Transparent Migration of Java-based
Mobile Agents

Capturing and Reestablishing the State of Java Programs

Stefan Finfrocken

Department of Computer Science, Darmstadt University of Technology,
Alexanderstr. 6, D 64283 Darmstadt, Germany
Email: fuenf@informatik.tu-darmstadt.de

Abstract. In this paper we describe a way to save and restore the state
of a running Java program. We achieve this on the language level, with-
out modifying the Java virtual machine, by instrumenting the program-
mer’s original code with a preprocessor. The automatically inserted code
saves the runtime information when the program requests state saving
and reestablishes the program’s runtime state on restart. The current
preprocessor prototype is used in a mobile agent scenario to offer trans-
parent agent migration for Java based mobile agents, but could generally
be used to save and reestablish the execution state of any Java program.

1 Introduction

Mobile agents are programs that can move from one host to another. These
programs can initiate their own transfer by executing a special instruction in
their code. To migrate an agent, some state information of the agent program
has to be saved and shipped to the new destination. At the target destination
the agent program is restarted. Ideally, the moved agent (or program) can be
restarted in exactly the same state and at the same code position as it was
before migration. If migration exhibits this property, it is called transparent or
characterized as strong migration [1]. If the program has to prepare its migra-
tion by explicitly storing its state in some variables and is started again at the
new location, and if the programmer has to provide explicit code to read and
reestablish the stored state, migration is called non-transparent or characterized
as weak migration. Both mechanisms require the capturing of state information
and the reestablishment of the saved state during restart.

Capturing and reestablishing the state of a running program is a well-known
issue in different areas of computer science [9]. For example, it is used in dis-
tributed operating systems to provide load balancing functionality. In such a
scenario, the state of a program in execution (i.e., the process state) is captured
and sent to some other host with low load. The receiving host creates a local
process that has exactly the same state as the process whose state was cap-
tured. State capturing can also be used to provide fault tolerance or persistence
[6] in a distributed system. The state of programs or processes is captured at



regular intervals and is written to stable secondary storage. When the system
restarts after a crash or regular system shutdown, the saved information is used
to reestablish the processes and continue operation.

Our application scenario is the migration of mobile agents from one host to
another. This differs from process migration for ’traditional’ purposes (e.g., load
balancing) in the sense that migration is initiated by the program itself and not
by an external control instance. Although the developed mechanism is designed
for the mobile agent scenario, it can be used by every Java program to save and
load the runtime state.

To capture the state of a program one has to know what exactly comprises
that state. The state can be divided into the following different parts: the code of
the program, the data of the program (located in its variables), and the runtime
information (consisting of the program counter, the call stack, and a few more
items). One problem in capturing the state of a program is that the required
information is located in different places: the program variables are accessible
from within the program itself (i.e., on the language level), but in contrast to
this, all the runtime information is located in lower hierarchy levels (e.g., the
program counter, which is located in the process executing the program). The
state capturing mechanism has to collect all that information, and consequently
there has to be a way to extract the information from the system.

2 Capturing and Reestablishing State in Java

Java is an object oriented programming language. Thus the state of each Java
program comprises the state of all the objects that exist at the time the capturing
takes place, the method call stack resulting from the method invocations during
the program execution, and the program counter. Since Java is an interpreted
language that requires an interpreter (the Java Virtual Machine, or VM for
short) to execute Java programs, the method call stack and program counter
information is located in the interpreter and not in the process executing the
interpreter. It would be sufficient to have access to the information inside the
VM to capture the state of a Java program.

Currently the Java VM only supports the capturing of all object states,
known as serialization [10], but it does not support the capturing of the method
call stack which includes all local variable values of methods or the capturing
of the program counter. Because of this, transparent migration of processes or
mobile agents is not possible in Java so far.

There are systems [7,8, 4] that provide the required state capturing of Java
programs. However, they modified the Java VM. In contrast to this, we aim at
a solution that does not require the modification of the VM or any underlying
component. We found that it is indeed possible to capture the state of a Java
program at the language level.

Our mobile agent scenario requires that the state capturing process is initi-
ated by the program itself at the language level and not at some lower hierarchy
level (i.e., from outside the program). To capture the state of a Java program, we



developed a preprocessor that instruments the user’s Java code by adding code
that does the actual state capturing, and reestablishes the state on restart at
the target machine. We do this instrumentation by parsing the original program
code using a Java based parser generated with the JavaCC-tool [5] from a Java
1.1 grammar. Our preprocessor uses and modifies the parse tree from which the
new code is generated.

Since additional code introduces time and space penalties (see section 3.3), we
only instrument the code where it is necessary and make sure that the additional
code is executed only when necessary (i.e., when state capturing occurs).

2.1 Capturing the State

Java object serialization offers an easy, although rather inefficiently implemented
way to dump the state of all Java objects that exist in the program. This state
consists of the values of all variables (i.e., class and instance variables) of each
object, which represent each object’s internal state, and the information about
the type of each object. By using object serialization, a large part of the in-
formation (all language level information) required to reestablish the program’s
state can be captured. What is missing, however, is information located in the
virtual machine: the method call stack with the values of each method’s local
variables, and the current value of the program counter.

To capture the missing state information of the program, the preprocessor
inserts code that saves the values of all local variables of methods and program
counter related information. Consider the program in Figure 1 which defines local
variables for the method mymethod of class Myprogram and uses state saving to
save the value of new variables.

class Myprogram { .
// definition of variables saveState();

public void mymethod(int i, real j, MyObject m){ }
int k; -
Hashtable h; int v = 10;

saveState(); saveState();

if (k==5){ }

Vector x = new Vector(); }

Fig. 1. Program using state saving

There are two things to keep in mind: First, local variables may be defined
anywhere in a method’s code. When defined in a block, the variable is visible
in that block only (e.g., Vector x in the example). When the program requests
state saving, only those variables can be saved that are visible at the current
program position (only those variables are on the stack). Second, the inserted
code that saves the values of the local variables should be executed only in the



case when the program initiates the state capturing process, which is done by
calling a special method (saveState! in the example) a programmer can use.
Our system provides this special method as an extension to the Java language.

Because of efficiency reasons we instrument only those methods that might
initiate the state capturing process when called. Since this can happen at the
end of a method call chain, we have to detect which methods initiate the state
capturing process indirectly by calling other methods that initiate that process.
We do this by fixed-point-iteration starting with the method that initiates state
capturing.

Since the current state is located in the method call stack of the VM, we have
to be able to traverse that stack and execute the state saving code our prepro-
cessor inserted in each method that possibly might be on the stack during state
saving. In addition, no further code of the program must be executed after the
state saving process is initiated. To conform to both requirements, we use the
Java error mechanism. Similar to Java exceptions, errors can be thrown and suc-
cessively caught. When thrown, the normal flow of execution stops immediately.
An error can be caught by a catch clause of a try statement. If not caught,
the error is propagated up the method call stack. This is automatically done by
the exception/error handling mechanism of the Java VM. We make use of this
behavior to traverse the method call stack and save all local variables of each
of the methods currently on the stack: The method that initiates the state sav-
ing process throws an error. Our preprocessor inserts an encapsulating try-catch
statement for each method that might initiate the state saving. The code that
saves the local variables of such a method is located in the catch clause of the
inserted try-catch statement. After executing this code, the error is re-thrown
thus propagating it up the stack to the calling method, which in turn catches
the error leading to the execution of the variable saving code in this method.
This is done until the stack is completely deconstructed. In this way, the state
saving code is only executed when state saving is requested. Thus the code of
class Myprogram shown above is transformed to the code depicted in Figure 2.

Using an error instead of an exception to realize state saving has the advan-
tage that errors don’t have to be declared in the method’s signature.

To save all local variable values we use a special save object which is inserted
by our preprocessor in the top level class of the Java program. In addition to
that, all methods that might be part of the state saving process are passed the
reference to this special object. Because of this, all relevant method signatures
have to be instrumented. Furthermore, we provide the class with the code for the
special method that initiates the state saving process. By this way, the method
can be called as a local method. Unfortunately, this leads to problems in the
inheritance tree when such methods are part of an interface which the class
has to implement. So far, our solution to this problem is to generate a new
interface incorporating the instrumented method signatures. We are currently

! In our mobile agent scenario this method is called go. For presentation of the general
case we will use the more generic name saveState in this paper.



class Myprogram {
// variables are saved by normal serialization

public void mymethod(int i, real j, MyObject m){

int k;

Hashtable h;

try{
saveState();

}

catch ( Migration mig} {
save(h); save(k);
save(m); save(j); save(i);

throw mig;

}

if (k==5){
Vector x = new Vector();

catch ( Migration mig} {
save(x);
save(h); save(k);
save(m); save(j); save(i);
throw mig;

}

int v = 10;

try{
saveState();

catch ( Migration mig} {
save(v);
save(h); save(k);
save(m); save(j); save(i);
throw mig;

try{
saveState(); }

}

Fig. 2. Transformed code of class Myprogram

investigating a solution that does not need to instrument the method signature
in order to avoid this overhead.

After saving and deconstructing the stack, all state information is held in
the special save object. Since this object is part of the top-level program class,
its value can be saved by the normal object serialization mechanism. The final
step in the state saving procedure is to initiate the serialization of the program’s
current object graph. This is done in the catch clause of the top-level object,
inserted by the preprocessor, which also carries the save object.

Depending on the purpose of the state saving mechanism, the captured state
(i.e., the serialization information) can be written to a file — in the case of check-
pointing — or to a network socket — in the case of state transfer, as in mobile
agents applications.

2.2 Reestablishing the State

Capturing the state of a running Java program is only half the way: it must
also be possible to construct a process and program state from the saved state
information that is equivalent to the state of the process and program from
which the state was saved.

From the program’s point of view the flow of control should be continued
directly after the statement that initiated the state saving process. Since the Java
VM provides no means to load a saved state, we have to do the re-establishment
on our own. This task requires rebuilding the program’s object graph and its
objects states, rebuilding the method call stack, and reestablishing the values of
the local variables of each method on the rebuilt method stack.



Rebuilding the object graph and the object states. Most of the program’s
state can be automatically reconstructed from the serialization information pro-
vided by the normal deserialization process Java offers. This process results in
an object graph which exhibits the same connectivity and object state properties
as the object graph that represented the program at serialization time. What is
missing is the method call stack which is not automatically rebuild.

Rebuilding the method call stack. Since our save object (which keeps the
relevant information) is part of the program’s object graph, we can make use
of that information to fill all the local method variables with the correct values
once we recreated the method call stack. To do so, we just call again all relevant
methods in the order they have been on the stack when the state capturing took
place. To prevent re-execution of already executed method code, we have to skip
all the code parts of each method which have been executed before the state
capturing took place. But we do have to call the method that was next on the
call stack during state saving.

To ensure this, we introduce code regions and an artificial program counter.
The artificial program counter indicates for each modified method which code
statements were already executed and therefore have to be skipped when the
method call stack is rebuilt. It is not necessary to modify the artificial program
counter after every instruction: successive statements that do not initiate state
saving can be treated as a compound region and therefore the artificial program
counter is updated only before and after such a compound region.

Region boundaries are introduced by the methods that may lead to state sav-
ing. Each such method forms a region by itself, which also encapsulates the state
saving code. To skip the already executed code regions, each region is guarded
by an if-statement that checks whether the artificial program counter indicates
that the specific region has to be entered or skipped. Since the methods that
might initiate a state saving process may be located in control flow statements
that may possibly be nested, we have to introduce code regions for each control
flow statement. The code regions of nested control flow statements are formed
by applying the code region modifications of the outer statements before the
inner statements.

Code regions for control flow statements introduce the problem that the
control flow decision (which was already decided before state saving by evaluating
the condition of the statement) cannot simply be decided again on restart by
just re-executing the whole statement or re-evaluating the condition. Consider
for example the while loop of Figure 3, where a method checkresource is called
and might initiate state saving for the purpose of checkpointing.

Assume that checkresource has initiated state saving for i = 3. On restart,
this loop should continue — after returning from checkresource— with statement5
and i=3. This means to skip the initialization part, the evaluation of the condi-
tion, the first two iterations and to skip i++; statement2 and statement3 of
the third iteration. Now assume that the state saving will be initiated in the last
iteration (i.e., i=4 in the condition). After evaluating the condition to true, the



// init i somewhere to 0
while (i<5) {
i++;
statement?2;
statement3;

//method might initiate state saving
checkresource(res[i]);

statementb;
statement6;

Fig. 3. Transforming loops

loop body is executed and i is set to 5 immediately. Because of this, it is not
possible to restore the value of i immediately before the while loop to the value
saved in the captured state (which yields 5). This would result in skipping the
pending execution of statement5 and statement6 on restart. Because of this,
the loop condition has to be saved in a generated variable which is restored on
restart for re-evaluation. This modification applies also to do-while, and for
loops accordingly. For loops are transformed into while loops before the actual
modification takes place.

Setting the values of local variables. When the program initiates state
saving, all local variables of each method on the method call stack are saved in
our save object. On restart, the method stack is rebuilt as described above. Now
we have to set all local method variables to the correct values (i.e., the values
that we saved in the save object). To achieve this we insert declaration code for
each variable that sets the correct value. For a variable there are two possibilities
to get its value: the original initial value as provided by the programmer in the
case of a normal program start, and the value stored in the save object in the
case of program restart. Since the actual value assignment is done in an if
statement, all variables are initialized to an irrelevant default value, to satisfy
the Java compiler. Since variable declarations are possible anywhere in the Java
code, extra code is inserted at the position of each variable declaration, which
also leads to correct variable visibility. Figure 4 code shows the transformation.

2.3 Threads

In Java it is not possible to transfer the state of running threads by the means
of object serialization. Since every Java program is executed as a thread by the
Java VM, our converter is able to save the state of a single thread. To save the
state of all program threads, we simply use a new save object for each thread,
that stores the method stack information of the associated thread. On restart, all
threads that existed at the time of state saving are newly created and read their
runtime information from their save object. Saving the runtime information of
each thread is simple, but there are other problems that require attention: since



real i; // init j

int j =7; int j = 0;
Integer x = new Integer(5); if ( restart ) j = so.restore(j);
else j =T;
Is transformed into: // init x
Integer x = null;
// init i if ( restart ) x = (Integer) so.restore(x);
real i = 0.0; else x = new Integer(5);
if ( restart ) i = so.restore(i);

Fig. 4. Transformation for local variables.

threads run concurrently, one cannot predict at what time a thread that requests
state saving will initiate state saving and in which state all other threads will
be at this moment. From the point of view of all other threads, state saving
could occur at every instruction. Because of this, we would have to be prepared
to save the thread state after each instruction. That, however, would lead to
the insertion of state saving code after each instruction which clearly is rather
inefficient.

State saving occurs rarely, and usually only after certain amount of work
has been done by the program. Because of this, we need the help of the pro-
grammer: he or she has the knowledge which program statements should be
executed prior to state saving. We provide the programmer with a new method
called allowGo (), that when called, indicates that the calling thread is ready to
save its state. By this way, state saving occurs only if all running threads have
called this new method or initiated state saving. This can be seen as barrier syn-
chronization of all running threads. The new method checks if another thread
requested state saving. If not, it returns immediately, otherwise it blocks the
current thread until all running threads called the synchronization method. Ac-
cordingly, the method that requests state saving blocks the calling thread until
all running threads allow state saving by a call to the new method.

3 Discussion

We provide a mechanism by which it is possible to collect and reestablish the
state of a running program. In the application area of mobile agents this allows
strong migration. We do this by a mechanical transformation of code written for
transparent migration into code written for non-transparent migration. By this
way we allow a programmer to program code that assumes transparent migration
for a system that only provides non-transparent migration.

Of course, transparent migration is not a necessity: it is always possible to
provide the same program functionality by explicitly coding a program specific
migration mechanism on top of a non-transparent system. However, it is more
convenient to use an automatic (i.e., transparent) mechanism. The question then
is the cost (in terms of run time penalties and additional code) of this mechanism.



It is up to the programmer to decide, whether he or she is willing to pay the
cost of our mechanism in order not to have to design and code the restart of the
program explicitly. In our opinion our preprocessor offers the comfort of writing
code for transparent migration at a reasonable cost.

3.1 Limitations of Full Transparency

Since the use of our converter is targeted towards the mobile agent scenario, some
more general aspects concerning full transparency have to be considered: when
moving a running program to another environment, this environment will usually
differ from the former one. In contrast to scenarios where the saved program is
restarted at the same machine (e.g., checkpointing), moving the saved state to
a different machine before restarting it is inherent in the mobile agent scenario.
However, changing the environment between saving and restarting introduces
additional difficulties when providing fully transparent migration.

One aspect is the problem of references into the local environment such as
file handles. In general, hiding the differences of environments from the program
is difficult and hard (if ever) to achieve, and this is why transparent migration
is often considered expensive [1]. For files this would require a distributed sys-
tem layer that allows to open a file, disconnect temporarily from the file, and
reconnect to the open file some time later from some other place. This might be
possible for appropriate filesystems (cf. NFS, CORBA), but basically the same
has to be done for all local system resources. This clearly is beyond the scope of
our prototype system. Because of that, we offer - at a reasonable cost - ’almost’
transparent migration: the flow of control starts right behind the statement that
initiated migration, and the state of the migrated program is the same as the
old program, except for the references into the environment. This means that
we require the programmer to be aware of these ’environment problems’. Fur-
thermore, we require that he or she tags variables that carry local references
as ’transient’, and that code for local resource accesses can react to errors that
result from ’old’ resource handles or from new handles that from the program’s
point of view represent a resource in an unexpected state.

3.2 Limitations of Language Level Instrumentation

Our preprocessor instruments code and our mechanism requires that all methods
that might initiate state saving are instrumented. This causes a problem when
using program libraries. Normally, libraries come without source code. Because
of that, we cannot instrument the library code. In most cases this is not a
problem, since these calls do not initiate state saving by themselves. But if the
library call results in a callback to a program’s method that can initiate state
saving, the uninstrumented library code will prevent the correct state saving
and restoring. Because of this, we require that callback methods do not initiate
state saving directly or indirectly by a method call. This is not a real limitation
because the callback method could raise a flag that indicates to initiate state
saving to another method. This of course requires a second thread of execution.



The same problem arises when using dynamic loading of code during runtime
(e.g., Class.forName). Since it is not possible to know at convert-time which
code is loaded at runtime, the current prototype cannot handle this case.

3.3 Overhead

Instrumenting and inserting code introduces time and space overheads. Since
we add code to the program, there is always a file size space penalty: the code
is blown up. At run time there is also a memory space penalty: we have to
store all local variables of methods. But at the same time, the method stack is
deconstructed, so that the maximum required memory size does not grow.

The time penalty at compile time consist of the runtime of the preprocessor
that has to instrument the original code and the time the compiler needs to
compile the additional code. The time penalty at runtime can be divided into
the additional runtime during normal program execution, the time that is needed
to collect the program state after the state saving process is initiated, and the
time that is needed to reestablish the program state before normal program
execution continues.

The additional code that is always executed at runtime consists mainly of the
code parts that organize the re-establishment of the control flow (in contrast to
the code that actually does the re-establishment). For each variable initialization
an if-statement has to be evaluated that checks whether the program is running
after a restart or migration, or whether it is the first program start. Each code
region is guarded by an if-statement that checks whether the guarded code
segment has to be skipped while reestablishing the program state. In addition,
the artificial program counter has to be modified at the end of each code region.
The code that is responsible for saving the program state is not executed when
the program runs in normal mode.

All overheads depend on how often in the code the state saving method
is called, how many other methods call a method that initiates state saving,
and how many local variables have to be saved. Since we instrument only those
methods that could be on the stack while saving the state, the instrumentation
overhead is as small as possible. Preliminary measurements for the overhead
of the instrumentation during normal program execution shows the following
results:

No|Tested code Orig| Instr|Overhead
1 100 loops: saveState + Factorial 260ms| 300ms 15%
2 |100 loops: saveState + Factorial 4+ IO (2553ms|2653ms 4%
3 |100 loops: encapsulated saveState +| 262ms| 311ms 19%

Factorial
4 1100 loops: encapsulated saveState +|2520ms|2695ms 7%
Factorial + IO

No program did initiate state saving, to avoid measuring the overhead resulting
from actually saving the program state. As the tests show, the overhead resulting



from a saveState call is approximately 5 to 20 percent. We also measured the
Bytecode blow up factor of the instrumentation:

No| Original|Instrumented|Blow-up factor
11047 Byte| 4916 Byte 4.7
2 |1333 Byte| 4866 Byte 3.65
3 |1175 Byte| 5058 Byte 4.3
4 (1322 Byte| 5198 Byte 3.93

Note that in our preliminary tests almost all instructions of the original code
have been instrumented, this is not the case in 'normal’ agent code. Because of
this we expect the blow up factor of realistic agent code to be smaller. Also, one
should compare the instrumented code with code written for non-transparent
migration providing the same functionality.

3.4 Related Work

To our knowledge, providing transparent migration or save and restart possibility
for Java is done in a few other projects only [4,7,8], and providing it on the
language level (i.e., without modifying the Java VM), is done in our project
only.

Concerning transparent agent migration, one should mention Telescript [11],
an interpreted, object oriented programming language that was designed for
mobile agents by General Magic. Because the design of Telescript was tailored
especially for mobile agents, the language had a lot of agent specific features
(e.g., object ownership, read only object references) including transparent mi-
gration of agents. Transparent migration was implemented inside the Telescript
interpreter (called engine), which did all the state saving, and did not provide
migration of multiple (agent) threads (called processes). Unfortunately, General
Magic stopped the development of Telescript.

Concerning state saving of programs or processes in general, there are a
several systems [2, 6] that use state saving mechanisms to provide for example
transparent process migration or persistence. Since these systems are especially
designed for this task, the state saving mechanisms are coded into the operating
system, interpreter, or runtime system itself in order to provide fast and efficient
access to the state information of every process.

All approaches differ from our approach by the fact that they have full control
over the implementation of the underlying system (i.e., the language interpreter
or operating system). In contrast to this we aim at not modifying the Java
interpreter at all.

3.5 Future Work

Currently the preprocessor has some limitations which we will eliminate in the
near future. An interesting extension would be the possibility to transform the



byte code of a program or using the reflection classes Java offers to do some
parts of the transformation at runtime. We plan to study the feasibility of both
ideas.

4 Summary

We presented a way to allow Java programs to save their state in such a way
that the program can be restarted with exactly the same state and at exactly the
same code position. This is achieved by using code instrumentation and Java’s
object serialization mechanism. The code instrumentation of Java programs is
done by a preprocessor that analyzes the original program and adds code that
saves the current runtime state and makes it possible to reestablish that state
on restart.

The instrumentation also supports state saving in the presence of multiple
program threads, but in this case the cooperation of the programmer is required
by using a special method to indicate that a thread is ready to save its state.

The current preprocessor prototype is used in the WASP project [3] to allow
transparent migration for mobile agents written in Java.

References

1. Baumann J., Hohl F., Rothermel K., Straler M., Mole - Concepts of a Mobile Agent
System, to appear in: WWW Journal, Special issue on Applications and Techniques
of Web Agents, 1998

2. Douglis F., Ousterhout J., Transparent Process Migration: Design Alternatives and
the Sprite Implementation, Software - Practice and Experience (SPE), Volume 21,
Number 8, August 1991, pp 757-785

3. Fiinfrocken S., How to Integrate Mobile Agents into Web Servers, Proceedings of the
WETICE’97 Workshop on Collaborative Agents in Distributed Web Applications,
Boston, MA, June 18-20, 1997, pp 94-99

4. Gray R., AgentTcl: A Transportable Agent System., Proc. CIKM’95 Workshop of
Intelligent Information Agents, 1995

5. Java Compiler Compiler, http://www.suntest.com/JavaCC/

6. Mira da Silva M., Mobility and Persistence, Chapter in Mobile Object Systems.
LNCS 1222, Springer-Verlag, 1997, pp 157-175

7. Peine H., Stolpmann T., The Architecture of the Ara Platform for Mobile Agents, In:
Rothermel K., Popescu-Zeletin R. (Eds.), Mobile Agents, Proc. of MA’97, Springer
Verlag, Berlin, April 7-8, LNCS 1219, pp 50-61

8. Ranganathan M., Acharya A., Sharma S., Saltz J., Network-aware Mobile Programs,
Proceedings of Usenix’97, Anaheim, CA, 1997

9. Smith J.M., A Survey of Process Migration Mechanisms, Operating System Review,
Volume 22, Number 3, July 1988, pp 28-40

10. Sun Microsystems, Object Serialization Specification, JDK Online Documentation
"docs/guide/serialization/spec’, 1996, 1997

11. White J.E., Telescript Technology: The Foundation for the Electronic Marketplace,
Whitepaper by General Magic, Inc, Sunnyvale, CA, USA



