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Abstract—One of the central research challenges in the Internet
of Things and Ubiquitous Computing domains is how users can
be enabled to “program” their personal and industrial smart
environments by combining services that are provided by devices
around them. We present a service composition system that
enables the goal-driven configuration of smart environments for
end users by combining semantic metadata and reasoning with
a visual modeling tool. In contrast to process-driven approaches
where service mashups are statically defined, we make use of em-
bedded semantic API descriptions to dynamically create mashups
that fulfill the user’s goal. The main advantage of our system is its
high degree of flexibility, as service mashups can adapt to dynamic
environments and are fault-tolerant with respect to individual ser-
vices becoming unavailable. To support users in expressing their
goals, we integrated a visual programming tool with our system
that allows to model the desired state of a smart environment
graphically, thereby hiding the technicalities of the underlying
semantics. Possible applications of the presented system include
the management of smart homes to increase individual well-being,
and reconfigurations of smart environments, for instance in the
industrial automation or healthcare domains.

Note to Practitioners—Machine tooling times are an important
factor especially when producing small batch sizes. Our approach
holds the potential to have manufacturing lines reconfigure them-
selves at runtime, based on descriptions of the functionality of
individual devices. It can even consider properties that influence
the process indirectly (“non-functional”), such as the time or
monetary cost of a process. We additionally implemented a system
that makes these rather complex descriptions understandable for
non-specialists. In the article, we describe use cases from the
home automation and future manufacturing domains.
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I. MOTIVATION

A main goal of the Internet of Things (IoT) is to empower
users by giving them the ability to “program” everyday things
and create new public and personal services based on ubiquitous
connected devices. It is paramount that users can easily learn
how to use these services (e.g., fetch data from sensors and
trigger actuators) and how to combine the capabilities of
different devices and services to create advanced composite
functions that provide added value. The adoption of Web
patterns for the provisioning of services by smart things in the
Web of Things (WoT) domain has made it simple for users to
use them (this literally is as simple as browsing the Web), and
also machines can automatically deduce how a service can be
invoked because the low-level protocol semantics are specified
by the standard Web architecture style.

This article is an extended and updated version of [1].

The focus of this paper is on enabling users to combine
services that are provided by smart devices in their environment,
which remains a heavily researched problem and one of the
central challenges for Ubiquitous Computing [2], [3]. For
instance, in a smart home, many heterogeneous devices can
modify the environment (e.g., smart thermostats) and provide
contextual information about the home (e.g., motion sensors).
These could also interact to enable more complex applications
that involve multiple cooperating services: motion sensors and
smart thermostats could together infer and apply an optimal
heating schedule for the home [4]. The same is true for smart
factories, where the easy (re)configuration of manufacturing
environments is gaining importance [5] – in that domain, the
focus is on supporting operators of industrial plants in managing
the increasing dynamicity of manufacturing processes.

We explore a novel method to facilitate the composition
of heterogeneous services for end users. We propose a goal-
driven approach, meaning that we ask users to state which
properties their smart environment should have (e.g., regarding
their personal comfort, such as setting the ambient temperature).
Given this semantic statement of a user’s goal, our system
determines whether the goal can be reached given the set
of available services and infers which user actions (i.e., API
requests) are necessary to reach it. The user can then execute
these requests and thereby modify his environment to reach the
desired goal. Because service mashups are created at runtime,
this approach can handle highly dynamic situations.

One concrete use case that we use for illustration throughout
the rest of this paper is the Smart Environments Configurator,
an application that automatically modifies smart environments
to match end-user preferences. Using a handheld or wearable
device such as a tablet computer or smartwatch, users specify
the song or radio station to be played in their environment,
set ambient alarms, or adjust the lighting and temperature to
match their preferred levels. This device then negotiates with
the environment to adjust the specified parameters to the user’s
comfort settings and can also provide feedback – one application
that we developed on top of this configurator is a service that
is aware of the user’s current location and music preferences
and streams his favorite songs directly to media devices in his
vicinity. Our goal is to enable such applications to successfully
operate in arbitrary environments, that is, not only in the user’s
private home, but also in an office environment, in hotel rooms,
cars, and public places. They could also be helpful in medical
environments, for instance to increase the oxygen saturation to
aid asthmatics, or to automatically configure monitor systems
to support doctors during clinical diagnostics.

A similar idea can be applied in an industrial context,
where machines or assembly lines could automatically adjust
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to support their current operator, and semantics could assist
the rapid reconfiguration of manufacturing systems [5]. To
this end, we have implemented a proof of concept to derive
execution plans for manufacturing environments: this system is
able to move workable items between different manufacturing
stations by integrating a semi-professional stationary robot (a
Universal Robotics UR5) with a Fischertechnik toy robot. The
integration between these very heterogeneous devices – the UR5
is driven by the open-source Robot Operating System (ROS),
while the Fischertechnik robot connects to a Siemens PLC –
takes place on a semantic level. This provides the foundation
for rapidly exchangeable manufacturing devices in industrial
environments, which is relevant to reduce tooling times and
coordinate maintenance operations.

II. SERVICE COMPOSITION FOR SMART DEVICES

Many different approaches to (Web) service composition
have been proposed over the last decades since “connecting to
customers, suppliers, or partners electronically” is considered
the top global management issue in the IT domain [6],
necessitating tools that allow to compose services globally and
across company boundaries. It quickly became obvious that the
manual composition of services, where designers use a language
such as the Business Process Execution Language (BPEL)
directly to define a service mashup, is too time-consuming,
inflexible, and error-prone, especially when considering the size
of the Web and its dynamicity [7]. This led to the development
of semi-automatic composition systems that provide support
tools to facilitate the mashup design process [8].

A. Semi-automatic Service Composition Systems
Semi-automatic service composition systems proposed in

the literature often adopt a process-driven paradigm, meaning
that users create a composite service by connecting multiple
individual, elementary services. Usually, these systems support
end users (i.e., process designers) through a formal language
or a visual model of the composite service [9], [10], and create
executable service specifications from the user input [7].1

Many mashup editors from academia and almost all promi-
nent tools used for service composition in business environ-
ments feature visual composition interfaces to make them
usable by mashup designers without programming skills [7].
Visual programming abstractions have also been applied in the
context of facilitating the configuration of smart environments
for end users in home automation scenarios: for instance, end
users can stack blocks that represent individual services [10]
or connect pictures of smart objects to describe the desired
composite functionality [12]. Specifically for IoT scenarios,
the ClickScript [13] visual programming language has been
extended to handle smart things in the WoT [1].

To support users during the service composition process,
some of the composition tools that are proposed in the literature
can automatically suggest appropriate individual services. While

1This is true for well-known tools in industry (e.g., IBM Business Process
Manager and Oracle BPEL Process Manager), as well as open source solutions
such as Apache ODE and research prototypes (e.g., SOA4ALL [11]).

many of these systems provide very limited – often only
syntactic – support during service selection, some stand out by
providing semantics-based assistance to users when designing
composite services (e.g., WebDG [14] and SOA4All [11]).
These use ontologies to categorize services and help mashup
designers quickly select appropriate services. However, accord-
ing to [7], even with basic semantic selection support, the main
shortcoming of semi-automatic service composition systems
is that they only provide very limited support for runtime
adaptation of the composite services: the tools help users to
create static links between elementary services, which cannot
adapt when services become unavailable or new services appear.

B. Approaches to Fully Automatic Service Composition

To enable more dynamic service composition, fully automatic
composition engines have been proposed [7]. These typically
take a set of descriptions of elementary services and a design
goal as input and attempt to synthesize a composite service
using matching techniques that are based on (often graph-based)
planning and scheduling techniques and on different ways of
semantically describing the “mini-world” of the individual
services. Together with a user-defined planning query, these
systems then generate a composition plan for the individual
services. Taking a goal-driven approach to service composition,
this aims at reducing the complexity of the development
process as a whole by automating the composition step. To
our knowledge, none of the currently proposed fully automated
service composition solutions are in use in industry, although
major research initiatives are targeting their deployment in this
context [15]. In particular, [16] is an interesting solution that
uses the GOLOG logic programming language to construct
composite services from primitive actions. Our system is similar
in that we also employ first-order logic to compose services.
However, our approach goes beyond the adaptation of a generic
composition template and enables the composition of arbitrary
APIs in smart environments that adhere to the Representational
State Transfer (REST) architectural style.

Aside from the greater level of automation that goal-driven
systems bring, they have the major advantage of enabling the
on-the-fly inference of service mashups, and thus avoid static
linkage of services. Largely due to lacking interoperability of
the different approaches and the isolated application domains
of individual systems, automatic service composition still
represents an open challenge [7]: many of the currently
proposed systems use planning languages such as the Planning
Domain Definition Language (PDDL) that are limited regarding
their expressibility across different domains. Furthermore, many
of the automatic composition systems suffer from the same
drawback as the semi-automatic approaches in that they cannot
adapt to highly dynamic environments [7]. However, context
dynamicity should be considered the default rather than an
exception in smart environments, especially when targeting
applications on mobile devices whose entire environment
changes when they are on the move. This disadvantage is indeed
considered one of the main currently open issues regarding
future research in the service composition domain: future com-
position systems should be adaptable to dynamic environments,
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ideally supporting self-configuration and automatic optimization
relative to the current environment and QoS constraints, as well
as relevant security policies [7], [17].

III. AUTOMATIC SERVICE COMPOSITION

Several of the currently proposed systems for composing
Web services are based on the Web Services Description
Language (WSDL) and its semantic extensions – however, the
severely limited support for REST that WSDL provides [18]
represents a missed opportunity since REST itself already
defines the low-level protocol semantics of a Web interaction.
Semantic descriptions for REST services can therefore focus
on specifying the high-level functionality of a service to create
a more lightweight automatic composition system. To achieve
this, however, it is not sufficient to annotate Web resources with
“hints” about the functionality they provide, as proposed with the
hRESTS Microformat [19] – annotations should rather contain
explicit machine-readable functional service descriptions [20].

In the following, we discuss an approach to fully automatic
service composition that allows clients to automatically create
and apply service compositions in WoT scenarios with the
help of functional semantic annotations while exploiting the
REST principles for defining the services’ low-level protocol
semantics. Our system thus enables the goal-driven configu-
ration of smart environments for end users which means that,
instead of having to design a service mashup that achieves their
goal, they are merely required to state that goal in a machine-
understandable way. Given this goal statement, a reasoning
component determines whether the goal can be reached given
the set of available services and infers which user actions (i.e.,
requests involving REST resources) are necessary to reach it.

A. System Overview
To compose services that are provided by devices in smart

environments, our system must be able to discover the individual
services and their semantic descriptions. In our prototype
implementation, we make use of a proprietary Web-based search
infrastructure for HTTP and the CoRE Resource Directory [21]
for CoAP, a Web protocol for resource-constrained devices [22],
[23]. However, our approach is compatible with any system that
enables clients to find the URIs of service endpoints, including
search engines for the WoT such as Dyser [24] and industry
standards such as Universal Plug and Play (UPnP).

To specify the high-level domain semantics of a service, we
use RESTdesc [20], which we have extended to make it suitable
for reasoning about service capabilities in smart environments.
Next, our system needs to be able to infer the global structure of
a service mashup from information about individual services –
for this, we use a semantic reasoner that can infer logical
consequences from the semantic service specifications. In
principle, this reasoner could be hosted anywhere on the Web
– in our prototype, however, we use a local instance to reduce
delays and to avoid privacy and security implications.

Finally, our system requires a component that interacts with
the reasoner and the services in the smart environment on
behalf of the user. This interface (e.g., a Web application on a
smartphone) is used by people to formulate goals, queries the

1 {
2 ?tempC a dbpedia:Temperature;
3 ex:hasValue ?cVal;
4 ex:hasUnit "Celsius".
5 }
6 =>
7 {
8 _:tempF a dbpedia:Temperature;
9 ex:hasValue ?fVal;

10 ex:hasUnit "Fahrenheit";
11 owl:sameAs ?tempC.
12

13 _:request http:methodName "GET";
14 http:requestURI ("http://converter.example.

com/cel2degf?temp=" ?cVal);
15 http:resp [ http:body ?fVal ].
16 }.

Listing 1: A RESTdesc description of a temperature conversion service.

reasoner for a service mashup that allows to reach the goal,
and executes the requests proposed by the reasoner.

B. Semantic Metadata for REST Services
We consider all smart devices and services to feature Web

APIs that are modeled according to the REST principles, so
that their protocol semantics are already well-defined, either
by HTTP or by CoAP. On top of this, we define their high-
level domain semantics (i.e., what function a service provides)
using RESTdesc, a machine-interpretable functional service
description format for REST APIs. RESTdesc descriptions are
expressed in Notation3 (N3) [25], an RDF superset that adds
support for quantification. Services expose these descriptions
for automated discovery – thus advertising their functionality
– through Web Linking [26]. HTTP can carry a link to the
RESTdesc document as part of the Link header field in
responses to HTTP GET and OPTIONS requests. For resource-
constrained devices, this information can be provided out-of-
band using the CoRE Link Format [27], an extension to Web
Linking that defines an Internet Media Type for Web links.

We illustrate the main concepts of RESTdesc using the
example of a service that can convert temperatures given
in degrees Celsius to Fahrenheit values, whose semantic
description is shown in Listing 1. Later, we will show how a
semantic reasoner can automatically create a service mashup
that combines the functionality of this converter with a smart
thermostat (see Section III-C). At the highest level, a RESTdesc
description consists of three parts: preconditions, postconditions,
and a REST request that realizes the postconditions from the
preconditions. In our example, the preconditions (lines 2 to 4) in
the antecedent stipulate that a certain temperature expressed in
degrees Celsius exists, and that this temperature has a specific
value. The postconditions (lines 8 to 11) in the consequent
warrant that there exists a temperature expressed in degrees
Fahrenheit that is the same as the Celsius temperature. Finally,
the HTTP request (lines 13 to 15) is a GET request to a URI
determined by the value of the cVal variable that returns the
Fahrenheit value in the response body. This HTTP request is
described by the HTTP in RDF vocabulary [28], which provides
a semantic way to describe HTTP exchanges and is compatible
with CoAP. The description as a whole communicates in
a machine-interpretable way how a Celsius temperature can be
converted to the equivalent Fahrenheit temperature.
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1 _:roomTemp a ex:Temperature; ex:hasValue "20";
2 ex:hasUnit "Celsius".
3

4 _:convertedTemp ex:hasValue ?value;
5 ex:hasUnit "Fahrenheit".

Listing 2: A semantic goal for converting a temperature value.

In more detail, the basic unit in N3 is the triple that is
expressed in the format “Subject Predicate Object.”
N3 also has formulas that group together triples (between
braces {}), variables (starting with a question mark ?), and
implications (i.e., triples where the predicate is =>). When
multiple predicate-object pairs are separated using semicolons,
all of these pairs are associated to the leading subject. For
instance, lines 2 to 4 state that tempC is a “Temperature,” that
its relation to cVal is “hasValue,” and that its relation to the
constant Celsius is “hasUnit.” For conciseness, we omit the
required @prefix declarations in our listings that allow the
abbreviation of URIs of subjects, predicates, and objects.

Because RESTdesc descriptions are regular N3 implications,
they can be applied as inference rules by N3 reasoners without
requiring any special support. For each rule it holds that, if
the triples in the antecedent can be matched, the triples in the
consequent can be concluded. To find out whether a specific
goal can be reached in a given context, users can thus use a
semantic reasoner that has access to service descriptions such
as that of the temperature converter shown above. For instance,
a user could ask which Fahrenheit temperature is equivalent to
20◦C (Listing 2). Given this goal, a reasoner can instantiate the
description of the temperature conversion service, which will
indicate that the answer is given by an HTTP GET request to
the URI http://converter.example.com/cel2degf?temp=20.

When a reasoner has access to multiple rules, it can chain
them and thereby find out how the client must coordinate
invocations of different services that together achieve the user
goal. For instance, if the user wants to set a temperature of 20◦C
in an environment that contains a smart thermostat that only
takes inputs in degrees Fahrenheit, the reasoner will generate
a plan to first send an HTTP GET to the converter service,
unpack the response body, and send the obtained Fahrenheit
temperature value to the thermostat. The combination of
RESTdesc descriptions with reasoning thus yields a powerful
service composition mechanism [20].

C. Reasoning in Smart Environments
Unfortunately, it is not straightforward to apply RESTdesc

in the context of configuring smart environments: one main
issue when trying to integrate its semantic descriptions with our
systems and implementing use cases from the field of pervasive
computing is that RESTdesc – being grounded in first-order
logic – is not able to distinguish between mutually exclusive
states of components of the system (e.g., of a specific device
in the user’s smart environment). Therefore, while RESTdesc
works very well for describing services that do not induce
incompatible states such as the temperature converter in the
previous section, already the most basic use cases that involve
stateful objects cause problems. As a simple example, assume
the system has access to the fact that a room has a temperature

1 {
2 ?newTemp a ex:Temperature; ex:hasValue ?fVal;
3 ex:hasUnit "Fahrenheit".
4

5 ?thermostat a dbpedia:Thermostat;
6 geonames:locatedIn ?place.
7 }
8 =>
9 {

10 _:request http:methodName "PUT";
11 http:requestURI (?thermostat "?t=" ?fVal).
12

13 [ a st:StateChange;
14 st:replaced { ?place ex:hasTemp ?newTemp. };
15 st:parent ?state ].
16 }.

Listing 3: A RESTdesc description of a temperature conversion service.

1 :temp23 a ex:Temperature; ex:hasValue "23";
2 ex:hasUnit "Celsius".
3

4 ?state a st:State;
5 log:includes { :Office ex:hasTemp :temp23. }.

Listing 4: A RESTdesc description of the temperature goal.

of 20◦C. If the user then defines a goal where the same room has
a temperature of 23◦C, this introduces a logical contradiction
because no room can have two different temperatures at any
given moment (note that it is not possible to remove facts from
the knowledge of a first-order logic system).

For this reason, we extended RESTdesc by incorporating
a mechanism that allows to describe states of devices within
smart environments. We also introduced the concept of state
transitions to enable the annotation of services that induce state
changes, the semantics of which are described in a publicly
available states ontology.2 As an example of a service that
makes use of our states definition, consider the description of
a smart thermostat in Listing 3. From the antecedent of this
rule, we can see that an execution of the service requires a
temperature value in degrees Fahrenheit (lines 2 to 4) as well
as the presence of a device of type Thermostat at a specific
location (lines 6 and 7). The consequent of the rule specifies
that an HTTP PUT request to the thermostat (lines 11 and 12)
will result in a state transition (lines 14 to 16): in the new state
of the ?place, the object of the ex:hasTemp relation is
replaced by ?newTemp, the new temperature at the location.

To find out how to set the ambient temperature at the location
“Office” to 23◦C, a user would now formulate the goal shown
in Listing 4. In this goal, the user first defines the temp23
constant that includes the desired temperature value as well
as the information that this value is given in degrees Celsius.
This entity is then used when defining the desired state of the
location “Office.” As described in Section III-B, this goal can
now be sent to a reasoner, which will indicate that the goal
state can be reached by first sending an HTTP GET request
to the converter service that includes the Celsius value to
obtain the corresponding Fahrenheit value, and then sending an
HTTP PUT request to the URI of the thermostat at the location
“Office.” Note that because the concrete location is dynamic in
the service description in Listing 3, the URI of a correct smart
thermostat is given by the ?thermostat variable and found

2See http://purl.org/restdesc/states
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at runtime from all available thermostats in the system.

IV. FACILITATING THE CREATION OF USER GOALS

To summarize, we have successfully extended RESTdesc
with the concepts of states and state changes. This allows to
describe services that induce state transitions, and specifically
to model states of smart environments. However, especially
because these extensions add a lot of complexity to the goal
creation, we cannot expect users to write valid goal descriptions
by themselves: they would not only need to know about the
correct N3 syntax, but also about the states ontology and all the
predicates to use (e.g., ex:hasTemp) to express their goal.

To facilitate the goal formulation step for end users, we
integrated our system with ClickScript [13], a JavaScript-based
visual programming tool. We already used ClickScript in earlier
projects, when it was extended with the capability of connecting
to Web services that run on smart devices using AJAX. For
this work, we have further extended the tool to enable its
usage for designing semantic goals and for using it as an
interface to a semantic reasoning service. Specifically, we
have equipped ClickScript with components that represent
the different predicates that are useful to describe a smart
environment with entities that encapsulate the state of real-
world items such as rooms (see Fig. 1(a)). The components
available for modeling attributes of a smart environment, such
as an abstraction for a Room entity or a thermometer that is
associated with the hasTemp predicate, can be dragged to the
editing view of ClickScript to use them within goal definitions.

For instance, to model different desired attributes of a room
as in Fig. 1(a), the first step is to create a new room entity and
to connect it to the corresponding room identifier (in this case,
Office). Next, the user configures the desired state of this room
by adding components that represent different aspects of this
state: the note icon represents media playback, the thermometer
icon stands for the ambient temperature (i.e., the hasTemp
property in the goal shown in Listing 4), and the alarm clock
icon is used to model ambient alarms. Finally, the user can infer
the correct data types of the input parameters of the components
(for instance, the concrete temperature value) from the colors
of the component inputs. Thus, users merely have to drag the
desired elements into the editing view, connect the matching
input and output types, and enter the parameter values.

When satisfied with the configuration of the smart environ-
ment, the user can choose among multiple options of how the
created model should be processed by ClickScript by connecting
different components to the output connector of the room entity:
users can then decide whether (a) the goal should be displayed,
(b) the reasoner should be invoked and the necessary requests
displayed in human-readable form, or (c) the requests should
be immediately executed by the ClickScript tool itself.

ClickScript does not only parse syntactically correct goals
from modeled environments, but also constrains the user to
specific ontologies that describe services in smart environments,
thus mitigating the problem of conflicting semantic information
discussed in Section V. Still, to extend the graphical interface
with additional predicates, it is sufficient to specify their names,
input types, and appropriate icons to represent the added
properties, which requires only a few lines of JavaScript code.

(a)

(b)

(c)

Fig. 1: (a) With our extensions, ClickScript users can create semantic goals
graphically. In this example, the user configures the ambient temperature, sets
an alarm, and chooses a song for the room “Office.” (b) The connected “Target”
instructs ClickScript to display the goal that corresponds to the modeled
environment, where we omit the definitions of the parameters temp0, song1,
and time2. (c) ClickScript can also display the necessary requests to achieve
the goal in a human-readable way, using a simple verbalization heuristic.

V. DISCUSSION

To evaluate our proposed approach to automatic service
composition in smart environments, we draw on earlier studies
that assess service composition systems with respect to a set
of qualities these systems should exhibit (see [7]). By its
very nature, our system achieves a high degree of automation
with respect to the selection of individual services: given that
these services are annotated appropriately, service selection
and composition is done fully automatically. It is also highly
adaptable with respect to the dynamic availability of specific
services in a smart environment, since the ability to bind
services dynamically at runtime lies at the core of our system.
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#services 1024 4096 16384 65536 131072
parsing 276 ms 1001 ms 3916 ms 17127 ms 34526 ms

reasoning 12 ms 18 ms 107 ms 122 ms 228 ms
total 289 ms 1019 ms 4023 ms 17249 ms 34754 ms

TABLE I: Delays incurred by parsing and reasoning over many services.

Compared to others, our approach allows to obtain execution
plans very rapidly, and hence clients may even choose to
re-query the reasoner in the middle of executing a service
mashup for maximal adaptation. Our system also features a
high level of personalization: user preferences and context
characteristics (e.g., device locations) that are available to the
reasoner as logical facts are automatically considered during the
service composition phase. Since clients execute all requests
to individual services themselves, our system can also be
considered to be simple to monitor by the client. This is
closely tied to our system’s reliability: our approach does
not automatically handle exceptional behavior, but the client
is explicitly informed about incidents via REST status codes,
which are returned by the individual services. The concrete
recovery mechanism must, however, be implemented by the
client itself. However, if the reason for a failure was a transient
fault in the system, for instance related to bad connectivity, it
might be sufficient to execute the requests once more, given
the idempotent service design that is common with REST.
Alternatively, if the reason for the fault was a component of the
system that became unavailable, the reasoner should be asked
again for a new service execution plan. Both these resolution
strategies are generic and do not depend on an explicit fault
handling mechanism. In the following, we discuss our semantic
service composition approach with respect to the remaining
desirable qualities of such systems set forth by [7]: scalability,
expressibility, correctness, and selectability.

1) Scalability of the Reasoning: One concern with respect
to all service composition systems is how they scale with an
increasing number of individual services. We explored the
scalability of our approach with two experiments: The first
demonstrates that it is very lightweight compared to other
reasoning-based approaches in principle while the second fo-
cuses on showing that it is usable to control smart environments
in realistic contexts.

Being grounded in pure first-order logic, our system scales
better than other approaches that employ more heavyweight
technologies [20]. To demonstrate this, we conducted an
evaluation to see how fast the reasoner we use in our system –
the Euler Yet another proof Engine (EYE) [29] – can process
service descriptions when the number of available services
grows. In this test, that is described in detail in [20], the
total composition length was fixed to 32 simple, stateless,
services (which is a lot for the context we consider), and the
number of individual services that are considered during the
reasoning step was increased to up to 217. Our results (see
Table I) show that the reasoning time remains under a few
hundred milliseconds on an average consumer computer even
for very high numbers of considered service descriptions.3

3The code to run this experiment is available at https://github.com/
RubenVerborgh/RESTdesc-Composition-Benchmark
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Fig. 2: Reasoning time under realistic conditions (reproduced from [32]).

The time required for downloading and parsing the rules does
significantly increase, but this effect can easily be mitigated
by caching service descriptions locally at the reasoner.

In contrast to our system, service composition approaches
that are based on heavier technologies, such as OWL-S XPlan,
require processing time in the order of seconds for planning
interactions in settings with under 100 services [30]. Demon-
strating that our system scales better than other reasoning-based
approaches is, however, insufficient to prove its capability of
composing IoT services – some even challenge the ability of
current reasoners to accomplish this feat in principle, due to
architectural and performance issues [31]. For this reason, we
performed more extensive testing of our system under realistic
IoT conditions: we simulated an environment with up to 1000
services, which corresponds to about 250 devices, a reasonable
assumption for typical smart environments according to several
studies (see [32] for a discussion of these estimates). Our tests
show that the proof calculation time in such an environment that
also includes stateful services (which are natural to physical
mashups) is in the order of a few seconds on a laptop computer
for execution plan lenghts of up to sixteen service interactions
(see Fig. 2). Although the performance of our reasoner is
thus lower in IoT settings with stateful services, we conclude
that our system can be used to control medium-sized smart
environments that contain up to about 250 devices when the goal
is reachable through execution plans with around ten requests
and only few stateful services are required to reach it. More
optimization is necessary for larger settings and applications
with real-time constraints – several initial ideas of how this
could be accomplished are discussed in [32].

2) Expressibility of RESTdesc: Being based on rules in the
N3 format, the RESTdesc language is in principle limited in its
expressiveness to implications in monotonic first-order logic.
Although its explicit expressiveness thus does not rival that of
planning languages or business process definition languages, we
found that it is suitable for describing services that we encounter
in WoT scenarios. The only capability that we added to the
language is an explicit state handling mechanism to remove
inconsistencies that could arise from state changes in smart
environments. With this modification, which we combined with
a pragmatic approach of handling temporal dependencies, we

https://github.com/RubenVerborgh/RESTdesc-Composition-Benchmark
https://github.com/RubenVerborgh/RESTdesc-Composition-Benchmark
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1 { _:req a sreq:None. } => { _:iReq a sreq:Secure. }.
2 { _:req a sreq:None. } => { _:iReq a sreq:HTTP. }.
3 { _:req a sreq:Secure. } => { _:iReq a sreq:HTTPS. }.

Listing 5: A RESTdesc description of a temperature conversion service.

found the system to be applicable in typical smart environments.
We successfully used it to specify services in a home automation
context, and in an industrial manufacturing scenario, where
we defined capabilities of robotic devices with respect to the
transportation of items between manufacturing stations. Others
have demonstrated that the RESTdesc language can also be
used in the context of multimedia, mathematics, and medical
imaging analysis as well as diagnosis assistance [29].

3) Correctness of Service Compositions: In principle, the
reasoning component in our approach guarantees the correctness
of any composite service it generates. This, however, assumes
that the underlying RESTdesc documents clearly and unam-
biguously capture the functionality of the described services,
and that the user goal correctly specifies the desired state of the
smart environment using semantic concepts that are compatible
to the service descriptions. While we believe that both these
challenges can be overcome in limited scenarios with full
agreement on the underlying semantic concepts, they give rise
to a challenge at the heart of the Semantic Web, especially
when third-party services and ontologies are incorporated in the
reasoning: the issue of conflicting semantic information. This
is perhaps the prime reason for many researchers to remain
skeptical regarding the fitness of semantic technologies for
real-world applications [33] and to question whether they are
actually able to achieve the promised interoperability between
services.

In the context of service composition in smart environments,
conflicts in the semantic information could lead to situations
where services that should be interoperable cannot be combined
by the system and to situations where services that should
not interact are utilized within a service mashup. To mitigate
these issues in our system, we added the option of visualizing
suggested composite applications prior to executing them, but
our system does not provide a universal remedy to these issues.

4) Selectability of Service Mashups and Usability Consider-
ations: The property of selectability refers to the selection of
the most appropriate service among a number of functionally
similar or equivalent options, based on non-functional charac-
teristics such as QoS parameters [7]. Ideally, a service compo-
sition system would allow users to formulate non-functional
preferences with respect to individual services or the service
mashup as a whole, either directly within their goals or within
accompanying input documents to the reasoner that express
these desired characteristics. In fact, the RESTdesc language
permits the encoding of such properties within descriptions
by extending the preconditions of a service description with
clauses that describe non-functional characteristics – similar
information could also be provided using a separate semantic
meta-model of devices and their services.

As an example, we show how our system can enable users
to formulate basic security requirements (e.g., confidentiality
of data exchanged within a mashup) that are considered by the

reasoner when composing the service mashup. For illustration,
we again use our smart thermostat example, and define basic
rules that specify the relationships between different security-
and privacy-related concepts in a Web service environment: In
Listing 5, the first rule expresses that Secure is a “stronger”
requirement than None. The second and third rules express the
relationships between the two security requirements None and
Secure, and the HTTP and HTTPS protocols, respectively.4
These additional rules allow users to express that they want
the communication to happen confidentially, by supplying the
fact userRequirement a sreq:Secure. in their goal:
in this case, the reasoner will only infer the fact that an entity
of type sreq:HTTPS exists (third rule in Listing 5) which
will prevent any service that contains a security specification of
sreq:HTTP in its precondition from being instantiated by the
reasoner. This mechanism also works for composite mashups,
e.g., ensuring that all communication that happens as part of
a mashup happens confidentially, and also applies to other
non-functional aspects that can be modeled ontologically.

VI. CONCLUSIONS

To facilitate the configuration of smart environments for end
users by fully automating the service composition step, we
propose a goal-driven approach where users express their needs
using a graphical configuration environment. In our system,
users define the desired state of their smart environment in
the form of a semantic goal that is used by a reasoner to
deduce the REST requests necessary to reach that goal. The
requests can be executed using HTTP, or using CoAP for
resource-constrained devices such as battery-powered sensors
or embedded automation components. We are able to satisfy
complex demands using only first-order logic, which makes
our system flexible yet fast. To overcome the complexity of the
goal formulation step for end users, we integrated our system
with a graphical editor that enables users to easily create a
model of the desired state of their environment. This editor
then translates the graphical model into a goal in the N3 format,
thereby hiding the complexity of the underlying semantics and
mitigating the fragility of manual goal formulation.

The main advantage of using semantic technologies to
deduce service mashups is the flexibility of this approach:
because the services are combined at runtime, the system
can flexibly react to individual services becoming unavailable
by finding alternative paths that also serve to reach the
user’s goal. Furthermore, this allows to derive context-adaptive,
personalized mashups by taking into account more information
about the system context and users’ preferences.

Standards – if honored by all relevant stakeholders – could
also accomplish the use cases that we put forward in this paper.
However, while standardization can improve interoperability
among standard-compliant components, it impedes or compli-
cates the integration of elements that were out of scope at the
time the standard was designed. Ontologies have been shown
to be more flexible with respect to adding additional concepts
to deployed systems [5]. In the context of smart environments,

4The same mechanism can be used in constrained environments via CoAPS
which uses DTLS, the datagram version of TLS.
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we thus consider semantic technologies as a very flexible form
of standardization: using semantics within service descriptions
represents a lightweight approach to support new services in
an evolving way – even when considering their shortcomings
with respect to conflicting information.

In the future, we plan to experiment more with multi-
user environments and mixed interaction scenarios where the
reasoner can interactively ask users for more instructions or to
clarify inputs that are required for the reasoning. We expect
that this would increase the robustness of the system and that
the additional feedback would help users gain confidence in it.
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