across multiple instances of our service. We furthermore use

simple crawling as a strategy to extract metadata (in particular, structural properties)

about Web resources, in the same way as is described in [74]. Finally, our service can

collaborate with other discovery services (including traditional Web search engines), in

a process that we refer to as deferred discovery and that is enabled using OpenSearch

descriptions in our case.

Microformats Microformats [256] are a very straightforward way of embedding seman-

tic information directly in the representation of a Web resource by re-using HTML tags.

In this way, they integrate information for both, people and machines, within the same

document. Several search engines exploit Microformats when indexing Web sites, most

prominently the geo and adr formats, both of which are part of the hCard Microformat

that itself is a Web representation of the widely used vCard directory profile [290]. Another

Microformat stands out as an interesting candidate for service integration on the Web: the

hRESTS format [105] allows to expose information about the REST API of services that

are provided by a Web resource. For instance, this can be used to describe how a specific

service can be used by clients – in the example in Listing 6.4, the ACME Hotels service is

invoked by sending a GET request to the endpoint at http://example.com/h/{id} where

id is replaced by the appropriate hotel ID.
The main advantage of Microformats is that they enable developers without any ex-

perience with semantic technologies or ontologies to embed basic semantic metadata in

their Web resources. A major disadvantage, though, is the lack of a way to automatically

process many Microformats, as the included information is usually rather high-level. This

is, for instance, the case with hRESTS which does not enable machine clients to deduce

how a service can be used: clearly, the description shown in Listing 6.4 cannot be read-

ily used by machine clients to deduce the service API, especially with respect to the id

parameter. Another downside of Microformats is that they overload the HTML class

tag, which makes it difficult for parsers to differentiate between semantic metadata and
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/">

3 <ShortName>Google</ShortName>

4 <Description>Perform a Google Search.</Description>

5 <Url type="text/html" template="http://google.com/search?btnI&amp;q={

searchTerms}"/>

6 </OpenSearchDescription>

Listing 6.5: OpenSearch document that describes the Google search engine.

markup used solely for styling purposes. The novel microformats2 approach, a second

reincarnation of Microformats, represents an attempt to overcome this syntactic problem,

but does also not enable more automatic processing of Web documents.

Microdata Microdata [330] is an HTML5 specification by the World Wide Web Consor-

tium (W3C) and the Web Hypertext Application Technology Working Group (WHATWG)

that, similar to Microformats, aims at facilitating the embedding of semantic informa-

tion within the HTML representation of Web resources. Other than the Microformats

approach, Microdata uses distinct tag attributes to specify this information, which is

beneficial because it facilitates the parsing of the resource representation. The Microdata

format depends on vocabularies such as data-vocabulary.org or schema.org that spec-

ify the meaning of terms used in Microdata markup, such as Person or Locality . Although

there are as of now no public efforts to standardize a description language for REST ser-

vices based on Microdata, several search engines, including Google, Bing, and Yahoo!,

use it to improve the indexing of Web pages and the presentation of search results – all

three are part of the initiative behind the definition of the http://schema.org vocabu-

lary and recommend to use Microdata for annotations (although they also still support

Microformats and RDFa) [274].

RDFa The Resource Description Framework in Attributes (RDFa) [328] allows to em-

bed structured data about a Web resource within its representation. Similar to Microdata,

RDFa specifies only the syntax for embedding this data within Web resource representa-

tions and relies on independent vocabularies and taxonomies such as Dublin Core [259]

or schema.org. We discuss the usage of semantic markup in greater detail in Chapter 7.

Deferred Discovery By means of deferred discovery strategies, our discovery service

can make use of external services and integrate resource descriptions that are provided

by these with results obtained from applying its own discovery strategies. To enable this,

our software integrates a simple interface for the registration of such services that takes as

input information about an external discovery service in the form of an OpenSearch doc-

ument [247]. For instance, submitting the document in Listing 6.5 to this interface would

register the Google search engine as an external discovery service. The deferred discovery

functionality of our discovery service enables the creation of discovery federations , mean-

ing that multiple discovery services can work together, thus enhancing interoperability

and their ability to adapt to future description formats. Furthermore, this feature allows
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for a very straightforward load-balancing mechanism: since instances of our discovery

service themselves expose a description of their API in the OpenSearch format, multiple

such entities can act as a single more powerful unit, by having overloaded instances relay

queries to others. Finally, deferred discovery could also be used to alleviate the security

issues regarding the injection of code that implements new discovery strategies: a third

party could set up a local instance of the discovery service that includes the required

strategy stub and register that instance as an external service with a central entity. This

approach, however, has the downside of lowering the performance of the service federation

as a whole due to the required remote invocations.

6.3.2.6 Service Discovery for an Infrastructure for Smart Things

In summary, we propose a system that enables the future-proof discovery of services

that are provided by smart devices. Clients can use this service as a common interface

to obtain information about smart things such as their name, location, and a human-

readable description. We have also briefly described a method of embedding partially

machine-readable information about the REST interface of a service in the form of the

hRESTS Microformat – this possibility is explored in much greater detail in Chapter 7. A

discovery system for smart things and their services is, however, not only useful in the

context of the direct interaction of a user with a smart thing – rather, we motivated our

discovery service by stating that a search infrastructure for smart things requires this

functionality to be able to index devices and their services for look-up.

6.3.3 Smart Things Look-Up

After Web resources have been indexed using the discovery service, they are registered

to one of the nodes of our management infrastructure and are thereby made searchable

globally for clients of the system. The concrete node that registers a resource is determined

from the information that the discovery service provides about that entity: a resource

is always registered to the node that is responsible for administering the authoritative

domain it is situated in (as determined by the discovery service), regardless of which of

the infrastructure nodes receives the initial registration request. In this section, we discuss

the look-up service of our infrastructure – specifically, we describe the different types of

queries that clients can use to control the scope of a look-up operation, the routing of

queries between nodes of the management infrastructure, and the local matching of smart

things that are registered with a specific management node to a query.

6.3.3.1 Query Types

When initiating a look-up, clients can include information about the scope of their query

together with the data that is used to select resources to be returned in the response from

the look-up service. The system uses this additional information for two purposes: First,

queries are routed to the management node best suited to answer them – for instance, a

query for “a highly available temperature sensor in the building CNB” is routed to the ad-

ministrative node of the CNB location. Second, the scoping information allows to pre-empt
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Figure 6.3: Query types: EXQ (EXhaustive Query) - search the entire subtree of a node.
CAQk (CArdinality Query) - search for k corresponding resources within the subtree of a
node.

queries once the required information has been found and thus increases the performance

of the system – in the above example, the CNB node will relay the query to its sub-nodes

that are responsible for managing the different floors of that building. If one of these

nodes returns a response very quickly, the others need not further propagate the query

to nodes that administer individual rooms, thereby conserving system resources. At the

same time, this enables straightforward load-balancing as those parts of the management

infrastructure that carry most load at any moment are on average slower to respond –

subsequent messages of the client that triggered the look-up will consequently focus on

the less strained part of the system.

To give clients control about the scope of their queries, our look-up service features

three different query types: Exhaustive Queries (EXQ) consider the entire subtree of the

queried node. Cardinality Queries (CAQk) are triggered to search for exactly k resources

that match a query (see Fig. 6.3). Finally, to restrict a query to a specific subtree of a

node, or to search at a wholly different location, the infrastructure uses a special type

of query called Request for Query (RFQ). RFQs are created internally whenever such a

request is received – in essence, they are structures that hold one of the other two query

types and, additionally, information about their destination: our infrastructure takes care

of routing RFQs to the administrative node for their destination which unpacks them,

executes the contained query, and transmits the answers to the initially queried node (see

Fig. 6.4). The client remains unaware of the internal routing and receives its response

from the management node that it initially connected to.

Internally, all queries are represented as data structures that contain a unique query

ID, the URI of the node that initially triggered the query, the query type (including a

positive integer number for CAQs), and information that is used to identify smart devices

and services that match the query.

6.3.3.2 Internal Processing of Queries

Our infrastructure treats each query it handles as a Web resource, meaning that queries are

identified using URIs and that queries themselves have a REST API: the clients of a query
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Figure 6.4: To trigger an EXQ at location ../MainBuilding/Floor5, a client contacts
its local management node at ../MainBuilding/Floor6. Internally, the query is routed as
an RFQ.

resource are management nodes that process that query, and the query resource itself is

hosted by the management node that initially triggered the query. Indeed, whenever an

infrastructure node receives a query from a client and is not able to satisfy it from its

local database of registered smart things, it immediately creates a Web resource locally

that corresponds to the query. Only after this resource has been created, the node relays

the query to its children that each do a local look-up and post matching resources to

the query resource (indeed, using an HTTP POST request). As soon as enough answers

have been received at the query resource (e.g., as soon as two answers have been received

for a CAQ2), the management node prunes the query resource and relays the received

responses to the client. This mechanism is useful to reduce answer times to queries, the

number of messages induced by queries, and also has advantages with respect to load

balancing. We discuss the impact of adopting this “resource-oriented view” on queries

in more detail below, after describing the query routing process in more detail: we start

with a discussion of RFQ handling and then move on to explain how EXQs and CAQs

are processed – at multiple occasions in the text, we refer to Fig. 6.5 that illustrates the

routing process on a more abstract level. Note that, in accordance with our design goals

set forth in Section 6.3.1, the query processing does not depend on global knowledge about

the management infrastructure.

Routing of RFQs From a processing perspective, the simplest type of query is the

RFQ. By examining the destination location parameter of an RFQ (node (b) in Fig. 6.5),

the node that receives such a query can determine whether it should unpack the RFQ and

trigger the contained query locally (c) or whether the RFQ should be relayed to one of its

sub-nodes or its parent (d). When routing the query to another node within its subtree,

it uses the destination information to find out which of its child nodes is best qualified



6.3. A Web-based Infrastructure for Smart Things 103

Query 
type?

Extract destination

RFQ

Local Unrelated node

Destroy query

Parent or 
child node

Routing 
decision

Relay query to 
parent or child node

Query local DB

CAQ / EXQ

Yes NoQuery 
satisfied?

Return answers 
to client

Create query 
Web resource

Relay query to 
child nodes

Receive new query

unpack

a b

c

d

e

f
g

Figure 6.5: Overview of the processing of received queries by a node of our management
infrastructure.

to process it. If it determines that the destination node is located in a different sub-tree

altogether, or that it is a (transitive) parent, it routes the query to its parent node. If the

destination location is unrelated to the location of the current node (i.e., the two nodes

have no common ancestor), the query is destroyed (e).

Routing of CAQs and EXQs Upon receiving a query of one of the other two types,

a management node first checks whether it can serve the query from its local database

(node (a) in Fig. 6.5). If this is possible, the responses to the query (i.e., matching locally

managed resources) are delivered to the client (f). Else, the management node starts to

collect answers from other management nodes in its sub-tree until the query is satisfied at

which point the answers are, again, delivered to the client. As discussed above, to collect

answers from its sub-tree, a node first creates a Web resource that represents the query

locally (g). Next, it relays the query to its direct children that also do a local look-up and

post obtained results to the query Web resource. Each node that receives a query follows

the same procedure, with one exception: only a single Web resource is created per query,

i.e., management nodes that receive a query from another node in the infrastructure skip

step (g) of the query processing algorithm. At any time, nodes can find out whether

a query has already been satisfied and, consequently, should not be further propagated

within the infrastructure, by requesting that information from the query Web resource.

This mechanism of handling queries via explicit Web resources allows to decouple

management nodes in the look-up process: nodes that trigger a query in their subtree

need not wait until they have obtained all answers from their sub-nodes in a way similar

to the propagation of queries in a wave algorithm. Furthermore, due to the design of

the mechanism, answers to a query are automatically sorted according to the response

times of the management nodes that give them – thus, resources registered to already

overloaded management nodes are on average returned less frequently than those from

nodes with more capacity to spare. Indeed, because management nodes act as “gateways”
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to the sub-tree they administer, the system automatically treats sub-trees in a way that

considers the load they are bearing at the moment. Note that the load balancing does,

however, not influence the correctness of the look-up system: a response that is returned

from a management node which bears less load is as correct an answer to a specific query

as one from an overloaded one. For instance, if a client submits a query such as “Three

temperature sensors on the 5th floor of building MainBuilding ,” this implies that it is not

interested in where exactly those temperature sensors are located on the 5th floor.7 On

the contrary, this system promotes answers from nodes higher up in the hierarchy that

have a more general scope: if the node responsible for MainBuilding/Floor5 is capable

of fully servicing the query from its local database, it does not need to contact other

management nodes that administer specific rooms.

The proposed mechanism furthermore helps to improve the performance of look-up

operations within our infrastructure in several different ways: The response time to client

CAQs is lower because the triggering node does not have to wait for all nodes to deliver

their answers. Rather, as soon as the local query Web resource indicates that the query

has been satisfied – i.e., if k answers have been received for a CAQk – it can destroy

the query resource and send the answers to the client. This in turn allows to pre-empt

queries that are still being processed by other nodes in the system, as other management

nodes can use use the query Web resource to determine the current state of a query: if

the query resource is gone (as indicated using an appropriate HTTP response code), all

nodes that are still processing the query can safely destroy it and will not propagate it

further. Additionally, when a management node posts locally matching resources to a

query resource, it receives as response the number of answers that are still required to

satisfy the query. When that number reaches zero, the query can be destroyed as well.

Processing of EXQs Because it allows for queries being pre-empted, the implemented

mechanism is very beneficial when routing CAQs. For EXQs, however, the triggering

node is not aware of how many answers it should expect at the query Web resource.

Therefore, for this type of query, the look-up service includes an explicit notification

mechanism regarding pending answers from nodes in the sub-tree of the triggering node:

before nodes in that tree propagate a query to their child nodes, they register this child

as pending at the query Web resource. As soon as the child node delivers its answers,

this flag is cleared again – thus, the triggering node knows that it has received all answers

as soon as there are no more pending flags. The same mechanism avoids stalling when a

CAQk is triggered that cannot be fully satisfied because the number of matching resources

in the system is smaller than k.

Advanced Query Caching Finally, our resource-based query routing mechanism allows

for smarter handling of queries that are similar to others which are already being processed

by the system. If a management node receives a query that is similar (i.e., equivalent or

overlapping) to another query that already has a corresponding Web resource and is, thus,

7If the client was interested in obtaining sensors specifically in the office “502,” it should include that
information in the query!
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Figure 6.6: The HTML interface of a node in our management infrastructure. The screenshot
shows how users can search for devices at a specific location.

being processed by the system, it does not forward the query to its sub-nodes but rather

subscribes internally to the already existing query Web resource. Such situations can,

for instance, arise when a node receives a CAQ with identical keywords to a previously

received EXQ, or when query scopes overlap. This advanced caching of queries reduces

response times and the number of messages in the system, especially under high load –

details are presented in the evaluation of our management infrastructure in Section 6.4.

6.3.3.3 Look-up Interface

To submit queries, our infrastructure provides multiple interfaces for clients to enter infor-

mation about the resources they would like to find such as keywords and unique identifiers.

Indeed, the look-up mechanism supports the querying for each piece of metadata about

resources that is specified in the STM model.

Human Clients For people, the management infrastructure provides an interface that

looks similar to that of other Web search engines (see Fig. 6.6). However, to enable

clients to specify location and scoping information, each query can consist of up to three

parts: clients can enter keywords to identify resources they are searching for, specify

how many resources of that type they want to have delivered, and supply a location

specifier to indicate where in the infrastructure their query should be triggered. We

believe that using a keyword-based interface is best suited for users since this has become

the dominant way of searching for information on the Web over the last decade, due to

the popularity of keyword-based Web search engines. To obtain the relevant information,

we use a simple regular expression: for instance, to request three resources at the location
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MainBuilding/Floor5 that match the keywords Temperature and Sensor , a client would

enter this line:

3x Temperature Sensor at MainBuilding/Floor5

To trigger an EXQ that finds all resources that match the keywords, the client would

use the “All”-keyword (i.e., enter “All Temperature Sensor at MainBuilding/Floor5”) and

the interface allows to use the wildcard character (*) instead of specifying keywords inside

a query string (i.e., “All * at MainBuilding/Floor5” is a valid query for any resource at that

location). Finally, clients can choose to omit the cardinality and/or location specifiers:

if both are left out (i.e., “Temperature Sensor”), the node triggers a local CAQ1. For

the internal keyword-based look-up within the local database of a management node, we

use the Sørensen-Dice coefficient [47] to compare the keywords to information about the

resources that are registered with the node such as their name, identifier, description,

category, brand, or reviews. Adapted for information retrieval in text documents, this

measure takes the ratio of character bigrams that are equivalent in the keyword string

and the resource information to the total number of bigrams for determining the degree

of similarity, i.e., how well the resource information matches the specified keywords. In

our matcher, different types of information about the resources are weighed differently:

for instance, the similarity between a keyword and the unique identifier of a resource, or

its name, carries a bigger weight than the measure of agreement between the keyword

and a review about the resource. Adopting Dice’s coefficient for string matching has the

advantage of being robust to typographical mistakes and produced good results when

compared to other algorithms such as the edit distance or longest common substring.

Machine Clients For machine clients to find resources within our management infras-

tructure, we have implemented another interface that is better suited for machines by

enabling them to use more structured queries to describe the resource they are attempt-

ing to locate. Technically, machines use the same API as people do. However, other

than human users, they submit queries not as HTML forms but in the JSON format.

This gives them the liberty of tuning queries much more than humans can – for instance,

machines can submit queries for resources that have a “rating higher than 4.5” or whose

REST API “provides the service ACME Hotels” (see Listing 6.4 on page 98). The same

interface also allows to specify the destination and scope of a query.

6.4 Deployment and Evaluation

Our management infrastructure was deployed to administer six rooms in the office space

of our research group, over the period of 11 months in the years 2011 and 2012. Addi-

tionally to these embodied nodes that were running on Norhtec MicroClient Sr. devices,

the structure contained six virtual nodes that were responsible for administering its hi-

erarchically higher levels (two floors and our office building) as well as three more rooms

without any physically deployed devices. Each of the six rooms that were directly cov-

ered by a node contained a SunSPOT sensor node, three rooms additionally contained
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Figure 6.7: Deployment of up to 1000 services on a single node: the chart shows the median
response time to 100 EXQs that return up to 1000 results each.

a Ploggs smart meter, and one of them contained several other smart things such as a

Web-enabled RFID reader, a toy robot, and a Web-connected loudspeaker system. Ad-

ditionally, virtual SunSPOTs and other purely virtual devices (thermometers, electricity

meters, etc.) were deployed at the nine room-level management nodes. The infrastructure

administered these devices and proved resilient to changes in its structural configuration

as well as nodes failing and recovering again. However, due to the limited availability of

actual connected smart devices, we were not able to test its scalability with respect to

increasing the number of devices to administer. Extending the infrastructure to include

more management nodes increases the size of its administrative domain but does not

strain the system, since the larger coverage area is divided into sub-domains that are each

taken care of by a node. Given the design of the infrastructure, where global communi-

cation is unnecessary except when triggered by explicit client requests, we can claim that

our approach allows the system to expand to large domains without scalability problems,

given that the number of resources per administrative domain remains constant.

6.4.1 Simulation Environment

To simulate the smart devices that are registered to individual nodes in the infrastruc-

ture, we used a custom-developed simulation environment for Web-enabled devices. In

this environment, Web resources can be created that simulate specific types of sensors and

actuators. The representations of the simulated resources (in the HTML, JSON, XML,

and plain text formats) and their behavior is defined using resource templates that allow

users to, for instance, specify the resources’ response behavior reliability and response

time. Sensors can furthermore be configured to deliver values according to a statistical

model and can also be set to transparently fetch their result from remote sources, en-

abling them to act as proxies for physical devices. Using this simulation environment, we

tested the deployment of up to 1000 resources to individual management nodes which did

not cause any major performance issues in the discovery and look-up components (see

Fig. 6.7). Thus, because the infrastructure is able to administer high numbers of nodes

within the domain of a single management node and the structure as a whole can expand

to include many such nodes, we claim that our approach of segmenting the complete

administrative domain of the infrastructure can support a large total number of devices.
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(b) Evaluation for a CAQ30
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(c) Evaluation for a CAQ200
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(d) Evaluation for an EXQ

Figure 6.8: Simulation results for comparison of active vs. inactive query-caching for different
types of queries and concurrency levels.

6.4.1.1 Query Caching

To additionally evaluate the performance of the look-up mechanism of our infrastructure

in a more extensive setting, we deployed nine management nodes (one on building level,

two on floor level, six on room level, see Fig. 6.1 on page 91) and registered a total

of 600 simulated sensors and actuators (temperature sensors, electricity meters, light

switches, etc.) uniformly at random with the room-level nodes. For our evaluations, the

entire infrastructure was deployed on a single machine that was running the individual

management nodes in parallel.

We evaluated the performance impact of the infrastructure’s query caching mecha-

nism using the apachebench tool [248] with four different types of queries (a CAQ1, a

CAQ30, a CAQ200, and an EXQ). For each of these queries types, 1000 requests were

issued on different levels of concurrency. Our expectation was that our system should

increasingly outperform a baseline system that does not treat queries as resources and

therefore does not provide the described advanced caching as the concurrency level of the

queries increases. Indeed, we observed this behavior (Fig. 6.8): for CAQ30 requests and
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Figure 6.9: Response times to EXQs that are sent to a deep hierarchy of six management
nodes with ten registered services each. The query-caching system increasingly outperforms
the baseline system for higher request concurrency levels. Similar to Fig. 6.8(d), the overhead
of this system is visible when requests are received strictly sequentially.

at a concurrency level of four, the response time of the caching system is approximately

half that of the baseline system. For all four query types, the caching system is faster at

higher concurrency levels, but the differences vary across the query types.

A peculiarity that we can observe in the data is that EXQs perform remarkably fast

compared to the other three query types. The explanation for this behavior is given by

our optimizations for EXQ queries described above, i.e., that these queries are forwarded

immediately to all children of a management node and the local node does not consider

preempting them. This advantage vanishes when the management nodes are not deployed

on the same machine (and, thus, network overhead becomes relevant), and for queries that

are triggered in deeper hierarchies: here, the other query types can be preempted at higher

levels in the hierarchy, thus accelerating their processing. For the same reason, the effect

is a lot less pronounced when management nodes at intermediary levels of the hierarchy

hold more resources which enables the preemption of queries in the first place – in fact, in

the setup that we used for the evaluation at hand, only nodes at the room level contain

information about registered resources and, thus, every single query is propagated to the

very bottom of the hierarchy with no preemption events can occur.

Our test also shows that queries of type CAQ1 are answered only slightly faster than

queries of type CAQ30. This is because, on average, about 100 resources are registered

to each node at room level. Therefore, the difference in response times between a CAQ30

and a CAQ1 only amounts to the difference in the retrieval of the elements from the local

database of the management nodes and the passing of information about these resources

to the client: clearly, the response to a CAQ30 is considerably larger than that to a

CAQ1. Finally, we did another analysis to investigate the effect of the query caching in

more detail, and in complete isolation from the query preemption: Fig. 6.9 shows response

times for an EXQ (which cannot be preempted) on a deep hierarchy of six management

nodes (i.e., we assigned the following place identifiers to the deployed nodes: a, a/b, ...,

a/b/c/d/e/f) with ten registered services per node. Also in this setting, our system

increasingly outperforms the baseline system when the concurrency level increases.

In summary, our simulation results demonstrate that the query caching is valuable for

achieving higher querying performance in the proposed management infrastructure, given
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that there are enough similar queries (which was triggered by higher concurrency levels in

our experiments). When deploying the management nodes in a distributed way and thus

also incurring latencies due to the network communication, we expect that the difference

between a caching system and the baseline system will be even greater because, in this

case, the caching and preemption of queries can avoid network overhead as well.

6.4.1.2 Load Balancing

We have already hinted that the look-up mechanism of our infrastructure automatically

takes care of rebalancing load from overloaded nodes to idle ones. This property was also

visible in our tests: due to the lexical ordering of child nodes in the local database, the

infrastructure usually (i.e., in more than 90% of the cases) delivered a resource from the

Floor5 branch when a CAQ1 query with the keyword “temperature” was triggered at

location MainBuilding. To test the load balancing, we flooded the management node

responsible for administering Floor 5 – as soon as this started, the same CAQ1 as before

returned resources in the Floor6 branch in more than 96% of the cases. Because the

scope of our CAQ1 was MainBuilding , all answers that include a resource from either

rooms at Floor 5 or Floor 6 are equally acceptable.

6.4.2 Query Visualization

As we already mentioned in Section 5.4 in the previous chapter, our visualization tool for

device interactions in smart environments can also be applied to visualize distributed al-

gorithms whose execution involves multiple endpoints. Figs. 6.10(a) and 6.10(b) show the

graph-based interface of that tool when monitoring nine nodes of our management infras-

tructure in two different setups while executing look-up operations on behalf of a client.

In particular, this illustrates that our look-up service creates local query resources that

are updated with responses from other nodes within the infrastructure (in Fig. 6.10(a),

one of the HTTP POST request to the query resource is highlighted). For comparison,

Figs. 6.10(c) and 6.10(d) display the same requests when triggered on the baseline sys-

tem that was also used in the evaluations discussed above – this implementation uses a

wave algorithm to collect information about registered resources from all nodes in the

infrastructure.

6.5 Summary

In this chapter, we described our implementation of a distributed management infras-

tructure for smart devices that supports people and machines when searching for smart

things and the services they provide. The infrastructure consists of a hierarchy of individ-

ual management nodes each of which is responsible for managing a specific location such

as a room, floor, or building. The hierarchical structuring of the infrastructure is benefi-

cial because it subdivides its global administrative domain into smaller, widely decoupled

cells, thus guaranteeing the scalability of the system. Furthermore, it allows to exploit the

locality of device interactions in smart environments. Two services form the cornerstones
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(a) (b)

(c) (d)

Figure 6.10: Application of our tool from Chapter 5 to visualize interactions between nodes
of our infrastructure: (a) and (b) show look-up operations by a client (top left node) for the
node hierarchy shown in Fig. 6.1 on page 91 and a deeper node hierarchy. In both cases, the
nodes send their answers directly to the initial node. (c) and (d) show the same requests on
a baseline system that executes a simple wave algorithm to find matching resources.

of our infrastructure: an extensible discovery service enables it find metadata about Web

services and parse it to a common internal format for indexing which is based on the Smart

Things Metadata model that was suggested in [73]. A look-up service enables clients to

search for registered and indexed services using both a keyword-based interface and one

that is based on more structured information about the kind of resources to be found.

Our infrastructure enables people to locate devices and services locally in their smart

environment and globally within the scope of the entire system. It also allows machines

to query for services that provide a specific functionality, as specified by metadata about

their REST API. However, due to limitations of the formats that are used to describe the

functionality of Web services (for instance, when using the hRESTS Microformat), machines

are at this point merely able to find services that roughly match the desired characteristics,

but cannot make use of their functionality because they are unable to invoke them – to do

this, they would require additional machine-readable information about the service API.

Furthermore, the information that our infrastructure uses to index services only gives a

rough impression of what functionality they provide. While this kind of information is

sufficient for people to understand what a service does, a machine client cannot use it to

infer its functionality. Enabling machines to process this kind of information is the main

topic of the next chapter.
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CHAPTER 7

Service Composition in the Web of Things ∗

After discussing how smart things and their services can be described and searched for

based on structured metadata that they provide via their Web interface in Chapter 6,

the aim of this chapter is to lay the foundations for enabling machines to use services

that are provided by devices in smart environments automatically and to combine them

to achieve higher-level functions . This will enable machines to automatically create and

invoke “physical mashups” that integrate functionality provided by multiple individual

smart objects and that can also include capabilities of traditional Web services. Such

composite applications on top of individual services in smart environments are expected

to become important in many application domains that stretch from industrial automation

to individual well-being at home [91]. For instance, in the smart manufacturing domain,

individual machines could automatically cooperate to create a final product [216]. In

the medical domain, readings from personal heartbeat sensors could automatically be

processed and an ambulance could be dispatched when cardiac arrhythmias are detected.

At home or in hotel rooms, ambient intelligence systems could make sure that the current

configuration of the environment matches the inhabitants’ preferences, for instance with

respect to temperature, lighting, and ambient music – in hospitals, the same system could

control the local oxygen saturation to aid asthmatics.

In this chapter, we propose two mechanisms that we developed to enable the auto-

matic collaboration of services in smart environments. The first of these addresses service

integration challenges on the syntactic level and enables the semi-automatic composition

of services – in essence, we have developed a Web-based computational marketplace where

mashup developers can publish information about service compositions that can then au-

tomatically be reused by machines. The second mechanism that we describe is a fully

automatic service composition system that uses functional semantic metadata to describe

a service’s functionality and its API in a machine-readable way. This system enables

machine clients to reach specified user goals by inferring service compositions at runtime

using a semantic reasoner.

In the following, we first present several approaches that were employed by others

∗This chapter is based on the following published articles: [130, 131, 132, 138, 139, 140]
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to enable automatic service composition as well as systems that aim to facilitate the

composition of services in smart environments for end users. We also discuss the role of

the HTTP HATEOAS constraint when composing REST services. Next, we present the

first of the above-mentioned two approaches in Section 7.2 along with an evaluation of

this system in a healthcare scenario. We continue with a discussion of the potential of

semantic metadata and reasoning to enable the machine-readable description of service

capabilities and their APIs, and, in Section 7.3, propose a concept that allows machines

to automatically derive device mashups in smart environments. We present benefits and

drawbacks of our system, and in particular discuss how the added complexity that is due

to the employed semantic metadata can be made manageable for end users in Section 7.4.

7.1 Service Composition for Smart Things

One main goal of the Internet of Things is to empower users by giving them the ability

to “program” everyday things and create new public and personal services on top of IoT-

integrated devices. Given a reliable infrastructure that supports the semantic discovery

and look-up of smart devices and their services, it is thus required that users can easily

learn how to use the discovered services (e.g., fetch data from sensors and trigger actua-

tors) and that they can combine the capabilities of different devices and services to create

advanced functions that provide added value. Due to the adoption of Web patterns for

the provisioning of services by smart things in the Web of Things, using their functionality

is simple for users (this literally is as simple as browsing the Web), and also machines

can automatically deduce how a service can be invoked because the protocol semantics

are specified by REST. However, enabling users to combine Web services remains a big

and heavily researched problem [29, 91] – in fact, it is one of the central challenges in the

domain of End-user Programming .

Providing users with the tools to program their smart environment has been identified

as an important challenge for ubiquitous computing research for instance in the smart

home domain [29]. Here, many heterogeneous devices that can modify the environment

(e.g., smart thermostats) or provide contextual information about the user’s home (e.g.,

motion sensors) could interact to enable more complex applications that involve multiple

cooperating services: for instance, motion sensors and smart thermostats could together

infer and apply an optimal heating schedule for the home [102]. The same is true for

smart factories, where the easy (re)configuration of manufacturing environments is gain-

ing importance [111, 216] and operators must be supported in managing the implied added

dynamicity. The combination of smart things services is not only beneficial when consid-

ering actuation but also when processing data from physical sensing devices: to realize the

vision of a “smart world” that helps users make faster and more well-informed decisions,

it is required that raw sensor data can be obtained, processed, and published openly in a

consistent way.1 Thus, while the WoT gives us access to unprecedented amounts of raw,

real-time data, it does not imply a clear method of how services could interact with this

data and with each other to consistently derive higher-level information from it.

1Note that by “open” we are not referring to unsecured information but to openly accessible data.
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(a) (b)

Figure 7.1: (a) The “At a Glance” application displays real-time radiation information from
publicly available data feeds from Geiger counters. (b) The “Wind from Fukushima” applica-
tion mashes Geiger counter readings with information about wind conditions.

To illustrate how open models can enable the interaction of distributed services to

process raw sensor data and integrate public sensor streams, we review an intriguing

community movement that aimed at providing the general public with vitally important

information in the onset of a series of meltdowns in the Fukushima nuclear power plant in

the year 2011: shortly after the incident, ordinary citizens started to deploy Geiger coun-

ters and published their data to an online data aggregation platform called Pachube [258].2

Others developed applications that used this raw data to derive higher-level knowledge

and published their results on the Android marketplace, wrapped in applications for the

Android operating system: an early example of such an application is “At a Glance” [337]

which visualizes radiation data in real time (see Fig. 7.1(a)). Other applications integrate

several data sources to provide more refined information: “Wind from Fukushima” [297]

combines radiation readings with information about the current wind conditions and the

user’s location to issue location-based radiation warnings (see Fig. 7.1(b)).

In this example, the open publishing of raw data was crucial to enable the crowd-

sourced processing of radiation data and the resulting impressive applications to make that

data accessible for the public. In principle, the same benefits could have been delivered

by a company that would have deployed the sensors, collected their data, processed it,

createed applications for users to consume it, and distributed these applications. However,

this is not a very realistic scenario for multiple reasons: developing the entire end-to-end

system requires a very broad range of expertise, thus deterring a single company from

carrying the effort alone. Furthermore, a company would first need to develop a viable

business case for the system, thus delaying its implementation or dismissing the project

altogether. On the other hand, making the collected data accessible to a large community

of developers allows everyone to apply their own know-how for analysis and visualization,

supported by an open and widely used platform such as the Android marketplace.

2After several takeovers, this platform is today known as “Xively” [301].



116 Service Composition in the Web of Things

We argue that this observation can be applied to many other domains as well, for

instance in the context of smart homes: a home automation system that is sold by one

company can often only integrate appliances sold by the same enterprise and is not inter-

operable with automation systems from different companies that could be running next

door. To enable applications that use information from many smart homes in a neigh-

borhood – for instance, to achieve broader demand-side electricity management – would

require all households to install the same automation system. Even if that was possible,

this neighborhood would perhaps be unable to collaborate with others. In a paradigm

that is based on closed systems, as illustrated with this example, it is thus necessary that

all devices, as well as the infrastructure between them, are delivered by a single company

or a consortium that uses interoperable technologies.

According to [207], over 28000 Web services are currently openly available on the

Web – these are advertised via platforms such as WebServiceList , WSIndex , or Pro-

grammableWeb [318] which is one of the most prominent directories of Web APIs: Pro-

grammableWeb currently hosts information about more than 5000 APIs (e.g., text analysis

services, restaurant reviews, etc.) and more than 6000 manually created mashups that

provide aggregation, analysis, and visualization services on top of these APIs. Addition-

ally, the platform provides capabilities for developers to comment and rate APIs and

mashups in an effort to foster a community around the creation, provisioning, and usage

of Web-driven data processing tools – platforms such as ProgrammableWeb make it ob-

vious that developers are not only willing to develop remote aggregate computations and

publish them but that many also wish to expose the results of their computations for use

by third parties. Enabling the publishing, storage, and management of distributed data

streams is the main task of another group of services that include Xively [301], Nimbits

[309], ThingSpeak [296], Evrythng [271], Paraimpu [179], and WoTKit [21]. In the WoT,

they are complemented by infrastructures for smart things which make devices and ser-

vices discoverable and searchable for people and machines: their purpose is to give clients

access to individual services, a prerequisite for enabling users to create advanced mashups

on top of smart devices.

7.1.1 Approaches to Service Composition

We now take a step back and consider the challenge of creating aggregate services outside

the WoT context: in the following, we review several approaches to the semi-automatic

and automatic composition of general Web services, most of which are based on the

WS-* paradigm. In particular, we discuss the drawbacks of composition systems that are

proposed in the literature and highlight where the REST principles could offer a remedy.

After this review, we propose two service composition systems that exploit REST for

facilitating the composition of Web services and use semantic technologies and reasoning

in conjunction with RESTful systems as the basis of a fully automatic composition system.

We consider service compositions in the form of Service Orchestration, meaning that

the interaction between different devices and their services is coordinated by a central

instance [177] – in our case, this is the client who aims at composing services to reach
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its application goal.3 Such a goal could, for instance, be to configure the client’s smart

environment in a specific way, or to produce a specific product in a smart manufacturing

environment. In the terminology of the Web Services Business Process Execution Lan-

guage (WS-BPEL, or BPEL in short) [313], the de facto industry standard for describing

service orchestrations, we thus view a user interaction with his smart environment as a

“business process” that is executed on behalf of the user by a client application and in-

volves a number of elementary Web services. On this abstract level, this view matches

the REST architectural style which dictates that the control about the next steps in a

Web interaction must lie with the client application, and that the server (i.e., the smart

thing or Web service that the client interacts with) guides the interaction by advertising

appropriate information about state transitions (see Chapter 2).

Current approaches to service composition by end users have also assumed this per-

spective – consequently, many adopt a process-driven service composition paradigm,

meaning that users create a composite service by connecting multiple individual, ele-

mentary, services, for instance using a formal language or graph-based tools. This is true

for many well-known systems in industry (e.g., IBM Business Process Manager, Oracle

BPEL Process Manager, Microsoft BizTalk, and SAP NetWeaver; all of these systems

provide support for BPEL), open source solutions that address business process model-

ing and execution (e.g., Apache ODE and JBoss jBPM), and research prototypes (e.g.,

WebDG [147], SOA4ALL [112], and eFlow [32]).

In contrast to the process-driven composition of services, goal-driven service composi-

tion aims at reducing the complexity of the development process as a whole by automating

the composition step: instead of creating mashups by hand using scripting languages or

graphical tools, users only model their goals, for instance by describing the desired state

after a service mashup has been executed. Then, a composition tool is used to link indi-

vidual services together and create the actual composite application that can be invoked

by the user. Aside from the greater level of automation that can be achieved in goal-driven

systems, they have another major advantage over the process-driven creation of mashups,

because they enable the on-the-fly inference of the service mashup and thus avoid the

static linking of services. Therefore, mashups created in this way are much more flexible

than composite applications that follow fixed execution paths: they can automatically

adapt to changes in the environment by incorporating services that newly appear and

bypassing those that suffer outages. This makes service mashups fault-tolerant because

it retains the potential to reach the user-specified goal even if services become unavail-

able. This characteristic is especially valuable in pervasive computing scenarios and with

respect to mobile applications that face highly dynamic smart environments [33, 207].

7.1.2 Current Service Composition Methods

Many different approaches to service composition have been proposed in the last 30 years,

a development that started even before the long-time standard set of Web service technolo-

gies (SOAP + WSDL + UDDI) was conceived around the year 2000. Today, and already

3An alternative service composition paradigm has been termed Service Choreographies. There, the
emphasis is on the distributed control of interactions between different parties [177, 207].
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for some time, “connecting to customers, suppliers, or partners electronically” is consid-

ered the top global management issue in the IT domain [177], thus necessitating tools

that allow to compose (Web) services globally and across company boundaries. It quickly

became obvious that the manual composition of services, where designers use a language

such as BPEL directly to define a service mashup, is too time-consuming, inflexible, and

error-prone, especially when considering the size of the Web and its dynamicity [207].

This led to the development of a great number of semi-automatic composition systems

[152] that provide tools – often process-driven, graphics-based composition engines – to

support the design process. Furthermore, since around the year 2000, fully automatic

process composition engines have been proposed [207]. These typically take as input a

set of descriptions of elementary services and a design goal and attempt to synthesize a

composite service from the individual descriptions, using syntactic or semantic matching

techniques that are often based on mechanisms known from the Semantic Web [18] or on

(often graph-based) planning techniques.

Many of the semi-automatic and automatic composition methods express service mash-

ups in one of several specifications that are in widespread use especially in the context of

industrial business processes. The most prominent of these is WS-BPEL that was pro-

posed by BEA Systems, IBM, Microsoft, SAP, and Siebel Systems and standardized by

the OASIS consortium in the year 2007 [207]. A member of the WS-* specifications fam-

ily, BPEL can specify business processes that depend on WSDL-described services using

several different types of primitive constructs (e.g., sequence or while). BPEL does not

feature a standard graphical notation, but many tools are available that propose their

own notations to allow graphically modeling BPEL processes, such as the BPEL Designer

Project for Eclipse [254]. Furthermore, several tools for the semi-automatic development

of BPEL documents exist [34, 37, 157, 241] and some automatic service composition tools

can synthesize composite services given an abstract BPEL specification and a business

goal [207, 224]. Basic partial mappings between BPEL and the widely used Business

Process Model and Notation (BPMN) have been proposed [237] – BPMN, in turn, has

been extended with modeling capabilities for sensors and other smart devices [64, 151]

and with push-functionality for REST business processes [175].

7.1.2.1 Drawbacks of WS-BPEL

With respect to automating the composition of Web services, the main drawback of BPEL

is its reliance on WSDL as description language for the individual components of a service

mashup: WSDL only specifies the low-level functions of a service and does not include a

definition of its high-level domain semantics which is crucial when automatically creating

meaningful composite applications [207, 231]. Furthermore, WSDL suffers from other

drawbacks that make it unsuitable for the description of more dynamic REST services

for purposes of ad-hoc tactical integration that becomes relevant in pervasive scenarios.

For instance, past experience has shown that client stubs are frequently compiled from

the WSDL files provided by servers (i.e., “top-down,” contract-first development) – this

leads to a tight coupling of the two endpoints and is problematic because it hinders

their independent evolution: when the server interface changes, the client breaks. For
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the same reason, we are skeptical about current proposals that aim at repairing WSDL’s

shortcomings and making it applicable to resource-constrained devices, such as the Devices

Profile for Web Services (DPWS). Although this is being supported by several European

research initiatives (e.g., [267, 269, 298]), it already suffers from strongly declining interest,

which is also due to DPWS sticking to SOAP message envelopes that introduce high

messaging overhead [81]. To enable semantic annotations within WSDL, the W3C has

proposed Semantic Annotations for WSDL (SAWSDL) [326] which allows to link WSDL

elements such as inputs, outputs, and operations to concepts in a semantic model –

however, this specification has failed to attract much attention beyond academic examples

because it inherits many of WSDL’s shortfalls, primarily its brittleness and verbosity [231].

Still, in an attempt to make WSDL-style specifications applicable to REST interfaces, the

Web Application Description Language (WADL) has been proposed. Similarly to WSDL,

WADL does not include semantic descriptions of service functionality [231] and has been

criticized for the same kind of contract-first-susceptibility that makes WSDL undesirable

to describe more dynamic services [279].

7.1.2.2 Semantic Technologies for Service Descriptions

Moving toward the usage of semantic technologies for describing services, several descrip-

tion formats for REST services have been created that are based on so-called poshformats

such as Microformats (e.g., hRESTS, which we discussed also in Chapter 6, and the SA-

REST format [208]). While these include information about the API of a service and

its basic functionality, they cannot automatically be used by machines to infer how to

use a service, or how to compose multiple services that are described in this way (see

Section 6.3.2.5 in the previous chapter). A different approach to service composition that

puts semantics first and is based on the Ontology Web Language (OWL) [333] is OWL-S

[302], an ontology for describing Web services that makes use of the Resource Description

Framework (RDF) [334] model. An OWL-S description consists of three parts, one of

which is the service profile that includes information about the service’s functional prop-

erties (i.e., inputs, outputs, and preconditions) and non-functional characteristics (e.g.,

Quality of Service (QoS) parameters) [207]. While the precondition/postcondition style of

OWL-S allows to describe the high-level functionality of a service, the description format is

criticized for not expressing these conditions within the RDF document that contains the

OWL-S description [231]. This means that languages such as the Knowledge Interchange

Format (KIF) [65] must be used to connect them to the OWL-S document which repre-

sents a drawback when the documents have to be parsed and interpreted, and is probably

one of the main reasons for the very limited uptake of the OWL-S mechanism [231] and

the strongly decreasing interest in the format over the last ten years.

Apart from these languages that are prominent mostly in academia for the purpose of

creating composite applications, industrial outfits rely on frameworks such as the Service

Component Architecture (SCA) [311] and other standards such as the Enterprise Mashup

Markup Language (EMML) [207]. Some of these systems have been successfully used

within the context of semi-automatically creating WoT service mashups, for instance the

SAP Manufacturing Integration and Intelligence (MII) ERP system [79]. However, many
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of them suffer from drawbacks with respect to the formation of insular “walled garden”

solutions and, similar to BPEL, regarding their very limited support for semantic service

descriptions – for instance, EMML merely provides an attribute that can be used to

specify service functionality in a way similar to the hRESTS Microformat.

In the remainder of this section, we discuss several semi-automatic and a few automatic

service composition tools to highlight the shortcomings of current approaches, especially

in pervasive computing scenarios. We will conclude that current systems suffer from a lack

of adaptability – especially given highly dynamic environments – and that is is not yet

clear how REST service APIs should be described to enable the automatic composition of

Web services. Given these observations, we propose two techniques to service composition:

one of these is a semi-automatic, crowd-sourced approach (Section 7.2) and the other is

a fully automatic mechanism that makes use of a lightweight form of functional semantic

metadata to describe services in smart environments (Section 7.3).

7.1.3 Semi-automatic Service Composition Systems

As mentioned above, many of the service composition systems that are presented in the

literature and widely used in industry feature a process-driven paradigm, meaning that

they support end users (i.e., process designers) in composing service mashups using a

domain-specific language or an abstract model of the composite service [7, 211], or by

manually connecting or stacking service representations [191]. From the user input, these

systems then create executable service specifications, for instance in BPEL [207]. Some

approaches allow for runtime adaptability, meaning that abstract service placeholders in

the process schema are replaced by service instances only at runtime, for instance based on

non-functional properties such as QoS parameters [119]. For supporting the service com-

position process, some of these composition tools suggest appropriate individual services

at the time of designing the mashup based on syntactic or semantic service properties [35].

Also, during the past few years, public “Mashup Tools” have been created, for instance

Yahoo! Pipes [335], while others (e.g., Google Mashup Editor and IBM Mashup Center)

have already been discontinued due to a lack of demand. A currently very popular service

for creating simple two-stage service mashups is If This Then That (IFTTT) [288] that

already contains more than 100 elementary services (e.g., Dropbox, Google Calendar, and

Stocks and News services) and is very quick to take up novel services and devices that

can be used in compositions: for instance, it provides connectors to Google Glass [215],

Belkin WeMo home automation systems [250], and to Nest smart thermostats [307].

In the literature, several approaches to facilitate service composition on a larger scope

and for business applications are proposed: [148, 207] contain current and very exten-

sive discussions of more than 20 semi-automatic service composition approaches. While

many of these systems provide very limited – often only syntactic – support during ser-

vice selection, some – METEOR-S [210], WebDG [147], SOA4All [112], and the approach

presented in [62] stand out: these provide semantics-based assistance to users when de-

signing composite services, meaning that they categorize services using ontologies to help

service designers quickly select appropriate services. METEOR-S adds semantic support

to the METEOR workflow management system by making use of SAWSDL within the
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annotations of individual services. The approach presented in [62] synthesizes composite

services from a description of the desired functionality in natural language (e.g., “Print

direction from home to restaurant”). The SOA4All project [112] represents a large-scale

project within the European Commission’s Seventh Framework Programme (FP7) that

aims to facilitate service discovery, mediation, and composition by adopting Semantic

Web technologies in its core design: here, the design process consists of iterative refine-

ment steps of a draft workflow that is created by the mashup designer – the designer

and the automated semantics-based composition engine take turns to further refine the

composition plan in each step of the process.

Many current mashup editors from academia and almost all prominent tools used

for service composition in business environments feature visual composition interfaces to

make them usable by mashup designers without programming or scripting skills [207]: for

instance, in [94], objects and associated actions (e.g., the ringing of an alarm clock) are

encapsulated in so-called artifacts that the user may combine in a graphical editor that

also assists the user in debugging and supervising the resulting “Gadgetworlds.” Visual

programming abstractions have also been applied in the context of facilitating the configu-

ration of smart environments for end users in home automation scenarios [90, 191] – these

systems enable users to create mashups that integrate functionality across services that

are provided by multiple devices present in smart homes. To accomplish this, end users

stack blocks that represent individual services in [191] or connect pictures of smart objects

to describe the desired composite functionality [228]. Some of these studies included user

evaluations and conclude that all of the participants familiarized themselves quickly (i.e.,

within a few minutes) with the concepts and were able to create applications for them-

selves with only negligible prior training. A commercial platform that enables users to

create composite services in the home automation domain is Ninja [310] which, similarly

to IFTTT, can incorporate many commercial platforms but enables users to create com-

positions that involve more than two services. Specifically for home automation in IoT

scenarios that involve CoAP-based devices, the oBeliX tool [93] has been proposed, and

also the ClickScript [305] visual programming language has been extended to handle smart

things in the WoT [75, 138] and resource-constrained devices [120]. Visual abstractions

have also been used in formerly academic tools that aimed to exploit the REST principles

as a basic service composition mechanism, for instance in JOpera [173], a composition

tool for SOAP and RESTful Web Services that can also execute the modeled workflows

and is available as a plug-in for the Eclipse IDE. Likewise, Bite [198] proposes a similar

BPEL-inspired composition language that builds on top of the REST uniform interface

constraints. Finally, a highly intriguing approach to semi-automatic service composition

that allows users to create simple device mashups using marker-based tracking and an

augmented reality overlay on a handheld device is presented in [87].

However, according to [207], many of the proposed semi-automatic approaches in fact

require mashup designers to manually select those elementary services that should be

part of a composition, although some (e.g., [112, 147, 210]) provide syntactic or semantic

selection support. The main shortcoming of these is, however, that they only provide very

limited support for runtime adaptation of the composite services: the tools help users to
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create static links between elementary services that cannot adapt in case services become

unavailable or new services appear. An example to demonstrate this shortfall is JOpera,

where the created visual models can automatically be compiled to Java bytecode: this

is certainly beneficial with respect to the fast prototyping and deployment of mashups,

but prevents runtime adaptation. On a different level, criticism of end-user programming

in the form that is predominant in mashup tools today concerns insufficient security

mechanisms in user-designed mashups [85], in particular when creating applications in

IoT scenarios – this is true, and calls for the inclusion of non-functional properties such

as QoS and security parameters in service definitions and, consequently, for considering

these characteristics in the tools that compose them (this is also proposed, for instance,

in the SOA4All project [112]).

7.1.4 Approaches to Fully Automatic Service Composition

To overcome the shortcomings of semi-automatic composition approaches with respect to

runtime adaptability of the created services and to further facilitate the creation of mash-

ups, the past decade has seen several systems that enable the fully automatic composition

of elementary services ([148] and [207] contain excellent overviews of automatic composi-

tion tools). These typically rely on automated planning and scheduling techniques from

artificial intelligence research or on different ways of semantically describing the “mini-

world” of the individual services, for instance using techniques and languages from the

Semantic Web or tailored solutions [207]: approaches such as OWLS-Xplan [104] and

the approach presented in [144] are based on the Planning Domain Definition Language

(PDDL) [145] that is used to define the local world model of the composite application

and can be computed from the OWL-S descriptions of the individual services,4 while the

SWORD framework [180] makes use of an Entity-Relationship world model. Together

with a user-defined planning query, these systems then generate a composition plan for

the individual services. Another interesting solution that is similar to what we propose

in Section 7.3 for the composition of REST services in smart environments is [146] which

uses the GOLOG logic programming language to construct composite services from prim-

itive actions – an extension of this system that considers non-functional constraints such

as user preferences is presented in [213]. To our knowledge, none of the proposed fully

automated service composition solutions are in use in industry, although major research

initiatives are targeting their deployment in this context [216].

The fully automatic composition of services still represents an open challenge which

is, according to [207], largely due to a lack in interoperability between the different ap-

proaches, and the limited application domains of individual systems: many of the currently

proposed systems that automatically create mashups from individual services do so by

using planning languages such as PDDL that are limited regarding their expressibility

across different domains. Those approaches that in principle make use of widely used

Semantic Web technologies such as OWL-S often fall back to such languages for the plan-

ning step. Furthermore, many of the automatic composition systems suffer from the same

4An instructive example of how PDDL can be used in this context is shown in [325].
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drawback as the semi-automatic approaches in that they cannot adapt to highly dynamic

environments – context dynamicity, however, should be considered the default rather than

an exception in pervasive computing scenarios. This is especially true when targeting ap-

plications on mobile devices whose entire smart environment changes when they are on

the move. This disadvantage of current service composition systems is also mentioned

by [207] as one of the main currently open issues regarding future research in the service

composition domain: future composition systems should be adaptable to open and dy-

namic environments, ideally supporting self-configuration and self-adaptation as well as

automatic optimization relative to the current environment and QoS constraints [33].

Finally, many of the currently available systems are based on description languages

such as WSDL (and its semantic extensions) that have been conceived for the purpose

of describing service-oriented architectures and only provide scant support for REST

[207, 245]. In our opinion, this represents a missed opportunity since REST itself already

comes with defined low-level protocol semantics and semantic descriptions for REST ser-

vices could therefore focus on specifying the high-level functionality of a service and

non-functional characteristics to create a more lightweight automatic composition sys-

tem. To achieve this, however, it is not sufficient to annotate Web resources with “hints”

about the functionality they provide (as proposed in the hRESTS Microformat) – rather,

annotations should contain explicit machine-readable functional service descriptions [231].

Furthermore, an explicit state handling mechanism is crucial when considering applica-

tions that provide background assistance in smart environments, for instance with respect

to configuring a user’s surroundings: the system must be able to automatically translate

the current state of a resource (e.g., the local temperature) to semantic facts.5

In the rest of this chapter, we discuss two approaches of how we propose to address

these challenges in highly dynamic Web-based pervasive computing environments. In the

first, presented in Section 7.2, we aim to leverage the REST HATEOAS constraint for

service composition wherever possible and created a composition service that we call a

“computational marketplace.” This system depends on developers creating and publish-

ing information about their mashups and thus represents a semi-automatic composition

mechanism. Then, in Section 7.3, we propose an approach that enables the automatic

goal-driven composition of Web services in ubiquitous computing settings. This system is

based on a functional semantic service description language called RESTdesc [232] that

combines a description of the REST API of a Web service with information about its high-

level domain semantics. Finally, because the formulation of semantic goals is challenging

for end users, we propose a method to facilitate the creation of goals using a graphical

modeling language in Section 7.4.

5The authors of [207] also mention that explicit state management is required in future REST service
composition systems. However, they refer to the application state while we do not believe that this
aspect of REST environments must be explicitly handled. Rather, our state management targets the
state of resources that are part of service mashups in pervasive computing scenarios (i.e., devices and
their services), such as the current temperature of a specific room.
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7.2 A Computational Marketplace for REST Services

In this section, we present a framework that links distributed computations within service

mashups that are capable of distilling higher-level information from raw data, and in turn

to further refine this information in a series of cascaded processing steps. We call our sys-

tem a computational marketplace since it it enables algorithms from different providers to

interact when processing data in an open fashion and to compete with each other when

multiple offerings provide the same kind of service. The focus of our marketplace is similar

to services such as Yahoo! Pipes that was created to enable Really Simple Syndication

(RSS) providers to aggregate and filter RSS feeds, but we focus on providers of Web ser-

vices that perform computations rather than on information providers. It is furthermore

different from marketplaces for applications (e.g., for smartphones or tablets) because,

although its basic building blocks are individual service offerings, its purpose is the ag-

gregation of distributed computations to yield service mashups that provide higher-level

functionality. Our marketplace is an implementation of a semi-automatic service compo-

sition framework for REST services – other than traditional semi-automatic composition

systems, it is, however, not process-driven. Rather, our approach is based on a crowd of

developers who publish information about service mashups that they create. The purpose

of our marketplace is then to enable machine clients to obtain this information and use

it to use the published mashups.

When designing the computational marketplace, our goal was to adhere to the REST

architectural style as closely as possible: we aimed at exploring to what extent the REST

constraints – in particular, the HATEOAS interface constraint – are compatible with an

open composition framework for Web services. In the subsequent sections, we present

an analysis of the key features that any such framework should have (Section 7.2.1) and

then discuss our concrete implementation (Section 7.2.2). Finally, we present the results

from an evaluation of our system in a use case scenario (Section 7.2.4), and conclude

with a discussion of the compatibility of the REST constraints and their relation to the

automatic composition of REST Web services (Section 7.2.5).

7.2.1 Desired Features of a Computational Marketplace

We require a computational marketplace to be able to openly link distributed Web services

while retaining scalability and remaining tolerant to faults of individual services and

changes in how the individual computations are performed. Service directories such as

ProgrammableWeb allow clients to find algorithms that suit their needs, but not to link

them. Mashup engines such as Yahoo! Pipes and JOpera [173], on the other hand, allow

to link REST services, but – due to their centralized nature – not in an open and scalable

way. To ensure that our system achieves all these properties at the same time, we propose

a set of architectural constraints on computational marketplaces.

7.2.1.1 Interface Discovery

First, a computational marketplace requires a way of advertising services to make them

discoverable by clients. While centralized models such as, for instance, UDDI, rely on
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Figure 7.2: Comparison of clients that browse hypermedia structures: (a) A user who browses
Wikipedia by following hypermedia links. (b) A client that executes a service mashup by
following references that are provided by a computational marketplace.

services being registered, we have designed our system in a way that allows clients to

discover services by following references: similar to websites that become discoverable as

soon as they are linked to by other sites, service discovery in a computational marketplace

is enabled by the fact that the individual services are hyperlinked as soon as they are

involved in a composite computation.

7.2.1.2 Path Traversal Guidance

Second, we require a computational marketplace to be organized in a way that harbors

and exposes all possible computational paths between individual service offerings, but

leaves the decision of which concrete path a traversing client takes (i.e., which concrete

services it uses within its mashup) up to that client. Thus, mimicking the HATEOAS

constraint in the REST architectural style, we want to ensure that clients do not have to

implement any knowledge about a mashup other than the ability to follow references that

are provided by the marketplace. This is crucial to avoid tight coupling between clients

and computational service offerings. In our system, the server guides the client through

its traversal of the computational mashup, and the client only has to take local decisions

regarding the selection of one of the provided links from one service to the next. As for

traditional Web interactions, a change of a service interface is thus transparent to the

client, who is merely waiting for hypermedia controls that guide it through possible state

transitions and is thus tolerant to changes in the hypermedia structure.

Fig. 7.2 contrasts the way of how a human user traverses a traditional website to

the interaction of a client with a computational marketplace. As discussed already in

Chapter 2, users navigate websites by interpreting the information included in the repre-

sentation of a requested resource to select the next hyperlink while taking into account

their current context, including the page contents. Likewise, a client of a computational

marketplace requests the representations of individual nodes in our system, where each

node represents a Web service. The information that the marketplace returns about an
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individual node contains the URI that can be used to invoke the underlying Web service

as well as several forward paths (i.e., links to information about further computations)

that it may follow after invoking the current service. In the example in Fig. 7.2(b), a

client invokes an arrhythmia detection algorithm and uses the result that is returned by

this algorithm in conjunction with its local decision-making process (i.e., its “context”

– in the example, a threshold value) to select the path to follow: in this case, since the

detector returns a rather high probability for a dysfunction, the client decides to invoke

the service called call ambulance next. Modifications to the paths that are exposed by

the computational marketplace do not affect the ability of the client to use a composite

application: for instance, our approach allows for the API of the call ambulance service

to change and for intermediate computations to be dynamically added or removed.

7.2.1.3 Self-Similarity & Statelessness

Third, a computational marketplace must exhibit horizontal and vertical flexibility. Hor-

izontal flexibility refers to the ability of the system to create service mashups that ex-

hibit the same structural properties as their constituents, meaning that these combined

structures can be further combined with more modules (i.e., service mashups must be

“self-similar”). Vertical flexibility refers to the ability of the marketplace to add and shed

services that are equal from a computational point of view. This implies that, similar to

what the REST architectural style requires for the communication between clients and

servers in the traditional Web, the computations performed by the individual computa-

tions on a computational marketplace must be stateless: all information relevant for a

specific service invocation must be passed along with the client request. If a service does

require state, then it must be addressable by a URI which is passed along with the client

request so that issues such as load shedding and state migration do not limit the scalabil-

ity of the marketplace. This property is also key to the critical aspects of load balancing,

recovery from failure, and dynamic resource allocation. It is also required for our system

to be considered a market for computations, as clients should be able to switch freely

between providers of the same kind of service.

7.2.1.4 Computational Paths Optimization, Security, and Billing

Additionally to the interface discovery, traversal guidance, and horizontal and vertical

flexibility, we define a number of optional properties of a computational marketplace:

these are not required for a marketplace implementation to fulfill its core purpose of

exposing individual services and enabling clients to create and publish service mashups,

but rather offer added functionality on top of these abilities that could be valuable to

clients.

We believe that a computational marketplace should provide a mechanism that allows

clients to optimize computational paths in accordance with the non-functional require-

ments of their application (e.g., with respect to the speed, money cost, or accuracy of

services that are involved in a mashup). Following the HATEOAS principle, the market-

place should enable this by providing information related to these qualities of individual

computations rather than deciding on behalf of its clients which paths are best. In this
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Figure 7.3: Abstract representation of a computational marketplace. The marketplace hosts
services that are represented by individual vertices and connected by edges which represent links
between services. It provides interfaces to clients, mashup developers, and service providers.
The marked nodes constitute an individual mashup on the marketplace.

way, clients retain control about which paths are followed and can switch to other providers

if the latency, cost, or reliability of a specific service changes.

Finally, since computational resources often represent an expensive utility and are

secured by authentication and authorization schemes to restrict their use to an exclusive

set of customers, a computational marketplace should accommodate security and billing

mechanisms. Ideally, however, these tasks do not have to be handled by the marketplace

itself – rather, service providers should incorporate a third-party billing and security

scheme such as OAuth 2.0 [293] that can themselves be published as mashable Web

services.

7.2.2 A Computational Marketplace for the Web of Things

In this section, we present a concrete implementation of a computational marketplace

that was created in accordance with the above-mentioned constraints. An overview of

our marketplace and its individual components is given in Fig. 7.3 – the marketplace

is responsible for harboring the computational graph whose vertices represent individual

Web services and whose edges represent paths between these computations – in the tra-

ditional Web, these vertices and edges would correspond to individual websites and the

hyperlinks between them. If, in the marketplace, there is an edge between two vertices,

then there exists at least one mashup that uses the output of the service represented by

the source vertex of the edge as input for the service represented by its target vertex. Our

marketplace itself is a Web service that stores information about all registered compu-

tational mashups and provides interfaces for clients who wish to traverse mashup graphs

as well as for service providers and mashup developers that wish to expose information

about individual and composite services, respectively. It thus provides functionality to

three interacting parties: service providers , mashup developers , and mashup clients .

Service providers Providers of Web services may use the system to publish the APIs

of their services along with API descriptions to support clients when using their services,

where each service is modeled as a vertex resource.
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Mashup developers Developers make use of the marketplace to define computational

mashups on top of the individual services and to publish information about these mash-

ups. The marketplace models such routes for computations by creating and exposing edge

resources which imply that the involved computations are related – thus, each mashup

constitutes a subgraph of the marketplace graph (e.g., the marked nodes in Fig. 7.3).

Whenever a client executes a service within a service mashup whose corresponding ver-

tex resource has an outgoing edge, the marketplace will signal that client that a related

computation exists on its path. To specify how the output from one service should be

mapped to the input of another, our implementation allows adding so-called transfor-

mation maps to edge resources. These maps introduce a certain degree of automation

for simple and recurring input-output-mappings such as the renaming of data items or

simple type conversions and, thus, convenience for mashup developers and clients. More

complicated transformations should, however, be exposed on the marketplace in the form

of Web services that are linked to the “worker” services.

Mashup clients Clients execute service mashups by letting the marketplace guide them

through the graph structure along its edges. They choose which mashup to execute by

selecting one of the subgraphs published by a mashup developer via the marketplace and

then invoke the individual services of this mashup themselves, in a distributed manner.

To enable this, the marketplace exposes the entry vertex for each registered mashup

graph – this information can be used directly by clients to find entry points to service

mashups and by external crawler components (i.e., “mashup search engines”) to discover

individual mashups and services. Clients then use the marketplace to find a path from the

most recently used service to the next within the context of their selected mashup, until

they reach the terminal service of that mashup. For each service, our implementation

furthermore provides them with information about non-functional characteristics of that

node regarding several cost metrics (i.e., latency, accuracy rating, and money cost) that

they can consider when selecting the next service. This gives them the opportunity

to choose the fastest – or cheapest – computational path within their mashup and to

dynamically adapt their traversal when paths become slower or more expensive. The

implementation of a client of our marketplace is discussed in more detail in Section 7.2.3.

Security and Billing Our implementation does not explicitly take care of service access

management and billing. However, these functions can be exposed as services on the

marketplace and inlined as vertex resources within mashups, in the same manner as other

Web services are used in the context of a mashup. To demonstrate this property, the use

case shown in Section 7.2.4 includes a vertex resource that guides a traversing client to

an OAuth-based authentication procedure before it can use a specific Web service.

7.2.3 Client Component

The client component is responsible for interacting with our marketplace on behalf of the

client. In the traditional Web, the “client component” for human users is the browser

that communicates with servers on behalf of users and renders representations of Web
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Figure 7.4: A tailored traversal manager for a specific mashup: the client selects the path
called “dispatch” whenever the reply from an invoked algorithm indicates an arrhythmia prob-
ability of more than 50%. Else, it selects the path called “start.”

Figure 7.5: A generic traversal manager that always selects the path with the lowest latency.

resources and, specifically, the links contained therein, graphically. Similarly, a client

component of a computational marketplace handles responses from the marketplace that

indicate vertex resources which can be reached from the client’s current node within the

mashup that it is traversing. Consequently, the main function of the client component is

to select one of the vertices that are exposed by the marketplace and thereby control the

traversal on behalf of the client.

In its simplest form, the client component could, for each step that it takes in a

mashup, ask the user for feedback about which link to follow next – the resulting software

would appear to humans like a “browser” for distributed Web services that would, after

each step, display the result of the remote computation and a choice of paths that it could

follow. Since, however, our goal is to have the selection of an appropriate next service be

done in an automatic way, our implementation of a client component contains the concept

of traversal managers that are programmed by the user to traverse the graph in the desired

manner. Note that the marketplace itself cannot know details about the user’s decision-

making process – therefore, the concrete implementations of the traversal managers are

fully decoupled from the marketplace and have to be written by the individual wishing
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to use the marketplace, where usually also the results from preceding computations are

taken into account when deciding which path to follow. For instance, Fig. 7.4 shows a

tailored traversal manager that selects one of the paths “start” or “dispatch” depending

on the response from a service execution. In our prototypes, however, we often make use

of simple generic traversal managers that, for instance, always select the path that has

the lowest latency as announced by the marketplace (see Fig. 7.5).

7.2.4 Evaluation

We tested our implementation of a computational marketplace on a use case where a

complex real-world coordination problem is solved by a mashup of distributed Web ser-

vices: Our service mashup accesses real-time feeds of heartbeat data and analyzes these to

detect signs of arrhythmia. In case a dysfunction is detected, the client that traverses the

mashup invokes another service which dispatches an ambulance to the patient’s current

location. To optimize the dispatch process, this service takes into account information

about driving times from multiple hospital locations to the patient. Driving times are

modeled as dependent on the amount of traffic which in turn depends on the current

weather conditions – for this reason, information from a weather feed is taken into ac-

count when estimating the current traffic for dispatching the closest ambulance to take

the patient to the most appropriate hospital. Of all services that are used within this

mashup, only the arrhythmia detector and the ambulance path optimization service were

developed by ourselves. For all other functions as well as for visualization and persistence,

publicly available Web services such as the Google Prediction API [277] and the Yahoo!

Weather API [336] were used, which demonstrates the compatibility of our system with

current Web service APIs that are in widespread use. To illustrate the provisioning of

authentication and authorization services, a client that uses the Google Predict API in

the process of traversing the service mashup is directed to an intermediary node that uses

OAuth to authorize the client’s access using its Google credentials.

7.2.4.1 The Arrhythmia/Ambulance Dispatch Mashup

The complete service mashup for this use case consists of four mashups that implement its

individual components. In the composite scenario, all these mashups, that are represented

as graphs on the computational marketplace, are combined to incorporate refined weather

and traffic information with the arrhythmia detection services to optimize the ambulance

dispatch process:

� The Arrhythmia Mashup decides whether a patient is suffering an arrhythmia. Its

main components are a feed that fetches heartbeat data from patients and two

arrhythmia detection services. To simulate heartbeat data, we use samples from

the database on malignant heart rhythms from the Boston Beth Israel Deaconess

Medical Center [67].

� The Weather Mashup uses the Google Predict API to output one of 47 high-level

descriptions of the weather conditions (e.g., “partly cloudy”), where the raw weather
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data (temperature, humidity, etc.) is obtained from the Yahoo! Weather API.

Accesses to the Google Predict API are authenticated and authorized via OAuth.

� The Traffic Mashup combines simulated geo-location information of cars and pedes-

trians with the weather prediction to create traffic density estimates.

� The Dispatch Mashup combines location information from simulated patients, am-

bulances, and hospitals with traffic density estimates to dispatch ambulances to

patients. To obtain driving information, it uses the Google Maps API.

To expose information about the entire mashup on our computational marketplace, a

service provider first uses the marketplace to create vertices that represent the individual

services. For each service (e.g., an arrhythmia detector), the provider at least specifies the

URI of the corresponding Web service, the REST method to use the service, and the out-

put media type of the service. Additionally, if required, request headers and parameters

for specifying query, form, and path inputs may be given. Next, a mashup developer links

the individual vertices and specifies the input/output-mappings between the algorithms,

either by using the generic transformation maps provided by the marketplace or by cre-

ating computational vertices that handle the transformations. Finally, mashup clients

can navigate the exposed mashups to implement the complete Arrhythmia/Ambulance

Dispatch mashup.

7.2.4.2 Dynamic Optimization

We used one of the constituents of this service mashup – the Arrhythmia Mashup – to

demonstrate the dynamic optimization capabilities of our computational marketplace:

by exposing information about non-functional properties of the individual services, the

marketplace enables clients to dynamically switch between providers according to their

requirements with respect to the money cost, latency, and accuracy of a service. To illus-

trate this, we added three dummy arrhythmia detectors to the marketplace and configured

them to exhibit time and money costs that grow linearly with the number of clients each

detector is servicing at a certain point in time.6 Furthermore, we configured several clients

with different non-functional requirements and thus expect that these should dynamically

adapt to the changing costs by routing their executions via services that best suit their

requirements.

The results of a test case where 15 different clients concurrently use the arrhythmia

detectors demonstrate that the dynamic distributed optimization also works in practice:

of these clients, three always choose the same detector (i.e., each chooses one of the

available three), seven always request the cheapest computational path, and five request

the fastest service. Fig. 7.6, which shows the number of clients being serviced by each

of the three detectors over time, shows that the clients indeed route their computations

along different paths whenever a peak load is reached on one of the detectors as, for

instance, for Detector 1 at iteration 350.

6As an example, suppose that Detector 2 has a base latency (or money cost) of x ms for a single
computation and is currently servicing two clients. A third client that now makes a request to Detector 2
will have to wait for 3 · x ms (or pay 3 · x money units, respectively) before the request is answered.
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Figure 7.6: Illustration of the dynamic optimization capabilities of our marketplace imple-
mentation: 15 clients interact with three arrhythmia detection services. Of these 15 clients,
three always select the same detector, seven request the cheapest detector, and five request
the service with the lowest latency.

This evaluation shows that our computational marketplace is indeed able to balance

client demands and provider offerings in a form of dynamic equilibrium that is reached

through decentralized decision making. It does, however, not attain an optimal solution

as we opted for a decoupling of clients, services, and the marketplace to be compliant

with the REST HATEOAS principle of not controlling the traversal of clients but rather

guiding them by providing options for their next action in the form of hyperlinks.7

7.2.5 Service Composition and HATEOAS

Our computational marketplace implementation represents a semi-automatic service com-

position platform that builds heavily on the REST HATEOAS constraint for linking

computations from distributed providers within service mashups, and for guiding clients

when traversing the resulting service graphs. The proposed platform, however, has sev-

eral disadvantages that make it unsuitable as a basis for creating a fully automatic service

composition framework – in this section, we discuss these shortcomings and attempt to

link them to core characteristics of the HATEOAS principle. We will conclude that

HATEOAS, by itself, is unsuitable to achieve automatic service composition and that

additional information about service mashups is required on top of it for guiding machine

clients within hypermedia mashups.

Both JOpera [173] and Bite [198] go beyond harboring the links between computa-

tions and also invoke computations themselves – this inhibits their scalability as all service

invocations are performed by a central instance on behalf of clients, and represents a viola-

tion of the HATEOAS constraint: clients are not merely guided while executing a service

mashup, but rather the service execution is performed by the composition framework , on

their behalf. To retain core REST principles, others have proposed to separate the con-

7Assigning all clients statically to a specific detector would reduce the overall waiting time.



7.2. A Computational Marketplace for REST Services 133

cerns of service composition and the description of links between services: The authors

of [5] use Petri Nets as a basic composition model and augment them with descriptions

based on the Resource Linking Language (ReLL) [4] to expose meta-information about

the linkage of the individual services for crawling and semantic integration. Also the

authors of [17] emphasize linking as an integral part of composing resources on the Web

and guiding RESTful machine-to-machine interaction. Also our concept of a computa-

tional marketplace also satisfies the HATEOAS constraint by providing links to related

services within the composition and not requiring a central instance to guide clients. Our

system, however, suffers from several shortcomings that become obvious when examining

how exactly clients choose a service mashup to execute, and in how they make the local

decisions that drive their traversing of the service graph:

To select a mashup, clients use that mashup’s URI. This means that we encode the

entire functionality that a mashup provides to a client within its URI – to achieve com-

plete automation, a machine client would need a way of parsing the description of an

entire mashup to find out whether it implements the desired functionality. While this is

possible in principle, it is reminiscent of how clients use WSDL descriptions to infer how

to invoke a service. However, this information must be delivered in one way or another

because a method of describing the purpose of an entire service mashup is necessary to

enable clients to select appropriate mashups to reach their application goal: without this

global information, which is neither conveyed within hypermedia nor by the semantic link

annotations provided by vertex resources in our implementation nor in the approaches

mentioned above ([5] and [17]), a client is not able to make local decisions regarding which

service to execute next. To enable this, the client requires “global” guidance on top of

the “local” guidance that HATEOAS and annotated hyperlinks provide. The reason for

that requirement is that machines cannot, in fact, “follow their nose” within hypermedia

systems, even if individual links are semantically annotated. To give a simple example of

this, imagine a machine client that intends to “buy the book with ISIN X ” (this goal is,

for instance, programmed by a human). Upon reaching the Web resource that represents

that book, the client will perhaps – in accordance with HATEOAS – be able to discover a

semantically annotated link that allows it to “put the book with ISIN X into the shopping

cart.” However, the client is, under these circumstances, unable to link this “immediate

goal” to its “global goal” of buying the book – to do this, it requires global information

that the partial goal will help it to achieve its global goal.8

One way of enabling true goal-driven behavior for machine clients in this scenario

would be to annotate each intermediate link within a composite service with all goals

that might be reached by following this link – this is exactly what our computational

marketplace does: each registered mashup graph holds information about all its con-

stituent nodes and edges. When asking our marketplace for forward paths from a node

that represents a specific service, mashup clients include information about the mashup

that they are currently traversing (e.g., the URI of the Arrhythmia Mashup) and the

marketplace returns only edges that are relevant in the context of this global goal of the

8The same is true for humans. For them, however, “put[ing] the book with ISIN X into the shopping
cart” already conveys the affordance that the book can subsequently be bought because the system is
modeled on how people shop in the real world.
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client. In other words, in our marketplace and other similar systems, REST and HA-

TEOAS merely provide information about how to traverse the underlying hyperspace,

but not about the global high-level semantics of following a hyperlink. In the traditional

“human” Web, browsers know how to traverse the hyperspace thanks to the generally

agreed REST architectural style, but humans interpret the contents of websites and hy-

perlinks contained therein. Similarly, REST by itself does not allow machine clients to

automatically traverse hyperspace and reach a final goal by themselves – rather, they re-

quire a supporting system that enables them to make the correct local decisions to reach

a global goal.

It is also interesting to note at this point that our computational marketplace repre-

sents a layer of hypermedia links on top of that defined within the involved resources that

represent individual services. This is necessary for coordinating mashup executions across

the boundaries of service providers because otherwise, every single service resource would

have to embed links to all potentially related services within its representation which is,

in our opinion, infeasible. This practice of linking services via the marketplace could be

interpreted as a violation of the HATEOAS principle (since the links are not under the

control of the server that hosts the service), but we believe that it is our only option to

enable collaboration between globally distributed services in this context.

Another shortfall of our computational marketplace is the way how clients reach local

decisions: in our system, the marketplace provides them with a set of links to vertex

resources that represent services which might be relevant given the current situation of

the client. The client then uses local traversal managers to select the most appropriate

link and continue traversing the mashup in that direction. However, we use plain keyword

annotations to identify the different links which means that clients’ traversal managers

are implemented and compiled against this rather arbitrary vocabulary (link annotations

are created by mashup developers when defining a mashup graph). Consequently, while

our implementation is tolerant with respect to changes of the underlying Web services, it

cannot handle a change in the name of an edge resource. This represents an issue at the

core of the Linked Data movement, where standardized vocabularies have been proposed

to provide local link annotations.

In the following, we discuss a different approach to enable fully automatic service

composition that uses technologies from the Semantic Web to describe the functionality

provided by individual services. These descriptions are directly linked to the services

instead of publishing them via a central marketplace and a semantic reasoner is used to

infer a service mashup that achieves the client goal at runtime – because the reasoner

can link immediate partial goals are to the global application goal of a client, this system

achieves true goal-driven behavior.

7.3 Semantics-based Service Composition

Our discussion of computational marketplaces and their shortcomings with respect to

the global guidance of clients that traverse service mashups have shown that we can rely

on REST, HATEOAS, and link annotations for enabling local decision-making as well
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as a solid basis for specifying the protocol semantics of interactions with Web services.

Our marketplace furthermore includes information about the global goal that a client can

reach by executing a service mashup in the form of the mashup resource URIs – however,

machine clients cannot process these annotations in a way that would allow them to select

a suitable mashup given a user goal, and they are thus not suitable for achieving automatic

service composition in WoT scenarios. In that sense, our computational marketplace can

merely be used to link services on a syntactic level: it can propose service nodes that

are suitable for processing certain input formats but cannot help a mashup developer

in deciding whether it is sensible to apply a service to the input data at hand – this

functionality is very similar to search engines such as Hoogλe [306] that enable developers

to search for implementations by specifying method signatures.

In this section, we discuss an approach to fully automatic service composition that

allows clients to automatically create and traverse service compositions in WoT scenar-

ios with the help of functional semantic annotations. These allow to reason about the

capabilities of Web services and thereby enable the goal-driven configuration of smart

environments for end users. To specify these high-level domain semantics of a service, we

use the RESTdesc language [232] that we have extended to make it suitable for reasoning

about service capabilities in smart environments. The advantage of this system for users

of smart environments is that, instead of having to design a service mashup that achieves

their goal or manually select a mashup in the computational marketplace, they merely

have to state that goal in a machine-understandable way. Given this statement of a user’s

goal, a reasoning component in our system determines whether the goal can be reached

given the set of available services, and also infers which user actions (i.e., HTTP requests

in this case) are necessary to reach it. The user can then execute these requests and

thereby modify his environment to reach the desired goal. Because service mashups are

created at runtime from user goals, this approach exhibits a high degree of flexibility as

service mashups can adapt to dynamic environments and are fault-tolerant with respect

to individual services becoming unavailable, which – as we discussed in Section 7.1.2 –

is particularly desirable in IoT and mobile scenarios [207]. However, since we cannot

assume that users are familiar with semantic languages, it is necessary to provide an ab-

straction layer on top of the semantic descriptions through an interface that simplifies the

goal creation for end users. We therefore integrated our system with a visual program-

ming language that supports end users by enabling them to model the desired state of

their smart environment graphically and thus hides the technicalities of the underlying

semantics and the reasoning (see Section 7.4).

7.3.1 System Context

To enable the composition of services that are provided by devices in smart environments,

our system must have access to a means of discovering these individual services and

their associated semantic descriptions. Our service composition system thus requires

a component that knows about services that are accessible for a client that wishes to

create composite applications on top of them. For this purpose, we make use of the

Web-based discovery and look-up infrastructure that we presented in Chapter 6 – our
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composition system is, however, compatible with any search engine or service repository

that enables clients to find the URIs of service endpoints: specifically, the software that

we present in this section is compatible with discovery services that have been proposed

by other research groups (e.g., [40]), and with search engines for the WoT such as Dyser

[167]. When considering resource-constrained devices that support the CoAP protocol,

our system can make use of the CoRE Resource Directory [294] as a service discovery

component. Finally, industrial standards for home entertainment systems such as UPnP

[289] are in principle also compatible with our system, given that it can gain access to the

URIs of individual Web services in such settings.

Apart from a component to find services in a smart environment, our system requires

access to a semantic reasoner to be able to infer the global structure of a service mashup

from the semantic metadata that is provided by these individual services. In principle,

this reasoner could be hosted on a remote server – however, we decided to use a local im-

plementation in our prototype because of the higher delays when using a remote instance

and privacy and security considerations. In the context of our proposed composition

framework for services in smart environments, we consider the reasoner a trusted entity:

it has access to functional metadata provided by all services in the environment, is aware

of the user’s goals with respect to using these services, and eventually proposes HTTP

requests to be executed by the user to achieve its goals.

Finally, our system requires a component that interacts with the reasoner and with

services in the smart environment, on behalf of the user. This interface, that can be a

Web application or a mobile application that is deployed on the user’s smartphone or

tablet, is used by humans to formulate goals with respect to their environment. Given

a goal, it queries the reasoner for a service mashup that allows to reach that goal and

executes the requests proposed by the reasoner.

In the following, we discuss how these components collaborate to enable users to

configure their smart environment. Our approach thus permits users to interact not only

directly with individual devices in their surroundings but with composite applications

that provide higher-level functions and can also include remote service offerings on the

Web. One cornerstone of our system is the embedding of functional semantic metadata in

the form of RESTdesc descriptions within the individual service endpoints. We extended

RESTdesc with capabilities that make the language applicable to composition tasks in

smart environments while preserving the logical integrity of the reasoning – we present

this language and our proposed extension in Sections 7.3.2 and 7.3.3. In Section 7.3.4,

we discuss the resulting service composition system for smart environments with respect

to its scalability, expressibility, correctness, and usability for end users, and also review

challenges that arise from the adoption of semantic technologies as its basis. Finally,

in Section 7.4, we present how we integrated our approach with ClickScript , a visual

programming tool that enables end users to formulate semantic goals which describe the

desired state of their smart environment.
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7.3.2 Semantic Metadata for REST Services

Because all smart devices and services that we consider feature Web APIs that are modeled

according to the REST principles, their low-level protocol semantics are already specified

by HTTP. On top of this, we define their high-level domain semantics (i.e., which function

a service provides) using RESTdesc, a machine-interpretable functional service description

format for REST APIs. RESTdesc descriptions are expressed in Notation3 (N3) [251],

an RDF superset that adds support for quantification. Services expose these descriptions

for automated discovery – thus advertising their functionality – by linking to RESTdesc

documents using the Link HTTP header’s describedby relation [292] as part of the

responses to HTTP GET and OPTIONS requests. This mechanism enables any client that

knows the URL of a service to download its semantic description. We illustrate the main

concepts of RESTdesc using the example of a service that can convert temperatures given

in degrees Celsius to Fahrenheit values whose semantic description is shown in Listing 7.1.

Later, as a simple example of service composition in smart environments, we will show how

a semantic reasoner can be used to automatically create a service mashup that combines

the functionality of this converter with a smart thermostat that takes Fahrenheit values

as input to configure its setpoint (Section 7.3.3).
At the highest level, a RESTdesc description consists of three parts: preconditions,

postconditions, and an HTTP request that realizes the postconditions from the precon-

ditions. In the example in Listing 7.1, the preconditions (lines 7 to 9) stipulate that

a certain temperature expressed in degrees Celsius exists, and that this temperature has

a specific value. The postconditions (lines 17 to 20) warrant that there exists a tem-

perature expressed in degrees Fahrenheit that is the same as the Celsius temperature.

1 @prefix owl: <http://www.w3.org/2002/07/owl#>.

2 @prefix dbpedia: <http://dbpedia.org/resource/>.

3 @prefix ex: <http://example.org/#>.

4 @prefix http: <http://www.w3.org/2011/http#>.

5

6 {

7 ?tempC a dbpedia:Temperature;

8 ex:hasValue ?cVal;

9 ex:hasUnit "Celsius".

10 }

11 =>

12 {

13 _:request http:methodName "GET";

14 http:requestURI (<http://converter.net?temp=>?cVal);

15 http:resp [ http:body ?fVal ].

16

17 _:tempF a dbpedia:Temperature;

18 ex:hasValue ?fVal;

19 ex:hasUnit "Fahrenheit";

20 owl:sameAs ?tempC.

21 }.

Listing 7.1: A RESTdesc description of a temperature conversion service.
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1 @prefix dbpedia: <http://dbpedia.org/resource/>.

2 @prefix ex: <http://example.org/#>.

3

4 _:roomTemp a dbpedia:Temperature;

5 ex:hasValue "20";

6 ex:hasUnit "Celsius".

7

8 _:convertedTemp ex:hasValue ?value;

9 ex:hasUnit "Fahrenheit".

Listing 7.2: A semantic goal that asks for a Fahrenheit temperature that is equivalent to the
specified Celsius temperature.

Finally, the HTTP request (lines 13 to 15) is a GET request to a URL determined by

the value of the cVal variable that returns the Fahrenheit value in the response body.

This HTTP request is described by the HTTP in RDF vocabulary [328] which provides a

semantic way to describe HTTP exchanges. The description as a whole communicates in

a machine-interpretable way how a Celsius temperature can be converted to the equivalent

Fahrenheit temperature.

In more detail, the basic unit in N3 is the triple that is expressed in the format

“Subject Predicate Object.” N3 also has formulas which group together triples (be-

tween braces {}), variables that start with a question mark ?, and implications (i.e.,

triples where the predicate is =>). When multiple predicate-object pairs are separated

using semicolons, all of these pairs are associated to the leading subject. For instance,

lines 7 to 9 state that the variable tempC is a “Temperature,” that its relation to another

variable, cVal, is “hasValue,” and that its relation to the constant Celsius is “hasUnit.”

The @prefix declarations indicate which ontologies are used within a document and allow

to abbreviate URLs of subjects, predicates, and objects. For instance, we use well-known

public ontologies such as DBpedia [281] which has been created to make structured data

in Wikipedia accessible for machine clients.
Because RESTdesc descriptions are regular N3 implications, they can be applied as

inference rules by N3 reasoners without requiring any special support. For each rule

it holds that, if the triples in the antecedent can be matched, the triples in the conse-

quent can be concluded. To find out whether a specific goal can be reached in a given

context, users can thus use a semantic reasoner that has access to service descriptions

such as that of the temperature converter shown above. For instance, a user could ask

which Fahrenheit temperature is equivalent to 20 degrees Celsius (Listing 7.2). Given

this goal, a reasoner can instantiate the description of the temperature conversion ser-

vice which will indicate that the answer is given by an HTTP GET request to the URL

http://converter.net?temp=20. Thus, the reasoner does not immediately tell the re-

sult of the conversion but rather indicates that the client must execute the described

HTTP request to convert the temperature value. When a reasoner has access to multi-

ple rules, it can chain the implications they contain and thereby find out how the client

must coordinate invocations of different services that can together achieve the user goal.

For instance, if the user wants to set a temperature of 20 degrees Celsius in an environ-

ment that contains a smart thermostat which can only take inputs in degrees Fahrenheit,
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the reasoner will instruct it to first send an HTTP GET to the converter service, unpack

the response body, and send the obtained temperature value (in degrees Fahrenheit) to

the thermostat. The combination of RESTdesc descriptions with reasoning thus yields a

powerful service composition mechanism [230].

To summarize, the entire workflow in our prototype system is as follows: The reasoning

service can either run locally on the client (if the client is sufficiently powerful) or be

provided by the user interface device (e.g., a smartphone) or a remote server for resource-

constrained clients. To obtain information about the individual services that are accessible

to the client, the reasoner first does a look-up with our management infrastructure to find

their URLs. It accesses these URLs using HTTP OPTIONS requests, follows the links

that are returned within the Link header fields, and parses the .n3 documents at these

locations, thereby creating a local service catalog. When the user asks for a specific goal,

the reasoner is invoked with the service descriptions from that catalog and the user’s goal.

Using backwards chaining, the reasoner then searches for a path from the current state to

the goal state. If successful, it returns the necessary HTTP requests, which are executed

by the client on behalf of the user to reach the goal.

7.3.3 Reasoning in Smart Environments

In the previous section, we described how RESTdesc can be used to semantically annotate

REST service APIs and how a reasoner can infer whether – and how – a user goal can be

reached by integrating functionality across services. However, it is not straightforward to

apply RESTdesc in the context of the configuration of smart environments: the main issue

when trying to integrate its semantic descriptions with our systems and implementing use

cases from the field of pervasive computing is that RESTdesc – being grounded in first-

order logic – is not able to distinguish between mutually exclusive states of components

of the system (e.g., of a specific device in the user’s smart environment). Therefore,

while RESTdesc works very well for describing services that do not induce incompatible

states such as the temperature converter in the previous section, already the most basic

use cases that involve stateful objects cause problems regarding the soundness of the

reasoning. As a simple example, assume the system has access to the fact that a room

has a temperature of 23◦C. If the user then defines a goal where the same room has a

temperature of 22◦C, this introduces a logical contradiction because no room can have

two different temperatures at any given moment (note that it is not possible to remove

facts from the knowledge of a first-order logic system).

For this reason, we extended RESTdesc by incorporating a mechanism that allows

to explicitly describe states of smart environments, and of devices within smart envi-

ronments. Furthermore, we introduced the concept of state transitions to enable the

annotation of services that induce state changes, the semantics of which are described in

a states ontology. This ontology is publicly available9 and can be looked up by reasoners

for successful state handling.

As an example of a service that makes use of our states ontology, consider the REST-

9See http://purl.org/restdesc/states
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1 @prefix st: <http://purl.org/restdesc/states#>.

2 @prefix log: <http://www.w3.org/2000/10/swap/log#>.

3 @prefix dbpedia: <http://dbpedia.org/resource/>.

4 @prefix ex: <http://example.org/#>.

5 @prefix http: <http://www.w3.org/2011/http#>.

6 @prefix geonames: <http://www.geonames.org/ontology#>.

7

8 {

9 ?newTemp a ex:Temperature;

10 ex:hasValue ?fVal;

11 ex:hasUnit "Fahrenheit".

12

13 ?thermostat a dbpedia:Thermostat;

14 geonames:locatedIn ?place.

15

16 ?state a st:State;

17 log:includes { ?place ex:hasTemp ?oldTemp. }.

18 }

19 =>

20 {

21 _:request http:methodName "PUT";

22 http:requestURI (?thermostat "?t=" ?fVal).

23

24 [ a st:StateChange; st:removed { ?place ex:hasTemp ?oldTemp. };

25 st:added { ?place ex:hasTemp ?newTemp. };

26 st:parent ?state ].

27 }.

Listing 7.3: A RESTdesc description of a temperature conversion service.

desc description of a smart thermostat in Listing 7.3. From the antecedent of this rule, we

can see that an execution of the service requires a temperature value in degrees Fahrenheit

(lines 9 to 11) as well as the presence of a device of type Thermostat at a specific location

(lines 13 and 14). The preconditions furthermore contain a state description which speci-

fies that the ambient temperature at the location of the thermostat is ?oldTemp (lines 16

and 17). The consequent of the rule specifies that an HTTP PUT request to the thermostat

(lines 21 and 22) will result in a state transition (lines 24 to 26): the new state does not

anymore include the ?place having a temperature of ?oldTemp, but rather includes the

new fact that the temperature at the location of the thermostat is ?newTemp.
To find out how to set the ambient temperature at a specific location called “Office”

to 23◦C, a user would now formulate the goal shown in Listing 7.4. In this goal, the user

first defines the temp23 constant that includes the desired temperature value as well as

the information that this value is given in degrees Celsius. This entity is then used when

defining the desired state of the location “Office.” As described in Section 7.3.2, this goal

can now be sent to a reasoner that will indicate that the goal state can be reached by first

sending an HTTP GET request to the converter service that includes the Celsius value to

obtain the corresponding Fahrenheit value, and then sending an HTTP PUT request to

the URL of the thermostat at the location “Office.” Note that, because we the concrete
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1 @prefix st: <http://purl.org/restdesc/states#>.

2 @prefix ex: <http://example.org/#>.

3

4 :temp23 a ex:Temperature;

5 ex:hasValue "23";

6 ex:hasUnit "Celsius".

7

8 ?state a st:State;

9 log:includes { :Office ex:hasTemp :temp23. }.

Listing 7.4: A RESTdesc description of a temperature conversion service.

location is dynamic in the service description in Listing 7.3, the URL of a correct smart

thermostat is given by the ?thermostat variable and found at runtime from all available

thermostats in the system. Because our management infrastructure also features semantic

descriptions of its functionality, our system is thus able to find out by itself that it can

use the infrastructure to locate an adequate smart thermostat .
To summarize, we have successfully extended RESTdesc with the concepts of states

and state changes. This enables using our system to describe any service that induces

state transitions, and specifically to model states of smart environments. Based on our

approach, it is now possible to create an application that runs on the user’s smartphone

and lets the user specify the desired state of different named locations (e.g., the user’s

office) with respect to properties such as the ambient temperature or the desired media

playback – the reasoning system can use the same naming scheme as our management

infrastructure to identify locations.

7.3.4 Discussion

We implemented several applications that demonstrate the capabilities of our semantic

composition system for supporting end users in configuring their smart environment in

the home automation domain: for instance, the Music Escort application is aware of the

user’s current location and music preferences and streams his favorite songs directly to

media devices in the user’s vicinity (see Fig. 7.7). The mashup involves many different

devices and complex interactions between them and we use it to exemplify how our system

deals with dynamic situations where information, such as the user’s location, can become

invalid and the client has to compensate [131]. Another prototype application, the Room

Configurator , enable users to control not only the currently playing music at their location,

but allows them to enter several comfort parameters such as their comfort temperature or

preferred lighting level. The client interface, which has been implemented as a smartphone

application, then communicates with the user’s surroundings to implement these settings.

The important commonality of both these systems is that they make no assumptions

about which kinds of devices are available in the user’s smart environment but merely

assume that devices advertise their services using descriptions in the RESTdesc format

that, in turn, can be processed by a semantic reasoner. In this way, both applications are

in principle capable of interacting with many different types of smart things that provide

the services they seek, on behalf of the user.
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(a) (b)

Figure 7.7: The Music Escort application: (a) The preferred song can be entered on a simple
user interface. From this information, the application creates a semantic goal that includes
the specified song playing at the current location of the user. This goal is sent to a semantic
reasoner and the requests returned by the reasoner are executed by the application to realize
the goal. (b) The application can furthermore display all currently reachable goals given the
current smart environment of the user.

To further evaluate our proposed approach to automatic service composition in smart

environments, we draw on earlier studies that assess service composition systems with

respect to a set of qualities these systems should exhibit. [207] considers several require-

ments on composition approaches that are assigned to different phases in the life-cycle

of a service mashup: In the mashup definition phase, the expressibility of the process

modeling language and the correctness of the designed composite service are considered

relevant. In the service selection phase (i.e., when the system attempts to locate suitable

individual services and must arbitrate between similar service offerings), the degree of

automation and the selectability according to non-functional properties matter. During

the execution of the mashup, the relevant characteristics of a composition system are its

run-time adaptability , scalability , whether it enables users to monitor the system, and

the reliability of the execution, i.e., its robustness to exceptional behavior. Finally, [207]

defines the overall requirements of personalization (i.e., the capability of the system to

consider the user’s context) and tool support , which refers to the availability of appropri-

ate tools to support the creation of the service mashup and the managing and monitoring

of the execution. Similarly, [243] considers properties such as the domain independence,

correctness, semantic capability, QoS awareness, adaptability, and scalability of a seman-

tic composition system – these parameters correspond to the characteristics set forth by

[207] (e.g., domain independence and QoS awareness correspond to the expressibility and

selectability requirements, respectively) but are specified on a coarser level.
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By its very nature, our system achieves a high degree of automation with respect to

the selection of individual services: given that these services are annotated appropriately,

service selection and composition is done fully automatically. It is also highly adaptable

with respect to the dynamic availability of specific services in a smart environment: the

ability to bind services dynamically at runtime lies at the core of our system, and clients

may additionally choose to re-query the reasoner in the middle of executing a service

mashup (in extreme cases, after each service execution step) for maximal adaptation – this

is supported especially since our approach allows to obtain execution plans very rapidly,

compared to other concepts. Our system also features a high level of personalization:

user preferences and context characteristics (e.g., the locations of smart thermostats)

that are available to the reasoner as logical facts are automatically considered during

the service composition phase. Since, in our system, a composite service mashup is not

executed by a central execution engine, our system can also be considered to be simple to

monitor by the client: the client executes all requests to individual services itself! This

is closely tied to our system’s reliability : our approach does not automatically handle

exceptional behavior, but the client is explicitly informed about incidents via HTTP status

codes that are returned by the individual services – the recovery itself must, however, be

implemented by the client itself. However, if the reason for a failure was a transient

fault in the system, for instance related to bad connectivity, it might be sufficient to

execute the HTTP requests once more – this is supported by the stateless nature of

the protocol. Alternatively, if the reason for the fault was a component of the system

that became unavailable, the reasoner should be asked again for a new service execution

plan. Both these resolution strategies are generic and do not depend on an explicit fault

handling mechanism. Finally, our system only provides limited tool support : we have

integrated it with a visual programming language to facilitate the creation of user goals

(see Section 7.4) and users can monitor service executions in real time using the tools

that we presented in Chapter 5. In the following sections, we discuss our semantic service

composition approach with respect to the remaining desirable qualities of such systems

set forth by [207]: scalability , expressibility , correctness , and selectability .

7.3.4.1 Scalability of the Reasoning

One concern with respect to service composition systems is whether they remain scalable,

in our case given that the reasoner could have to consider hundreds of different services.

This is especially relevant when considering remote services and knowledge sources that

are available to the reasoner and are considered each time a client asks it for a computa-

tional path to a user goal. Some challenge that current reasoners are capable of processing

service descriptions for applications in the context of the IoT [44] or even dismiss current

reasoners as impractical for processing semantic information in pervasive computing sce-

narios, due to architectural and performance issues [70]. Compared to, e.g.,, approaches

based on OWL-S, our system is very lightweight, being grounded in first-order logic.

However, although other tests with reasoner-based composition already give positive in-

dications [230], we conducted an evaluation to see how fast the reasoner we use in our

system – the Euler Yap Engine (EYE) [323] – can process service descriptions when the
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#services 1024 2048 4096 8192 16384 32768 65536 131072

parsing 276 ms 528 ms 1001 ms 1949 ms 3916 ms 7827 ms 17127 ms 34526 ms

reasoning 12 ms 20 ms 18 ms 68 ms 107 ms 113 ms 122 ms 228 ms

total 289 ms 548 ms 1019 ms 2018 ms 4023 ms 7940 ms 17249 ms 34754 ms

Table 7.1: Delays incurred by parsing and reasoning over many services.
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Figure 7.8: Runtime of the reasoning when considering (a) simple chains of up to 2000
services and (b) complex scenarios with up to 1000 combination options per step and a fixed
composition length of 100 steps.

number of available services grows. In a first test that is described in [230], the total

composition length was fixed to 32 services (which is a lot for the context we consider),

and the number of services that are considered during the reasoning step was increased to

up to 217. The results (Table 7.1) indicate that even for very high numbers of considered

service descriptions, the reasoning time remains under a few hundred milliseconds on an

average consumer computer, and thus within reasonable limits. The time required for

downloading and parsing the rules, however, does significantly increase, but this effect

can be mitigated by caching service descriptions locally at the reasoner.

Several tests that were carried out in the context of this thesis confirm these results:

First, we let a reasoner chain up to 2000 services – our results (see Fig. 7.8(a)) show that

especially the time required for reasoning stays manageable even for such large numbers

of services in simple chaining scenarios. To explore the runtime behavior of our reasoner

in a very complex scenario, we fixed the composition length to 100 services but varied

the number of options per chaining step between 1 and 1000 (see Fig. 7.8(b)): again, the

reasoning time is rather low with 1171 ms when chaining 100 services at 1000 options

per step (i.e., 1001000 options in total). For both scenarios, the charts in Fig. 7.8 also

record the parsing overhead – in our tests, this is much lower than the numbers shown in

Table 7.1 (but remains significant) because in both our test cases, all service descriptions

were contained in a single document.

7.3.4.2 Expressibility of RESTdesc

Being based on rules in the N3 format, the RESTdesc language is in principle limited

in its expressiveness to implications in monotonic first-order logic [229]. This implies
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that the basic system does not allow the removal of facts from the knowledge of the

reasoner, which represents a particularly delicate issue when dealing with HTTP DELETE

requests: “a given thing that exists cannot unexist” in the system [229]. Therefore, this

approach is prone to inconsistencies, which is why we introduced a method for explicit

state management to handle states in smart environments (Section 7.3.3) – this enables

the system to “virtually” forget facts, by having state transitions (such as that defined

by the smart thermostat in Listing 7.3) explicitly redefine the current state.

Another, related, notion that our system is not capable of expressing is time: in a

world governed by first-order logic, everything that can be true is true [229]. We have

not addressed this issue within the context of this thesis because it was not necessary for

the scenarios we considered, due to the REST-based interaction between our endpoints.

To illustrate this, consider again the smart thermostat described above where the user

goal (Listing 7.4) specifies that the location “Office” should have a temperature of 23

degrees Celsius. When discussing this example, we did not go into details about the exact

semantics of the hasTemp predicate: does it imply that the temperature as measured at

the location is 23 degrees Celsius or merely that the setpoint of the smart thermostat has

been set to that value? While the intended semantics must be specified within the hasTemp

predicate, we argue that our system is able to deal with both interpretations, although the

former implies a temporal relationship. If the semantics of hasTemp are defined such that

the postcondition of the description exposed by the smart thermostat service implies that

its location has a certain temperature, the thermostat should reply to the corresponding

request only after this state has been reached . If, on the other hand, hasTemp merely

implies that the setpoint of the thermostat is set to that value, it can immediately reply

to the user request. Thus, we treat temporal constraints as dependencies on the successful

execution of services that the reasoner instructs us to execute prior to another service and

do not require an explicit mechanism to deal with temporal relationships in our system.10

We explored the handling of temporal constraints further in a scenario where the user

goal is to move an object from one place to another. In our setup, this could only be

accomplished by multiple collaborating robotic devices: a static robot would place the

object on the cargo area of a mobile robot that would then transport it to a different

room. This implies that the client must wait with triggering the mobile robot until the

static robot notifies it that the object has indeed been placed in the cargo area – to

accomplish this, we make use of the same straightforward technique as described above:

the static robot consumes the client request but delivers a response only after finishing

its task. Only then, the client issues its request to the mobile robot.

[207] describes several other dimensions of expressibility, some of which are relevant

in the context of our system. For instance, our system does not have the capability

of explicitly “modeling complex structures such as sequence, choice, concurrency and

iteration” – however, thanks to the underlying semantics, it does not require these features

that are indispensable in a process-driven service composition context. The reasoner

10This is a similar argument as brought forward in the discussion of dependencies between atomic
interactive components of a smart device in Chapter 3: there, as well as here, we exploit features of the
underlying REST architecture to move the responsibility for handling temporal/functional dependencies
from the user interface to the interactive components.
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furthermore automatically takes care of specifying the data flow among activities while

we do not support the notion of “allocating activities to respective roles” [207] – in our

system, each service (including the client interface and the reasoner) is a standalone

component whose function is defined by its RESTdesc description. Finally, as mentioned

before, our approach does not support exception handling, nor does it provide an explicit

way of specifying what constitutes exceptional behavior. However, we believe that the

HTTP status codes together with the run-time adaptability of our system are sufficient

as a basic recovery mechanism for clients.

In summary, although the explicit expressiveness of RESTdesc does not rival that of

planning languages or business process definition languages, we found that it is suitable

for describing services that we encounter in WoT scenarios. The only capability that we

added to the language is an explicit state handling mechanism to remove inconsistencies

that could arise from state changes in smart environments. With this modification that

we combined with a pragmatic approach of handling temporal dependencies, we found the

system to be applicable in typical pervasive computing scenarios and used it to specify

services in a home automation context, define capabilities of robotic devices with respect to

the transportation of items from one location to another, and describe services provided by

Web-enabled automobiles (see Chapter 8). Others have demonstrated that the RESTdesc

language can also be used in the context of multimedia, mathematical expression parsing

and solving, and medical imaging analysis as well as diagnosis assistance.

7.3.4.3 Correctness of Service Compositions

In principle, the reasoning component in our approach guarantees the correctness of any

composite service it generates – this, however, assumes that the underlying RESTdesc

documents clearly and unambiguously capture the functionality of the described services,

and that the user goal correctly specifies the desired state of the smart environment using

semantic concepts that are compatible to the service descriptions. While we believe that

both these challenges can be overcome in limited scenarios that are under full control of

a single party (or several parties that fully agree on the underlying semantic concepts),

they give rise to a challenge at the heart of the Semantic Web, especially when third-party

services and ontologies are incorporated in the reasoning: the issue of conflicting semantic

information. This is perhaps the prime reason for many researchers to be skeptical regard-

ing the fitness of semantic technologies in the context of real-world applications [122, 206]

and to question whether these technologies are actually able to achieve the promised

interoperability between services.

In the context of service composition in smart environments, conflicts in the semantic

information could lead to situations where services that should be interoperable cannot

be combined by the system and to settings where services that should not interact are

utilized within a service mashup or, similarly, where data that is not intended as input

for a specific service is processed by it. To give a straightforward and intuitive example,

this behavior could arise if a smart thermostat is incorrectly described as taking number

objects as input. In this case, it could happen that the reasoner constructed a composite

service that takes, for instance, the number of devices in a smart environment as input



7.3. Semantics-based Service Composition 147

to the smart thermostat or, perhaps more worryingly, the number of files in a file system

on a device in the surroundings. Subtle differences in meaning and the usage of different,

incompatible, vocabularies in RESTdesc descriptions might thus give rise to false positives

that entail dramatic consequences or false negatives where the reasoner fails to derive a

relationship between services that might match in terms of their functionality [231]. Due

to interactions between many devices in smart environments, even small errors by a user

could have major consequences.

To mitigate these issues in our system, we added the option of visualizing suggested

composite applications prior to executing them (see Section 7.4). Still, our system does

not provide a universal remedy to these issues: there will probably always be cases in

smart environments that are difficult or even impossible to solve with it. However, we

believe that our system represents an advancement over comparable approaches by taking

a pragmatic stance with respect to several key challenges, such as state handling and

the management of dependencies between service executions. In fact, the RESTdesc

language itself represents a pragmatic approach as only the minimally required knowledge

is specified (thus allowing to scale to high numbers of services) and redundant constructs

that characterize alternatives such as WADL are omitted: even with the proposed change

to include explicit state descriptions, the total length of a RESTdesc document is typically

10 to 20 lines (excluding prefix declarations). Thus, while certainly examples can be

found that cannot be solved using our approach, many do already work, and we have

demonstrated the applicability of our system to real-world use cases in home automation,

logistics, and the automotive domain (see Chapter 8).

In the context of smart environments, we thus view semantic technologies in the way

we conceived them as a very flexible form of standardization. Certainly, standards – if

honored by all relevant stakeholders – could also accomplish the use cases that we put

forward in this chapter. However, while standardization can improve interoperability

among standard-compliant components, it impedes or complicates the integration of el-

ements that were out of scope at the time the standard was designed – ontologies have

been shown to be more flexible with respect to adding additional concepts to deployed

systems [111]. Furthermore, semantic technologies offer more freedom with respect to

the description of REST endpoints and semantic goals. For instance, the RESTdesc de-

scriptions of the services that are provided by different smart thermostats may differ, or

they could use different formats of expressing the semantics of their offered functionality

altogether. This heterogeneity can lead to added complexity and perhaps to mismatches.

However, semantics provide the benefit of allowing decentralized decisions and can evolve

faster than standards can. In our opinion, using semantics within service descriptions

thus represents a lightweight approach to support new services in an evolving way – even

when considering their shortcomings with respect to conflicting information, especially in

large-scale scenarios.

7.3.4.4 Selectability of Service Mashups and Usability Considerations

The property of selectability refers to the selection of the most appropriate individual

service within a service mashup among a number of functionally similar or equivalent
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1 @prefix sreq: <http://example.org/security>.

2

3 # If the requirement is "None," this implies that "Confidential" is ok.

4 { _:secReq a sreq:None. } => { _:inferredSecReq a sreq:Confidential. }.

5

6 # If the requirement is "None," "HTTP" APIs are ok.

7 { _:secReq a sreq:None. } => { _:inferredSecReq a sreq:HTTP. }.

8

9 # If the requirement is "Confidential," "HTTPS" APIs are ok.

10 { _:secReq a sreq:Confidential. } => { _:inferredSecReq a sreq:HTTPS. }.

Listing 7.5: A RESTdesc description of a temperature conversion service.

options, based on non-functional characteristics such as QoS parameters [207]. Ideally,

a service composition system would allow users to formulate non-functional preferences

with respect to individual services or the service mashup as a whole, either directly within

their goals or within accompanying input documents to the reasoner that express these

desired characteristics. In this section, we show that the RESTdesc language permits

the encoding of such properties within descriptions, by extending the preconditions of a

service description with clauses that describe non-functional characteristics. In particular,

we target the specification of security requirements – our goal here is to enable users

to formulate basic requirements such as confidentiality that are then considered by the

reasoner when composing the service mashup. Our proposed mechanism represents a proof

of concept and we illustrate it using again the simple example of the smart thermostat

and very basic rules for handling security requirements.
As a basis for our proof of concept, we define semantic rules that specify the relation-

ships between different concepts that relate to security and privacy properties of a system

and to technologies or protocols that implement these constraints and may be used by in-

dividual services. The N3 document shown in Listing 7.5 contains two such relationships

between the two security requirements None and Confidential and the HTTP and HTTPS

protocols, respectively (lines 7 and 10, respectively). In line 4, the document furthermore

specifies a rule that expresses that Confidential is a “stronger” requirement than None.

The consequence of incorporating these rules during the reasoning is that, if a seman-

tic reasoner knows about the additional, user-defined fact :userSecurityRequirement

a sreq:None., it will infer three more facts that correspond to sreq:Confidential (by

applying the rule in line 4 of Listing 7.5), sreq:HTTP (from line 7), and sreq:HTTPS

(by applying the rules from lines 4 and 10). Alternatively, if we instead supply the fact

that :userSecurityRequirement a sreq:Confidential., the reasoner will only infer

the fact that an entity of type sreq:HTTPS exists (from line 10). Therefore, when de-

scribing a service, we can now use the security constraints to express that a service uses

plain HTTP without any security features by adding a corresponding precondition to its

description – for the smart thermostat, this is shown in line 20 of Listing 7.6.
Given descriptions that include such preconditions and the security rules from List-

ing 7.5, the system will not instantiate the thermostat service as part of a service mashups

whenever the client specifies a security requirement of :userSecurityRequirement a

sreq:Confidential. in its goal, since the precondition :secReq a sreq:HTTP. cannot
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1 @prefix st: <http://purl.org/restdesc/states#>.

2 @prefix log: <http://www.w3.org/2000/10/swap/log#>.

3 @prefix dbpedia: <http://dbpedia.org/resource/>.

4 @prefix ex: <http://example.org/#>.

5 @prefix http: <http://www.w3.org/2011/http#>.

6 @prefix geonames: <http://www.geonames.org/ontology#>.

7 @prefix sreq: <http://example.org/security>.

8

9 {

10 ?newTemp a ex:Temperature;

11 ex:hasValue ?fVal;

12 ex:hasUnit "Fahrenheit".

13

14 ?thermostat a dbpedia:Thermostat;

15 geonames:locatedIn ?place.

16

17 ?state a st:State;

18 log:includes { ?place ex:hasTemp ?oldTemp. }.

19

20 _:secReq a sreq:HTTP.

21 }

22 =>

23 { (...) }.

Listing 7.6: A RESTdesc description of a temperature conversion service.

be satisfied. If, alternatively, the service specified a security precondition of “ :secReq

a sreq:HTTPS.”, the reasoner would make use of it, since – according to the security

ontology given above – this is compatible with a sreq:Confidential user security re-

quirement. Note that this also works for composite mashups, i.e., it is possible for a client

to define that it wishes all communication that happens as part of a mashup to happen

in an sreq:Confidential way.

This extension gives users control over the security requirements of an application as

well as other non-functional aspects that can be modeled ontologically: it permits users

to specify which services from a set of functionally equivalent offerings should be selected.

To give users more control about which individual services are part of a mashup that is

executed on their behalf, we have also experimented with a dynamic feedback system that

proposes multiple execution paths and lets the user decide which path to invoke. This

system is discussed as part of Section 7.4 where we present a general approach to make

our semantics-based system for the configuration of smart environments usable for end

users – in particular, we show how the goal formulation step can be simplified.

7.4 Making Semantic Technologies Usable for End Users

In the previous section, we presented the RESTdesc format and an extension to RESTdesc

that allows to use its description style to configure smart environments. Using this system,

end users can formulate a semantic goal and submit this goal to a reasoner that will
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attempt to return a series of Web service invocations to reach the goal. However, because

of the underlying semantics that our system requires and since the introduction of states

adds even more complexity to the goal creation, end users cannot be expected to write

valid goal descriptions by themselves: the user would not only need to know about the

predicates to use (e.g., hasTemp) but also about the states ontology itself, as well as the

correct N3 syntax to express his goal.

In this section, we discuss two techniques to mitigate this problem by facilitating the

formulation of goals for end users: First, we present an integration of the system with a

visual programming language that constrains users to modeling only specific properties

that are supported by their current smart environment. Second, we propose a mechanism

that aims to reduce the burden on end users even further by extracting goal templates from

services present in the user’s environment and having users simply select an appropriate

goal, rather than formulating it themselves.

7.4.1 A Graphical Editor for User Goals

As a first step to facilitate the process of formulating goals for end users, we integrated our

system with ClickScript [305], a JavaScript-based visual programming tool. We already

used ClickScript in earlier projects, when it was extended with the capability of connecting

to Web services that run on smart devices using AJAX [75]. Generally, the system

is used by dragging components that represent variables, control structures, or smart

devices from the top bar to the editor and connecting matching inputs and outputs (see

Fig. 7.9). When satisfied with the designed application, users click the “Run” button that

causes ClickScript to execute it starting with initial nodes (i.e., nodes without inputs) and

working its way along the mashup graph.

We have further extended the tool to enable its usage for “designing” semantic goals

and for using it as an interface to a semantic reasoning service. Specifically, we have

equipped ClickScript with components that represent the different predicates that are

useful to describe a smart environment with entities that encapsulate the state of real-

world items such as rooms (see Fig. 7.10(a)). The components available for modeling

attributes of a smart environment such as an abstraction for a Room entity, or a ther-

mometer that is associated with the hasTemp predicate can be dragged to ClickScript’s

editing view to use them within goal definitions.

For instance, to model different desired attributes of a room as in Fig. 7.10, the first

step is to create a new room entity and to connect it to the corresponding room identifier

(in this case, Office). Next, the user configures the desired state of this room by adding

components which represent different aspects of that state: the note icon represents media

playback, the thermometer icon stands for the ambient temperature (i.e., the hasTemp

property in the goal shown in Listing 7.4), and the alarm clock icon is used to model

ambient alarms. Finally, the user can infer the correct data types of the components’

input parameters (for instance, the concrete temperature value) from the colors of the

component inputs. A user’s task thus only consists of dragging the desired elements

to the editing view, connecting the matching input and output types, and entering the

parameter values.
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Figure 7.9: The ClickScript interface allows users to graphically create applications by con-
necting components from the top bar. In the example, the output of a thermometer is
compared to a constant and, depending on the result of the comparison, a fan is switched
on or off. The connector colors correspond to different data types String (green), Number
(yellow), and Boolean (blue).

(a) (b)

Figure 7.10: (a) With our extensions that include Room entities and components which
represent semantic predicates such as hasTemp, ClickScript users can create semantic goals
graphically. In this example, the user wants to configure the ambient temperature, set an
alarm, and choose a currently playing song for the room “Office.” The connected “Target”
component leads to ClickScript displaying the goal that corresponds to the modeled environ-
ment (b), where we omitted the definitions of the parameters temp0, song1, and time2.

When satisfied with the configuration of the smart environment state, the user can

choose among multiple options of how the created model should be processed by Click-

Script, by connecting different components to the output connector of the room entity.

The user’s first option is to output the goal textually on the screen by connecting the

“Target” component. This situation is shown in Fig. 7.10(a) and the goal that is displayed

in N3 notation is shown in Fig. 7.10(b). Alternatively, the system can provide a human-

readable description of the HTTP requests that should be executed to reach the specified

state of the smart environment. In this case, ClickScript invokes the reasoner to find
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Figure 7.11: When connecting the “Question Mark” component to a room, ClickScript
displays the necessary requests to achieve the goal in a human-readable way, using a simple
verbalization heuristic.

the necessary HTTP requests, uses a verbalization service to create a human-readable

representation of them, and displays this information (see Fig. 7.11). Finally, the user

can choose to have ClickScript itself execute these requests and thereby directly modify

his smart environment to match the modeled goal state.

Thus, to create a semantic goal using the ClickScript interface, the task of the user

only consists of dragging the desired elements to the editing view, connecting the match-

ing input and output types, and entering the parameter values. Users can then decide

whether (a) the goal should be displayed, (b) the reasoner should be invoked and the nec-

essary requests displayed in human-readable form, or (c) the necessary requests should

be immediately executed by the ClickScript tool itself.

ClickScript does not only parse syntactically correct goals from modeled environments,

but also constrains the user to specific ontologies that describe services in smart envi-

ronments, thus mitigating the problem of conflicting semantic information discussed in

Section 7.3.2. To extend the graphical interface with new predicates that can be part of

modeled states, it is sufficient to specify the name of the predicate and its input type, and

define a new icon that is used to represent the property. Thus, as ClickScript is based on

JavaScript, only few lines of code are required to add a new component to the system.

Finally, we mention that, although we did not conduct a usability evaluation, ClickScript

seems to be simple to use even for people without any programming experience, according

to our own and others’ experience [75, 120].

7.4.2 Automatic Creation of User Goals

Potentially, end users will never be required to formulate goals themselves, as these can

be encapsulated in tailored applications on smartphones or other devices, which could

also integrate further knowledge about the user’s context and his preferences. As an

example, it would be perfectly feasible that experts create an application which infers

favorite songs from a user’s history, creates goals to make his environment play these

songs, and executes the corresponding requests without any intervention by the user.

Similar applications could be created for office environments, or to support specific use

cases in industrial settings.
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Projector (office):

    Display local image file
 

    Display car location

Figure 7.12: Using image recognition software and automatic deduction of user goals from
RESTdesc descriptions (mock-up): a projector acts as a proxy for service mashups that it can
form part of. In this case, the projector provides the service to either display an image that is
stored on the tablet device, or to display the location of the user’s car on a map.

Still, to further investigate how the configuration of smart environments could be facil-

itated for end users based on our system, we explored the option of deriving components

of user goals at runtime in a fully automatic way, based on the available services in the

user’s surroundings. Specifically, our system is able to derive potential user goals from the

postconditions of discoverable RESTdesc documents: for instance, from the description

of a smart thermostat, the system can deduce that the predicate hasTemp exists and that

it can be used within descriptions of the state of a smart environment, and also find its

data type.

Because the RESTdesc descriptions are in our case often attached to services that are

provided by specific devices in a WoT context, this approach allows us to use a smart

device itself as a proxy for all mashups that involve a goal state that corresponds to a

postcondition of the description of that device. In other words, our system can take a

RESTdesc document that describes a device, extract its postcondition, re-formulate the

postcondition as a user goal, and ask the reasoner for all paths that lead to this goal.11

By combining this train of thought with the technologies for selecting devices in smart

environments that we discuss in Chapter 4), we can use a handheld device to recognize

smart objects and immediately display potential actions that these can perform on behalf

of the user. Fig. 7.12 illustrates this: by recognizing a projector, the system can find out

that this device could display an image that is stored on the user’s tablet. Alternatively,

if the system has also access to semantic descriptions of the Web-connected car of the

user (see Chapter 8), it can unobtrusively propose a mashup that displays the location

of that vehicle using the projector in conjunction with third-party services and the GPS

sensor of the car.

11The EYE reasoner was not meant to be used to find many paths that lead to a goal – however, its
creator Jos De Roo was kind enough to extend the software when we asked for this functionality to be
integrated – thank you!
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7.5 Summary

In this chapter, we described two composition systems for Web services that contribute

to the large body of research in that domain by suggesting approaches to enabling ser-

vice composition in dynamic pervasive computing environments that heavily build on the

REST architectural style. First, we described our implementation of a computational

marketplace for the WoT, which is an open framework that supports the crowd-based

publishing of information about Web service mashups and their usage by clients. Our

marketplace was created to re-use core REST concepts to guarantee properties such as

scalability, fault tolerance, and change tolerance for distributed computations. In partic-

ular, we explored the use of the HATEOAS constraint for guiding clients within service

mashups. We concluded that a computational marketplace can enable clients to make lo-

cally informed decisions about the traversal in a mashup, but that additional information

is necessary for fully automated usage of our system.

To facilitate the configuration of smart environments for end users by fully automating

the service composition step, we propose a goal-driven approach to this challenge, where

users express their needs using a graphical configuration environment. In our system, a

user formulates a goal that defines the desired state of his environment which is used by

a semantic reasoner to deduce the HTTP requests necessary to reach that goal. We are

able to satisfy complex demands using only first-order logic, which makes this system

flexible yet fast. From our perspective, using semantic technologies to deduce service

mashups represents a much more flexible alternative to the process-driven composition

of services: because the services are combined at runtime, the system can flexibly react

to individual services becoming unavailable by finding alternative paths that also serve

to reach the user’s goal. Furthermore, the reasoning process could also take into account

more information about the user context, or his preferences, to derive mashups that are

even better suited for a concrete situation.

One major challenge in the proposed system is that the goal formulation step is hard

to accomplish for end users. For this reason, we extended our system by integrating it

with a graphical editor that enables users to easily create a model of the desired state of

their environment and translates this model into a goal in the N3 format. This approach

hides the complexity of the underlying semantics from end users and mitigates their

fragility by constraining end users’ leeway to the specific functionality that is offered by

the graphical editor. We also explored a method of deducing user goals from the service

descriptions of smart devices present in the user’s environment, thereby transforming the

goal formulation problem into one of merely selecting an appropriate goal.



CHAPTER 8

Case Study: Interacting with Smart Cars

A car whose telemetry data is projected into the “Cloud” and accessible for third parties

via standard Web technologies represents, in our perspective, a highly interesting example

of a Web-enabled smart thing – in this chapter, we discuss the application of the tech-

niques that we propose in this thesis for interacting with smart devices to Web-enabled

automobiles. The basic infrastructure necessary to make cars accessible over the Web is

supplied by CloudThink , a platform that we developed to make vehicle data and actua-

tion capabilities usable for clients in near real time via an intuitive REST API. Because

CloudThink thus integrates cars into the Web of Things, all approaches that we present in

this thesis for interacting with smart devices also apply to automobiles: we can recognize

cars and interact with them, can visualize their interactions with other smart things and

applications, and can semantically describe the data and services they provide to enable

the automatic collaboration of vehicles with smart devices and Web services.

We begin this chapter with a discussion of the CloudThink platform and, subsequently,

discuss several applications that we developed on top of the platform (Section 8.2): be-

cause the current main focus of CloudThink is to help drivers economize fuel, we first give

a brief overview of an application that we developed to this avail and then discuss the

integration of the platform with our interaction techniques for smart devices. Specifically,

we show that our object recognition system from Chapter 4 can be combined with the

embedded interaction descriptions proposed in Chapter 3 to enable drivers to directly

interact with their cars. We furthermore demonstrate the applicability of our approach

of semantically describing services that are provided by smart things to automobiles (see

Chapter 7) – this system integrates cars with other smart devices and Web services, thus

creating physical mashups that make use of data and functionality provided by vehicles.

Finally, we show that our augmented-reality interface described in Chapter 5 can visual-

ize interactions of clients with cars, thus demonstrating the applicability of the logging of

HTTP requests also in this domain.
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8.1 The CloudThink Platform

In the context of a collaboration between ETH, Massachusetts Institute of Technology

(MIT), Singapore University of Technology and Design (SUTD), and other research insti-

tutions in the USA and the United Arab Emirates, we have – since the year 2012 – been

involved with the development of a vehicle-to-cloud communication platform that we call

CloudThink [239]. The core of this system consists of a low-cost hardware platform (the

CARduino) that connects to the on-board diagnostics port of a car using the OBD-II

interface1 and a secure back-end server that stores data uploaded from cars and makes it

accessible to other applications via a REST API.2

The main goal of CloudThink is to enable drivers to share data from their vehicles

for processing by third-party applications while emphasizing an open, secure interface to

this data. CloudThink thereby aims to create an “Appstore” for cars that hosts appli-

cations which can access and process car telemetry. The platform is distinguished from

similar projects in the automotive domain in that the platform remains agnostic of the

concrete type and make of vehicle and therefore enables data sharing across the bound-

aries of car manufacturers – use cases for the CloudThink system stretch from enhancing

vehicle security (for instance, a “virtual leash” on cars, or tracking of stolen vehicles)

to reducing the environmental impact of cars by helping drivers to find out how they

can better economize fuel. Drivers could also use such a system to improve safety by

adapting their driving style [117], and the platform could help set economic incentives

to do so by enabling pay-as-you-drive insurance schemes [168, 242]. Potentially, drivers

could also use CloudThink to monetize their driving data, for instance by sharing usage

statistics and telemetry with the manufacturer of their car – or provide the same data

to non-profit organizations to achieve better transparency of how specific vehicles fare in

realistic situations, for instance with respect to their fuel consumption or maintenance

effort. Another highly interesting application domain is using real driving data for the

improvement of vehicle characteristics, for instance determining the optimal battery size

for electric cars [212]. On a larger scale, real-time feedback from vehicles could help im-

prove road quality – and safety – by enabling road operators to quickly react to problems

that range from potholes to developing traffic jams [195, 209].

The main components of the CloudThink system are the CARduino hardware, the

data server that stores data uploaded from individual cars in a local database, and the

gateway server that enables third parties to access the stored data in a uniform way

via a REST API (see Fig. 8.1). While our partners at MIT are leading the hardware

development (see Section 8.1.1), our main responsibility within the CloudThink project

is the implementation and maintenance of the back-end infrastructure (see Section 8.1.2).

We also created applications that provide better access to data stored on the platform in

the form of a “virtual dashboard” that could be used, for instance, by fleet managers, and

used telemetry data from CloudThink to create an application that gives drivers more

insight into their own driving behavior – and clues as to how they could improve their

own fuel economy (see Section 8.2).

1This is a standard interface that every car commissioned after the year 1996 must support.
2See http://api.cloud-think.com
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CARduino

Cellular Operator

CloudThink Infrastructure

Storage

Data Server

Gateway Server
Clients

Figure 8.1: Overview of the CloudThink architecture. The CARduino hardware is deployed
on the car and communicates with the CloudThink back end via GSM. In the back end, the
data server parses and filters the data and stores it in a database. The gateway server provides
a REST API for clients to conveniently access the data.

(a) (b)

Figure 8.2: (a) The CARduino hardware (ca. 9.3cm x 4.4cm x 1.5cm). One can recognize
the SIM card and the SD card that is used for data buffering. The GPS and GSM antennas
are attached to the bottom of the module. The “CloudCar” silkscreen refers to the former
name of the CloudThink project. (b) The CARduino hardware shown in its 3D-printed casing
and the OBD-II connector cable.
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8.1.1 CARduino Hardware

Our CARduino hardware3 (see Fig. 8.2) is responsible for transmitting information from

the vehicle to the CloudThink back-end infrastructure, where this data is stored in a

SQL-based database. All information is sent via GSM connections and encoded in a

custom message format that is tuned to minimize the volume of the transmitted data,

thereby helping to keep communication cost low. Each message that is sent to the back

end consists of the recording timestamp, the type of the transmitted data, the data itself,

and a checksum. Messages are received by the CloudThink data server that parses and

checks each message before storing the contained data in the database.

The CARduino carries an on-board accelerometer and a GPS receiver, and can be

configured to listen on a car’s OBD-II interface for OBD messages that are tagged with

specified OBD-II Parameter Identifiers (PIDs). This allows us to capture information

about most internal processes of a vehicle, for instance basic driving data (e.g., speed,

heading, etc.) and information related to motor management (e.g., motor revolutions per

minute, mass air-flow, coolant temperature, etc.). In particular, we are able to gather

all data required for calculating an approximation of the instantaneous fuel consumption

of a car, which can be computed from the current vehicle speed and the mass air-flow

rate [321]. When the CARduino is unable to reach our back end, for instance due to

poor network connectivity, it uses an on-board memory unit for buffering and transmits

the contents of that buffer at the end of the trip. Finally, our hardware can also write

to the car’s OBD interface, thereby enabling it to actuate vehicle functions – we have

successfully used it to lock and unlock cars, and to control wipers and power windows.

8.1.2 Back-end Infrastructure

After being stored in the CloudThink database by the data server, the vehicle information

is processed by a synchronization script that aligns all received data points to common

5-second time windows using linear interpolation and, as part of this process, copies it to

a different database. This script is also responsible for calculating several metrics that

are derived from the raw data – such as the instantaneous fuel consumption, and distance

driven – and persisting these values together with the other synchronized data points.

It is the responsibility of the CloudThink gateway server to give client applications

(which can be mobile applications, third-party servers, and Web browsers) access to the

stored, synchronized data via a secure REST interface (SSL/TLS and HTTP Basic au-

thentication). All data is provided in the JSON and XML formats for machine clients,

and can be browsed and visualized using the HTML interface of the gateway server (see

Fig. 8.3). The server provides a layer of abstraction on top of the OBD PIDs that are

used internally by our system and enables clients to request data about attributes such as

“RPM,” “consumption,” and “speed” – information about which types of data a specific

user is allowed to access on a specific car can also easily be loaded from the interface.

Additionally, the gateway server enables clients to send actuation commands to vehicles.

3The CARduino hardware is open-source. At the moment, its only manufacturer is CarKnow Ltd., a
company that has been incorporated by one of our partners in the CloudThink project.
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(a) Response in HTML Format (b) Response in JSON Format

Figure 8.3: Example responses of the CloudThink API to a request for a minute of car
telemetry (GPS coordinates, coolant temperature, speed, and revolutions per minute).

Another responsibility of the gateway server is to enforce that only authorized users

may access data stored in the CloudThink back end. For this, it makes use of another

database that stores, for each registered user and application, the data fields that this user

may access (e.g., GPS location, acceleration, etc.) as well as, for each vehicle, the users

that are allowed to access data from this vehicle and whether they also hold actuation

rights. The gateway server also keeps track of which user accesses which stored data item

for billing purposes and to be able to inform each driver about who requests what kind

of information about their cars. Finally, the gateway server features a public interface

that enables developers of client applications to test their ideas and software prior to

registering their applications as data users on the CloudThink platform: we provide a

complete set of real data from a single car for this purpose, and have a car simulation

application that constantly replays a set of sample data, for the purpose of supporting the

testing of applications that make use of the near-real-time data stored on the CloudThink

platform. The capabilities of the gateway server are detailed in its online REST API

description, along with example queries. To further support developers in interfacing with

the platform, we provide sample code for multiple platforms and programming languages.

8.2 CloudThink Applications

Essentially, CloudThink aims to provide convenient access to vehicle data for third-party

applications – how exactly these process the provided data to create advanced services

for drivers and third parties is left to the application developers – as mentioned in the

introduction to this chapter, we imagine that CloudThink could enable applications in a

broad range of domains. In this section, we introduce several use cases that were imple-

mented on top of the platform, including a virtual dashboard (see Section 8.2.1) and a

fuel economy assistant (see Section 8.2.2). Primarily, however, we discuss the interaction

with Web-connected cars using the techniques we propose in this thesis: the automatic

generation of user interfaces and its combination with object recognition technologies (see

Section 8.2.3), the visualization of interactions with Web-enabled cars (see Section 8.2.4),

and the semantic annotation of services provided by smart vehicles to enable the integra-

tion of their functionality within physical mashups (see Section 8.2.5).
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Figure 8.4: A virtual dashboard that displays data from different sensors of a Web-enabled
car. The current location of the vehicle is shown on a map and in the form of a Google
StreetView image.

8.2.1 Virtual Dashboard

One of the first applications that were developed to make use of the data made available

via the CloudThink platform is a virtual dashboard that can visualize the current status

of a vehicle using a number of user-configurable widgets (see Fig. 8.4). The dashboard

is written in TypeScript, a programming language that is compiled to JavaScript and

facilitates the application of object-oriented programming techniques. Its basis are several

predefined widgets that hold a description of which sensors they depend on and subscribe

to a central entity that polls the CloudThink API and informs each widget about updates

to its relevant sensor values in a publish/subscribe paradigm.

While this application is of limited use while driving a vehicle and thus having access

to its physical dashboard, we believe that virtual car dashboards can be valuable to fleet

managers. The developed interface could for instance enable them to obtain a near-real-

time overview of their managed vehicles that includes data about the latest instantaneous

fuel consumption values, tank fill level, and total distance driven. The interface can also

make use of remote Web services, for instance using the Google Maps API to display the

current locations of vehicles.

8.2.2 Improving Drivers’ Fuel Economy

One way that the CloudThink platform could help to reduce the environmental impact of

a vehicle is by enabling to give “eco-driving” feedback to the driver. We implemented a

smartphone application that makes use of vehicle telemetry data accessed via CloudThink

and allows drivers to compare their fuel efficiency on different routes that they use fre-

quently. To accomplish this, we segment an individual vehicle’s data that we obtain from

the platform into individual trips and group similar trips together – from these groups, we

extract the most frequently driven routes (such as the daily commute to and from work)
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(a) (b)

Figure 8.5: CloudThink enables the creation of heatmap-overlays that highlight places with
lowest fuel efficiency such as frequently congested roads and parking lots, in this case for two
areas in the Boston metropolitan area.

and compute the average fuel consumption over all trips on these routes. After these

steps, we can rank individual trips on the same route with respect to fuel efficiency and

give feedback to drivers about their most recent trip on that route, or let them compare

a recent trip to their “reference trip,” i.e., that with the lowest fuel consumption. Drivers

can also use our application to compare the environmental impact of a trip with that of

alternative means of transportation, such as walking, cycling, or using public transport.

Our trip segmentation uses a dwell-time based heuristic that considers consecutive

readings as a trip whenever they are not separated by a gap of at least 30 minutes. We

use a higher threshold than other studies [214] to account for smaller gaps that are due

to missing data which can occur, for instance, in areas without network coverage such as

tunnels. Using this method, our application identified 150 distinct trips from a vehicle’s

telemetry data over a timeframe of six months (128612 data samples, a total of about

9000 km driven) with a mean duration of about 32 minutes.

For the grouping of trips, we perform similarity-based clustering: the main challenge

here is that the recorded GPS location traces of two trips can be very different, even though

both trips correspond to the same route. This is due to variations in trip parameters such

as traffic conditions, velocities, or waiting times at traffic lights: if a driver must wait

at a traffic light in one trip but not in another, the results from a one-to-one matching

of GPS readings can be misleading. To overcome this challenge, our route matching

algorithm takes multiple observations within a specified search radius into account when

matching GPS locations in two trips [233]. The algorithm then finds the longest common

subsequence of matched GPS locations of two trips. For our data, we identified 30 distinct

routes which comprise five trips each, on average. Note that it is intentional that trips are

clustered using the described method and not via the more robust approach of matching

trips’ starting and end points: we intend to do the clustering based on the exact path

taken by the vehicle in each trip because our goal is not to find the most fuel-efficient

route from one place to another (this is a closely related problem) but rather help drivers

reduce the fuel consumption of their vehicle on a specific route.

By applying the segmentation and clustering algorithms to data obtained from Cloud-
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(a) (b)

Figure 8.6: With the help of the CloudThink API, a smartphone application can display values
from sensors of a recognized vehicle (a) and provide user interfaces to control its actuators (b).

Think, we can immediately compute the fuel consumption of the vehicle for individual

trips, and compare trips in the same cluster. We can also generate fuel consumption

heatmaps that can be overlaid on maps to highlight places where fuel efficiency is lowest

(see Fig. 8.5). When applied to our data, these heatmaps indicate higher average fuel

consumption on parking lots as well as hilly and frequently congested roads.

8.2.3 Interacting with Smart Cars

As an example of how the techniques for interacting with smart devices developed in

this thesis can be applied to the interaction with Web-enabled automobiles, we present

the usage of our approach of visually recognizing objects and automatically rendering

intuitive user interfaces in conjunction with connected vehicles as a proof of concept. Our

approach of describing the high-level semantics of interactions with Web-enabled devices

that is discussed in Chapter 3 can be applied in the context of generating user interfaces

for the sensors and actuators of Web-enabled cars without requiring any changes to the

system (see Fig. 8.6) – this further emphasizes the broad applicability of our interaction

description language to use cases in the ubiquitous computing domain. However, applying

the visual device selection system that we propose in Chapter 4 in this context (see

Fig. 8.7(a)) gives rise to the challenge of the visual similarity of distinct vehicles.

Visual Similarity of Different Vehicles Being based on visual object recognition tech-

nologies, our systems cannot differentiate between different cars that look alike, with the

exception of cases where unique features of the car are visible in the camera frame (and

training images). While our approach is thus able to find and match visual features of

vehicles, these are often located on the rims or the number plate of a vehicle, on cus-

tom stickers, “inside” the car, or on its reflective surfaces (see Fig. 8.7(b)), which makes

the robustness of our system heavily dependent on the current lighting conditions. Fur-

thermore, especially in the case of “plain vanilla” cars without any distinct features, our

software is not able to differentiate between cars of the same make, type, and color. Simi-

lar to humans, who often arbitrate between different cars that look alike by remembering

their vehicle’s parking location, we propose to partially overcome this challenge by using
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(a) (b)

Figure 8.7: (a) Our smart things interaction software recognizes a car using visual features.
(b) For cars, our visual object recognition software falls back to the few distinctive features of
a vehicle, for instance on its rims, stickers, and the number plate. Unfortunately, many of the
other features are located “inside” the car.

(a) (b)

Figure 8.8: Our application visualizes interactions with a Web-enabled automobile that are
brokered by the CloudThink platform using a visual object recognition algorithm and an aug-
mented reality overlay on a handheld device. (a) Interactions of a client with a vehicle (and
other endpoints). (b) Interaction of a handheld device with a vehicle.

the GPS location of a car (that can be obtained from the CloudThink API) in conjunc-

tion with the location of the user interface device as an additional context parameter to

uniquely identify a vehicle (see also Section 9.3 about future work for a more general

discussion of this method). However, while this technique can indeed help to achieve

stable selection results, it introduces another challenge: the (remote or local) application

that helps the user interface device arbitrate between different cars requires access to the

locations of cars that are registered to the CloudThink platform or, as a minimum, an

interface to send geographically bounded queries for a car (i.e., “Is car C currently located

within 100 meters of the GPS coordinates (Lat,Lon)”).

8.2.4 Monitoring Car Interactions

Smart, Web-enabled vehicles also represent an interesting use case for our visualization

system for smart device interactions. In this context, the ability to monitor interactions is
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relevant to protect drivers from attacks on their privacy such as location profiling or the

misuse of private data by authorities [49]. To demonstrate the applicability of our system

in this domain, we integrated the active logging software of our interactions monitoring

system described in Chapter 5 with the CloudThink back end: using the javaagent JVM

parameter when restarting the CloudThink gateway server, the integration itself proved to

be straightforward and could be done within a few minutes. The combined system allows

users to monitor interactions of clients with their vehicles using the Web interface of our

visualization tool as well as displaying these interactions as a live overlay on handheld

devices (see Fig. 8.8).

8.2.5 Functional Semantic Metadata for Smart Cars

Apart from applying our approaches to facilitating the direct interaction with smart

devices to automobiles and enabling drivers to monitor interactions of their vehicles with

other clients, we have used functional semantic metadata – in the form described in

Chapter 7 – to describe the functionality of the CloudThink API with respect to providing

access to vehicle telemetry data of individual cars, where each car is uniquely identified

using its Vehicle Identification Number (VIN). As an example, Listing 8.1 shows the

semantic description of the API that enables clients to obtain the GPS latitude of the

current location of a vehicle given its VIN – the CloudThink API contains a similar

description for each parameter that can be accessed about its connected cars (e.g., their

velocity, coolant temperature, and revolutions per minute).

To demonstrate that our system is capable of creating composite services on top of data

produced by vehicles and published via CloudThink, we used its semantic descriptions

together with those of a service able of displaying arbitrary images on a screen and

1 @prefix : <ex#>.

2 @prefix ex: <http://example.org/#>.

3 @prefix http: <http://www.w3.org/2011/http#>.

4 @prefix dbpedia: <http://dbpedia.org/resource/>.

5

6 {

7 ?car a dbpedia:Car;

8 ex:hasVin ?vin.

9 }

10 =>

11 {

12 _:request http:methodName "GET";

13 http:requestURI ("https://api.cloud-think.com/

14 data/"?vin"?param=gpslat");

15 http:resp [ http:body ?gpslat ].

16

17 ?gpslat a dbpedia:Latitude;

18 ex:derivedFrom ?car.

19 }.

Listing 8.1: Part of the RESTdesc description of the CloudThink API that describes how the
current GPS latitude of a car can be obtained given its VIN.
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Figure 8.9: By publishing semantic metadata that describes its interfaces, functionality of
CloudThink API (i.e., access to sensor values and actuators of connected vehicles) can be
flexibly integrated with other local and remote Web services. In this example, a user instructs
an interface device (in this case, a smartphone) to display the location of his car on a map that
is shown an a nearby computer screen and a reasoner deduces the necessary HTTP requests.

semantically annotated two mapping applications (Google Maps and OpenStreetMaps).

We also formulated a goal that expresses that we want to obtain an image object that is

also a map and is derived from a specific car, and that a screen that is situated at the

current location of the user should be displaying this image – this leads the reasoner to

propose that it could display the current location of a car on a nearby screen, by mashing

up the CloudThink back end with either Google Maps or OpenStreetMaps and the screen

API (see Fig. 8.9). The reasoner successfully sends the appropriate requests to the client

which can execute them and thereby achieve its desired goal. Furthermore, when we

blocked access to one of the two mapping services, the mashup seamlessly switched to

using the other, thus demonstrating the flexibility of our approach of using functional

semantic metadata for service composition.

8.3 Summary

The CloudThink platform, a joint effort of ETH and several international partner institu-

tions, has been created to make automobiles “first-class citizens” of the Web and enable

third-party applications to easily access and process vehicle data while providing advanced

services to drivers. We and others have created several such applications on top of this

platform, in particular in an effort to help drivers increase their vehicle’s fuel efficiency.

In this chapter, we briefly described one such application as well as a virtual dashboard

that allows individuals to remotely access and monitor near-real-time telemetry data of

automobiles, which we believe could be helpful in the context of administering vehicle

fleets. We also showed that our approaches for interacting with devices in Web-enabled

smart environments can be applied to vehicles that are connected to the CloudThink

platform: using our systems, it is possible to directly interact with sensors and actuators

of connected automobiles, monitor the communication of vehicles and clients in real time,

and to seamlessly use functionality that is provided by cars within physical mashups.
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CHAPTER 9

Conclusions and Outlook

The goal of this thesis was to explore how the interaction with Web-based smart environ-

ments can be facilitated for people. In the thesis, we discussed several ways of how this

can be accomplished for both, the direct interaction of individuals with individual smart

devices and the management and configuration of entire smart environments .

9.1 Interacting with Individual Smart Things

To support users who wish to interact with a smart thing, they must first be enabled

to initiate the interaction by selecting a device suitable to their needs. We propose to

make use of current visual object recognition methods that can be deployed on handheld

or wearable devices such as smartphones, smartwatches, or smartglasses (see Chapter 4).

For the scenarios that we considered from the ubiquitous computing domain – smart

homes, workplaces, and cars – we found our approach that combines a Bag of visual

Words with linear SVMs and FAST/ORB feature detection/description to be appropriate

since it allowed to recognize smart devices accurately yet fast. The proposed system thus

represents an intuitive and feasible way of initiating interactions with smart things in

scenarios with a limited number of devices. The biggest advantages of our method are

that the training can be done using only snapshots of the devices to interact with and

that our approach requires no fiducial markers to be attached to them.

To supply users with an appropriate and intuitive user interface to interact with a

selected smart thing, we propose to embed a description of the high-level semantics of

interactions with that device within its Web representation (see Chapter 3). The advan-

tages of this approach are manifold: interfaces can be generated for multiple interaction

modalities, including gestures, speech, and interaction via physical sensors; the descrip-

tion itself is simple to generate even for end users, which we demonstrated in an extensive

study among approximately 800 participants without any special training; the capabili-

ties of the interaction device can be taken into account when rendering a user interface;

finally, interactive components of devices and user interfaces are decoupled, meaning that

the smart things do not need to be aware of the types of devices that control them.
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Together, these approaches enable the intuitive and convenient direct interaction with

smart devices – our approach achieved more than 75 points on the System Usability Scale

which is a very high value for a prototype implementation.1 The proposed systems can be

deployed on a multitude of user interface devices that range from powerful smartphones

and tablets and wearables such as smartglasses and smartwatches to simple Web-enabled

switches or knobs. In particular, we have demonstrated an approach called “user interface

beaming” that allows to combine the straightforward and intuitive selection of devices

using smartglasses with the convenient interaction with them via a smartwatch.

9.2 Configuring and Managing Smart Environments

A necessary precondition for enabling users to interact with collections of smart devices

is that these can be easily discovered, even in densely populated smart environments. To

allow this, we implemented a management infrastructure that is optimized for providing

discovery and look-up services for large numbers of devices in extensive settings (see

Chapter 6): we guarantee its scalability by structuring its individual nodes hierarchically

by logical location identifiers and letting each node administer only a single location,

thereby keeping the number of devices per node manageable. In the thesis, we show that

the adoption of widely used protocols and patterns from the Web in the design of our

system is beneficial not only for facilitating user interaction with it but also to balance

the overall load on the infrastructure and achieve high throughput when processing large

numbers of look-up requests.

To enable users to control an entire smart environment that is populated by hetero-

geneous devices and services, we propose a flexible yet lightweight way of automatically

combining Web services to achieve a specified user goal (see Chapter 7). To accomplish

this, our smart devices advertise their high-level functionality using a language called

RESTdesc that merges such data with information about the HTTP request necessary to

invoke the device functions. Given a number of RESTdesc documents and a user goal, a

semantic reasoner can combine functionality across smart devices and supply the user with

all information required to execute the created physical mashup. In the thesis, we propose

an extension to the RESTdesc language that makes it usable in smart environments where

physical entities carry a state and, therefore, the first-order-logic-based reasoning cannot

operate without modification – this enables users to configure their smart environment

according to their needs by merely formulating a goal state and executing the HTTP

requests suggested by the reasoner. To make the goal formulation step simple for users,

we present an integration of our system with a graphical programming language called

ClickScript that can create semantic goals from a graphical representation of the desired

state, display the necessary HTTP requests in a human-readable way, and execute them

on behalf of the user. The main advantage of our proposed service composition system are

that it is highly flexible and fault-tolerant because mashups are created at runtime and,

therefore, can adapt by circumventing services that become unavailable while considering

newly discovered ones. Furthermore, the brittleness and potential inconsistencies of the

1Note that this study was carried out among participants of a ubiquitous computing conference.
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underlying semantics are mitigated by the ClickScript user frontend that guarantees the

correct syntax and constrains users to predicates and namespaces that occur within their

current smart environment.

We furthermore propose a novel method to increase the degree of information and

control of users about interactions between devices in their smart environment and with

remote services. We show that it is possible to inform users about such interactions by

combining a logging back end with our visual object recognition system and an augmented

reality overlay to visualize communications between devices in real time (see Chapter 5).

Finally, we demonstrate the applicability of our proposed systems to interact with in-

dividual devices and service mashups in the context of the CloudThink platform that

makes data and functionality provided by automobiles directly accessible for clients via

the World Wide Web (see Chapter 8).

In conclusion, we have discussed different approaches that we developed for users to

better interact with individual smart things and entire smart environments populated

by Web-connected devices. Novel interaction mechanisms such as those proposed in this

thesis are, in our opinion, crucial to give users control about everyday processes in an

increasingly computerized world – at their homes, workplaces, and in public spaces.

9.3 Future Work

We suggest several ideas for the extension of the approaches and implemented prototypes

that are presented in this thesis and briefly discuss remaining challenges that should be

addressed in the future. Our suggestions refer to the usage of more information about

the context of an interface device to improve the object recognition as well as the user

interface generation and the importance of (indoor) location information as part of this

context and its structuring. Furthermore, we suggest that also interaction devices could

advertise their interaction semantics, briefly discuss the merits of a potential automatic

classification of device interactions , and suggest two avenues for further research within

the semantic service composition domain: exploiting the RESTdesc description style with

respect to global non-functional characteristics of mashups and exploring how our system

could support multi-user scenarios .

Context-based Device Recognition In Chapter 4, we propose the usage of visual ob-

ject recognition techniques to enable users to select devices to interact with in smart

environments. To accomplish that in our prototypes, we use state-of-the-art methods re-

garding the feature detection and description as well as the classification itself. We have

shown that we can robustly differentiate about a dozen devices based on these technolo-

gies, which we deem sufficient for our scenarios – however, we expect the performance

of our proposed system to decrease when more devices are considered. To overcome this

challenge, we propose to make better use of aspects of the context of the device that runs

the recognition algorithm other than visual features in its camera feed. Regarding such a

broadening of a scene understanding algorithm beyond the visual computing domain, we

particularly suggest to make use of the (indoor) location of the device and also consider
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sensors such as its microphone, gyroscope, and accelerometer. The fusion of sensor data

from a variety of sensors of a smartphone has already been successfully applied within

the domain of activity recognition [244] – we believe that a similar system could help to

increase the performance and scale of object recognition techniques as well.

Context-sensitive User Interfaces Regarding the provisioning of appropriate user in-

terfaces (see Chapter 3), we believe that it would be interesting to explore how context-

sensitive interfaces could be better supported by tailoring interaction patterns to the cur-

rent situation of their user. For instance, human users often wish to interact differently

with a device in their immediate vicinity than when controlling the device from a remote

location. Most users probably prefer gradual/relative interaction primitives over absolute

interactors to interact with devices which they can physically observe (e.g., dimming the

lights in the room they currently are in) while they will prefer the latter for remote control

(e.g., remote-controlling the lighting in their home from abroad). Similarly, users might

prefer to interact differently with a smart device depending on other activities they are

currently engaged in (e.g., driving a car, or a bicycle). Information about the context of

users, and in particular their location relative to an interactive component, could thus

be considered not only for improving the device selection, but also for rendering more

suitable user interfaces.

Standard Logical Place Identifiers Enabling a device to determine its current location

– an important characteristic of the device context – requires a method of achieving

robust indoor localization. After more than a decade of intense research into this delicate

topic, we are very pleased to finally also see major companies investing in real-world

deployments of such systems in the last few months: Apple, a technology firm, has recently

launched its iBeacon service to track shoppers at its own and others’ stores [263] and

Google, an Internet company, has been collecting indoor mapping data since the year

2011 [303]. If indoor localization systems are indeed widely adopted, one main concern

will be to establish standard naming conventions for logical places such as rooms, shops,

and buildings. Within our implementation of a management infrastructure for smart

devices that also makes use of logical place identifiers (see Chapter 6), this information

is statically assigned from a central registry – we do not know, however, whether such

a system would be applicable within real-world scenarios, and especially when people

disagree about what name to assign to a specific place.

From Interaction Descriptions to Interactor Descriptions Our approach of modeling

interaction semantics to generate appropriate user interfaces could be applied not only

to interactive components but also to interactors such as physical buttons or software

primitives. For instance, a knob could embed a description indicating that it is usable

for controlling any interactive component that has the type set value (from our taxon-

omy proposed in Chapter 3). Given this information, one can envision the user-driven

or even automatic matching of interactive components and interactors in flexible smart

environments. If desired by users, physical interactors such as switches could easily be
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assigned to control any device that has appropriate interaction semantics and would not

be anymore limited to controlling statically assigned interactive components.

Automatic Classification of Device Interactions Regarding the visualization of device

interactions that we presented in Chapter 5, it would be highly interesting to combine our

approach with features of current communication analysis software that is used within

several commercial network management systems. This would allow the system to learn

which interactions in a smart environment are considered normal and to notify the user

about unusual events. The technique could also be combined with our approach of letting

users set firewall rules using the augmented reality interaction visualization interface, thus

allowing them to configure the system to automatically prevent unusual network messages.

Global Non-functional Characteristics in Service Composition In Chapter 7, we pro-

posed to use the preconditions of RESTdesc descriptions for controlling the non-functional

properties of a service mashup, in particular to express simple security guarantees of in-

dividual services. The potential of extensions to the preconditions and postconditions of

RESTdesc should be further explored to enable clients to better manage the characteris-

tics of generated service compositions, for instance regarding QoS properties. Specifically,

we believe that it is feasible to exploit the RESTdesc style to guide the service composition

regarding global non-functional properties of mashups, for instance their total expected

latency or cost, and their end-to-end security properties.

Service Composition in Multi-user Environments Finally, we suggest that it should

be investigated how goal-based service composition systems could support multiple users

in a smart environment [121]. While we believe that majority- or consensus-based systems

should be feasible in multi-user environments, we have not implemented any multi-user

support. The semantic reasoning that we propose in Chapter 7 is not aware of whether

it is used by one or multiple users and our system tenaciously executes requests in the

order of their arrival, thus implementing a “last-request-decides” metric.
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[38] E. Corchado and Á. Herrero. Neural Visualization of Network Traffic Data for

Intrusion Detection. Applied Soft Computing, 11(2):2042–2056, 2011.

[39] P. M. Corcoran and J. Desbonnet. Browser-style Interfaces to a Home Automation

Network. IEEE Transactions on Consumer Electronics, 43(4):1063–1069, 1997.

[40] I. Corredor, J. F. Mart́ınez, M. S. Familiar, and L. López. Knowledge-Aware and
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APPENDIX A

Interaction Abstraction Schemas

This appendix contains JSON Schema specifications for the semantic interaction descrip-

tions discussed in Chapter 3 and practical usage examples. Section A lists the abstractions

used for describing sensors and Sections A and A those pertaining to stateless and stateful

actuators, respectively. The specifications frequently reference helper schemas that are

defined in Section A.

Sensor Interaction Abstractions

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.getdata",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the get data interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name"

12 }

13 },

14 "$ref":"ch.ethz.inf.vs.wot.ui.type"

15 }

16 }

Listing A.1: JSON schema for the get data interaction abstraction.
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1 {

2 "type": {

3 "name":"string"

4 },

5 "abstraction":{

6 "name":"get_data"

7 }

8 }

Listing A.2: Example for a get data interaction description: display the currently playing

song of a hi-fi unit.

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.value",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the get value interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name"

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors"

13 }

14 },

15 "$ref":"ch.ethz.inf.vs.wot.ui.type"

16 }

17 }

Listing A.3: Description schema for the get value interaction abstraction.
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1 {

2 "type":{

3 "name":"number",

4 "range":[ 5, 130 ],

5 "unit":"degrees celsius"

6 },

7 "abstraction":{

8 "name":"get_value",

9 "anchors":[{

10 "name":"positive",

11 "range":[ 20, 130 ]

12 }]

13 }

14 }

Listing A.4: Example for a get value interaction description: display the coolant

temperature of a car.

1 {

2 "id":"ch.ethz.inf.vs.ui.wot.proportion",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the get proportion interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name"

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors"

13 }

14 },

15 "$ref":"ch.ethz.inf.vs.wot.ui.type"

16 }

17 }

Listing A.5: Description schema for the get proportion interaction abstraction
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1 {

2 "type":{

3 "name":"number",

4 "range":[ 0, 100 ],

5 "unit":"%"

6 },

7 "abstraction":{

8 "name":"get_proportion",

9 "anchors":[{

10 "name":"alert",

11 "range":[ 90, 100 ]

12 }]

13 }

14 }

Listing A.6: Example for a get proportion interaction description: monitor the load of a

server.

Stateless Actuator Interaction Abstractions

1 {

2 "id":"ch.ethz.inf.vs.ui.wot.trigger",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the trigger interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name"

12 }

13 },

14 "$ref":"ch.ethz.inf.vs.wot.ui.type"

15 }

16 }

Listing A.7: Description schema for the trigger interaction abstraction.
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1 {

2 "type":{

3 "name":"string",

4 "label":"Irrigation time"

5 },

6 "abstraction":{

7 "name":"trigger"

8 }

9 }

Listing A.8: Example for a trigger interaction description: trigger an irrigation system to

switch on for a given time.

1 {

2 "id":"ch.ethz.inf.vs.ui.wot.goto",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the goto interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name",

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.orientation",

13 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.rate",

14 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.increment"

15 }

16 },

17 "$ref":"ch.ethz.inf.vs.wot.ui.type"

18 }

19 }

Listing A.9: Description schema for the goto interaction abstraction.
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1 {

2 "type":{

3 "name":"enum",

4 "values":[ "previous", "next" ]

5 },

6 "abstraction":{

7 "name":"goto",

8 "increment":"next",

9 "rate":4,

10 "orientation":"horizontal"

11 }

12 }

Listing A.10: Example for a goto interaction description: switch to next or previous song on

a hi-fi unit.

Stateful Actuator Interaction Abstractions

1 {

2 "id":"ch.ethz.inf.vs.ui.wot.set",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the set interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name",

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors"

13 }

14 },

15 "$ref":"ch.ethz.inf.vs.wot.ui.type"

16 }

17 }

Listing A.11: Description schema for the set interaction abstraction.



205

1 {

2 "type":{

3 "name":"string"

4 },

5 "abstraction":{

6 "name":"set"

7 }

8 }

Listing A.12: Example for a set interaction description: modify a string in a field.

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.setvalue",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the set value interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name",

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors",

13 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.orientation"

14 }

15 },

16 "$ref":"ch.ethz.inf.vs.wot.ui.type"

17 }

18 }

Listing A.13: Description schema for the set value interaction abstraction.
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1 {

2 "type":{

3 "name":"number",

4 "range":[ -20, 50 ],

5 "unit":"degrees celsius"

6 },

7 "abstraction":{

8 "name":"set_value",

9 "anchors":[{

10 "name":"hot",

11 "range":[ 30, 50 ]

12 },

13 {

14 "name":"cold",

15 "range":[ -20, 15 ]

16 }]

17 }

18 }

Listing A.14: Example for a set value interaction description: control the setpoint of a

smart thermostat.

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.level",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the level interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name",

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors",

13 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.neutral",

14 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.orientation"

15 }

16 },

17 "$ref":"ch.ethz.inf.vs.wot.ui.type"

18 }

19 }

Listing A.15: Description schema for the level interaction abstraction.
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1 {

2 "type":{

3 "name":"enum",

4 "values":["darker","neutral","brighter"]

5 },

6 "abstraction" : {

7 "name":"level",

8 "neutral":"neutral"

9 }

10 }

Listing A.16: Example for a level interaction description: dim the lights.

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.setintensity",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the set intensity interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name",

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors"

13 }

14 },

15 "$ref":"ch.ethz.inf.vs.wot.ui.type"

16 }

17 }

Listing A.17: Description schema for the set intensity interaction abstraction.
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1 {

2 "type":{

3 "name":"integer",

4 "range":[0,100],

5 "unit":"%"

6 },

7 "abstraction":{

8 "name":"set_intensity",

9 "anchors":[{

10 "name":"alert",

11 "range":[ 90, 100]

12 }]

13 }

14 }

Listing A.18: Example for a set intensity interaction description: control the volume of

a hi-fi unit.

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.switch",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the switch interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name",

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors"

13 }

14 },

15 "$ref":"ch.ethz.inf.vs.wot.ui.type"

16 }

17 }

Listing A.19: Description schema for the switch interaction abstraction.
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1 {

2 "type":{

3 "name":"boolean",

4 "values":[ "lock", "unlock" ]

5 },

6 "abstraction":{

7 "name":"switch"

8 }

9 }

Listing A.20: Example for a switch interaction description: lock/unlock a car.

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.switchmode",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the switch mode interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name",

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors",

13 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.off",

14 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.default"

15 }

16 },

17 "$ref":"ch.ethz.inf.vs.wot.ui.type"

18 }

19 }

Listing A.21: Description schema for the switch mode interaction abstraction.
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1 {

2 "type":{

3 "name":"enum",

4 "values": [ "off", "automatic", "manual" ]

5 },

6 "abstraction":{

7 "name":"switch_mode",

8 "off":"off",

9 "default":"automatic"

10 }

11 }

Listing A.22: Example for a switch mode interaction description: control the operating

mode of an HVAC system.

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.position",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the position interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name",

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors",

13 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.orientation"

14 }

15 },

16 "$ref":"ch.ethz.inf.vs.wot.ui.type"

17 }

18 }

Listing A.23: Description schema for the position interaction abstraction.
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1 {

2 "type":{

3 "name":"integer",

4 "unit":"percent"

5 },

6 "abstraction":{

7 "name":"position",

8 "orientation":"vertical"

9 }

10 }

Listing A.24: Example for a position interaction description: control the position of the

scrollbar of a Web browser.

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.move",

3 "type":"object",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "description":"Schema for the move interaction abstraction",

6 "properties":{

7 "abstraction": {

8 "type":"object",

9 "required":true,

10 "properties":{

11 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.name",

12 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.anchors",

13 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.neutral",

14 "$ref":"ch.ethz.inf.vs.wot.ui.abstraction.orientation"

15 }

16 },

17 "$ref":"ch.ethz.inf.vs.wot.ui.type"

18 }

19 }

Listing A.25: Description schema for the move interaction abstraction.
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1 {

2 "type":{

3 "name":"enum",

4 "values": [ "down", "stop", "up" ]

5 },

6 "abstraction":{

7 "name":"move",

8 "orientation":"vertical"

9 }

10 }

Listing A.26: Example for a move interaction description: control a window blind motor.

Helper Schemas

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.abstraction.name",

3 "$schema":"http://json-schema.org/draft-03/schema",

4 "type":"object",

5 "properties":{

6 "name": {

7 "type":"string",

8 "enum":[ "get_data", "get_value", "get_proportion", "trigger", "goto

", "set", "set_value", "level", "set_intensity", "switch_mode", "switch

", "position", "move"]

9 }

10 }

11 }

Listing A.27: JSON Schema for abstraction name elements.
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1 {

2 "id":"ch.ethz.inf.vs.wot.ui.type",

3 "name":"type"

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "type":"object",

6 "required:true,

7 "properties":{

8 "name": {

9 "type":"string",

10 "enum":[ "boolean", "enum", "number", "item", "string" ],

11 "required":true

12 },

13 "unit": {

14 "type":"string",

15 "required":false

16 },

17 "label": {

18 "type":"string",

19 "required":false

20 },

21 "$ref":"ch.ethz.inf.vs.wot.ui.range",

22 "values":{

23 "type":"array",

24 "required": false,

25 "items":{

26 "type":"string"

27 }

28 }

29 }

30 }

Listing A.28: JSON Schema for type elements.

1 {

2 "id":"ch.ethz.inf.vs.wot.ui.abstraction.orientation",

3 "$schema":"http://json-schema.org/draft-03/schema",

4 "type":"object",

5 "properties":{

6 "type":"string",

7 "enum":[ "horizontal", "vertical" ]

8 }

9 }

Listing A.29: JSON Schema for orientation elements.
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1 {

2 "name":"anchors",

3 "id":"ch.ethz.inf.vs.wot.ui.anchors",

4 "required":false,

5 "type":"array",

6 "items":{

7 "id":"ch.ethz.inf.vs.wot.ui.anchor",

8 "required":false,

9 "type":"object",

10 "properties":{

11 "name":{

12 // The permissible values for this attribute

13 // can be adapted to the application at hand

14 "type":"string",

15 "enum":[ "alert", "positive", "negative" ]

16 },

17 "range":{

18 "type":"array",

19 "required":false,

20 "items":{

21 "type":"number"

22 },

23 "minItems":2,

24 "maxItems":2

25 },

26 "value":{

27 "type":"string",

28 "required":false

29 }

30 }

31 }

32 }

Listing A.30: JSON Schema for anchor elements.
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1 {

2 "name":"range",

3 "id":"ch.ethz.inf.vs.wot.ui.range",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "type":"array",

6 "required":false,

7 "items":{

8 "type":"number"

9 },

10 "minItems":2,

11 "maxItems":2

12 }

Listing A.31: JSON Schema for range elements.

1 {

2 // These three items have the same semantics

3 "name":"{off | neutral | default}",

4 "id":"ch.ethz.inf.vs.wot.ui.abstraction.{off | neutral | default}",

5 "$schema":"http://json-schema.org/draft-03/schema",

6 "type": [ "string", "integer", "number" ],

7 "required":false

8 }

Listing A.32: JSON Schema for neutral, off, and default elements.

1 {

2 "name":"unit",

3 "id":"ch.ethz.inf.vs.wot.ui.unit",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "type":"string",

6 "required":false

7 }

Listing A.33: JSON Schema for unit elements.

1 {

2 "name":"rate",

3 "id":"ch.ethz.inf.vs.wot.ui.abstraction.rate",

4 "$schema":"http://json-schema.org/draft-03/schema",

5 "type": [ "integer", "number" ],

6 "required":false

7 }

Listing A.34: JSON Schema for rate elements.
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APPENDIX B

Evaluation Results: Visual Object Recognition

This appendix contains the detailed results of our application of the ORB and FREAK

(FAST) feature detectors/descriptors to images of the objects in our test set, as described

in Chapter 4.

ORB detector/descriptor (Table B.1):

� 16 objects

� 20 training images per object

� 190 test images per object

� 200 feature points per image

� Pyramid scale factor 1.2, 4 pyramid levels

� Bag of Words codebook size 1600

FREAK descriptor with FAST detector (Table B.2):

� 16 objects

� 20 training images per object

� 190 test images per object

� FREAK pattern scale factor 22

� 4 octaves

� Bag of Words codebook size 1600
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APPENDIX C

Free and Open-source Software

Large parts of the work presented in this thesis have been established with the help of

free and open-source software and we take this opportunity to thank the contributors of

each project that we used when creating it (in alphabetical order):

� Bash (http://www.gnu.org/s/bash/), a Unix shell.

� Eclipse (https://www.eclipse.org/), an IDE, and its plug-ins.

� Evince (https://gnome.org/projects/evince), a document viewer.

� Firefox (https://www.mozilla.org/firefox/), a Web browser.

� gedit (https://gnome.org/projects/gedit/), a text editor.

� GIMP (http://www.gimp.org/), an image manipulation program.

� git (http://git-scm.com/), a distributed revision control and source code man-

agement system.

� GNU Compiler Collection (https://gcc.gnu.org/), a compiler system.

� Gnuplot (http://www.gnuplot.info/), a data plotting program.

� Apache HTTP Server (http://httpd.apache.org/), an HTTP Web server, and

its tools.

� Inkscape (http://inkscape.org/), a vector graphics editor.

� KDESvn (http://kdesvn.alwins-world.de/), a graphical client for Subversion.

� Kile (http://kile.sourceforge.net/), a TEX/LATEX editor.

http://www.gnu.org/s/bash/
https://www.eclipse.org/
https://gnome.org/projects/evince
https://www.mozilla.org/firefox/
https://gnome.org/projects/gedit/
http://www.gimp.org/
http://git-scm.com/
https://gcc.gnu.org/
http://www.gnuplot.info/
http://httpd.apache.org/
http://inkscape.org/
http://kdesvn.alwins-world.de/
http://kile.sourceforge.net/
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� LATEX (http://www.latex-project.org/), a document preparation system and

document markup language.

� Linux (https://www.kernel.org/), an operating system kernel.

� Maven (http://maven.apache.org/), a build automation tool.

� OpenOffice/LibreOffice (http://www.libreoffice.org/), an office suite.

� OpenJDK (http://openjdk.java.net/), an implementation of the Java SE plat-

form.

� pdftex (http://www.tug.org/applications/pdftex/), a TEX extension.

� Ubuntu (http://www.ubuntu.com/), an operating system.

� Subversion (https://subversion.apache.org/), a revision control system.

� TEX (http://www.ctan.org/tex/), a typesetting system.

� TEX Live (https://www.tug.org/texlive/), a TEX distribution.

http://www.latex-project.org/
https://www.kernel.org/
http://maven.apache.org/
http://www.libreoffice.org/
http://openjdk.java.net/
http://www.tug.org/applications/pdftex/
http://www.ubuntu.com/
https://subversion.apache.org/
http://www.ctan.org/tex/
https://www.tug.org/texlive/
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