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Fatigue is a common symptom in various diseases, including multiple sclerosis (MS). The current standard method to assess
fatigue is through questionnaires, which has several shortcomings; questionnaires are subjective, prone to recall bias, and
potentially confounded by other symptoms like stress and depression. Thus, there is an unmet medical need to develop
objective and reliable methods to evaluate fatigue. Our study seeks to develop an objective and ubiquitous monitoring tool for
assessing fatigue. Leveraging a smartphone-based rapid tapping task, we conducted a two-week in-the-wild study with 35 MS
patients. We explore the association between tapping derived metrics and perceived fatigue assessed with two standard clinical
scales: fatigue severity scale (FSS) and fatigue scale for motor and cognitive function (FSMC). Our novel smartphone-based
fatigue metric, mean tapping frequency, objectively ranks perceived fatigue with a mean 𝐴𝑈𝐶𝑅𝑂𝐶 = .76, 𝐶𝐼 = [.71, .81]
according to the FSMC, and a mean 𝐴𝑈𝐶𝑅𝑂𝐶 = .81, 𝐶𝐼 = [.76, .86] according to the FSS. These results demonstrate that our
approach is feasible and valid in uncontrolled environments. In this work, we provide a promising tool for objective fatigue
monitoring to be used in clinical trials and routine medical care.
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1 INTRODUCTION
Fatigue is a common symptom in many diseases, caused by viral infections [17, 57, 79], autoimmunity [6, 33],
cancer [52, 72], neurodegenerative [26] and cardiovascular disease [11, 21]. Fatigue has been defined as “a
subjective lack of physical and/or mental energy that is perceived by individuals or caregivers to interfere with
the usual and desired activities” [30]. Up to 30% of individuals with COVID-19, for example, suffer from this
debilitating symptom even weeks following the acute disease [17, 57, 79]. In multiple sclerosis (MS), fatigue
affects up to 95% of patients [4, 25, 40, 42], many of them rate it as their most troubling symptom [38] and as the
principal cause of patients’ reduced work-productivity [38]. Still, the pathogenesis of fatigue remains uncertain,
and there is no approved therapy available yet [37, 41, 63].

A critical limitation for understanding fatigue is the lack of objective methods to rate the symptom. The current
standard measures to assess fatigue are self-reported questionnaires [56], which have several shortcomings: (1)
Questionnaires rely entirely on subjective rating; (2) they evaluate fatigue retrospectively based on the past
week or even month and are thus prone to recall bias [12, 32]; (3) they fail to define the symptom, and different
conditions such as tiredness, sleepiness, and lack of motivation are reported as fatigue by patients [32]; (4)
many questionnaires do not differentiate between specific domains of fatigue, such as cognitive and physical
fatigue [12]; (5) they are prone to confounding by other symptoms such as depression [65]. Hence, there is an
unmet medical need to develop objective and reliable measures to evaluate and ideally quantify the severity of
fatigue. New outcome measures could be used for assessing the efficacy of therapeutic interventions and thus
facilitate the development of novel treatments.

With the aim to provide clarity and consistency in the definition of fatigue, a unified taxonomy has been
proposed that discriminates between subjective or perceived fatigue and performance fatigability [37]. Both
domains add to the overall symptom fatigue, as depicted in Figure 1 (dimensions). A promising way to study
fatigue in patients is by assessing performance fatigability, which can be measured objectively. Kluger et al. defined
fatigability as ”the magnitude or rate of change in a performance criterion relative to a reference value over
a given time of task performance” [37]. The relation between perceived fatigue and objective fatigability is
still unclear, but a recent meta-analysis of several studies in MS patients supports a correlation between both
entities [37, 48]. Establishing an association between fatigability and perceived fatigue is an important goal for
clinical research but has proven difficult [37]. Such an association could redefine our understanding of fatigue
and how the symptom is treated.

There are two aspects of performance fatigability the cognitive and physical/motor (cf. Figure 1, right). In this
paper, we focus on the physical aspect of fatigability. Motor fatigability is typically measured through walking
(e.g., 6-minute walking test [29]), handgrip strength [67], or using a knee dynamometer [75]. These approaches
have important limitations: 1) requirement of expensive clinical equipment and trained professionals to conduct
the tests, and 2) the restriction to a medical facility and, consequently, these assessments are conducted only
at a few or single time-points. Recently, Barrios et al. [5] proposed a rapid tapping task on a smartphone as an
inexpensive approach to assessing motor fatigability ( cf. Figure 1 bottom right). Their controlled lab evaluation
demonstrated a high correlation between smartphone tapping and fatigability measurements obtained with a
handgrip dynamometer. However, studies on the association between fatigability measured by the tapping task
and perceived fatigue are not available. Hence, it is still unknown if 1) a smartphone-based tapping task is a
feasible proxy for fatigue, and if 2) the task is valid in uncontrolled environments. In this paper, we seek to
investigate both of these questions ( cf. Figure 1 bottom left).
This paper’s focus is two-fold: (I) To develop a new objective and reliable measure of motor fatigability

computed from raw tapping data and demonstrate its usability and validity when performed outside controlled
settings and without medical supervision (in-the-wild). We approach this goal by using Barrios et al. [5]’s tapping
task and conducting a two-week in-the-wild study with 35 MS patients. Participants performed a 30 s tapping
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Fig. 1. State of the art fatigue vs. fatigability. Fatigue is currently only measured by questionnaires which have several
shortcomings like subjective and prone to recall-bias. Motor fatigability can be measured objectively with rapid tapping or
a handgrip dynamometer. The association between fatigue and fatigability is not established yet. Hence, we conduct an
empirical in-the-wild study to evaluate the feasibility of using rapid tapping on a smartphone as a surrogate for fatigue.

task (i.e., a trial) once per day during the two weeks. Using this data, we introduce a new metric to assess
motor fatigability: tapping frequency. We show that our new metric is a valid method to assess motor fatigability
in-the-wild by comparing it to the previous approaches, specifically touch duration introduced by Barrios et al. [5]
and strength decline using a handgrip dynamometer. (II) To evaluate the feasibility of establishing an objective
and ubiquitous method as a surrogate to quantify perceived fatigue. To this end, we evaluate the performance
of our proposed metric, tapping frequency, to classify fatigued and non-fatigued patients using 𝑅𝑂𝐶 (receiver
operating characteristic) curves and area under the 𝑅𝑂𝐶 curve (𝐴𝑈𝐶𝑅𝑂𝐶 ). We quantified perceived fatigue during
the study with two widely accepted and validated fatigue questionnaires in MS patients: Fatigue Severity Scale
(FSS) [44] and Fatigue Scale for Motor and Cognitive Functions (FSMC) [56].

1.1 Contributions
With the results of our in-the-wild study, we make the following core contributions:

• A new smartphone-based metric, tapping frequency, to quantify motor fatigability with the tapping task.
• Provide proof of concept of the validity of the tapping task and our metric in uncontrolled environments
in-the-wild.
– The data is consistent across days, with no significant change in tapping frequency.
– There is a statistical difference between fatigued and non-fatigued groups during the whole study.
– There is high correlation between our new metric and the handgrip dynamometer during the two-week
study.

• The first in-the-wild study evaluating the feasibility of establishing a tapping task as a surrogate for
perceived fatigue.
– Mean tapping frequency ranks motor fatigue according to the FSMC with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .76 ± .05 when
averaging thee valid trials.

– Mean tapping frequency ranks fatigue according to the FSS with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .81 ± .05 when averaging
three valid trials.

• Open source our fatigue dataset to the research community, containing data from 35 MS patients1.

1https://www.research-collection.ethz.ch/
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Our goal is to develop an objective metric to be used when monitoring patients with fatigue in medical
routine or clinical trials, which until now has been hampered by the heterogeneity and subjective nature of
questionnaires [27]. We believe our results are an essential step into understanding fatigue. Our smartphone-based
tapping technique and evaluation metric have the opportunity to be used regularly by patients outside the clinic
and more frequently than currently done in the medical routine. Being an objective method, it also opens the
potential for quantifying the direct effects of therapeutic interventions, which is a clear advantage over currently
used questionnaires [55].

2 RELATED WORK

2.1 Fatigue vs. Fatigability
The current gold standard to assess MS-related fatigue is through questionnaires [23, 44, 56, 80] such as the
Fatigue Severity Scale [44], Fatigue Impact Scale [24], and Modified Fatigue Impact Scale [80] and Fatigue Scale
for Motor and Cognitive Functions (FSMC) [56]. The shortcomings of assessing fatigue with questionnaires
have been discussed in several studies [9, 37, 39, 65, 83]. Though the current definition of fatigue is to include
both perceived fatigue and performance fatigability ( cf. Figure 1), standard questionnaires only assess perceived
fatigue. Researchers have suggested that perceived fatigue is associated with fatigability [20, 48, 74, 82]. However,
demonstrating the association has been difficult [37].
Motor fatigability is assessed by quantifying the performance decline rate during a specific task with a fixed

duration. Most studies measure motor fatigability through maximal voluntary contractions (MVCs) with a
handgrip dynamometer [14, 19, 66, 68, 69, 74]. This method requires specialized equipment and personnel [20, 69].
To overcome this limitation, the latest research is focused on developing alternative fatigability methods. Tanigawa
et al. [76] observed motor fatigue during fast tapping with the index finger on a custom button. Boukhvalova et
al. [8] hypothesized that tapping with the index finger on a smartphone may measure motor fatigability. However,
they did not test their hypothesis. Barrios et al. [5] proposed the use of touch duration during a rapid tapping task
to quantify motor fatigability using commodity smartphones. The authors collected single tapping sessions per
study participant to validate and compare their approach to the commonly accepted technique MVC for 30 s with
a handgrip dynamometer within a controlled environment within the hospital ( cf. Figure 1 bottom right side).
However, they did not explore the relation to fatigue nor tested if their approach would work outside the hospital.
Our work seeks to fill this gap. With an empirical study, we evaluate the feasibility of using rapid tapping on a
smartphone as a surrogate for fatigue ( cf. Figure 1 bottom left side). We base our work on a new metric, tapping
frequency and compare it to Barrios et al. [5]’s touch duration using our in-the-wild dataset.

2.2 Fatigue Monitoring with mHealth in MS
There are a number mobile applications for managing MS-related fatigue [3, 18, 28, 35]. More Stamina [28] is a
mobile application for the self-managing of MS-related fatigue. The app acts as a to-do list where users can input
their daily tasks. The user’s energy is represented through a visual metaphor (progress bar) and a symbolic unit
(Stamina Credits) for quantifying the estimated effort per activity. The app’s goal is to facilitate patients’ energy
management. Jongen et al. [35] introduced MSmonitor, a web-based program for self-management and care of
MS patients. Their pilot study data suggests that using MSmonitor led to increased health-related quality of life
and helped patients self-manage their fatigue. MS Energize [3] is an iPhone app focused on self-management of
fatigue for MS patients. The app works as a coach supporting patients in their fatigue management. Similarly,
D’hooghe [18] introduced MS TeleCoach, a mobile application offering telemonitoring of fatigue and telecoaching
of physical activity and energy management in persons with MS. Results from their 12-week study indicate an
improvement in the fatigue level of the participants measured through the FSMC. Existing mobile application
for fatigue monitoring measure fatigue using questionnaires. Tong et al. [78], aimed at predicting MS patients’
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FSS score using data from connected devices, background information and daily questions at weekly intervals.
Objective metrics to assess fatigue and fatigability are not common in mHealth. Hence, in this paper, we seek
to evaluate the feasibility of establishing an objective surrogate for fatigue measurements. Ideally, these new
objective fatigue measurements can be incorporated into clinical trials and thus achieve more robust fatigue
studies.

2.3 Handgrip Strength and Fatigue
Several ways to quantify fatigue during maximal voluntary contraction with a handgrip dynamometer have
been proposed. According to Schwid et al. [66], the simplest method is to compare the maximal strength at the
beginning and at the end of the contraction, as suggested by Miller et al. [51]. Bigland–Ritchie et al. [7] found
that force declines in a linear manner during sustained muscle contraction at a rate characteristic for each subject.
Hence, the slope of the decline indicates the rate of fatigue. Nacul et al. [54] studied handgrip strength as an
objective measure of disease status and severity in people with chronic fatigue syndrome (CFS). Their results
show that CFS patients had significantly lower mean handgrip strength than healthy controls, suggesting that
the mean handgrip could be used as an objective tool for diagnosis and measuring disease severity. Similarly,
they found that MS patients have a lower mean handgrip strength than healthy controls.

2.4 Finger Tapping as Disability Metric
Finger tapping quantifies neurological impairment in conditions like Parkinson’ Disease (PD) [59, 60, 77]. Finger-
to-thumb tapping is a standard task used in PD patients to assess dysfunction of the extrapyramidal motor
system, which leads to impairment in maintaining alternating movements. However, the task is not unique to PD.
Several studies have also shown that MS-related impairment can be measured with finger tapping [1, 13, 64, 71].
Chipchase et al. [13] conducted tapping with the index finger at maximal speed with the participant’s hand
resting on a surface. Using a counting device, the authors conducted 10 tapping sessions of 10 s each [50]. Their
results indicate that the number of taps can differentiate between MS patients and controls, but they found a lack
of correlation between finger tapping and fatigue severity. Alusi et al. [1] found a good correlation between the
nine-hole peg and tapping a key on a large calculator with the index finger, and thus suggest tapping as a useful
objective assessment of upper limb function in tremulous patients with multiple sclerosis. Scherer et al. [64] used
alternating left and right index finger tapping to measure tapping speed on a standard PC keyboard (key F1 and
key F12). Their task can detect minimal psycho-motor dysfunction in migraine as well as MS-related impairment.

3 METHODS
To analyze the feasibility of establishing smartphone-based objective metrics as a surrogate for fatigue, we
conducted a two-week in-the-wild study. We use the FSMC [56] to discriminate between motor-fatigued and non-
motor-fatigued participants and the FSS [44] to differentiate fatigued and non-fatigued participants. As a motor
fatiguing task, we use the tapping task by Barrios et al. [5] with its original data collection procedure. Participants
performed the tapping task with their dominant hand during each day of the two-week study. Through 𝐴𝑈𝐶𝑅𝑂𝐶 ,
we evaluate the performance of our smartphone-based metrics to rank fatigued vs. non-fatigued participants in
relation to the FSMC and FSS. Participants could exit the study at any point or continue for longer if desired. The
local state ethics review board approved this study.

3.1 Participants
We recruited 35 MS patients at a specialized MS clinic (20 female, 15 male), aged 21–53 (M = 36.77, SD = 8.93).
All MS patients had a confirmed diagnosis, signed written informed consent, and had Android smartphones.
Seven of the 35 MS patients had hand impairments according to the Nine-Hole Peg Test (9-HPT) threshold (cf.
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section 3.2.1). The Expanded Disability Status Scale (EDSS) scores ranged from 0 to 6 (M = 2.31, SD = 1.7) and
were obtained from the MS clinic at the beginning of the study.

3.2 Tasks and Baselines
Our study started with an on-boarding, during which we explained the study protocol to the participants. We
also collected normative outcome measurements using the FSMC, Nine-Hole Peg Test (9-HPT), and handgrip
dynamometer. Additionally, we asked participants to install our Android application on their smartphones. Our
application included Barrios et al.’s smartphone-based motor fatigability task [5] and sent daily notifications to
the participants to remind them to complete the tapping trials during the in-the-wild study as well as to complete
the FSS questionnaire once per week directly in the app.

Fig. 2. Studymethods: smartphone-based fatigability task on the left, nine-hole peg test centered, and handgrip dynamometer
on the right.

3.2.1 Clinical Baseline Methods. We use the 9-HPT to objectify hand function, the FSS and FSMC to categorize
fatigue, and a handgrip dynamometer as standard motor fatigability measurement. Neurological impairment was
measured using the standard disability rating scale for MS patients (EDSS) [45].

• Nine-hole Peg Test (9-HPT). The 9-HPT is a standardized, quantitative assessment used to measure finger
dexterity [49]. Figure 2 (middle) shows an image of the 9-HPT used in this study. Participants were asked to
remove the pegs, one-by-one, from the container to the holes and then to replace them into the container
using their dominant hand. As the final score, we used the average of the two trials. Patients with a total
time greater than 23.17 s (normative value used at the local hospital) were classified as hand-impaired.

• Handgrip Dynamometer. We used sustained handgrip strength as a metric to assess motor fatigability [69].
The test was conducted in an upright position, with both feet on the ground, forearms resting on an armrest.
The dynamometer was held with the thumbs facing upwards in line with the forearm, and the grip size
was adjusted for comfort. Participants performed maximum voluntary contraction (MVC) for 30 s. The
experimenter instructed participants when to start and stop the MVC. Maximum contraction in kilograms
was recorded every 3 s for a total of 30 s, resulting in 10 consecutive measurements. Figure 2 (right) depicts
the Jamar device that we used.

• Fatigue Scale for Motor and Cognitive Functions (FSMC) [56]. FSMC is used to assess MS-related cognitive
and motor fatigue. The questionnaire consists of ten items that correspond to the cognitive sub-scale and
ten items that correspond to fatigue’s physical aspects. Participants rated each of the items on a 5-point
Likert-type scale, consisting of (1) "Does not apply at all", (2) "Does not apply much", (3) "Slightly applies",
(4) "Applies a lot", and (5) "Applies completely". FSMC offers cut-off values that determine fatigue levels
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in different aspects (general, cognitive, and physical). With the cut-off values, it is possible to rate the
level of fatigue as mild, moderate, or severe. Appendix D, Table 3 shows the different cut-off values for
the distinct aspects of fatigue according to FSMC. Participants completed the FSMC before and after the
two-week study. We used as the final score the mean of both completed questionnaires. In this study, we
only focus on the physical aspect of fatigue as the tapping task is a measurement of motor fatigability. We
label participants as non-fatigued if their FSMC physical score is less than 22, otherwise they are considered
fatigued. Appendix D, Table 2 shows the items of the FSMC questionnaire.

• Fatigue Severity Scale (FSS) [44]. FSS is a widely-used questionnaire to assess fatigue in various diseases [44,
81]. The questionnaire consists of 9 items with questions related to how fatigue interferes with the patient’s
activities. Patients rated the items on a 7-point Likert scale with values ranging from 1 = "strongly disagree"
to 7 = "strongly agree". Higher scores indicate greater fatigue severity. The FSS final score is the mean of
all items. We classified scores larger than 3.8 as fatigued participants. The FSS has no defined threshold
to identify fatigued participants. Thresholds are usually defined depending on the study needs [2, 36, 81].
A score of 4 or higher is commonly used to identify severe fatigue [2, 36]. For the FSMC, we chose to
use the lower threshold (mild fatigue). Hence for the FSS, we chose 3.8 as a threshold, representing a
more conservative score than the commonly used for severe fatigue. Using this threshold, we identified a
correlation of 𝜌 = 0.85 (𝑝 < 0.0001) between the FSS and FSMC scores which is in line with the findings
of Penner et al. [56]. Through our mobile application, we reminded participants to complete the FSS
questionnaire once per week. We used the mean of the completed questionnaires as the final score. Refer
to Appendix A, Table 1 for the complete FSS questionnaire.

3.2.2 Rapid Alternating Finger Tapping [5]. Participants performed rapid finger tapping on their smartphone’s
screen with their dominant hand. We asked them to keep their hand resting on a flat surface while doing the task
with the smartphone set to landscape mode. Figure 2 on the left shows an image of the tapping tasks. The exertion
movement required participants to engage the index and middle finger. Participants were asked to complete
tapping trials at their maximal performance (maximal speed) for 30 s. This means that, they had to tap as fast as
possible without stopping until the app indicated completion. The application was the same as used by Barrios
et al. [5]. It did not offer immediate feedback to users if trials were conducted as expected.

3.3 Study Design
Our study included two phases: one in the hospital, and the other in-the-wild, highlighted in orange and blue ,
respectively, in Figure 3.

Fig. 3. Study design timeline with two phases: the hospital phase (orange) to gather baseline measurements, and in-the-wild
phase (blue), the core of this study. During the in-the-wild phase, participants complete tapping trials daily and the FSS
questionnaires once per week. Pre and post in-hospital baselines and questionnaires were average to get the final scores.

3.3.1 In-hospital. We included a pre-and post-study phase, both guided by a healthcare professional. During
the pre-phase, participants were briefly introduced to the study and completed the FSMC and a demographic
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questionnaire. We guided participants through installing and using our Android application on their smartphones.
They also received instructions on how to complete the tasks, including a demonstration by the experimenter and
a short familiarization session for each of the tasks: handgrip, tapping task, and 9-HPT. Participants completed
all tasks with their dominant hand in counterbalanced order. Between tasks, participants rested their arm and
hand for three minutes. During the post-phase, as shown in Figure 3, we collected the FSMC scale and handgrip
measurements again. Both measures, pre and post, were averaged to obtain the final scores. By combining two
measures, we seek to reduce outliers and get more reliable baselines. Previous studies suggest that single MVC
handgrip measurements can result in invalid trials [5].

3.3.2 In-the-wild. The in-the-wild experiment started immediately after the initial in-hospital phase. We asked
patients to complete tapping trials once a day after receiving the reminder notification. We did not set a specific
time to complete the trials. Instead, we allowed notifications to be set randomly during the day to achieve higher
fluctuations in the person’s energy level. All trials conducted in-the-wild were completed with no supervision.
Once per week, participants received a notification for completing the FSS questionnaire. The study duration was
two weeks.

3.4 Data Collection
During each 30 s trial of the handgrip dynamometer, we recorded ten samples, which is the maximum sampling
rate of the Jamar device we used. For the 9-HPT, we recorded the time (seconds) that participants took to complete
the task. Throughout the tapping task, we recorded all touch events on the participant’s smartphone using
the Android API. We stored all timestamped touch down coordinates and up events, from which we compute
touch duration (i.e., how long did the finger touch the screen). Additionally, we computed the tapping frequency
per second (i.e., number of taps recorded within a 1 s window), as a new feature to quantify fatigability. We
define task performance for the tapping task in terms of the tapping frequency. This means tapping frequency
will be high for fast tapping (high performance), whereas for slow taps (low performance), tapping frequency
decreases. During our analysis, we also incorporate touch duration and its slope following previous fatigability
approaches [5]. Touch duration has the opposite behavior of tapping frequency. During a high performance,
touch duration decreases, and it increases as performance decays (i.e., taps become slower). FSS scores were
stored on the participants’ phone.

3.5 Hypotheses
We analyzed the data concerning the following hypotheses:

I We expect to find a comparable decrease in performance between the handgrip task and the in-the-wild
tapping trials (tapping frequency), similarly to the findings of Barrios et al. [5] with touch duration.

II We expect to see a difference in tapping performance when comparing fatigued and non-fatigued participants
suggesting an association between tapping performance and perceived fatigue.

III We expect the smartphone-based tapping task to be feasible and provide valid results when conducted in
unsupervised settings in-the-wild.

To verify H1, we followed the procedure used by Barrios et al. [5]. We compared the tapping performance
against the handgrip performance through correlation. However, as this is an in-the-wild study, we compare
each tapping trial with mean handgrip of pre-and-post in-hospital phases. We verify H2 by evaluating features
derived from the tapping task as a metric to classify fatigued and non-fatigued participants, according to the
FSS and FSMC, using 𝑅𝑂𝐶 (receiver operating characteristic) curves and area under the 𝑅𝑂𝐶 curve (𝐴𝑈𝐶𝑅𝑂𝐶 ).
Finally, for H3, we use our validity algorithm to verify the trials in-the-wild.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 89. Publication date: September 2021.



Smartphone-based Tapping Frequency as a Surrogate for Perceived Fatigue. An in-the-Wild Feasibility Study. . . • 89:9

3.6 Data Processing Pipeline
We use tapping frequency as the primary performance metric to assess motor fatigue with the smartphone tapping
task. We define tapping frequency as the total number of taps registered during one second. Hence, we compute
our feature with a one-second sliding window. We aim to monitor patients reliably in-the-wild. Thus, our data
processing pipeline needs to handle noise and invalid tasks. A key difference to Barrios et al. [5] data handling
is that their approach did not include gaps verification nor handling. As their study was fully controlled and
under supervision, they probably were not affected by these cases as they could easily repeat trials when the
experimenter deemed it necessary. However, our study is fully unsupervised. Hence, we see the relevance is
verifying the data quality before conducting any analyses. Gaps can occur when a participant gets distracted by
an incoming phone notification, call, or external factors. Our data processing pipeline includes three steps: (1)
gap removal, (2) task validity, and (3) feature extraction.

3.6.1 Gap Removal. We identify gaps within a tapping trial when no input is recorded on the smartphone’s screen
for over 843.5 ms. This threshold represents the 0.999th quantile of the time differences between consecutive taps
in our in-the-wild dataset. We did not incorporate automatic gap detection in the app, as it would imply that we
had a priori knowledge of the tapping frequency of MS patients, which was not the case. Moreover, by setting
a threshold without knowing how hand impairment could affect tapping, we could have erroneously stopped
trials of participants with motor impairment. From our dataset, we have seen that gaps can occur at any time
within a trial. If the gap occurs during the first half of a trial, we move the trial’s start to after the gap. If the
gap occurs after the second half of a trial, we move the trial’s end time to before the gap occurs. We repeat this
process recursively until all gaps within a trial have been removed. When removing gaps, we verify that the final
trial’s length is at least 27 s to ensure enough data for analysis. Shorter tapping trials are classified as invalid.

3.6.2 Tapping Trial Validity. We validate individual tapping trials by verifying that they are completed at maximal
performance. First, we derive a continuous time series at a constant sample rate and apply a 2𝑛𝑑 order Butterworth
low-pass filter with a cutoff frequency of 0.5 Hz. Then, we proceed to find the time of maximal performance (i.e.,
maximal tapping frequency). We use a low-pass filter to avoid detecting outliers within the tapping frequency.
Since the initial 3 seconds of tapping contains inertial behavior [5], we do not consider them when extracting the
peak’s performance time.
Two conditions must hold to verify sustained maximal performance during a tapping task: (1) The peak of

maximal performance should occur during the first half of the task (i.e., the maximal tapping frequency should
occur before 15 s). Later peaks in performance indicate that the person failed to start the task at maximal speed.
(2) After the peak of maximal performance, we expect a negative slope in the tapping frequency data. To verify
this condition, we fit a line to the tapping frequency data, taking the time of maximal peak performance as the
task’s start time, following, we extract the line’s slope. After the maximal peak in performance, a positive slope
indicates that the person failed to perform maximal performance from the beginning of the trial. Figure 4 depicts
examples of different cases of trial validity: invalid slope (left), invalid maximal performance location (center),
valid trial (right).

3.6.3 Feature Extraction. We compute a set of features to evaluate the trial’s performance. In particular, we
compute the slope of the touch duration [5], slope of the tapping frequency, mean and maximum tapping
frequency.

4 RESULTS
In summary, our results show an association between the smartphone-based tapping performance metrics and
perceived fatigue measured with the FSMC and FSS. We found a statistically significant difference between
fatigued versus non-fatigued participants’ performance. The difference between both groups (fatigued and
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Fig. 4. A trial is invalid when the regression slope of the tapping frequency after the maximum is positive (left), or when the
maximum of the filtered tapping frequency occurs after 15 s (center). Otherwise, the trial is considered valid (right), meaning
the trial was completed at maximal performance. The first three seconds of the trial, depicted in grey, are discarded to avoid
the influence of the initial inertia.

non-fatigued) is significant during the whole study, indicating that the approach is valid in-the-wild and without
supervision. Additionally, our new data processing pipeline and core metric, tapping frequency, increase the
validity of trials by 19% in comparison to Barrios et al. [5].

4.1 Tapping Frequency as a Valid Motor Fatigability Metric
We propose tapping frequency as a method to quantify motor fatigability using the tapping task on commodity
smartphones. We validate our approach by comparing it to two accepted fatigability methods: handgrip dy-
namometer and Barrios et al.’s touch duration [5] on our in-the-wild dataset. We compute correlations between
the mean handgrip and each single tapping trial at the participant level and report the combined correlations. We
applied the data processing pipeline and feature generation as described in Section 3.6. To directly compare the
handgrip dynamometer’s ten measurements, we split the tapping data into ten segments. Next, we discard the
first data segment to account for inertia [5]. We perform min-max normalization on the segmented data instead
of standardization before computing the segments as done by Barrios et al. [5].
Using our trial validity definition, we classify 87% of the in-the-wild participants trials as valid (cf. Figure 6),

which is a 19% increment compared to Barrios et al. [5]’s touch duration using our in-the-wild dataset. The
correlation to the handgrip is comparable in both approaches. We used Spearman’s correlation and obtained the
following values, for Barrios et al. [5] 𝜌 = 0.80, CI: [0.39, 0.98] (𝑝 < 0.05 for all except 5 participants), and for our
approach 𝜌 = 0.83, CI: [0.54, 0.99] (𝑝 < 0.05 for all except 2 participants).

4.2 Fatigue Scores’ Distribution
The FSMC and FSS score distributions of our study population are depicted in Figure 5. As tapping is a motor
task, we focus our analyses on the physical aspect of the FSMC questionnaire. Following the FSMC cut-off values,
we classified 18 patients as fatigued and 17 as non-fatigued. Out of the 35 patients, two did not complete a single
FSS questionnaire. The FSS questionnaire was intended to be completed during the in-the-wild phase of the study.
From the 32 patients that did complete the FSS survey, we classified 17 patients as fatigued and 15 as non-fatigued.
We observe a correlation of 𝜌 = 0.85 (𝑝 < 0.0001) between the FSS and FSMC scores. With the conservative
threshold of 4.0 for the FSS, 12 patients would classified as fatigued and 20 as non-fatigued.
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Fig. 6. Total tapping tasks completed per participant over the
two week study. One participant was discarded for having
more than half of the trials invalids. 87% of trials were labelled
as valid.

4.3 Completed Trials and Validity
We collected a total of 487 tapping trials from 35 patients during our in-the-wild study. From those, 70 trials were
classified by our validation algorithm as invalid. Figure 6 shows the valid and invalid trials per participant. One
participant had more than half of the trials labeled as invalid (cf. Figure 6 "Discarded patient"). We decided to
discard data from this participant as the medical examiner noted during the in-hospital session that the participant
had very long artificial nails that prevented them from tapping correctly. This resulted in a dataset of 34 patients
with 473 tapping trials, of which 61 are labeled as invalid. The rest of the patients completed the study and
achieved at least eight valid tapping trials during the whole study. The average validity during the study was 87%
(min = 57.0%, max = 100.0%)

4.4 Tapping Frequency Outperforms Handgrip Strength When Analyzing Fatigue
We computed a series of non-parametric Kruskal-Wallis H-tests [22] to identify statistically significant differences
between fatigued and non-fatigued participants in terms of mean tapping frequency and handgrip strengths.
The results are summarized in Figure 7. Following previous findings, we expect fatigued patients to show
lower handgrip strength than non-fatigued patients [54]. Figure 7 (top left) shows the mean tapping frequency
distribution of the study population according to the FSMC classification, averaged over all the valid trials of
the patients. We observe a statistical significance difference in tapping frequency comparing the fatigued and
non-fatigued group with 𝐻 = 7.50 (𝑝 < 0.01). However, there is no statistically significant difference in terms of
the mean handgrip strengths (cf. Figure 7, bottom left).

We found that while mean handgrip is confounded by gender, tapping frequency is not. Mean tapping frequency
in female participants shows a significant difference between fatigued and non-fatigued with 𝐻 = 8.84 (𝑝 < 0.01).
However, this is not true within the male participants with 𝐻 = 2.72 (𝑝 = 0.09). These results are shown in
Figure 7 (top center). This may be explained by the smaller sample size compared to the female group. In fact,
only six male participants are classified as non-fatigued according to the FSMC scale. In terms of mean handgrip
(cf. Figure 7 bottom center), there is a statistically significant difference between genders when analyzing the
non-fatigued 𝐻 = 11 (𝑝 < 0.001) and fatigued 𝐻 = 7.25 (𝑝 < 0.01) groups. However, handgrip does not show a
statistically significant difference between fatigued and non-fatigued participants.
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Fig. 7. Mean tapping frequency (top) and mean handgrip strength (bottom) in function of FSMC motor fatigue, gender, and
impairment as defined by the 9-hole peg test. Fatigue is shown in orange and no fatigue in blue.

Analysis on the tapping performance and hand impairment shows statistically significant difference between
non-impaired fatigued and non-fatigued participants with 𝐻 = 5.72 (𝑝 < 0.05). However, there is no significant
difference between the fatigued participants of the impaired and non-impaired groups. Only seven participants
classified as hand-impaired according to the 9-HPT, and from those only two are non-fatigued. The small amount
of non-fatigued and hand-impaired participants does not allow us to calculate whether there is a significant
difference among the non-impaired population. In terms of handgrip strength, there is neither a difference between
impaired and non-impaired participants, nor a difference within these groups in terms of fatigue. Figure 7 (right)
shows the box plots corresponding to this analysis.

We performed a similar analysis to explore mean tapping frequency and handgrip of fatigue and non-fatigued
participants in function of the FSS questionnaire, coming to the similar conclusions presented in this section.
However, when exploring the influence of gender on the mean tapping frequency and the FSS, we found
statistical significant difference for female and male participants. This is opposite to the FSMC where no statistical
significance difference was found for male participants. Refer to Appendix C for the box plots related to the
FSS scores. Full descriptive statistic on the performed test and additional non-parametric tests are shown on
Appendix E.

4.5 Tapping Frequency as a Surrogate for Perceived Fatigue
To explore the association between our metric and perceived fatigue, we computed the predictive power of the
tapping frequency to rank fatigued participants according to the FSMC and FSS scores. We use 𝑅𝑂𝐶 curves and
𝐴𝑈𝐶𝑅𝑂𝐶 [34] to evaluate the performance of our metric using it as threshold to classify between fatigued and
not fatigued participants. AUC has the advantage that it provides the features’ overall classification performance
without defining a threshold. Thresholds can be adapted depending on a specific purpose. In some cases, the
focus is on high recall, while in others, on accuracy.
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4.5.1 Evaluation Setting. To evaluate the robustness of our approach and compute confidence intervals for
𝐴𝑈𝐶𝑅𝑂𝐶 , we use stratified Monte-Carlo sampling [58] with 1000 iterations and randomly select (without replace-
ment) in each iteration 2/3 of our participants’ data (tapping trials) for evaluation. We partitioned the tapping
data into six strata, following two partitioning criteria: (a) fatigued as a binary state according to FSMC or FSS,
and (b) an age group, which can be one of three: [18,30), [30, 40), and [40,∞). Each participant and all of their data
is fully assigned to one of the resulting six strata. Thus, when performing the stratified split, either a participant’s
data is fully considered or not at all. With this approach, we split at the participant level, ensure class balance,
and account for age.

We report the average (𝑋 ) 𝐴𝑈𝐶𝑅𝑂𝐶 with its respective confidence intervals. Additionally, we explore how the
predictive power changes when combining more than one tapping trial. Thus, we combine consecutive, valid
trials by averaging their features. For visual inspection, we include plots of the ROC curves corresponding to
the 1000 splits and averaging three consecutive, valid trials. This section reports results for several features,
specifically mean tapping frequency, maximum tapping frequency, and the slope of the tapping frequency. There
is no established baseline for this classification task. Nevertheless, we consider the participant’s age and the slope
of the touch duration as baseline comparisons. Previous research shows that fatigue occurs more frequently in
older patients, independently from disease severity [16] , and Barrios et al. [5] proposed touch duration declined
rate (slope) as a fatigability metric.

4.5.2 FSMC - Motor Fatigue Ranking According to 𝐴𝑈𝐶𝑅𝑂𝐶 . Our results show that maximum tapping frequency
and mean tapping frequency outperform the other features. When considering a single tapping trial (𝑡 = 1),
tapping frequency ranks fatigue and non-fatigued participants with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .74 ± .05. Furthermore, we
observe that the 𝐴𝑈𝐶𝑅𝑂𝐶 increases when averaging consecutive trials’ features. Tapping frequency reaches a
maximum when combining three consecutive, valid trials, representing an improvement of 2 percentage points
(𝑝.𝑝). Figure 8 (right) shows the ROC curves corresponding to the mean and maximum tapping frequency,
best-performing features, when averaging three successive valid trials. The slope of the tapping frequency
ranks participants with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .65 ± .05 when 𝑡 = 3. Followed by touch duration slope with a 𝐴𝑈𝐶𝑅𝑂𝐶

𝑋 = .60 ± .05 when 𝑡 = 3, and age with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .57 ± .05. We computed slopes as features of motor
fatigability as suggested in previous research [5, 7]. Similarly, we consider the participant’s age as a feature, as
previous research has shown that fatigue occurs more frequently in older patients, independently from disease
severity [16]. Our suggested metric, tapping frequency, outperforms the baseline touch duration slope [5] and
age by 16 𝑝.𝑝 and 19 𝑝.𝑝 respectively. Our results show that tapping trial performance metrics outperform the
motor fatigability metrics for assessing perceived fatigue.

4.5.3 FSS - Fatigue Ranking According to 𝐴𝑈𝐶𝑅𝑂𝐶 . Fatigue ranking in terms of the FSS questionnaire shows the
same behavior as described for the FSMC ranking. Mean tapping frequency and maximum tapping frequency
exhibit the best ranking performance. When considering a single tapping trial (𝑡 = 1), mean tapping frequency
ranks fatigue and non-fatigued participants with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .80 ± .05. Furthermore, we observe that the
𝐴𝑈𝐶𝑅𝑂𝐶 increases when averaging consecutive trials’ features. Tapping frequency reaches a maximum when
combining three consecutive, valid trials with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .81 ± .05. The next best feature is maximum tapping
frequency with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .77 ± .05 when combing three trials (𝑡 = 3). Following is tapping frequency slope
with with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .61 ± .05 when 𝑡 = 3, age with with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .56 ± .05 when 𝑡 = 3, and finally touch
duration slope with𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .50 ± .05. The touch duration slope shows a random behavior for ranking fatigue
according to the FSS. Mean tapping frequency, outperforms the fatigability baseline touch duration slope [5] and
age by 31 𝑝.𝑝 and 26 𝑝.𝑝 , respectively (cf. Figure 9). Similar to the FSMC ranking results (cf. Section 4.5.2), tapping
trial performance metrics outperform the motor fatigability metrics for assessing perceived motor fatigue.
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Fig. 8. Mean 𝐴𝑈𝐶𝑅𝑂𝐶 when ranking motor fatigue according to FSMC of all participants (N=34) on the left. Mean tapping
frequency shows the best performance in comparison to the other features. Also, reliability increases when averaging the
features of consecutive valid trials (𝑡 ). ROC curves for mean and maximum tapping frequency with 𝑡 = 3 are displayed on
the right. Data generated using Monte-Carlo simulation with 1000 iterations.
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Fig. 9. Mean 𝐴𝑈𝐶𝑅𝑂𝐶 for fatigue according to FSS of all participants (N=32) on the left. Mean tapping frequency shows the
best performance in comparison to the other features. Also, reliability increases when averaging the features of consecutive
valid trials (𝑡 ). ROC curves for mean and maximum tapping frequency with 𝑡 = 3 are displayed on the right. Data generated
using Monte-Carlo simulation with 1000 iterations.

4.6 Participants’ Adherence – Temporal Analysis
To verify that our approach is valid in-the-wild, we analyzed how the metric outcomes varied over the two-week
study. We compute a sliding window and average the mean tapping frequency over three consecutive, valid
trials. Afterward, we compute a series of Kruskal-Wallis H-tests to verify if the statistically significant difference

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 89. Publication date: September 2021.



Smartphone-based Tapping Frequency as a Surrogate for Perceived Fatigue. An in-the-Wild Feasibility Study. . . • 89:15

between fatigued and non-fatigued patients according to the FSMC and FSS held along the two-weeks. Figure 10
and Figure 11 offer an overview of the results corresponding to the FSMC and FSS respectively. The results show
that the statistically significant difference between the fatigued and non-fatigued participants in terms of the
mean tapping frequency holds in-the-wild for both questionnaires. This confirms that our metric is valid in
unsupervised settings and that the approach is suitable for monitoring fatigue remotely.
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Fig. 11. Mean tapping frequency of three averaged valid asks during the course of the study grouped by fatigue as defined
by the FSS questionnaire.

5 DISCUSSION
In this section, we discuss the implications of our findings, the limitations of our work, and possible directions
for future research.

5.1 Implication of Subjective/Objective Measurements of Fatigue
There is a clear unmet medical need to develop an objective measure to assess both motor and cognitive fatigue
in MS patients. Availability of such a tool would be an essential component to develop new therapies and
improve routine medical care by helping to assess the effect of an intervention and to differentiate from various
confounding symptoms, e.g., sleepiness, mood alterations, and others. Despite being a debilitating symptom
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affecting 90% of all MS patients throughout the disease, there is still is no approved therapy available. Different
compounds have been tested in randomized placebo-controlled clinical trials (or are being used as off-label
treatments). The results of these trials were inconsistent; some reported good efficacy of the therapies, whereas
others did not show a benefit of the therapies [10, 15, 31, 43, 46, 47, 53, 55, 62, 73]. The outcome measures in
all these trials were subjective questionnaires. It is well accepted that the magnitude of the placebo effect is an
important reason for the variability in efficacy [55, 61, 70]. Hence, an objective measure would overcome this
limitation for treatment development and provide a useful medical decision-making tool.

The smartphone-based tapping task is easy to administer, and because of its game-like character, we believe it
could potentially have a higher acceptance than standard questionnaires. While the tapping task takes less than a
minute, the FSMC questionnaire involves 20 items that have to be answered by deciding on five given choices of
a Likert scale. However, user acceptance needs to be assessed in future studies.

Further, the tapping task provides a direct (to the point) measurement. It could be administered several times a
day to quantify fluctuations in performance fatigability, typical of fatigue. Questionnaires evaluate the symptom
only retrospectively, usually for two weeks, and are therefore less precise and not sensitive to fluctuations or
short-term changes in the severity of the symptom (i.e., following physical/medical interventions). Hence, a
more continuous (higher frequency) assessment is an advantage for following patients over time and assessing
new interventions’ effects. However, one has to consider that fatigability relates to a specific task, while fatigue
questionnaires cover a general feeling, which affects the person as a whole. Thus, our approach complements
existing fatigue quantification methods.
Our study provides a proof-of-concept for an association of motor fatigability, assessed by the tapping task,

with subjective motor fatigue, assessed by the FSMC, which has been developed and validated in MS patients.
Furthermore, the association between smartphone-based motor fatigability and perceived fatigue has also been
confirmed with an independently validated fatigue questionnaire, FSS. Hence, the study provides early evidence
for an association of the objective smartphone-based motor fatigability measurement and perceived fatigue in
MS patients. Nevertheless, further and more extensive studies are needed to establish the predictive value of the
tapping task to subjective fatigue.

5.2 Tapping Frequency as Reliable Smartphone-based Motor Fatigability Metric
We believe that our proposed method is less prone to outliers in comparison to Barrios et al. [5]. Touch duration
could have an erroneous representation of the tapping task performance, given that the metric fails to account for
the time when fingers perform their air motion. An example of this behavior is when the person is fast at lifting
the fingers from the smartphone screen, but their finger’s air motion is slow. Our metric, tapping frequency, does
not suffer from this phenomenon, as it reflects the full dynamics of the tapping task. Additionally, with our gap
removal, we seek to have a more flexible approach.

5.2.1 Gap Removal for In-the-wild Studies. The gap removal intends to gain as much value from the data as
possible while avoiding discarding complete trials, a key feature for in-the-wild studies. We believe this is
particularly useful for unsupervised settings where the person may get distracted while performing a trial.
Distractions could be caused by phone notifications, calls or external factors. Additionally, we noticed the utility
of our validation algorithm when it detected problems with one patient. Later we learned that the patient had
very long artificial nails that caused unreliable tapping. In summary, our new method makes fewer assumptions,
increased validity by 19%, and shows a comparable correlation to the clinical baseline (handgrip).

5.3 Tapping Frequency – Difference Between Fatigued and Non-fatigued Patients
From the tapping frequency, we learned that non-fatigued participants delivered a higher mean tapping frequency
than fatigued participants and that this difference is statistically significant. Patients defined as non-fatigued
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according to the FSS and FSMC questionnaires achieved higher maximum tapping frequencies. In contrast, we
notice no statistically significant difference between fatigued and non-fatigued patients when using the handgrip
dynamometer. Moreover, tapping frequency is independent of gender, while handgrip dynamometer is not. Hence,
our approach shows advantages and outperforms the commonly used handgrip dynamometer for monitoring
motor fatigue.

5.4 Participants’ Adherence to the Study Protocol
Through our experiment, we examined participants’ adherence to the study protocol over two weeks. Adherence
during the study was good. Analysis of the participants’ two-week behavior shows no significant change in
tapping frequency over time. All patients completed the two-week protocol, and the number of invalid trials
did not show a particular pattern. Using our validity algorithm, we analyzed the completed tapping trials and
found out that only a small percentage was invalid. Our analysis shows that combining several tapping trials is
advisable to achieve higher confidence in the results. We show that the average of three tapping trials is sufficient
to classify fatigue.

5.5 External Validity of the Results
There is no standard objective method to measure overall fatigue, particularly perceived fatigue, other than
standard questionnaires. Hence, to develop a new approach, one has to rely on these validated questionnaires as
a reference. Therefore, as part of this study, we aimed to assess the association of motor fatigability, assessed
with the tapping task, with perceived fatigue rated by standard questionnaires. The following steps have been
taken to ensure the validity of the results. First, we validate tapping frequency as an objective measure of motor
fatigability against a standard reference method (handgrip dynamometer). Second, the validity of an unsupervised
assessment of the smartphone-based task has been confirmed in an in-the-wild study in MS patients. Third, we
use the in-the-wild data to assess whether the results of the tapping task can be used as a surrogate for subjective
fatigue, being classified using two different questionnaires, both validated in MS patients. Overall, the results
provide early evidence for using the smartphone-based tapping task as a surrogate for perceived fatigue. However,
more extensive and independent studies are needed to confirm the results and establish an objective task of motor
fatigability as a surrogate for subjective fatigue.

5.6 User-interface, Interaction and Design Improvements
Informal feedback from the participants suggests that performing daily tasks can produce a lack of motivation
and boredom. This can be addressed in further studies by introducing a gamification mechanism to keep the
participant engaged and motivated. To achieve better results and avoid demotivating the users, we recommend
combining three tapping trials. However, most importantly, we do not advise conducting the tapping task daily
for prolonged periods. An alternative approach would be to require tapping trials for three consecutive days
every 1-2 weeks. Further studies are necessary to estimate a suitable periodicity for the tapping task.

5.6.1 Immediate Validity Feedback. We only applied our validity algorithm during a post-processing phase. In
future task design improvements, we recommend incorporating immediate feedback to the user to further reduce
the total percentage of invalid trials. Trials can be automatically stopped when gaps exceeded a defined threshold
of 1 s. When this occurs, users can be notified of the specific problem (large gap) and can be asked to re-start the
tapping trial from the beginning.

5.6.2 Maximum Tapping Frequency and Shorter Trials. Our results indicate that maximal tapping frequency could
also be a suitable surrogate for fatigue. This has important implications as it would mean that our proposed
validity algorithm would change, and potentially fewer trials will be discarded. Additionally, this would imply that
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the tapping trials could be shorter than 30 s. However, further studies are needed to evaluate the full implications
of such changes. Further analysis suggests that the mean tapping frequency measured during only 15 s of a tapping
trial produces comparable results, indicating that a shorter task may be viable. However, further studies are
needed to confirm this hypothesis. In addition, we do not know how patients’ behavior and intrinsic motivation
will change when performing the task in a shorter time frame. Based on our observations, we expect 20 seconds
of tapping to be a suitable compromise. We do not recommend shorter trials as we know the initial 3 s of tapping
account for task inertia and momentum [5]. Moreover, applying the gap removal algorithm also reduces the
effective trial length, but trials need to be sufficiently long to quantify fatigue.

5.7 Limitations and Future Challenges
5.7.1 Tapping and Impairment. A larger study population is needed for evaluating the reliability of our metric
in MS patients with hand impairment. Only two of seven hand-impaired patients were non-fatigued. Hence, at
this point, we cannot conclude if there is a statistically significant difference between fatigued and non-fatigued
patients within this specific population. However, we do not see this as a significant drawback of our approach.
Our results show that our tapping task is feasible and valid in our MS cohort and is, therefore, a promising tool
for patients with other disease entities, such as post-COVID19 syndrome, which is not associated with hand
impairment. Future studies should include larger numbers of MS patients combining the whole spectrum of
disabilities and further expand on other diseases, particularly those that do not entail hand impairment.

5.7.2 Recognizing Different Fatigue Levels. In this study, we used the FSMC as a 2-level assessment tool. However,
the FSMC offers thresholds for the different fatigue levels: "mild," "moderate," "severe." We used the FSMC for
binary classification and considered patients fatigued once they exceeded the lowest threshold (mild fatigue).
During future work, we plan to explore using our approach for classifying the multiple fatigue levels. A larger
study population is needed for assessing the feasibility of this approach.

5.7.3 Recommendation for Future Trials. First, single tapping task measurements are usually not reliable as they
could be classified as invalid. Averaging values of several trials lead to the best results when analyzing fatigue.
The frequency of the measurements is also an important point that should be taken into account. Even though
we did not conduct specific interviews to get feedback about the usability of the task and study design, some
patients gave informal feedback indicating that frequent testing may become tedious or tiresome.

6 CONCLUSIONS
We introduced a new metric as a proxy to objectively quantify perceived fatigue. Our metric, mean tapping
frequency, is derived from a simple tapping task performed on commodity smartphones. The validity of the
metric has been confirmed by a significant correlation with handgrip strength measurements, which is the
current standard procedure in measuring motor fatigability. Additionally, we demonstrate that our approach is
comparable to touch duration, which has been recently reported as a motor fatigability metric of the tapping
task [5]. Our two-week in-the-wild study, in 35 MS patients, shows that mean tapping frequency can rank fatigued
and non-fatigued with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .76 ± 5 according to the FSMC, and with 𝐴𝑈𝐶𝑅𝑂𝐶 𝑋 = .81 ± .05 according
to the FSS, indicating an association between fatigue and our smartphone-based assessment metric.
In summary, our results show that: (1) Tapping frequency is a valid motor fatigability metric. (2) Our data

processing pipeline maintains task validity with an increase of 19% over Barrios et al.’s method [5]. (3) Mean
tapping frequency can discriminate fatigue rated by two clinical fatigue scales (FSS and FSMC). (4) Mean tapping
frequency as an objective fatigue metric is valid in-the-wild. (5) Combining several trials improves the reliability
of fatigue prediction. Future studies in MS patients with hand impairment are needed to establish the validity
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of our metric in this population. Furthermore, future longitudinal studies are needed to establish optimal time
intervals between tapping trials and verify if our metric can be established as a surrogate for perceived fatigue.
Our goal was to study the feasibility of establishing an objective metric as a surrogate for perceived fatigue.

We are confident that our work is a step towards the ubiquitous and objective quantification of the symptom. Our
simple model provides good interpretability and a higher chance of being adopted in clinical practice. Providing a
novel tool to continuously follow patients with fatigue meets an important unmet medical need in MS and in many
areas of medicine, where fatigue is a prevalent condition. An objective and reliable measure as a surrogate for
fatigue facilitates further research on this devastating symptom, particularly the development of novel therapies.
Additionally, the ability to monitor patients over time and independently from medical facilities (i.e., in-the-wild)
provides an important advantage in assessing the effects of therapeutic interventions.
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A FATIGUE SEVERITY SCALE (FSS) [44, 81]

Table 1. Fatigue Severity Scale (FSS) [44, 81].

Strongly disagree (1) -> Strongly agree (7)
1. My motivation is lower when I am fatigued.
2. Exercise brings on my fatigue.
3. I am easily fatigued.
4. Fatigue interferes with my physical functioning.
5. Fatigue causes frequent problems for me.
6. My fatigue prevents sustained physical functioning.

7. Fatigue interferes with carrying out certain duties and
responsibilities.

8. Fatigue is among my most disabling symptoms.
9. Fatigue interferes with my work, family, or social life.

B MAXIMUM TAPPING FREQUENCY VS. MAXIMUM HANDGRIP
As depicted in Figure 12 (top left), there is a significant difference between the maximum tapping frequency
of patients that do not have motor fatigue and those who are classified as motor fatigued using the FSMC
questionnaire, with Kruskal-Wallis 𝐻 = 8.67 (𝑝 < 0.01). However, there is no statistically significant difference
between the same groups using the maximum handgrip strength (cf. Figure 12 bottom left).
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Fig. 12. Maximum tapping frequency (top) and maximum handgrip strength (bottom) in function of FSMC motor fatigue,
gender, and impairment as defined by the 9-hole peg test.
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When grouping by gender (Figure 12 center), there is a significant difference between non-fatigued and motor
fatigued females as defined by the FSMC questionnaire, with 𝐻 = 8.36 (𝑝 < 0.01), while no significant difference
is found in males, where we have a smaller sample size. The handgrip shows no difference between non-fatigued
and fatigued patients within the gender groups, but it shows a significant difference between genders, with
𝐻 = 11.0 (𝑝 < 0.001) and 𝐻 = 8.33 (𝑝 < 0.01) for non-fatigued and fatigued patients, respectively.

Figure 12 (right) shows the boxplots when grouping by impairment as defined by the 9-HPT. There is a
significant difference between the maximum tapping frequency of non-fatigued and motor fatigued patients that
are not hand impaired, with 𝐻 = 6.69 (𝑝 < 0.01), while no significant difference is found in impaired participants,
where we have a very small sample size. The max handgrip strength shows no difference between and within the
groups.

C MEAN TAPPING FREQUENCY VS. MEAN HANDGRIP ACCORDING TO FSS
When grouping by gender (Figure 13 center), there is a significant difference between non-fatigued and motor
fatigued females as defined by the FSS questionnaire, with 𝐻 = 4.93 (𝑝 < 0.05), a difference is also found in males,
with 𝐻 = 4.82 (𝑝 < 0.05). The handgrip shows no difference between non-fatigued and fatigued patients within
the gender groups, but it shows a significant difference between genders, with 𝐻 = 10.58 (𝑝 < 0.01) and 𝐻 = 6.35
(𝑝 < 0.01) for non-fatigued and fatigued patients, respectively.
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Fig. 13. Mean tapping frequency (top) andmean handgrip strength (bottom) in function of FSS fatigue, gender, and impairment
as defined by the 9-hole peg test.

Figure 13 (right) shows the boxplots when grouping by impairment as defined by the 9-HPT. There is a
significant difference between the mean tapping frequency of non-fatigued and motor fatigued patients that are
not hand impaired, with 𝐻 = 6.5 (𝑝 < 0.01), while no significant difference is found in impaired participants,
where we have a very small sample size. The mean handgrip strength shows no difference between and within
the groups.
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D FATIGUE SCALE FOR MOTOR AND COGNITIVE FUNCTIONS (FSMC) [56]

Table 2. Fatigue Scale for Motor and Cognitive Functions (FSMC) [56].

Does
not
apply
at all

Does
not
apply
much

Slightly
ap-
plies

Applies
a lot

Applies
com-
pletely

1. When I concentrate for a long time, I get exhausted
sooner than other people of my age.

2.
When I am experiencing episodes of exhaustion, my
movements become noticeably clumsier and less
coordinated.

3.
Because of my episodes of exhaustion, I now need more
frequent and/or longer rests during physical activity
than I used to.

4. When I am experiencing episodes of exhaustion, I am
incapable of making decisions.

5. When faced with stressful situations, I now find that I
get physically exhausted quicker than I used to.

6. Because of my episodes of exhaustion, I now have
considerably less social contact than I used to.

7. Because of my episodes of exhaustion, I now find it more
difficult to learn new things than I used to.

8. The demands of my work exhaust me mentally more
quickly than they used to.

9. I feel the episodes of exhaustion particularly strongly in
my muscles.

10. I no longer have the stamina for long periods of physical
activity that I used to have.

11. My powers of concentration decrease considerably when
I’m under stress.

12.
When I am experiencing episodes of exhaustion, I am
less motivated than others to start activities that involve
physical effort.

13. My thinking gets increasingly slow when it is hot.

14. When I am experiencing an episode of exhaustion, my
movements become noticeably slower.

15. Because of my episodes of exhaustion, I now feel less
like doing things which require concentration.
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Table 2 cont. Fatigue Scale for Motor and Cognitive Functions (FSMC) [56].

16. When an episode of exhaustion comes on, I am simply
no longer able to react quickly.

17. When I am experiencing episodes of exhaustion, certain
words simply escape me.

18. When I am experiencing episodes of exhaustion, I lose
concentration considerably quicker than I used to.

19. When it is hot, my main feeling is one of extreme
physical weakness and lack of energy.

20. During episodes of exhaustion, I am noticeably more
forgetful.

Table 3. FSMC cut-off values [56].We focus our study in themotor aspect of fatigue and classify asmotor fatigued participants
with FSMC physical score ≥ 22; otherwise, we consider them non-fatigued.

Cut-off Classification
FSMC sum score ≥ 43 Mild fatigue

≥ 53 Moderate fatigue
≥ 63 Severe fatigue

FSMC cognitive score ≥ 22 Mild cognitive fatigue
≥ 28 Moderate cognitive fatigue
≥ 34 Severe cognitive fatigue

FSMC physical score ≥ 22 Mild motor fatigue
≥ 27 Moderate motor fatigue
≥ 32 Severe motor fatigue
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E DESCRIPTIVE STATISTICS AND NON-PARAMETRIC TEST RESULTS

Table 4. FSMC motor fatigued vs. non-fatigued differences. Non-parametric hypotheses tests with dependent variableMetric
(mean tapping frequency or mean handgrip strengths) and independent variable motor fatigue classification. Test conducted
with IBM SPSS Statistics Version 27. Kruskal-Wallis 𝐻∗, Mann-Whitney𝑈 ∗, Kolmogorov-Smirnov 𝑍 ∗, Median Test𝑀𝑒𝑑𝑖𝑎𝑛∗.

Metric Case N FSMC fatigued FSMC Non-fatigued Test 𝑝 < 0.05
mean TF
[taps/sec]

all 34
𝑀 = 8.30
𝑆𝐷 = 1.47

17
𝑀 = 7.62
𝑆𝐷 = 1.22

17
𝑀 = 8.99
𝑆𝐷 = 1.40

𝐻 = 7.498
𝑈 = 65.000
𝑍 = 1.543
𝑀𝑒𝑑𝑖𝑎𝑛 = 8.35

✓𝑝 = .006
✓𝑝 = .006
✓𝑝 = .017
✓𝑝 = .016

male 15
𝑀 = 8.53
𝑆𝐷 = 1.84

9
𝑀 = 7.96
𝑆𝐷 = 1.41

6
𝑀 = 9.41
𝑆𝐷 = 2.19

𝐻 = 2.347
𝑈 = 14.000
𝑍 = 1.265
𝑀𝑒𝑑𝑖𝑎𝑛 = 8.56

𝑝 = .126
𝑝 = .126
𝑝 = .082
𝑝 = .315

female 19
𝑀 = 8.13
𝑆𝐷 = 1.12

8
𝑀 = 7.25
𝑆𝐷 = 0.91

11
𝑀 = 8.76
𝑆𝐷 = 0.77

𝐻 = 8.84
𝑈 = 8.00
𝑍 = 1.565
𝑀𝑒𝑑𝑖𝑎𝑛 = 8.27

✓𝑝 = .003
✓𝑝 = .003
✓𝑝 = .015
✓𝑝 = .02

impaired 7
𝑀 = 7.21
𝑆𝐷 = 1.00

5
𝑀 = 7.03
𝑆𝐷 = 1.17

2
𝑀 = 7.66
𝑆𝐷 = 0.11

𝐻 = .600
𝑈 = 3.000
𝑍 = .717
𝑀𝑒𝑑𝑖𝑎𝑛 = 7.58

𝑝 = .439
𝑝 = .439
𝑝 = .683
𝑝 = 1

non-impaired 27
𝑀 = 8.59
𝑆𝐷 = 1.45

12
𝑀 = 7.87
𝑆𝐷 = 1.20

15
𝑀 = 9.17
𝑆𝐷 = 1.41

𝐻 = 5.717
𝑈 = 41.000
𝑍 = 1.42
𝑀𝑒𝑑𝑖𝑎𝑛 = 8.67

✓𝑝 = .017
✓𝑝 = .017
✓𝑝 = .035
𝑝 = .054

mean HG
[kg]

all 34
𝑀 = 25.97
𝑆𝐷 = 8.30

17
𝑀 = 24.88
𝑆𝐷 = 9.07

17
𝑀 = 27.07
𝑆𝐷 = 7.56

𝐻 = .406
𝑈 = 126.00
𝑍 = .857
𝑀𝑒𝑑𝑖𝑎𝑛 = 23.988

𝑝 = .524
𝑝 = .540
𝑝 = .454
𝑝 = .732

male 15
𝑀 = 32.47
𝑆𝐷 = 7.34

9
𝑀 = 30.51
𝑆𝐷 = 8.00

6
𝑀 = 35.41
𝑆𝐷 = 5.59

𝐻 = .681
𝑈 = 20.00
𝑍 = .527
𝑀𝑒𝑑𝑖𝑎𝑛 = 33.27

𝑝 = .409
𝑝 = .409
𝑝 = .944
𝑝 = 1.0

female 19
𝑀 = 20.84
𝑆𝐷 = 4.62

8
𝑀 = 18.55
𝑆𝐷 = 5.34

11
𝑀 = 22.51
𝑆𝐷 = 3.33

𝐻 = 2.727
𝑈 = 24.00
𝑍 = 1.076
𝑀𝑒𝑑𝑖𝑎𝑛 = 21.32

𝑝 = .099
𝑝 = .0993
𝑝 = .197
𝑝 = .650

impaired 7
𝑀 = 27.91
𝑆𝐷 = 8.40

5
𝑀 = 26.43
𝑆𝐷 = 8.47

2
𝑀 = 31.62
𝑆𝐷 = 9.92

𝐻 = .600
𝑈 = 3.000
𝑍 = .598
𝑀𝑒𝑑𝑖𝑎𝑛 = 28.521

𝑝 = .439
𝑝 = .439
𝑝 = .867
𝑝 = 1

non-impaired 27
𝑀 = 25.47
𝑆𝐷 = 8.36

12
𝑀 = 24.23
𝑆𝐷 = 9.600

15
𝑀 = 26.46
𝑆𝐷 = 7.41

𝐻 = 5.36
𝑈 = 75.000
𝑍 = .861
𝑀𝑒𝑑𝑖𝑎𝑛 = 23.26

𝑝 = .464
𝑝 = .464
𝑝 = .449
𝑝 = .704
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Table 5. FSS Fatigued vs. non-fatigued differences. Non-parametric hypotheses tests with dependent variable Metric (mean
tapping frequency or mean handgrip strengths) and independent variable fatigue classification according to FSS. Test
conducted with IBM SPSS Statistics Version 27. Kruskal-Wallis 𝐻∗, Mann-Whitney𝑈 ∗, Kolmogorov-Smirnov 𝑍 ∗, Median
Test𝑀𝑒𝑑𝑖𝑎𝑛∗.

Metric Case N FSS fatigued FSS Non-fatigued Test 𝑝 < 0.05
mean TF
[taps/sec]

all 32
𝑀 = 8.19
𝑆𝐷 = 1.42

16
𝑀 = 7.50
𝑆𝐷 = 1.04

16
𝑀 = 8.89
𝑆𝐷 = 1.43

𝐻 = 9.091
𝑈 = 48.000
𝑍 = 1.945
𝑀𝑒𝑑𝑖𝑎𝑛 = 8.29

✓𝑝 = .003
✓𝑝 = .003
✓𝑝 = .001
✓𝑝 = .005

male 14
𝑀 = 8.35
𝑆𝐷 = 1.76

8
𝑀 = 7.53
𝑆𝐷 = 1.20

6
𝑀 = 9.45
𝑆𝐷 = 1.89

𝐻 = 4.817
𝑈 = 7.000
𝑍 = 1.543
𝑀𝑒𝑑𝑖𝑎𝑛 = 8.47

✓𝑝 = .028
✓𝑝 = .028
✓𝑝 = .017
𝑝 = .103

female 18
𝑀 = 8.07
𝑆𝐷 = 1.12

8
𝑀 = 7.46
𝑆𝐷 = 0.93

10
𝑀 = 8.56
𝑆𝐷 = 1.04

𝐻 = 4.934
𝑈 = 15.00
𝑍 = 1.467
𝑀𝑒𝑑𝑖𝑎𝑛 = 8.22

✓𝑝 = .026
✓𝑝 = .026
✓𝑝 = .026
𝑝 = .152

impaired 7
𝑀 = 7.21
𝑆𝐷 = 1.00

6
𝑀 = 7.11
𝑆𝐷 = 1.07

1
𝑀 = 7.746

-
-
-
-

-
-
-
-

non-impaired 25
𝑀 = 8.47
𝑆𝐷 = 1.41

10
𝑀 = 7.72
𝑆𝐷 = 1.01

15
𝑀 = 8.97
𝑆𝐷 = 1.44

𝐻 = 6.511
𝑈 = 29.000
𝑍 = 1.715
𝑀𝑒𝑑𝑖𝑎𝑛 = 8.632

✓𝑝 = .011
✓𝑝 = .011
✓𝑝 = .006
✓𝑝 = .004

mean HG
[kg]

all 32
𝑀 = 25.89
𝑆𝐷 = 8.41

16
𝑀 = 24.77
𝑆𝐷 = 8.88

16
𝑀 = 27.01
𝑆𝐷 = 8.05

𝐻 = .513
𝑈 = 109.000
𝑍 = .707
𝑀𝑒𝑑𝑖𝑎𝑛 = 23.988

𝑝 = .474
𝑝 = .474
𝑝 = .699
𝑝 = .480

male 14
𝑀 = 32.41
𝑆𝐷 = 7.61

8
𝑀 = 30.26
𝑆𝐷 = 8.49

6
𝑀 = 35.28
𝑆𝐷 = 5.70

𝐻 = .600
𝑈 = 18.000
𝑍 = .617
𝑀𝑒𝑑𝑖𝑎𝑛 = 33.22

𝑝 = .439
𝑝 = .439
𝑝 = .841
𝑝 = 1

female 18
𝑀 = 20.81
𝑆𝐷 = 4.75

8
𝑀 = 19.27
𝑆𝐷 = 5.27

10
𝑀 = 22.05
𝑆𝐷 = 4.14

𝐻 = 1.334
𝑈 = 27.00
𝑍 = .738
𝑀𝑒𝑑𝑖𝑎𝑛 = 21.48

𝑝 = .248
𝑝 = .248
𝑝 = .648
𝑝 = .637

impaired 7
𝑀 = 27.91
𝑆𝐷 = 8.40

6
𝑀 = 28.46
𝑆𝐷 = 9.06

1
𝑀 = 24.60

-
-
-
-

-
-
-
-

non-impaired 25
𝑀 = 25.33
𝑆𝐷 = 8.50

10
𝑀 = 22.55
𝑆𝐷 = 8.44

15
𝑀 = 27.18
𝑆𝐷 = 8.31

𝐻 = 1.772
𝑈 = 51.000
𝑍 = .816
𝑀𝑒𝑑𝑖𝑎𝑛 = 23.26

𝑝 = .183
𝑝 = .183
𝑝 = .518
𝑝 = .226
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Table 6. Female vs. male differences. Non-parametric hypotheses tests with dependent variable Metric (mean tapping
frequency or mean handgrip strengths) and independent variable gender (male or female). Data set corresponding to FSMC
motor fatigue classification. Test conducted with IBM SPSS Statistics Version 27. Kruskal-Wallis 𝐻∗, Mann-Whitney 𝑈 ∗,
Kolmogorov-Smirnov 𝑍 ∗, Median Test𝑀𝑒𝑑𝑖𝑎𝑛∗.

Metric Case N Male Female Test 𝑝 < 0.05
mean TF
[taps/sec]

all 34
𝑀 = 8.31
𝑆𝐷 = 1.47

15
𝑀 = 8.54
𝑆𝐷 = 1.84

19
𝑀 = 8.13
𝑆𝐷 = 1.12

𝐻 = .556
𝑈 = 121.000
𝑍 = .894
𝑀𝑒𝑑𝑖𝑎𝑛 = 8.35

𝑝 = .456
𝑝 = .456
𝑝 = .401
𝑝 = .300

fatigued 17
𝑀 = 7.62
𝑆𝐷 = 1.22

9
𝑀 = 7.96
𝑆𝐷 = 1.41

8
𝑀 = 7.25
𝑆𝐷 = 0.91

𝐻 = 1.815
𝑈 = 22.000
𝑍 = 1.143
𝑀𝑒𝑑𝑖𝑎𝑛 = 7.733

𝑝 = .178
𝑝 = .178
𝑝 = .146
𝑝 = .637

non-fatigued 17
𝑀 = 8.99
𝑆𝐷 = 1.41

6
𝑀 = 9.40
𝑆𝐷 = 2.20

11
𝑀 = 8.76
𝑆𝐷 = 0.78

𝐻 = 1.455
𝑈 = 21.000
𝑍 = 1.31
𝑀𝑒𝑑𝑖𝑎𝑛 = 1.455

𝑝 = .228
𝑝 = .228
𝑝 = .063
𝑝 = .228

mean HG
[kg]

all 34
𝑀 = 25.97
𝑆𝐷 = 8.30

15
𝑀 = 32.47
𝑆𝐷 = 7.34

19
𝑀 = 20.84
𝑆𝐷 = 4.61

𝐻 = 16.609
𝑈 = 25.000
𝑍 = 2.509
𝑀𝑒𝑑𝑖𝑎𝑛 = 23.98

✓𝑝 = .000
✓𝑝 = .000
✓𝑝 = .000
✓𝑝 = .000

fatigued 17
𝑀 = 24.88
𝑆𝐷 = 9.07

9
𝑀 = 30.50
𝑆𝐷 = 8.00

8
𝑀 = 18.54
𝑆𝐷 = 5.34

𝐻 = 7.259
𝑈 = 8.000
𝑍 = 1.601
𝑀𝑒𝑑𝑖𝑎𝑛 = 23.26

✓𝑝 = .007
✓𝑝 = .007
✓𝑝 = .012
✓𝑝 = .015

non-fatigued 17
𝑀 = 27.06
𝑆𝐷 = 7.56

6
𝑀 = 35.42
𝑆𝐷 = 5.59

11
𝑀 = 22.51
𝑆𝐷 = 3.33

𝐻 = 11.000
𝑈 = 0.000
𝑍 = 1.970
𝑀𝑒𝑑𝑖𝑎𝑛 = 24.602

✓𝑝 = .001
✓𝑝 = .001
✓𝑝 = .001
✓𝑝 = .002
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Table 7. Female vs. male differences. Non-parametric hypotheses tests with dependent variable Metric (mean tapping
frequency or mean handgrip strengths) and independent variable gender (male or female). Data set corresponding to
FSS fatigue classification. Test conducted with IBM SPSS Statistics Version 27. Kruskal-Wallis 𝐻∗, Mann-Whitney 𝑈 ∗,
Kolmogorov-Smirnov 𝑍 ∗, Median Test𝑀𝑒𝑑𝑖𝑎𝑛∗.

Metric Case N Male Female Test 𝑝 < 0.05
mean TF
[taps/sec]

all 32
𝑀 = 8.19
𝑆𝐷 = 1.42

14
𝑀 = 8.35
𝑆𝐷 = 1.77

18
𝑀 = 8.07
𝑆𝐷 = 1.12

𝐻 = .244
𝑈 = 113.000
𝑍 = .735
𝑀𝑒𝑑𝑖𝑎𝑛 = 8.29

𝑝 = .621
𝑝 = .6216
𝑝 = .653
𝑝 = .476

fatigued 16
𝑀 = 7.50
𝑆𝐷 = 1.04

8
𝑀 = 7.53
𝑆𝐷 = 1.20

8
𝑀 = 7.46
𝑆𝐷 = 0.93

𝐻 = .176
𝑈 = 28.000
𝑍 = .750
𝑀𝑒𝑑𝑖𝑎𝑛 = 7.65

𝑝 = .674
𝑝 = .674
𝑝 = .627
𝑝 = .1

non-fatigued 16
𝑀 = 8.89
𝑆𝐷 = 1.43

6
𝑀 = 9.45
𝑆𝐷 = 1.89

10
𝑀 = 8.56
𝑆𝐷 = 1.05

𝐻 = 2.647
𝑈 = 15.000
𝑍 = 1.033
𝑀𝑒𝑑𝑖𝑎𝑛 = 9.11

𝑝 = .104
𝑝 = .104
𝑝 = .236
𝑝 = .119

mean HG
[kg]

all 32
𝑀 = 25.89
𝑆𝐷 = 8.41

14
𝑀 = 32.41
𝑆𝐷 = 7.62

18
𝑀 = 20.81
𝑆𝐷 = 4.74

𝐻 = 15.013
𝑈 = 24.000
𝑍 = 2.405
𝑀𝑒𝑑𝑖𝑎𝑛 = 23.98

✓𝑝 = .000
✓𝑝 = .000
✓𝑝 = .000
✓𝑝 = .000

fatigued 16
𝑀 = 24.77
𝑆𝐷 = 8.89

8
𝑀 = 30.26
𝑆𝐷 = 8.50

8
𝑀 = 19.27
𝑆𝐷 = 5.27

𝐻 = 6.353
𝑈 = 8.000
𝑍 = 1.5
𝑀𝑒𝑑𝑖𝑎𝑛 = 22.84

✓𝑝 = .012
✓𝑝 = .012
✓𝑝 = .022
𝑝 = .132

non-fatigued 16
𝑀 = 27.02
𝑆𝐷 = 8.05

6
𝑀 = 35.28
𝑆𝐷 = 5.70

10
𝑀 = 22.06
𝑆𝐷 = 4.14

𝐻 = 10.588
𝑈 = 0.000
𝑍 = 1.936
𝑀𝑒𝑑𝑖𝑎𝑛 = 26.078

✓𝑝 = .001
✓𝑝 = .001
✓𝑝 = .001
✓𝑝 = .007
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