Beyond Event Handlers: Programming Wireless Sensors
with Attributed State Machines

Oliver Kasten and Kay 8mer
Department of Computer Science, ETH Zurich, Switzerland

Abstract— Event-driven programming is a popular paradigm for been extensively used for embedded systems design (cf. [6]) and

programming sensor nodes. It is based on the specification of actions hardware/software co-design. But they have not received much con-
(also known as event handlers) which are triggered by the occurrence of sideration in the domain of sensor networks so far.

events. While this approach is both simple and efficient, it suffers from . . .
two important limitations. Firstly, the association of events to actions is While classical FSM-based models can solve some of the issues of

static—there is no explicit support for adopting this association depending event-based programming, they are lacking methods for dynamic data
on the program state. Secondly, a program is split up into many distinct management in resource-constrained settings. The need for dynamic
actions without explicit support for sharing information among these. data management shows up at two levels in WSNs. Firstly, a WSN

These limitations often lead to issues with code modularity, complexity, has t intain data struct f iable si d struct
and correctness. To tackle these issues we propose OSM, a programmingpreram as 10 maintain data structures of variable size and structure

model and language for sensor nodes based on finite state machines(€.g., a list of network neighbors, structures for data aggregation from
OSM extends the event paradigm with states and transitions, such that a variable set of sources). Secondly, a WSN program often consists of
the invocation of actions becomes a function of both the event and the multiple sub-functions (e.g., tasking, network setup and repair, data

program state. For removing the second limitation, OSM introduces state . : . o
attributes that allow sharing of information among actions. They can be collection and processing), each of which maintains data structures

considered local variables of a state with support for automatic memory With @ well-defined lifetime (e.g., a data structure for aggregation is
management. OSM specifications can be compiled into sequential C codeno longer needed after the result has been computed and sent off).

that requires only minimal runtime support, resulting in efficient and These data structures with variable lifetime have to be efficiently
compact systems. allocated to a constrained amount of memory—a problem typically
not found in traditional embedded systems.

The contribution of this work is two-fold. Firstly, we consider FSM

Developing a sensor network application typically requires tgoncepts for programming wireless sensor nodes for the first time.
program individual sensor nodes. Today, programming of individupjowever, rather than using existing FSM-based models, we carefully
sensor nodes is mostly performed by programmers directly. Aglect time-tested concepts and combine these with semantics that are
interesting alternative to this approachnmacro programminge.g., mostly compatible with well-established event-based programming
[1], [2]), where programs for individual nodes are generated frofodels. Secondly, we introduce a novel element catate variables

I. INTRODUCTION

high-level specifications of a sensing problem. with automatic memory management to support efficient information
Currently existing frameworks for node programming are typicallgharing among actions.
based on one of two abstractiorewentsand threads With event- The remainder of the paper is structured as follows. We review

based programming, the occurrence of an event triggers the executiggevent-based programming model and two important limitations in
of an action. Actions may not block and run to completion withousection II. Section Il presents existing concepts that are fundamental
being interrupted by other actions. On the other hand, a multb OSM. Section IV presents OSM in detail, in particular the
threaded system provides threads with independent control flow aignantics of OSM are discussed. Implementation aspects of OSM
stacks, which may be interrupted. Each thread executes a sequeati@lexamined in Section V. In Section VI we show how OSM can
program and may block to await certain conditions. be used to implement a concrete application from the sensor network
Both of these models have their advantages and drawbacks, thiedrature. Section VIl discusses how OSM alleviates the identified
followers and adversaries [3]. In the context of sensor networkmitations, also mentioning OSM’s advantages and drawbacks. We
there is a slight bias towards event-based systems, mainly dueptesent related work in Section VIII and conclude in Section IX.
the existence of popular event-based programming toolkits such
as TinyOS and nesC [4] with a large user base. Hence, many !l EVENT-BASED PROGRAMMING OF SENSORNODES
programmers are used to think in terms of events and actions angh number of research projects have built wireless sensor devices
find it natural to structure their programs according to this paradigmnd have developed programming frameworks for them. Many of
Based on our experience with an event-based programming tootkiése frameworks adopt the event-triggered programming model (e.g.,
for sensor nodes [5], we have identified two specific drawbacks tfe BTnode system software [5], Contiki [7], TinyOS and nesC
event-based programming. As we will show, these limitations c4a], and Maé [8]). In this section we first review the event-based
obscure the structure of programs, hamper modularity, and leadpt@gramming model that is adopted by the above frameworks. Then
issues with resource efficiency. This is particularly disadvantageowe show what we believe are its two major limitations.
in larger projects that grow over time and which involve multiple
developers. We will show how the event-based programming model The Event Model
can be enhanced in order to alleviate these issues, thereby extendirivent-driven programs consist of actions, which are invoked in
the application domain of event-based programming to cases whegsponse to the occurrence of events. Typically a single event can
this would have been difficult before. only trigger one action but the same action may be triggered by
We propose the Object State Model (OSM), which is based onultiple events. A so-called dispatcher manages the invocation of
the notion of finite state machines (FSM). FSM concepts haweetions. Dispatchers often use an event queue to hold unprocessed

events. In order to allow other parts of the system to progress, actionsoid timeout_hdl() {

are expected to terminate in bounded time (typically less tharssa sampling.active=FALSE;

few milliseconds, depending on real-time requirements and evefit- Nt val = read_temp();
. 17 int average = sum [/ num;

queue size). They run to completion in one atomic step without bel_{gg if(average > val) /* ... ¥

interrupted by other actions. Events that occur during the executigry

of an action are queued for later processing. When the event que#]e b the local t " © th

is empty, the system goes into idle mode. f? progratm above ccl)n:jpatt)res .eht;)c:.;l empera uredo _? a(\j/erage

To specify a program, the programmer implements actions (typ?H emperatures sampied by neighboring sensor nodes. 1o do so,
Ioﬁssensor node running the program sends a broadcast message to

cally as functions of a sequential language) and assigns those actlr t the temperature value from all neighborin nsor nodes (Iin
to events. At system start time, control is passed to the dispatc puest the temperaiure vaiue from all neighboring sensor no _es(&
. It then collects the remote samples (lines 9-13). A timeout is used

From the programmer’s point of view, the control then remains wit - . .
gnsure the temporal contiguity of the sensor readings. Finally, when

the system's dispatcher and is only passed to application-defir;ge timeout expires, the average remote temperature is calculated and
actions upon the occurrence of events. After the execution of an pITes, 9 P

action, control returns to the dispatcher again. compared to the local temperature reading (lines 16-18). As shown

We have made extensive use of the event-driven model in'" the code above, this relatively simple operation needs to be split

number of projects. As part of the Smart-Its [9] and Terminod into three parts: 1) sending the request, 2) receiving the replies, and
[10] research projects we have built the BTnode wireless Seng’%rprocessmg the result after the timeout.)

node platform. The BTnode’s system software and many of it{danual stack management.In the example, the data variables
applications are based on the event-driven model [5]. However, §{™ and num are accessed within two actions. In a traditional,

working with the BTnode system we have found that the everiurely procedural program, automatic (i.e., local) variables serve the

triggered model is hard to manage as application complexity grov!"Pose of keeping an operation’s local data. They are automatically
Also, [8] reports that programming TinyOS is “somewhat tricky,allocated on the local runtime stack upon entering a function and
because of the event-driven programming model. In our work we hatEe released on its exit. However, automatic variables cannot be

identified two issues with this otherwise very intuitive programminffSed for event cascades. Since the local stack is unrolled after every
model. These issues, which we calanual stack managemeand execution of an action, the state does not persist over the duration of
: e whole operation. Instead, programmers must manually program

conceptual operations need to be split among multiple actions. AL§ task's state. They can do so either using global variables or by
result, programmers must include additional management code, wHtR9ramming a state structure stored on the heap. Both approaches

obscures the logical structure of the application and is an additioffi@ve drawbacks. The first approach permanently locks up memory,
source of error. We will detail these issues in the following sectiof?S© When the operation is not running. The second approach requires
manual memory management, which is error-prone. It also requires

B. Events in Practice system support for dynamic memory management, which is rarely

manual flow contrglarise because in the event-triggered model marl

Since actions must not monopolize the CPU for any significamunoI in embedded systems.) ,)
time, operations need to be non-blocking. Therefore, at any pc,hlhanual Flow Control. Depending on the node’s state and history of

in the control flow where an operation needs to wait for sorfé/€Nts, @ program may need to behave quite differently in reaction to
event to occur, the operation must be split into two parts: a nofi-certain event. In our previous program, for example, replies from
blocking operation request and an asynchronous completion evdfnote sensors should only be regarded until the timeout expires
The completion event then triggers an action that continues tfRd the timeout action is invoked. After the timeout event, no more

operation. As a consequence, even a seemingly simple operation €&@nges tsum and num should be made (even though this is not
lead toevent cascades an action calls a non-blocking operationcr't'cal in the concrete example). To achieve this behavior, the timeout

which causes an event to occur, which, in tumn, triggers anothgtion needs to communicate with the radio-message action so that no

action. Breaking a single conceptual operation across several actiBif¥€ replies should be regarded. We call this manual flow control.
also breaks the operation’s control flow and its state. This has b the example, code for manual flow control is highlighted. The
implications for the programmer. Firstly, as breaking operations inf@d€ introduces a global boolean fisgmpling -active (line 3),
multiple functions effectively discards language scoping featuredhich is used in all three functions (lines 5, 10, and 15). Coding
programmers need to manually manage the operation’s stack. Thif§ flow control manually requires operating on state that is shared
called manual stack management [11]. Secondly, programmers riefveen multiple functions, such as the fegmpling active in
guarantee that any order of events is handled appropriately in fi¥ €xample. Again, this state needs to be managed manually.
corresponding actions. We call this manual flow control. We use theln the small toy example we have just presented, manual man-

following example to clarify these issues. agement of flow control and of the stack seems to be a minor

1 int sum = O; annoyance rather than a hard problem. However, even in such a
2 int num = O; simple program, a significant part of the code (4 lines) is dedicated to
s bool sampling active=FALSE; manual flow control. A similar example in nesC can be found in [4].

+ void init_remote_compare() { As application complexity grows, these issues become more and more
5 sampling active=TRUE; . . L .

. request_remote_temp(): difficult to handle. In fact, in our applications that implement complex

7 register_timeout(5); networking protocols (e.g., a Bluetooth stack), significant parts of the

s} code are dedicated to manual flow control and stack management.
o void message_hdl(MSG msg) { The code is characterized by a multitude of global variables, and by
12 gﬁsrﬁmf I'Qﬁ’r"? CEV?;;gF_C;iS;) return; additional code in actions to manage program flow. The excess code

1 num-++: obscures the logical structure of the application and is an additional
13} source of error.

Ill. BASIC CONCEPTS start final

To attack the problems described in the last section we propgse outA() inB() | B outB() inC() C
OSM. The semantics and representation (i.e., language) of OSM gig \ A - P ™ int varB: ™ int varC:
based on finite state machines and concepts introduced by other state- - f

based models, such as Statecharts [12]. Hence, before discussing
OSM in the next section, we briefly review concepts related to finite
stat_e _machines in this section. instate A instate B instate C

Finite s_tgte machines are pased on the concepttatés events varA exists varB exists varC exists
and t_rz_msmons A FSM _con_S|sts qf a set of states and a set OfexecuteoutA() execute inB() execute inC()
transitions, each of which is a directed edge between two states,

o . execute outB()
originating form the source state and directed towards the target state. l l _
Transitions specify how the machine can proceed form one state — | | | w
to another. Each transition has an associated event. The transition 1 2 discretetime
is taken (it “fires”) when the machine is in the transition’s source
state and its associated event occurs. FSMs can be thought of as
directed, possibly cyclic graphs, with nodes denoting states and edges
denoting transitions. As in event-based programmaugionsspeci o . . .
computgtional (re)actions. Conceptuall;f agtionsn::g assopciatfe{i V\SR M spe0|f|cat|on§. In the foIIov_vmg subsections we introduce OSM
transitions or states. For the definition (i.e., implementation) 81nd informally define an execution model.
actions, most models rely on a host language, such as C. A. State Machines in OSM

Even though a program could be fully specified with those four _ . o)
concepts explained above, [12] argues that the representation of'd- 1 illustrates a state machine in OSM. We will use a graph-
complex programs specified in this naive fashion suffers from stdf@ notation here for clarity. In practice, OSM state machines are
explosion. To alleviate this problem, [12] introduceierarchy and SPecified using a textual language (cf. Section V).
concurrencyto finite state machines. A state can subsume an entire! '€ Sample state machine consists of three states, and C.
state machine, whose states are caliebstatesof the composing A is the initial state where e>_<ecut|on bgglns arids the final state.
state. The composing state is callegperstate This mechanism can 10 €ach of these states, an integer variableA, var B, andvarC

be applied recursively: superstates may themselves be substates!

igfajtached, respectively. Transitions exist between stdtesd B
higher-level superstate. The superstate can be seen as an abstralfiggered by the occurrence of everjtand between state8 and

of the contained state machine (bottom-up view). The state machfne(triggered by the occurrence of evefij. In OSM, events may

contained in the superstate can also be seen as a refinement of?{fi@ carry additionaparameters(e.g., sensor values). Each event

superstate (top-down view). Though a superstate may contain REfameter is assigned a type and a name by the programmer. Actions

entire hierarchy of state machines, it can be used like a regular (€20 refer to the value of an event parameter by the parameter's name.
onsider the transition betwedrand B in more detail, which

uncomposed) state in any state machine. Finally, two or more sthf&} US € !
() andinB(). When the transition

machines can be run in parallel, yet communicate through eventdS t2gged with two actionsutA :
A concept which has received litle attention so far atate ©CCUrS, firstout A() is executed and can accessand variables of

variables which hold information that idocal to a state or state StateA. Then,inB() is executed and can accessnd variables of

hierarchy. Instead, some models rely entirely on their host languagt?te B- If source and target states of a transition share a common

to provide variables. In most other models that encompass variabl%‘é?erState' its variableg can be accessed in both actio_ns. One or both
the variable scope is global to an entire FSM. actions, as well as their parameters could also be omitted.

Typically, a transition is triggered by the event that the transition
IV. THE OBJECT STATE MODEL is labeled with. Additionally OSM allows tguard transitions by a
OSM is based on the conceptual elements presented in the previpigslicate over event parameters as well as over the variables of the
section. Through the explicit notion of states, the association purce state. The transition then only fires if the predicate holds (i.e.,
events to actions is no longer static. Rather, the invocation of actictluates to true) on the occurrence of the trigger event.
becomes a function of both the event and the current program
machine state. State variables allow information sharing among-a
set of actions that collectively implement a certain system function. Finite state machines imply a discrete time model where time
Their scope is limited to a state (and its substates), thus allowipgpgresses from to ¢ + 1 when a state machine makes a transition
to reclaim memory upon leaving the state. Modular programmirfgpm one state to another. Consider Fig. 2 for an example execution
is supported by embedding existing state machine definitions wthe state machine from Fig. 1. At time= 0, the state machine is
hierarchical composition. Parallel state machines can handle eventstateA and the variablear A exists. Then, the occurrence of event
originating from independent sources. For example, independentlyriggers a state transition. The actiontA() is still performed at
tracked targets could be handled by parallel state machines. While= 0, then time progresses to= 1. The state machine has then
events are typically triggered by real-world phenomena (e.g.,n@oved to stateB, variable varB exists and the actioinB() is
tracked object appears or disappears), events may also be emitteedscuted. When event occurs,outB() is performed in state3,
the actions of a state machine to support loosely-coupled cooperatimfore time progresses to= 2. The state machine has then moved
of parallel state machines. to stateC, variablevarC exists and the actioinC|() is executed.
Besideanodelinga program in terms of states, transitions, actions, Approaching time from the perspective of a sensor network that
and events, OSM also allows tkegecutiorof a program specification is embedded into the physical world, a real-time model seems more
on a sensor node. This requires the definition of concrete semanticappropriate. For example, sensor events can occur at virtually any

Fig. 1. A sample state machine.

Fig. 2. Discrete time.

me

state A state B state C

E. Events, Queues, and State Transitions

lifetime varA lifetime varB lifetimevarC . . .
o Since the execution of actions consumes a non-zero amount of
start e f finish . L . . .
| | real time, events may arrive in the system while some action is cur-
4—{ OutA() \ inB() H outB() \ inC() }—‘—» rently being executed. Those events cannot be handled immediately.

real time Therefore, arriving events are always inserted into a FIFO queue.
S . In the discrete time model, events can occur concurrently. For
= - + - example, when parallel state machines emit events in “out” actions
0 1 2 discretetime (when simultaneously progressing from time= 1 to t = 2, cf.
Fig. 4), the emitted events have no canonical order. The event queue
should preserve such sets of concurrent events, rather than imposing
state B, lifetime varB an artificial total ordering on concurrent events by inserting them
one after another into the queue. For this purpose, the event queue
operates on sets of concurrent events rather than on individual events.
Theenqueumperation takes a set of concurrent events as a parameter
and appends this set (as a whole) to the end of the queuelethreue

Fig. 3. Mapping real-time to discrete time.

state B’, lifetime varB’
f

\ ing) | inB'0) H outB() | outB'() \

real time .
operation removes the set of concurrent events from the queue that
L e S has been inserted earliest. Whenever the system is ready to make a
! ‘ L) transition, it uses the dequeue operation to determine the one or more
0 1 2 discretetime

events to trigger transitions.

Fig. 4. Possible mapping of real-time to discrete time for parallel machines. The execution semantics of a set of parallel state machines can then
be described as follows. After each discrete time step, the earliest
set of concurrent events is dequeued unless the queue is empty.

point in time, and actions and transitions require a finite amouphch of the parallel state machines considers the set of dequeued

of real-time to execute. Hence, it becomes also important in whigbncurrent events to derive a set of possible transitions. A single event
order actions are executed. Essentially, we are faced with the ispigy also trigger transitions in multiple state machines. If multiple
of interfacing the discrete time model of state machines with th@ncurrent events are available, multiple transitions could be fired in
real-time model of sensor networks. a single state machine. To resolve such ambiguous cases, priorities
Inspired by traditional event-based programming models, actiopgn be assigned to transitions, such that the transition with the highest
are Considered atomiC entities that run to Completion Wlthout be”wK_)nty is triggered in each State machine. Actions are executed as
interrupted by the execution of any other action. Fig. 3 illustratefescribed in Section IV-B. The dequeued set of concurrent events is
the mapping of real-time to discrete time, the respective states aAgln dropped. All events emitted by actions during the same discrete
variable lifetimes. time step are enqueued as a single set of concurrent events.
C. Parallel Composition

.) F. State Variables
An important element of OSM is support for parallel state ma-

chines. Two or more such state machines are synchronized in th&Vith respect to state variables, OSM supports both primitive data
sense that state transitions in multiple state machines can ocB{Res (€., integer types, characters) and structured data types (e.g.,
concurrently in the discrete time model. In the real-time modelT@ys, strings, records) in the style of existing typed programming
however, the state transitions and associated actions are perfori@@guages such as C.

sequentially. Let us consider an example of two state machines: thd Ne scope of the variables of a stafeextends to entry and exit

one from Fig. 1, and a copy of this machine where the state apgtions that are associated withand to all actions of state machines
variable names are primed (but not the event names). Fig. 4 shdfiat are recursively embedded ingbvia hierarchical composition.

the mapping of real-time to discrete time at discrete time1. After ~ With respect to scoping, there is a special case for self transitions that
discrete time has progressedtte- 1 on the occurrence af, all “in” ~ €nter and leave the same state. Here, the variables of the affected state

actions are executed in any order. When evgrdrrives, all “out” and their values are retained during the transition, rather then deleting

actions are performed in any order. the variables and creating new instances.
)) N Note that a single (uncomposed) state machine can only assume
D. Hierarchical Composition one state at a time. Hence, only the variables of this current state are

Another important abstraction supported by OSM are hierarchiesstive. Variables of different states can often be allocated to overlap-
where a single state (i.e., a superstate) is further refined by embeddigg memory regions in order to optimize memory consumption (cf.
another state machine. The lifetime of the embedded state macHhtestion V).
begins at its initial state when the superstate is entered. The embeddd®ly embedding a set of parallel machines into a superstate, actions
state machine terminates when it assumes its final state. Transitionglifferent parallel state machines may access a variable of the
having a superstate as their source state may be taggadraml superstate concurrently at the same discrete time. This is no problem
termination transitions, which can only fire after the inner statas long as there is at most one concurrent write access. If there are
machine has terminated. Regular transitions, however, terminate theltiple concurrent write accesses, these accesses may have to be
inner state machine upon the occurrence of the transition’s evesgnchronized in some way. Due to the run-to-completion semantics
which can happen at any (discrete) time. of actions, a single write access will always completely execute before

If a superstate contains variables, the scope of these varialtles next write access can occur. However, the order in which write
covers all substates, also recursively. In other words, an action @atesses are executed (in the real-time model) is arbitrary. Write
access the variables of all its superstates. synchronization is up to the programmer.

V. IMPLEMENTATION variables that are defined in a superstate. These variables are said to

In this section we examine the missing pieces that are needed?gexternalof that machine. If desired, the external variable interface

turn the concepts from the previous section into a concrete systefay be declared explicitly, but if it is declared, external variables
must be markeeéxtern , as in the example below.

1 machine AB {

As opposed to most state machine notations, which are graphical, extern int index;
OSM specifications use a textual language. The following subsectiohs ©xtern char buffer[256];

. . 4 initial state A { eloutA(e,index,buffer)->B;}

present important elements of this language. s final state B { f / outA(f, index) -> A; }

1) States: The prime construct of the OSM language is a state. }
The definition of a state includes the definition of its transitions, its
actions, and its variables. A transition may be defined in its sour
state (outgoing transition) or its target state (incoming transitiorP
or both. A transition always has a trigger event, a source st

A. OSM Specification Language

5) Hierarchical and Parallel CompositionA state may contain

f entire state machine. Stafd in the code on the left below,

r example, contains a state groufB (which shall be defined as

’ .)) Bove). Note thaS1 defines the external variables declaredA®

and a target state. Outgoing transitions can have an exit ac“%t)ve. Parallel state machines can be defined by concatenating two

incoming transitions may have an entry action. If a transition is t& more state machines with{ ", as in the code on the right below.
trigger both an exit and an entry action, it must be declared in bothState st { sta;te s2 ¢

states, as an incoming and as an outgoing transition, respectivély. int index: machine CD {..}
Both declarations denote the same transition, if source state, target char buffer[256]; I

state, and trigger event are equal. If only one action is required, the machine AB {...} machine EF {..}
transition may be defined only in the respective state. If a transitidn}
triggers no action it can be declared in either state. 6) Modularity through Machine IncarnationOSM’s support for

Below is an example of a statd. It has three transitions, one modularity relies on hierarchical embedding of state machines. A pro-
incoming and two outgoing transitions. The incoming transition (lingrammer may instantiate a state machine, which is defined elsewhere
3) originating in stateB triggers the entry actioinA(). The two in the program, to embed it into a superstate. A machine may be
outgoing transitions (lines 4 and 5) lead to stafeandC' and trigger instantiated within a state using tircarnate keyword followed
the outgoing actionsutl() and out2(), respectively. Transitions by the machine’s name. Just like regular, hierarchically composed
have priorities according to their order of declaration, with the firstate machines, embedded state machines may access the variables of
transition having the highest priority. For example, if two concurrertheir superstates. The external variables of the incarnation are bound
eventse and f occur in state”, both outgoing transitions could fire. to variables of the embedding superstate, which must have the same
However, only the transition té is taken, since it is declared beforename and type.
the transition toC. However, since the embedded state machine and the superstate may

2) Variables: Variables can be defined only in the scope of a statbe specified by different developers, a naming convention for events
Variables are typed and have a name, by which they can be referenard variables would be needed. In order to relieve programmers
in actions anywhere in their scope. In the code below, staiefines from such conventions, OSM supports name substitutions for events

the variable: (of type integer). and variables in the incarnation of modules. This allows to integrate
1 state A { multiple machines that were developed independently.

2 'é“ '> ! inAQ: The code fragment below shows the incarnation of state machine
j e , ouetl() "L()é. AB (which again shall be defined as above), renamiigjs external

s f/ out2) -> c variablesindexandbufferto i andbuf of S3, respectively. Renaming

6} of events is done analogously (not shown in the example). Recursive

3) Event Parameters and Variables in Action&ctions may have instantiation is not allowed.
parameters. Event parameters can be accessed from an actiorn Iyachine AB {...}
specifying the event name as a parameter of the action. Additionalty,
. . . : 3 state S3 {
actions may have any visible state variables as their parameters’™; - i
Action parameters must be declared explicitly. For example, in the char buf[256];
code fragment belowgut A() has three parameters: the value of evert incarnate AB(index/ i; buffer/ buf);
e, and the state variablésdex and buffer. 7}
For the definition (i.e., implementation) of actions, OSM relies
on a host language such as C. Actions map to functions of tﬁe
same name in the host language. For each host language, there /1 OSM language mapping defines how OSM specifications are
a language mapping, which defines how actions and their parameteagslated to a host language (which is also used for specifying
map to function signatures. Programmers must then implement th@séions). Such a mapping is implemented by an OSM compiler. We
functions. have developed a prototypical version of an OSM compiler that uses
4) Grouping: To group a set of self-contained states into a stafé as a host language. Hence, we discuss below how OSM can be
machine, the set can be enclosed with brackets and labeled witapped to C.
the machine keyword. Optionally, the group can be given a name. 1) Mapping Control StructuresOur current version of the OSM
The grouped states must only contain transitions to states in thimpiler maps OSM control structures to an intermediate representa-
group. While one of the states must be marked asirihial state, tion in the imperative Esterel language [13]. From this representation
any number of states (including zero) may be markedl. sequential C code is generated by an Esterel compiler. Esterel is
The machine may not define its own variables (as variables maysynchronous language (cf. [14]) for the specification of reactive
only be defined in a state) but the contained states may refersystems. As such, it is well suited for the implementation of state

OSM Language Mapping

machines. Our mapping from state-based OSM to imperative Esterel V1. ENVIROTRACK: A CASE FOROSM

is inspired by SyncCharts [15], [16]. Esterel produces lightweight _

and system-independent C-code, which requires no support for m I—In th_|$ section we llustrate the practlca_\I feasibility of .OSM by
titasking. Rather, an OSM program compiles into one principal stat%ket_Ch_'Pg T(QW E?vonracI; [f] could be |mpll(e_men;ed Vt\)"lth OSM.

transition function. This function can be seen as a single event hancﬁé?r/]'ro rackis a rame\c/)\; ht Eat S_“QIPO”E tracking o mé) ne target;
for all events. It accepts the dequeued set of concurrent eventsgg a sensor network. With EnviroTrack, a sensor node can be in

Section IV-E) as a parameter. Invoking the state transition functiA e of fgur maéor stgteﬁr(er]e ,follgwer fl hmember, anqulegder
performs a discrete time step of the machine. member is detecting the proximity of the target with its sensors,

In that step, the state transition function first invokes all exit actio foltlowe: 'f alfnet\;vork neéghgor of atn;e;nb:a:t;[hatt dois ngt_detetct
of the current state, then performs the state transition, and fin arget Itselt, a iree node does not detect the target and IS not a

invokes all entry actions of the newly assumed state. OSM relies lower, and a leader is a mem_ber ”"?‘t has been elected out of all
the underlying operating system to provide an event queue whi mbers. All members send their locations to the leader, where these
can hold event sets, and drivers that generate events (e.g., time l&‘ﬁ\tlons are aggregated to derive a location estimate of the target.
a message has arrived, a tilt switch has been triggered). Curre ‘mbers frequently broadcast heartbeat messages so that free nodes
OSM generated code runs on BTnodes, for which we have modifisd" detect whether they should become followers. A follower sets up
the existing event-driven system software to support event sets. a timeout and begqme§ a free nqde if the tlmgout expires.

2) Mapping Variables: A language mapping must also define The OSM specification of EnviroTrack consists of three parallel
how state variables are allocated in memory, yielding an in-memapjte machineslector , Detector , andTracker . TheElec-
representatiorR of all state variables of an OSM specification. Thd®" acccﬁpts start _leader _ev event to trigger leader Electk:on
main goal is to minimize the memory footprint. The allocation caf™°"9 & members and may emielected _ev to indicate att_ €
be defined recursively as follows. A single variable is mapped tonz‘fde has been elected as the leader. Dhtector _stat(_a machine
memory regionR... that is just big enough to hold the variable USes sensors to generatesense _ev when the object is detected
A state results in a representatidby.;e, which is defined as a and alost _ev event when the object is no longer detected. We will

sequential record (e.g., a ruct) of the representation®,.,., only show the OSM code for th&racker state machine, which

of all variablesi and the representatioR,n.chin. Of an optional 'ePresents the core of EnviroTrack.
embedded state machine. The representafigfichine for a whole 1 i”itﬁaftf;t o / FEEFEOIELOWER_
state mach_lne is defined as the union (e.0., eurﬁbn) of the _ 2 sense ev / -> MEMBER: '
representationss.ac, of all statesi, since each machine can be in,

only one state at a time. Hence, different states of the same machine

can reuse memory. The representatifp,,. of a set of parallel s state FOLLOWER {

machines is defined as a sequential record of the representatidns S€nse_ev / -> MEMBER;

- . . . s entity_timeout_ev / -> FREE;
Rnachine; Of all machinesi. Consider the following state machine: | hear)t/t;eat ev] reset_entity to) -> self

1 state C { 10 FREE -> heartbeat_ev / set_entity_to();
2 int ¢ n }
3 state A { int al, a2; e / outA(c) -> B; } 12
4 state B { int bl, b2; f/ -> A; } 13 state MEMBER {
5 } || state D { 14 FREE -> sense_ev / set_heartbeat_to(),
6 int d; 15 start_leader_election();
7} 16 FOLLOW -> sense_ev / set_heartbeat_to();
which results in the following memory layout in C: v heartbeat ev / send_position(),
18 send_heartbeat() -> self;
1 struct parCD h{_ 19 lost_ev / -> FOLLOWER;
2 union machineC { 20 elected_ev / -> LEADER;
3 struct stateC { 2}
4 int c; -
5 union machineAB { 23 state LEADER {
6 struct stateA { int al, a2; } _stateA, osition type pos:
7 struct stateB { int b1, b2; } _stateB; 2: P _Ype pos;
8) }S@T;e(‘gh'”eA& 26 lost_ev / start_leader_election() -> FOLLOWER;
o == osition_ev / aggregate_pos(pos, position_ev
10} _machineC; z; P - 99 _g> SEE. (p P -ev)
1 union machineD { 2 } '
12 struct stateD {] o)
13 int d; Lines 1-4: A free node becomes a follower if it receives a heartbeat.
14 } _stateD; A free node becomes a member if the target is sensed.
12 } }pe_lrrgeghmeo, Lines 6-11: A follower becomes a member if the target is sensed. A

¢ .) f4b h he ab . follower becomes a free node if the timeout expired before a heartbeat
If'anint consists of 4 bytes, then the above structure requires s received. If a heartbeat is received, the timeout is reset. If a free

bytes. If all variables were global, 24 bytes would be needed. N 8de became a follower. the timeout is initialized

_that the size of the required memory and Iocatlon_s of the _Va”ablﬁ%es 13-21:1f a free node became a member, the heartbeat timer is
in memory are known at compile time. No dynamic allocations are

. ; set up and leader election is initiated. If a follower became a member,
perform_ed at runtime. The é.‘Ct'(m.nAo would be mappe_d_ o _the the heartbeat timer is set up. If the heartbeat timer expires, the current
€ function C?”' where a pointer is passed to allow modification %cation is sent to the leader and a heartbeat message is sent to the
the state variable. followers. If the target is no longer detected, the member becomes a
OUtA(&_parCD._machineC._stateC.c); follower. If the member is elected, it becomes the leader.

There are also some limitations which OSM inherits from event-
based programming. Firstly, actions must be non-blocking and there
o are no guarantees with respect to real-time behavior. Also, if actions
generate events, the order of events in the queue (and hence the
system behavior) may depend on the execution speed of actions.

Purely sequential parts of the program flow (i.e, linear sequences
of events and actions without branches) are tedious to program in
OSM because they have to be explicitly modeled as sequences of

Lines 23-29: A leader has a state variable to hold the average Sf2{eS: pairwise connected by a single transition. In such cases wait-
the positions of the members. If the target is no longer detectétperations, as typically provided by multi-threaded programming

)

the leader becomes a follower and leader election is triggered.}Pdels, might be more natural. Likewise, reactions to composite
the leader receives a position update from a member, the positiorf¥§Nts (i-e., meta-events made up of multiple events, for example,

aggregated with the average position. eventsel, e2, ande3 in any order”) cannot be specified concisely.
Instead, all intermediate states have to be modeled explicitly.

Fig. 5. A traditional event-based program specified in OSM.

VII. DISCUSSION

A traditional event-based program can be formulated in OSM as
depicted in Fig. 5. There is a single st&f6, which has attached all OSM draws directly from the concepts found in specification
global variablesvari of the event-based program. For each possiblechniques for control-oriented embedded systems, such as finite
eventej there is a self transition with an associated acam;j(), State machines, Statecharts [12], and its descendant SyncCharts [15],
which has access t9j and to all state variables &f0. Hence, OSM [16]. From Statecharts, OSM borrows the concept of hierarchical
can be considered a natural extension of event-based programmi@gd parallel composition of state machines as well as the concept of

One notable implication of this mapping is that OSM programs akgoadcast communication of events within the state machine. From
typically more memory efficient than traditional event-based prograiiyncCharts we adopted the concept of concurrent events.

In Fig. 5 (and also in an actual implementation of an event-basedVariables are typically not fundamental entities in control-oriented
program) all state variables are active all of the time. Hence, thé& M models. Rather, these models rely on their host languages
memory consumption equals ttsim of the memory footprints of for handling data. Models that focus both on the transformative
all these variables. In OSM specifications with multiple states, tit®main (data processing, stream processing) and the control-oriented
same set of variables is typically distributed over multiple statedomain, typically include variables as intrinsic entities. Finite State
Since only one state of a state machine can be active at a time, M&chines with Datapath (FSMD) [18] introduced variables to the
memory consumption equals theaximumof the memory footprints FSM model in order to reduce the number of states that have to be
among all states. declared explicitly. Like OSM, this model allows programmers to

Another important observation is that OSM supports two orthogehoose to specify program state explicitly (with machine states) or
nal ways to deal with program state: explicit machine states and stagplicitly with variables. FSMD are flat, that is, they do not support
variables. In traditional event-based programming, all program stdtierarchy and concurrency, and variables have global scope and
is expressed via global variables. In pure finite state machines, li#time. Contrary, variables in OSM are bound to a state hierarchy.
program state is expressed as distinct states of the FSM. With OSM$SpecCharts [19] is a state-machine extension to VHDL. Spec-
programmers can select a suitable point between those two extref@barts supports hierarchy and concurrency. As in OSM, variables
by using explicit machine states only where this seems approprizaee declared within states; the scope of a variable then is the state
In particular, a programmer can start with an existing event-basi¢chas been declared in and any descendants. SpecChart programs
program, “translate” it to OSM as in Fig. 5, and gradually extend &re translated into plain VHDL, which can then be subjected to
with more states. simulation, verification, and hardware synthesis. The main difference

OSM alleviates the limitations of event-based programming (do OSM is, that computations in SpecCharts are not attached to
Section 1) by (i) supporting information sharing between actions hyansitions but rather to leaf (i.e., uncomposed) states. In analogy
means of state variables, and by (ii) providing for a flexible associs Moore and Mealy machines, we believe that reactive systems
tion of events to actions by making transitions and actions dependeat be specified more concisely in OSM. Though both models
on the program state. These features have a number of implicatiame computationally equivalent, converting a Mealy machine (where
with respect to code structure, modularity, and efficiency: output functions are associated with transitions) to a Moore machine
Code structure and modularity. Variables can be made as local agoutput associated with states) generally increases the size of the
possible, which helps to isolate code modules. Explicit machine stateachine, that is, the number of states and transitions. The reverse
can eliminate code that crosscuts multiple actions, which also hejp®cess leads to fewer states. Finally, in contrast to SpecCharts, OSM
to isolate code modules. OSM provides abstractions to encapsukdtews to access the values of events in computational actions. A
such modules and to give them an interface in terms of events aradued event is visible in the scope of both the source and the target
parameters. state of a transition (in “out” and “in” actions, respectively). This is
Efficiency. As discussed above, the variables of an OSM specificatiam important aspect of OSM.
with multiple states typically consume less memory than an equiva-Another model for the design of control and data-oriented embed-
lent traditional event-based program. In Section V we mentioned thdgd systems areommunicating FSMswhich conceptually separate
an OSM specification can be compiled into a single “event handledtata and control flow. In this model, a system is specified as a
function — effectively making OSM code as efficient as traditiondlnite set of FSMs and data channels between pairs of machines.
event-based programs. The only runtime support required to execbBf&M execute independently and concurrently but communicate over
an OSM specification is the event queue and drivers that genergteed channels. Variables are local to a single machine, but global
events. to the states of that machine. Values communicated can be assigned

VIIl. RELATED WORK

to variables of the receiving machine. There are several variatigm®grams that require only minimal runtime support. First tests have
of that basic model. For example, in Communicating Real-Timeeen performed on the BTnode sensor node.

State Machines (CRSM) [20] communication is synchronous andOSM might be a step towards extending the application domain
unidirectional. Individual FSMs are flat. Co-design Finite State Maf event-based programming to larger and more complex systems.
chines (CFSM) [21] communicate asynchronously via single elemeB#ised on the existing large body of work on verification of finite
buffers, but FSM may be composed hierarchically. In contrast to costate machines, we hope to be able to augment OSM with verification
municating FSMs, concurrent state machines in OSM communicdaeilities to detect faulty specifications.

through events or shared variables.

OSM, like Statecharts, is implemented on top of Esterel [13].
We considered using Esterel directly for the specification of control We thank Lothar Thiele, our shepherd Margaret Martonosi, and
flow in OSM. However, as an imperative language, Esterel dollie anonymous reviewers for their helpful feedback. This work was
not support the semantics of FSM directly. We believe that FSfHPported by NCCR-MICS, a center supported by the Swiss National
are a very natural and powerful means to model WSN applicationzéience Foundation under grant no. 5005-67322.

Moreover, specifications in Esterel are generally larger (up to 5 times)
compared to OSM.)) L)

A number of frameviorks for programming incividual sensor noded!] A Bouis and . & Sriastaus, Design and implementaton of
have been proposed. With one exception, all frameworks fall into \obiSys San Francisco, USA, May 2003.
one of two basic categories: event-based systems (such as NesC [4], S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a

ACKNOWLEDGEMENT

REFERENCES

the BTnode system software [5], and MdB]) and multi-threaded Tiny Aggresgation Se;‘(’)igg for Ad-Hoc Sensor Networks,"@$DI 2002

: At ; Boston, USA, Dec. .
SYStemS (SensorWarg [1], ?‘nd Mantls [22]). Applications built 0. 3] R. v. Behren, J. Condit, and E. Brewer, “Why Events Are A Bad Idea
either model have an implicit notion of program state. In contrast, IN " (for high-concurrency servers),” iHOtOS IX Lihue, USA, May 2003.
OSM program state can be modeled explicitly. [4] D. Gay, P. Levis, R. v. Behren, M. Welsh, E. Brewer, and D. Culler, “The

Contiki [7] is an operating system built around an event-driven nesC language: A holistic approach to networked embedded systems,”

. . . ; 2 in SIGPLAN 2003.
kernel but also supports preemptive multithreading. Typical Contlks] J. Beutel, O. Kasten, F. Mattern, K.oRuer, F. Siegemund, and Lothar

applications are built on events. However, individual, long-runnin Thiele, *Prototyping Wireless Sensor Network Applications with
operations, such as cryptographic operations, may be specified in a BTnodes,” inEWSN Berlin, Germany, Jan. 2004, pp. 323—338.
separate thread. OSM only allows to specify actions of bounded tim&] A. C. Shaw, Real-Time Systems and Softwadehn Wiley, 2001.

With event-based systems, OSM shares the discrete time modé| A: Dunkels, Bpm Gionvall, and Thiemo \oigt, "Contiki - a Lightweight

P . . . and Flexible Operating System for Tiny Networked SensorsZrimNetS-
where the application is always in one discrete state. One exception I, Tampa, USAE), Nov. 920())/4. y &

here is TinyOS/NesC. Similar to our approach, it provides asynig] p. Levis and D. Culler, “Ma: A tiny virtual machine for sensor
chronous events as a basic programming abstraction. However, NesC networks,” ACM SIGOPS Operating Systems Revieal. 36, no. 5,
has events on two levels: events on the lower-level are modeled eﬁ EP-EBSQS% Du?scf 2|901\2/iattern B Schicle. P. Alahuhta. M. Beidl. and
interrupts and the actions they_ trigger are interrupt seryice routin cs) HL-W. Gelle?sen: “Smart-lts Eriends: A +e¢hnique for Users tg 7Easi|y
(ISR). The event queue on this level is implemented in hardware. Establish Connections between Smart Artefacts,Ubicomp Atlanta,
Higher-level events are events in the common sense; they have a USA, Sept. 2001, pp. 116-122.

FIFO queue. In the NesC language, ISRs can interrupt other 1ISR@l J. P. Hubaux, Th. Gross, J. Y. Le Boudec, and M. Vetterli, “Towards

and regular (i.e., higher-level) actions. Actions run to completion only f:%ﬂ%i?éﬁﬂnrzoﬁlzsgnﬁ ';eltwr?(;kslz tg; TlelrerggggezgéimEEE

with respect to other actions. Therefore, a NesC application may @Q] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur,
interrupted when making the transition. This model can lead to subtle “Cooperative Task Management Without Manual Stack Management,”
race conditions and inconsistencies. in USENIX Annual Technical Conferencz002.
[12] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programmingpl. 8, no. 3, pp. 231-274, 6 1987.
IX. CONCLUSION [13] F. Boussinot and R. de Simone, “The ESTEREL Languaddc. of
L . . . the IEEE vol. 79, no. 9, pp. 1293-1304, Sept. 1991.

Event-based programming is a popular paradigm in the domain|9%; aiert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
sensor networks that has been adopted by a number of programming paul Le Guemic, and Robert de Simone, “The Synchronous Languages
frameworks. We have illustrated two important shortcomings of the 12 Years Later,"Proc. of the IEEE vol. 91, no. 1, pp. 64-83, 2003.
event model, namely manual stack management and manual fid’l C. And®, “Representation and analysis of reactive behaviors: A

. . . synchronous approach,” iAroc. CESA '96 Lille, France, July 1996.
control. We showed that these can lead to issues with mOdU|ar'[%S] C. Andre, “Synccharts: a visual representation of reactive behaviors,”

resource efficiency, and correctness. Tech. Rep., I13S, Sophia-Antipolis, France, Oct. 1995.
To alleviate these problems, we have proposed OSM: a modgl] T.Abdelzaher et al., “EnviroTrack: Towards an environmental computing

and language for programming sensor nodes with attributed state Paradigm for distributed sensor networks 1GDCS Tokyo, Japan, Mar.

machines. OSM is based on abstractions that have been successﬂ%i/ Daniel D. Gajski and Loganath Ramachandran, “Introduction to high-
used for programming embedded systems in the past. The concept of |eve| synthesis,"IEEE Des. Testvol. 11, no. 4, pp. 44-54, Oct. 1994.

state variables is introduced to support efficient information sharif@p] F. Vahid, S. Narayan, and D. D. Gajski, “SpecCharts: A VHDL Front-
among actions. OSM also provides semantics that are compatible Eg‘? f%ﬁETbEd(i%%gyStemS'EEE Trans. on CADvol. 14, no. 6, pp.
with existing event-based. §yst§ms, thus easing the tranSItlon {%] Alan C. éh:vC?“Communicating real-time state machinéSEE Trans.
programmers that are familiar with event-based programming. Softw. Eng.vol. 18, no. 9, pp. 805-816, Sept. 1992.

We have shown the practical feasibility by sketching an OSMz21] Felice Balarin et al.Hardware-software co-design of embedded systems:
based implementation of EnviroTrack, a system for tracking mobile the POLIS approachKluwer Academic Publishers, 1997.
objects with sensor networks. A prototypical OSM compiler ha[gZ] H. Abrach et al., “MANTIS: system support for multimodAl NeTworks

) . S - of in-situ sensors,” iINWSNA San Diego, CA, USA, 2003, pp. 50-59.
been implemented with C as a host language, resulting in efficient g PP

