
Beyond Event Handlers: Programming Wireless Sensors
with Attributed State Machines

Oliver Kasten and Kay R̈omer
Department of Computer Science, ETH Zurich, Switzerland

Abstract— Event-driven programming is a popular paradigm for
programming sensor nodes. It is based on the specification of actions
(also known as event handlers) which are triggered by the occurrence of
events. While this approach is both simple and efficient, it suffers from
two important limitations. Firstly, the association of events to actions is
static—there is no explicit support for adopting this association depending
on the program state. Secondly, a program is split up into many distinct
actions without explicit support for sharing information among these.
These limitations often lead to issues with code modularity, complexity,
and correctness. To tackle these issues we propose OSM, a programming
model and language for sensor nodes based on finite state machines.
OSM extends the event paradigm with states and transitions, such that
the invocation of actions becomes a function of both the event and the
program state. For removing the second limitation, OSM introduces state
attributes that allow sharing of information among actions. They can be
considered local variables of a state with support for automatic memory
management. OSM specifications can be compiled into sequential C code
that requires only minimal runtime support, resulting in efficient and
compact systems.

I. I NTRODUCTION

Developing a sensor network application typically requires to
program individual sensor nodes. Today, programming of individual
sensor nodes is mostly performed by programmers directly. An
interesting alternative to this approach ismacro programming(e.g.,
[1], [2]), where programs for individual nodes are generated from
high-level specifications of a sensing problem.

Currently existing frameworks for node programming are typically
based on one of two abstractions:eventsand threads. With event-
based programming, the occurrence of an event triggers the execution
of an action. Actions may not block and run to completion without
being interrupted by other actions. On the other hand, a multi-
threaded system provides threads with independent control flow and
stacks, which may be interrupted. Each thread executes a sequential
program and may block to await certain conditions.

Both of these models have their advantages and drawbacks, their
followers and adversaries [3]. In the context of sensor networks
there is a slight bias towards event-based systems, mainly due to
the existence of popular event-based programming toolkits such
as TinyOS and nesC [4] with a large user base. Hence, many
programmers are used to think in terms of events and actions and
find it natural to structure their programs according to this paradigm.

Based on our experience with an event-based programming toolkit
for sensor nodes [5], we have identified two specific drawbacks of
event-based programming. As we will show, these limitations can
obscure the structure of programs, hamper modularity, and lead to
issues with resource efficiency. This is particularly disadvantageous
in larger projects that grow over time and which involve multiple
developers. We will show how the event-based programming model
can be enhanced in order to alleviate these issues, thereby extending
the application domain of event-based programming to cases where
this would have been difficult before.

We propose the Object State Model (OSM), which is based on
the notion of finite state machines (FSM). FSM concepts have

been extensively used for embedded systems design (cf. [6]) and
hardware/software co-design. But they have not received much con-
sideration in the domain of sensor networks so far.

While classical FSM-based models can solve some of the issues of
event-based programming, they are lacking methods for dynamic data
management in resource-constrained settings. The need for dynamic
data management shows up at two levels in WSNs. Firstly, a WSN
program has to maintain data structures of variable size and structure
(e.g., a list of network neighbors, structures for data aggregation from
a variable set of sources). Secondly, a WSN program often consists of
multiple sub-functions (e.g., tasking, network setup and repair, data
collection and processing), each of which maintains data structures
with a well-defined lifetime (e.g., a data structure for aggregation is
no longer needed after the result has been computed and sent off).
These data structures with variable lifetime have to be efficiently
allocated to a constrained amount of memory—a problem typically
not found in traditional embedded systems.

The contribution of this work is two-fold. Firstly, we consider FSM
concepts for programming wireless sensor nodes for the first time.
However, rather than using existing FSM-based models, we carefully
select time-tested concepts and combine these with semantics that are
mostly compatible with well-established event-based programming
models. Secondly, we introduce a novel element calledstate variables
with automatic memory management to support efficient information
sharing among actions.

The remainder of the paper is structured as follows. We review
the event-based programming model and two important limitations in
Section II. Section III presents existing concepts that are fundamental
to OSM. Section IV presents OSM in detail, in particular the
semantics of OSM are discussed. Implementation aspects of OSM
are examined in Section V. In Section VI we show how OSM can
be used to implement a concrete application from the sensor network
literature. Section VII discusses how OSM alleviates the identified
limitations, also mentioning OSM’s advantages and drawbacks. We
present related work in Section VIII and conclude in Section IX.

II. EVENT-BASED PROGRAMMING OF SENSORNODES

A number of research projects have built wireless sensor devices
and have developed programming frameworks for them. Many of
these frameworks adopt the event-triggered programming model (e.g.,
the BTnode system software [5], Contiki [7], TinyOS and nesC
[4], and Mat́e [8]). In this section we first review the event-based
programming model that is adopted by the above frameworks. Then
we show what we believe are its two major limitations.

A. The Event Model

Event-driven programs consist of actions, which are invoked in
response to the occurrence of events. Typically a single event can
only trigger one action but the same action may be triggered by
multiple events. A so-called dispatcher manages the invocation of
actions. Dispatchers often use an event queue to hold unprocessed

events. In order to allow other parts of the system to progress, actions
are expected to terminate in bounded time (typically less than a
few milliseconds, depending on real-time requirements and event-
queue size). They run to completion in one atomic step without being
interrupted by other actions. Events that occur during the execution
of an action are queued for later processing. When the event queue
is empty, the system goes into idle mode.

To specify a program, the programmer implements actions (typi-
cally as functions of a sequential language) and assigns those actions
to events. At system start time, control is passed to the dispatcher.
From the programmer’s point of view, the control then remains with
the system’s dispatcher and is only passed to application-defined
actions upon the occurrence of events. After the execution of an
action, control returns to the dispatcher again.

We have made extensive use of the event-driven model in a
number of projects. As part of the Smart-Its [9] and Terminodes
[10] research projects we have built the BTnode wireless sensor
node platform. The BTnode’s system software and many of its
applications are based on the event-driven model [5]. However, in
working with the BTnode system we have found that the event-
triggered model is hard to manage as application complexity grows.
Also, [8] reports that programming TinyOS is “somewhat tricky”
because of the event-driven programming model. In our work we have
identified two issues with this otherwise very intuitive programming
model. These issues, which we callmanual stack managementand
manual flow control, arise because in the event-triggered model many
conceptual operations need to be split among multiple actions. As a
result, programmers must include additional management code, which
obscures the logical structure of the application and is an additional
source of error. We will detail these issues in the following section.

B. Events in Practice

Since actions must not monopolize the CPU for any significant
time, operations need to be non-blocking. Therefore, at any point
in the control flow where an operation needs to wait for some
event to occur, the operation must be split into two parts: a non-
blocking operation request and an asynchronous completion event.
The completion event then triggers an action that continues the
operation. As a consequence, even a seemingly simple operation can
lead to event cascades– an action calls a non-blocking operation,
which causes an event to occur, which, in turn, triggers another
action. Breaking a single conceptual operation across several actions
also breaks the operation’s control flow and its state. This has two
implications for the programmer. Firstly, as breaking operations into
multiple functions effectively discards language scoping features,
programmers need to manually manage the operation’s stack. This is
called manual stack management [11]. Secondly, programmers must
guarantee that any order of events is handled appropriately in the
corresponding actions. We call this manual flow control. We use the
following example to clarify these issues.
1 int sum = 0;
2 int num = 0;
3 bool sampling active=FALSE;
4 void init_remote_compare() {
5 sampling active=TRUE;
6 request_remote_temp();
7 register_timeout(5);
8 }
9 void message_hdl(MSG msg) {

10 if(sampling active==FALSE) return;
11 sum = sum + msg.value;
12 num++;
13 }

14 void timeout_hdl() {
15 sampling active=FALSE;
16 int val = read_temp();
17 int average = sum / num;
18 if(average > val) /* ... */
19 }

The program above compares the local temperature to the average
of temperatures sampled by neighboring sensor nodes. To do so,
the sensor node running the program sends a broadcast message to
request the temperature value from all neighboring sensor nodes (line
6). It then collects the remote samples (lines 9-13). A timeout is used
to ensure the temporal contiguity of the sensor readings. Finally, when
the timeout expires, the average remote temperature is calculated and
compared to the local temperature reading (lines 16-18). As shown
in the code above, this relatively simple operation needs to be split
into three parts: 1) sending the request, 2) receiving the replies, and
3) processing the result after the timeout.

Manual stack management. In the example, the data variables
sum and num are accessed within two actions. In a traditional,
purely procedural program, automatic (i.e., local) variables serve the
purpose of keeping an operation’s local data. They are automatically
allocated on the local runtime stack upon entering a function and
are released on its exit. However, automatic variables cannot be
used for event cascades. Since the local stack is unrolled after every
execution of an action, the state does not persist over the duration of
the whole operation. Instead, programmers must manually program
the task’s state. They can do so either using global variables or by
programming a state structure stored on the heap. Both approaches
have drawbacks. The first approach permanently locks up memory,
also when the operation is not running. The second approach requires
manual memory management, which is error-prone. It also requires
system support for dynamic memory management, which is rarely
found in embedded systems.

Manual Flow Control. Depending on the node’s state and history of
events, a program may need to behave quite differently in reaction to
a certain event. In our previous program, for example, replies from
remote sensors should only be regarded until the timeout expires
and the timeout action is invoked. After the timeout event, no more
changes tosum and num should be made (even though this is not
critical in the concrete example). To achieve this behavior, the timeout
action needs to communicate with the radio-message action so that no
more replies should be regarded. We call this manual flow control.
In the example, code for manual flow control is highlighted. The
code introduces a global boolean flagsampling active (line 3),
which is used in all three functions (lines 5, 10, and 15). Coding
the flow control manually requires operating on state that is shared
between multiple functions, such as the flagsampling active in
our example. Again, this state needs to be managed manually.

In the small toy example we have just presented, manual man-
agement of flow control and of the stack seems to be a minor
annoyance rather than a hard problem. However, even in such a
simple program, a significant part of the code (4 lines) is dedicated to
manual flow control. A similar example in nesC can be found in [4].
As application complexity grows, these issues become more and more
difficult to handle. In fact, in our applications that implement complex
networking protocols (e.g., a Bluetooth stack), significant parts of the
code are dedicated to manual flow control and stack management.
The code is characterized by a multitude of global variables, and by
additional code in actions to manage program flow. The excess code
obscures the logical structure of the application and is an additional
source of error.

III. B ASIC CONCEPTS

To attack the problems described in the last section we propose
OSM. The semantics and representation (i.e., language) of OSM are
based on finite state machines and concepts introduced by other state-
based models, such as Statecharts [12]. Hence, before discussing
OSM in the next section, we briefly review concepts related to finite
state machines in this section.

Finite state machines are based on the concepts ofstates, events,
and transitions. A FSM consists of a set of states and a set of
transitions, each of which is a directed edge between two states,
originating form the source state and directed towards the target state.
Transitions specify how the machine can proceed form one state
to another. Each transition has an associated event. The transition
is taken (it “fires”) when the machine is in the transition’s source
state and its associated event occurs. FSMs can be thought of as
directed, possibly cyclic graphs, with nodes denoting states and edges
denoting transitions. As in event-based programming,actionsspecify
computational (re)actions. Conceptually, actions are associated with
transitions or states. For the definition (i.e., implementation) of
actions, most models rely on a host language, such as C.

Even though a program could be fully specified with those four
concepts explained above, [12] argues that the representation of
complex programs specified in this naive fashion suffers from state
explosion. To alleviate this problem, [12] introduceshierarchy and
concurrencyto finite state machines. A state can subsume an entire
state machine, whose states are calledsubstatesof the composing
state. The composing state is calledsuperstate. This mechanism can
be applied recursively: superstates may themselves be substates of a
higher-level superstate. The superstate can be seen as an abstraction
of the contained state machine (bottom-up view). The state machine
contained in the superstate can also be seen as a refinement of the
superstate (top-down view). Though a superstate may contain an
entire hierarchy of state machines, it can be used like a regular (i.e.,
uncomposed) state in any state machine. Finally, two or more state
machines can be run in parallel, yet communicate through events.

A concept which has received little attention so far arestate
variables, which hold information that islocal to a state or state
hierarchy. Instead, some models rely entirely on their host language
to provide variables. In most other models that encompass variables,
the variable scope is global to an entire FSM.

IV. T HE OBJECTSTATE MODEL

OSM is based on the conceptual elements presented in the previous
section. Through the explicit notion of states, the association of
events to actions is no longer static. Rather, the invocation of actions
becomes a function of both the event and the current program
machine state. State variables allow information sharing among a
set of actions that collectively implement a certain system function.
Their scope is limited to a state (and its substates), thus allowing
to reclaim memory upon leaving the state. Modular programming
is supported by embedding existing state machine definitions via
hierarchical composition. Parallel state machines can handle events
originating from independent sources. For example, independently
tracked targets could be handled by parallel state machines. While
events are typically triggered by real-world phenomena (e.g., a
tracked object appears or disappears), events may also be emitted by
the actions of a state machine to support loosely-coupled cooperation
of parallel state machines.

Besidesmodelinga program in terms of states, transitions, actions,
and events, OSM also allows theexecutionof a program specification
on a sensor node. This requires the definition of concrete semantics of

A

int varA;

B

int varB;e

start

f

C

int varC;

final

outA() inB() outB() inC()

Fig. 1. A sample state machine.

in state A in state B in state C
varA exists varB exists varC exists

execute outA() execute inB()
execute outB()

execute inC()

0 1 2 discrete time

Fig. 2. Discrete time.

OSM specifications. In the following subsections we introduce OSM
and informally define an execution model.

A. State Machines in OSM

Fig. 1 illustrates a state machine in OSM. We will use a graph-
ical notation here for clarity. In practice, OSM state machines are
specified using a textual language (cf. Section V).

The sample state machine consists of three statesA, B, and C.
A is the initial state where execution begins andC is the final state.
To each of these states, an integer variablevarA, varB, andvarC
is attached, respectively. Transitions exist between statesA and B
(triggered by the occurrence of evente) and between statesB and
C (triggered by the occurrence of eventf). In OSM, events may
also carry additionalparameters(e.g., sensor values). Each event
parameter is assigned a type and a name by the programmer. Actions
can refer to the value of an event parameter by the parameter’s name.
Let us consider the transition betweenA andB in more detail, which
is tagged with two actionsoutA() and inB(). When the transition
occurs, firstoutA() is executed and can accesse and variables of
stateA. Then,inB() is executed and can accesse and variables of
stateB. If source and target states of a transition share a common
superstate, its variables can be accessed in both actions. One or both
actions, as well as their parameters could also be omitted.

Typically, a transition is triggered by the event that the transition
is labeled with. Additionally OSM allows toguard transitions by a
predicate over event parameters as well as over the variables of the
source state. The transition then only fires if the predicate holds (i.e.,
evaluates to true) on the occurrence of the trigger event.

B. Time

Finite state machines imply a discrete time model where time
progresses fromt to t + 1 when a state machine makes a transition
from one state to another. Consider Fig. 2 for an example execution
of the state machine from Fig. 1. At timet = 0, the state machine is
in stateA and the variablevarA exists. Then, the occurrence of event
e triggers a state transition. The actionoutA() is still performed at
t = 0, then time progresses tot = 1. The state machine has then
moved to stateB, variable varB exists and the actioninB() is
executed. When eventf occurs,outB() is performed in stateB,
before time progresses tot = 2. The state machine has then moved
to stateC, variablevarC exists and the actioninC() is executed.

Approaching time from the perspective of a sensor network that
is embedded into the physical world, a real-time model seems more
appropriate. For example, sensor events can occur at virtually any

state Cstate Bstate A

lifetime varA lifetime varB lifetime varC

real time
outA() inB() outB() inC()

e f finishstart

discrete time0 1 2

Fig. 3. Mapping real-time to discrete time.

state B, lifetime varB

state B’, lifetime varB’

10 discrete time2

inB() inB’() outB() outB’()
real time

f

Fig. 4. Possible mapping of real-time to discrete time for parallel machines.

point in time, and actions and transitions require a finite amount
of real-time to execute. Hence, it becomes also important in which
order actions are executed. Essentially, we are faced with the issue
of interfacing the discrete time model of state machines with the
real-time model of sensor networks.

Inspired by traditional event-based programming models, actions
are considered atomic entities that run to completion without being
interrupted by the execution of any other action. Fig. 3 illustrates
the mapping of real-time to discrete time, the respective states and
variable lifetimes.

C. Parallel Composition

An important element of OSM is support for parallel state ma-
chines. Two or more such state machines are synchronized in the
sense that state transitions in multiple state machines can occur
concurrently in the discrete time model. In the real-time model,
however, the state transitions and associated actions are performed
sequentially. Let us consider an example of two state machines: the
one from Fig. 1, and a copy of this machine where the state and
variable names are primed (but not the event names). Fig. 4 shows
the mapping of real-time to discrete time at discrete timet = 1. After
discrete time has progressed tot = 1 on the occurrence ofe, all “in”
actions are executed in any order. When eventf arrives, all “out”
actions are performed in any order.

D. Hierarchical Composition

Another important abstraction supported by OSM are hierarchies,
where a single state (i.e., a superstate) is further refined by embedding
another state machine. The lifetime of the embedded state machine
begins at its initial state when the superstate is entered. The embedded
state machine terminates when it assumes its final state. Transitions
having a superstate as their source state may be tagged asnormal
termination transitions, which can only fire after the inner state
machine has terminated. Regular transitions, however, terminate the
inner state machine upon the occurrence of the transition’s event,
which can happen at any (discrete) time.

If a superstate contains variables, the scope of these variables
covers all substates, also recursively. In other words, an action can
access the variables of all its superstates.

E. Events, Queues, and State Transitions

Since the execution of actions consumes a non-zero amount of
real time, events may arrive in the system while some action is cur-
rently being executed. Those events cannot be handled immediately.
Therefore, arriving events are always inserted into a FIFO queue.

In the discrete time model, events can occur concurrently. For
example, when parallel state machines emit events in “out” actions
(when simultaneously progressing from timet = 1 to t = 2, cf.
Fig. 4), the emitted events have no canonical order. The event queue
should preserve such sets of concurrent events, rather than imposing
an artificial total ordering on concurrent events by inserting them
one after another into the queue. For this purpose, the event queue
operates on sets of concurrent events rather than on individual events.
Theenqueueoperation takes a set of concurrent events as a parameter
and appends this set (as a whole) to the end of the queue. Thedequeue
operation removes the set of concurrent events from the queue that
has been inserted earliest. Whenever the system is ready to make a
transition, it uses the dequeue operation to determine the one or more
events to trigger transitions.

The execution semantics of a set of parallel state machines can then
be described as follows. After each discrete time step, the earliest
set of concurrent events is dequeued unless the queue is empty.
Each of the parallel state machines considers the set of dequeued
concurrent events to derive a set of possible transitions. A single event
may also trigger transitions in multiple state machines. If multiple
concurrent events are available, multiple transitions could be fired in
a single state machine. To resolve such ambiguous cases, priorities
can be assigned to transitions, such that the transition with the highest
priority is triggered in each state machine. Actions are executed as
described in Section IV-B. The dequeued set of concurrent events is
then dropped. All events emitted by actions during the same discrete
time step are enqueued as a single set of concurrent events.

F. State Variables

With respect to state variables, OSM supports both primitive data
types (e.g., integer types, characters) and structured data types (e.g.,
arrays, strings, records) in the style of existing typed programming
languages such as C.

The scope of the variables of a stateS extends to entry and exit
actions that are associated withS and to all actions of state machines
that are recursively embedded intoS via hierarchical composition.
With respect to scoping, there is a special case for self transitions that
enter and leave the same state. Here, the variables of the affected state
and their values are retained during the transition, rather then deleting
the variables and creating new instances.

Note that a single (uncomposed) state machine can only assume
one state at a time. Hence, only the variables of this current state are
active. Variables of different states can often be allocated to overlap-
ping memory regions in order to optimize memory consumption (cf.
Section V).

By embedding a set of parallel machines into a superstate, actions
in different parallel state machines may access a variable of the
superstate concurrently at the same discrete time. This is no problem
as long as there is at most one concurrent write access. If there are
multiple concurrent write accesses, these accesses may have to be
synchronized in some way. Due to the run-to-completion semantics
of actions, a single write access will always completely execute before
the next write access can occur. However, the order in which write
accesses are executed (in the real-time model) is arbitrary. Write
synchronization is up to the programmer.

V. I MPLEMENTATION

In this section we examine the missing pieces that are needed to
turn the concepts from the previous section into a concrete system.

A. OSM Specification Language

As opposed to most state machine notations, which are graphical,
OSM specifications use a textual language. The following subsections
present important elements of this language.

1) States: The prime construct of the OSM language is a state.
The definition of a state includes the definition of its transitions, its
actions, and its variables. A transition may be defined in its source
state (outgoing transition) or its target state (incoming transition)
or both. A transition always has a trigger event, a source state
and a target state. Outgoing transitions can have an exit action,
incoming transitions may have an entry action. If a transition is to
trigger both an exit and an entry action, it must be declared in both
states, as an incoming and as an outgoing transition, respectively.
Both declarations denote the same transition, if source state, target
state, and trigger event are equal. If only one action is required, the
transition may be defined only in the respective state. If a transition
triggers no action it can be declared in either state.

Below is an example of a stateA. It has three transitions, one
incoming and two outgoing transitions. The incoming transition (line
3) originating in stateB triggers the entry actioninA(). The two
outgoing transitions (lines 4 and 5) lead to statesB andC and trigger
the outgoing actionsout1() and out2(), respectively. Transitions
have priorities according to their order of declaration, with the first
transition having the highest priority. For example, if two concurrent
eventse andf occur in stateC, both outgoing transitions could fire.
However, only the transition toB is taken, since it is declared before
the transition toC.

2) Variables: Variables can be defined only in the scope of a state.
Variables are typed and have a name, by which they can be referenced
in actions anywhere in their scope. In the code below, stateA defines
the variablei (of type integer).
1 state A {
2 int i;
3 B -> e / inA();
4 e / out1() -> B;
5 f / out2() -> C
6 }

3) Event Parameters and Variables in Actions:Actions may have
parameters. Event parameters can be accessed from an action by
specifying the event name as a parameter of the action. Additionally,
actions may have any visible state variables as their parameters.
Action parameters must be declared explicitly. For example, in the
code fragment below,outA() has three parameters: the value of event
e, and the state variablesindexandbuffer.

For the definition (i.e., implementation) of actions, OSM relies
on a host language such as C. Actions map to functions of the
same name in the host language. For each host language, there is
a language mapping, which defines how actions and their parameters
map to function signatures. Programmers must then implement those
functions.

4) Grouping: To group a set of self-contained states into a state
machine, the set can be enclosed with brackets and labeled with
the machine keyword. Optionally, the group can be given a name.
The grouped states must only contain transitions to states in this
group. While one of the states must be marked as theinitial state,
any number of states (including zero) may be markedfinal.

The machine may not define its own variables (as variables may
only be defined in a state) but the contained states may refer to

variables that are defined in a superstate. These variables are said to
beexternalof that machine. If desired, the external variable interface
may be declared explicitly, but if it is declared, external variables
must be markedextern , as in the example below.
1 machine AB {
2 extern int index;
3 extern char buffer[256];
4 initial state A { e/outA(e,index,buffer)->B;}
5 final state B { f / outA(f, index) -> A; }
6 }

5) Hierarchical and Parallel Composition:A state may contain
an entire state machine. StateS1 in the code on the left below,
for example, contains a state groupAB (which shall be defined as
above). Note thatS1 defines the external variables declared inAB
above. Parallel state machines can be defined by concatenating two
or more state machines with “|| ”, as in the code on the right below.
1 state S1 { state S2 {
2 int index; machine CD {...}
3 char buffer[256]; ||
4 machine AB {...} machine EF {...}
5 } }

6) Modularity through Machine Incarnation:OSM’s support for
modularity relies on hierarchical embedding of state machines. A pro-
grammer may instantiate a state machine, which is defined elsewhere
in the program, to embed it into a superstate. A machine may be
instantiated within a state using theincarnate keyword followed
by the machine’s name. Just like regular, hierarchically composed
state machines, embedded state machines may access the variables of
their superstates. The external variables of the incarnation are bound
to variables of the embedding superstate, which must have the same
name and type.

However, since the embedded state machine and the superstate may
be specified by different developers, a naming convention for events
and variables would be needed. In order to relieve programmers
from such conventions, OSM supports name substitutions for events
and variables in the incarnation of modules. This allows to integrate
multiple machines that were developed independently.

The code fragment below shows the incarnation of state machine
AB (which again shall be defined as above), renamingAB’s external
variablesindexandbuffer to i andbuf of S3, respectively. Renaming
of events is done analogously (not shown in the example). Recursive
instantiation is not allowed.
1 machine AB {...}
2

3 state S3 {
4 int i;
5 char buf[256];
6 incarnate AB(index/ i; buffer/ buf);
7 }

B. OSM Language Mapping

An OSM language mapping defines how OSM specifications are
translated to a host language (which is also used for specifying
actions). Such a mapping is implemented by an OSM compiler. We
have developed a prototypical version of an OSM compiler that uses
C as a host language. Hence, we discuss below how OSM can be
mapped to C.

1) Mapping Control Structures:Our current version of the OSM
compiler maps OSM control structures to an intermediate representa-
tion in the imperative Esterel language [13]. From this representation
sequential C code is generated by an Esterel compiler. Esterel is
a synchronous language (cf. [14]) for the specification of reactive
systems. As such, it is well suited for the implementation of state

machines. Our mapping from state-based OSM to imperative Esterel
is inspired by SyncCharts [15], [16]. Esterel produces lightweight
and system-independent C-code, which requires no support for mul-
titasking. Rather, an OSM program compiles into one principal state-
transition function. This function can be seen as a single event handler
for all events. It accepts the dequeued set of concurrent events (cf.
Section IV-E) as a parameter. Invoking the state transition function
performs a discrete time step of the machine.

In that step, the state transition function first invokes all exit actions
of the current state, then performs the state transition, and finally
invokes all entry actions of the newly assumed state. OSM relies on
the underlying operating system to provide an event queue which
can hold event sets, and drivers that generate events (e.g., timeout,
a message has arrived, a tilt switch has been triggered). Currently,
OSM generated code runs on BTnodes, for which we have modified
the existing event-driven system software to support event sets.

2) Mapping Variables: A language mapping must also define
how state variables are allocated in memory, yielding an in-memory
representationR of all state variables of an OSM specification. The
main goal is to minimize the memory footprint. The allocation can
be defined recursively as follows. A single variable is mapped to a
memory regionRvar that is just big enough to hold the variable.
A state results in a representationRstate, which is defined as a
sequential record (e.g., a Cstruct) of the representationsRvari

of all variablesi and the representationRmachine of an optional
embedded state machine. The representationRmachine for a whole
state machine is defined as the union (e.g., a Cunion) of the
representationsRstatei of all statesi, since each machine can be in
only one state at a time. Hence, different states of the same machine
can reuse memory. The representationRpar of a set of parallel
machines is defined as a sequential record of the representations
Rmachinei of all machinesi. Consider the following state machine:
1 state C {
2 int c;
3 state A { int a1, a2; e / outA(c) -> B; }
4 state B { int b1, b2; f / -> A; }
5 } || state D {
6 int d;
7 }

which results in the following memory layout in C:
1 struct parCD {
2 union machineC {
3 struct stateC {
4 int c;
5 union machineAB {
6 struct stateA { int a1, a2; } _stateA;
7 struct stateB { int b1, b2; } _stateB;
8 } _machineAB;
9 } _stateC;

10 } _machineC;
11 union machineD {
12 struct stateD {
13 int d;
14 } _stateD;
15 } _machineD;
16 } _parCD;

If an int consists of 4 bytes, then the above structure requires 16
bytes. If all variables were global, 24 bytes would be needed. Note
that the size of the required memory and locations of the variables
in memory are known at compile time. No dynamic allocations are
performed at runtime. The actionoutA() would be mapped to the
C function call, where a pointer is passed to allow modification of
the state variable.

outA(&_parCD._machineC._stateC.c);

VI. ENVIROTRACK: A CASE FOROSM

In this section we illustrate the practical feasibility of OSM by
sketching how EnviroTrack [17] could be implemented with OSM.
EnviroTrack is a framework that supports tracking of mobile targets
with a sensor network. With EnviroTrack, a sensor node can be in
one of four major states:free , follower , member, andleader .
A member is detecting the proximity of the target with its sensors,
a follower is a network neighbor of a member that does not detect
the target itself, a free node does not detect the target and is not a
follower, and a leader is a member that has been elected out of all
members. All members send their locations to the leader, where these
locations are aggregated to derive a location estimate of the target.
Members frequently broadcast heartbeat messages so that free nodes
can detect whether they should become followers. A follower sets up
a timeout and becomes a free node if the timeout expires.

The OSM specification of EnviroTrack consists of three parallel
state machines:Elector , Detector , andTracker . TheElec-
tor accepts astart leader ev event to trigger leader election
among all members and may emit aelected ev to indicate that the
node has been elected as the leader. TheDetector state machine
uses sensors to generate asense ev when the object is detected
and alost ev event when the object is no longer detected. We will
only show the OSM code for theTracker state machine, which
represents the core of EnviroTrack.
1 initial state FREE {
2 heartbeat_ev / -> FOLLOWER;
3 sense_ev / -> MEMBER;
4 }
5

6 state FOLLOWER {
7 sense_ev / -> MEMBER;
8 entity_timeout_ev / -> FREE;
9 heartbeat_ev / reset_entity_to() -> self;

10 FREE -> heartbeat_ev / set_entity_to();
11 }
12

13 state MEMBER {
14 FREE -> sense_ev / set_heartbeat_to(),
15 start_leader_election();
16 FOLLOW -> sense_ev / set_heartbeat_to();
17 heartbeat_ev / send_position(),
18 send_heartbeat() -> self;
19 lost_ev / -> FOLLOWER;
20 elected_ev / -> LEADER;
21 }
22

23 state LEADER {
24 position_type pos;
25

26 lost_ev / start_leader_election() -> FOLLOWER;
27 position_ev / aggregate_pos(pos, position_ev)
28 -> self;
29 }

Lines 1-4: A free node becomes a follower if it receives a heartbeat.
A free node becomes a member if the target is sensed.
Lines 6-11: A follower becomes a member if the target is sensed. A
follower becomes a free node if the timeout expired before a heartbeat
was received. If a heartbeat is received, the timeout is reset. If a free
node became a follower, the timeout is initialized.
Lines 13-21: If a free node became a member, the heartbeat timer is
set up and leader election is initiated. If a follower became a member,
the heartbeat timer is set up. If the heartbeat timer expires, the current
location is sent to the leader and a heartbeat message is sent to the
followers. If the target is no longer detected, the member becomes a
follower. If the member is elected, it becomes the leader.

var1
var2

S0 e1

e2

out1()

out2()

Fig. 5. A traditional event-based program specified in OSM.

Lines 23-29: A leader has a state variable to hold the average of
the positions of the members. If the target is no longer detected,
the leader becomes a follower and leader election is triggered. If
the leader receives a position update from a member, the position is
aggregated with the average position.

VII. D ISCUSSION

A traditional event-based program can be formulated in OSM as
depicted in Fig. 5. There is a single stateS0, which has attached all
global variablesvari of the event-based program. For each possible
eventej there is a self transition with an associated actionoutj(),
which has access toej and to all state variables ofS0. Hence, OSM
can be considered a natural extension of event-based programming.

One notable implication of this mapping is that OSM programs are
typically more memory efficient than traditional event-based program.
In Fig. 5 (and also in an actual implementation of an event-based
program) all state variables are active all of the time. Hence, the
memory consumption equals thesum of the memory footprints of
all these variables. In OSM specifications with multiple states, the
same set of variables is typically distributed over multiple states.
Since only one state of a state machine can be active at a time, the
memory consumption equals themaximumof the memory footprints
among all states.

Another important observation is that OSM supports two orthogo-
nal ways to deal with program state: explicit machine states and state
variables. In traditional event-based programming, all program state
is expressed via global variables. In pure finite state machines, all
program state is expressed as distinct states of the FSM. With OSM,
programmers can select a suitable point between those two extremes
by using explicit machine states only where this seems appropriate.
In particular, a programmer can start with an existing event-based
program, “translate” it to OSM as in Fig. 5, and gradually extend it
with more states.

OSM alleviates the limitations of event-based programming (cf.
Section II) by (i) supporting information sharing between actions by
means of state variables, and by (ii) providing for a flexible associa-
tion of events to actions by making transitions and actions dependent
on the program state. These features have a number of implications
with respect to code structure, modularity, and efficiency:
Code structure and modularity. Variables can be made as local as
possible, which helps to isolate code modules. Explicit machine states
can eliminate code that crosscuts multiple actions, which also helps
to isolate code modules. OSM provides abstractions to encapsulate
such modules and to give them an interface in terms of events and
parameters.
Efficiency. As discussed above, the variables of an OSM specification
with multiple states typically consume less memory than an equiva-
lent traditional event-based program. In Section V we mentioned that
an OSM specification can be compiled into a single “event handler”
function – effectively making OSM code as efficient as traditional
event-based programs. The only runtime support required to execute
an OSM specification is the event queue and drivers that generate
events.

There are also some limitations which OSM inherits from event-
based programming. Firstly, actions must be non-blocking and there
are no guarantees with respect to real-time behavior. Also, if actions
generate events, the order of events in the queue (and hence the
system behavior) may depend on the execution speed of actions.

Purely sequential parts of the program flow (i.e, linear sequences
of events and actions without branches) are tedious to program in
OSM because they have to be explicitly modeled as sequences of
states, pairwise connected by a single transition. In such cases wait-
operations, as typically provided by multi-threaded programming
models, might be more natural. Likewise, reactions to composite
events (i.e., meta-events made up of multiple events, for example,
“eventse1, e2, ande3 in any order”) cannot be specified concisely.
Instead, all intermediate states have to be modeled explicitly.

VIII. R ELATED WORK

OSM draws directly from the concepts found in specification
techniques for control-oriented embedded systems, such as finite
state machines, Statecharts [12], and its descendant SyncCharts [15],
[16]. From Statecharts, OSM borrows the concept of hierarchical
and parallel composition of state machines as well as the concept of
broadcast communication of events within the state machine. From
SyncCharts we adopted the concept of concurrent events.

Variables are typically not fundamental entities in control-oriented
FSM models. Rather, these models rely on their host languages
for handling data. Models that focus both on the transformative
domain (data processing, stream processing) and the control-oriented
domain, typically include variables as intrinsic entities. Finite State
Machines with Datapath (FSMD) [18] introduced variables to the
FSM model in order to reduce the number of states that have to be
declared explicitly. Like OSM, this model allows programmers to
choose to specify program state explicitly (with machine states) or
implicitly with variables. FSMD are flat, that is, they do not support
hierarchy and concurrency, and variables have global scope and
lifetime. Contrary, variables in OSM are bound to a state hierarchy.

SpecCharts [19] is a state-machine extension to VHDL. Spec-
Charts supports hierarchy and concurrency. As in OSM, variables
are declared within states; the scope of a variable then is the state
it has been declared in and any descendants. SpecChart programs
are translated into plain VHDL, which can then be subjected to
simulation, verification, and hardware synthesis. The main difference
to OSM is, that computations in SpecCharts are not attached to
transitions but rather to leaf (i.e., uncomposed) states. In analogy
to Moore and Mealy machines, we believe that reactive systems
can be specified more concisely in OSM. Though both models
are computationally equivalent, converting a Mealy machine (where
output functions are associated with transitions) to a Moore machine
(output associated with states) generally increases the size of the
machine, that is, the number of states and transitions. The reverse
process leads to fewer states. Finally, in contrast to SpecCharts, OSM
allows to access the values of events in computational actions. A
valued event is visible in the scope of both the source and the target
state of a transition (in “out” and “in” actions, respectively). This is
an important aspect of OSM.

Another model for the design of control and data-oriented embed-
ded systems arecommunicating FSMs, which conceptually separate
data and control flow. In this model, a system is specified as a
finite set of FSMs and data channels between pairs of machines.
FSM execute independently and concurrently but communicate over
typed channels. Variables are local to a single machine, but global
to the states of that machine. Values communicated can be assigned

to variables of the receiving machine. There are several variations
of that basic model. For example, in Communicating Real-Time
State Machines (CRSM) [20] communication is synchronous and
unidirectional. Individual FSMs are flat. Co-design Finite State Ma-
chines (CFSM) [21] communicate asynchronously via single element
buffers, but FSM may be composed hierarchically. In contrast to com-
municating FSMs, concurrent state machines in OSM communicate
through events or shared variables.

OSM, like Statecharts, is implemented on top of Esterel [13].
We considered using Esterel directly for the specification of control
flow in OSM. However, as an imperative language, Esterel does
not support the semantics of FSM directly. We believe that FSM
are a very natural and powerful means to model WSN applications.
Moreover, specifications in Esterel are generally larger (up to 5 times)
compared to OSM.

A number of frameworks for programming individual sensor nodes
have been proposed. With one exception, all frameworks fall into
one of two basic categories: event-based systems (such as NesC [4],
the BTnode system software [5], and Maté [8]) and multi-threaded
systems (SensorWare [1] and Mantis [22]). Applications built on
either model have an implicit notion of program state. In contrast, in
OSM program state can be modeled explicitly.

Contiki [7] is an operating system built around an event-driven
kernel but also supports preemptive multithreading. Typical Contiki
applications are built on events. However, individual, long-running
operations, such as cryptographic operations, may be specified in a
separate thread. OSM only allows to specify actions of bounded time.

With event-based systems, OSM shares the discrete time model
where the application is always in one discrete state. One exception
here is TinyOS/NesC. Similar to our approach, it provides asyn-
chronous events as a basic programming abstraction. However, NesC
has events on two levels: events on the lower-level are modeled as
interrupts and the actions they trigger are interrupt service routines
(ISR). The event queue on this level is implemented in hardware.
Higher-level events are events in the common sense; they have a
FIFO queue. In the NesC language, ISRs can interrupt other ISRs
and regular (i.e., higher-level) actions. Actions run to completion only
with respect to other actions. Therefore, a NesC application may be
interrupted when making the transition. This model can lead to subtle
race conditions and inconsistencies.

IX. CONCLUSION

Event-based programming is a popular paradigm in the domain of
sensor networks that has been adopted by a number of programming
frameworks. We have illustrated two important shortcomings of the
event model, namely manual stack management and manual flow
control. We showed that these can lead to issues with modularity,
resource efficiency, and correctness.

To alleviate these problems, we have proposed OSM: a model
and language for programming sensor nodes with attributed state
machines. OSM is based on abstractions that have been successfully
used for programming embedded systems in the past. The concept of
state variables is introduced to support efficient information sharing
among actions. OSM also provides semantics that are compatible
with existing event-based systems, thus easing the transition for
programmers that are familiar with event-based programming.

We have shown the practical feasibility by sketching an OSM-
based implementation of EnviroTrack, a system for tracking mobile
objects with sensor networks. A prototypical OSM compiler has
been implemented with C as a host language, resulting in efficient

programs that require only minimal runtime support. First tests have
been performed on the BTnode sensor node.

OSM might be a step towards extending the application domain
of event-based programming to larger and more complex systems.
Based on the existing large body of work on verification of finite
state machines, we hope to be able to augment OSM with verification
facilities to detect faulty specifications.

ACKNOWLEDGEMENT

We thank Lothar Thiele, our shepherd Margaret Martonosi, and
the anonymous reviewers for their helpful feedback. This work was
supported by NCCR-MICS, a center supported by the Swiss National
Science Foundation under grant no. 5005-67322.

REFERENCES

[1] A. Boulis and M. B. Srivastava, “Design and Implementation of
a Framework for Efficient and Programmable Sensor Networks,” in
MobiSys, San Francisco, USA, May 2003.

[2] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a
Tiny Aggregation Service for Ad-Hoc Sensor Networks,” inOSDI 2002,
Boston, USA, Dec. 2002.

[3] R. v. Behren, J. Condit, and E. Brewer, “Why Events Are A Bad Idea
(for high-concurrency servers),” inHotOS IX, Lihue, USA, May 2003.

[4] D. Gay, P. Levis, R. v. Behren, M. Welsh, E. Brewer, and D. Culler, “The
nesC language: A holistic approach to networked embedded systems,”
in SIGPLAN, 2003.

[5] J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund, and Lothar
Thiele, “Prototyping Wireless Sensor Network Applications with
BTnodes,” inEWSN, Berlin, Germany, Jan. 2004, pp. 323–338.

[6] A. C. Shaw, Real-Time Systems and Software, John Wiley, 2001.
[7] A. Dunkels, Bj̈orn Gr̈onvall, and Thiemo Voigt, “Contiki - a Lightweight

and Flexible Operating System for Tiny Networked Sensors,” inEmNetS-
I, Tampa, USA, Nov. 2004.

[8] P. Levis and D. Culler, “Mat́e: A tiny virtual machine for sensor
networks,” ACM SIGOPS Operating Systems Review, vol. 36, no. 5,
pp. 85–95, Dec. 2002.

[9] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and
H.-W. Gellersen, “Smart-Its Friends: A Technique for Users to Easily
Establish Connections between Smart Artefacts,” inUbicomp, Atlanta,
USA, Sept. 2001, pp. 116–122.

[10] J. P. Hubaux, Th. Gross, J. Y. Le Boudec, and M. Vetterli, “Towards
self-organized mobile ad hoc networks: the Terminodes project,”IEEE
Communications Magazine, vol. 31, no. 1, pp. 118–124, 2001.

[11] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur,
“Cooperative Task Management Without Manual Stack Management,”
in USENIX Annual Technical Conference, 2002.

[12] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, 6 1987.

[13] F. Boussinot and R. de Simone, “The ESTEREL Language,”Proc. of
the IEEE, vol. 79, no. 9, pp. 1293–1304, Sept. 1991.

[14] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert de Simone, “The Synchronous Languages
12 Years Later,”Proc. of the IEEE, vol. 91, no. 1, pp. 64–83, 2003.

[15] C. Andŕe, “Representation and analysis of reactive behaviors: A
synchronous approach,” inProc. CESA ’96, Lille, France, July 1996.

[16] C. Andŕe, “Synccharts: a visual representation of reactive behaviors,”
Tech. Rep., I3S, Sophia-Antipolis, France, Oct. 1995.

[17] T. Abdelzaher et al., “EnviroTrack: Towards an environmental computing
paradigm for distributed sensor networks,” inICDCS, Tokyo, Japan, Mar.
2004.

[18] Daniel D. Gajski and Loganath Ramachandran, “Introduction to high-
level synthesis,”IEEE Des. Test, vol. 11, no. 4, pp. 44–54, Oct. 1994.

[19] F. Vahid, S. Narayan, and D. D. Gajski, “SpecCharts: A VHDL Front-
End for Embedded Systems,”IEEE Trans. on CAD, vol. 14, no. 6, pp.
694–706, June 1995.

[20] Alan C. Shaw, “Communicating real-time state machines,”IEEE Trans.
Softw. Eng., vol. 18, no. 9, pp. 805–816, Sept. 1992.

[21] Felice Balarin et al.,Hardware-software co-design of embedded systems:
the POLIS approach, Kluwer Academic Publishers, 1997.

[22] H. Abrach et al., “MANTIS: system support for multimodAl NeTworks
of in-situ sensors,” inWSNA, San Diego, CA, USA, 2003, pp. 50–59.

