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Abstract. Creating applications based on data from individual sensor
nodes is typically a two-tiered process: Firstly, a (potentially large) num-
ber of sensor nodes is deployed in order to gather comprehensive datasets.
After analyzing the collected data, algorithms are then installed on the
individual nodes and iteratively fine-tuned using a collect-and-analyze
procedure. This approach is not only time consuming, but also prone to
errors: the two separate steps of data collection and data analysis com-
plicate algorithm development; the absence of programming abstractions
in embedded systems programming languages often introduces hard-to-
detect runtime errors; and the lack of modern integrated development
environments (IDEs) does not allow for quick trial-and-error prototyp-
ing. To mitigate those effects, we have developed JSense — a hardware ab-
straction layer for modern sensor nodes that allows for Java-based access
to all sensor and actuator controls. It supports an IDE-based centralized
development cycle with real-time debugging of a particular sensor en-
vironment, as well as the use of not-yet-available sensor and actuator
hardware on each node, such as positioning information. Using JSense,
designers of sensor-based environments can quickly try out a combina-
tion of situations and observe in real-time the data collection processes
of their nodes, while programmers are able to prototype applications in
their favorite Java-IDE in a hardware independent fashion, even taking
into account not-yet-deployed node hardware.

1 Introduction

Sensor-based applications form the backbone of the field commonly known as
ubiquitous computing or ambient intelligence. Without sensors, popular visions
of “an environment recognising and responding to the presence of individuals in
an invisible way” [1] will hardly be possible. Wireless sensor nodes such as Berke-
ley’s MICA mote [2] or ETH Zurich’s BTnodes [3] are envisioned to become both
considerably smaller and cheaper, thus eventually allowing “an end-user buying a
collection of sensor nodes and gateways, powering them up, and sprinkling them
— literally and figuratively — within an environment”[4]. However, even if such
motes would cost cents, not dollars, and even if they would be small enough to



be “sprinkled” into our environment, it is far from clear how an end-user would
actually go about programming these systems to do what she or he wants. This is
because wireless sensor nodes today largely remain within the realm of embedded
systems programming — typically requiring: intimate knowledge of the hardware
being used (in order to correctly read out sensor values and communicate them
wirelessly); the means to perform in-system-programming® (in order to upload
new programs); experience with embedded debugging tools; and proficiency in
low-level programming languages such as assembler or C.

Even if a user would fit this description, the development of a particular
application would most likely still be tedious: Uploading programs to dozens
of nodes, as well as debugging them individually, is a time consuming process.
Moreover, due to the lack of abstractions in typical embedded system program-
ming languages such as C or assembler, the likelihood for non-trivial runtime
errors such as invalid pointers, improper stack management, or memory leaks
significantly increases. Last not least, the lack of direct control over individ-
ual nodes typically leads to a non-integrated (hence suboptimal) design process,
where a first stage collects a multitude of sensory information (often spatially
and temporally over- or undersampled) while a second stage is used to separately
design an application on top of such datasets.

In this paper, we describe a Java-based network interface to wireless sensor
nodes that significantly simplifies the design and development cycle for wireless
sensor node applications. Our system, called JSense, works by deploying a small
hardware-specific access and control layer on each individual sensor node. One
or more gateway nodes can than be controlled via a set of common Java APIs to
read out or send commands to each individual node, thus providing programmers
with a Java-based direct access interface to their sensors. JSense’s Java-based
approach not only supports an “armchair” development-cycle (i.e., programmers
can collect and analyze data, and eventually reprogram their sensor-based appli-
cation from within their favorite Java-IDE), but also improves code portability
and quality through the use of Java’s high-level programming abstractions.

In addition to providing an easy-to-use sensor and actuator interface, JSense’s
hardware abstraction layer also supports the inclusion of external sensors, i.e.,
sensory information attributed to an individual node yet not collected by its
own sensors. Examples for such an external sensor would be temperature infor-
mation from an infrared camera picture, or a node’s location determined with
the help of an external positioning system. External sensors further simplify
the development of sensor-based applications, as they not only allow for the in-
clusion of yet-to-be-released hardware (e.g., a GPS-enabled BTnode) but also
transparently support the use of multiple sensor technologies (e.g., UWB, GPS,
ultrasound) for performance comparison or across different environments (e.g.,
indoor vs. outdoor).

! In-system-programming describes the process of directly storing a program on an
embedded microchip’s flash memory, e.g., using a serial cable and a corresponding
hardware programming device.



After briefly describing the main challenges related to the development of
sensor-based applications and our concrete hardware setup in sections 2 and 3,
we will present the JSense architecture and its implementation details in section
4. Section 5 will contrast our approach to existing development environments,
while section 6 concludes with a summary and an outlook on future work.

2 Developing Sensor-Based Applications

Sensor-based applications use measurements from real-world sensor deployments
to offer a particular service, e.g., a motion detection measurement might be
used to automatically switch on the lights when a person enters a room. Using
multiple sensors (both in terms of numbers and in terms of sensor types) can
often significantly improve such an application, e.g., a co-located light sensor
might help our motion sensor from above decide whether there is actually a
need for lighting during daytime. Developing such a simple application on a
typical sensor platform would require the developer to learn not only the basics
of embedded systems programming (i.e., hardware-near programming languages
such as C or assembler, microcontroller memory management, and in-system
programming), but also the accompanying APIs of the employed sensors and
may be even the platform’s radio module. It is widely recognized that the absence
of a common, extendible, and easy-to-use programming interface for accessing
real-world sensors still represents a major burden for a rapid prototyping of
sensor-based applications [4-7].

A typical approach to simplify the initial development of such applications
is the use of a simulator: instead of having to deal with the intricacies of actual
sensor hardware, the developer can use abstract sensor nodes with simulated
sensor readings that can quickly be programmed and debugged. While simu-
lations are a powerful tool for evaluating preliminary design and configuration
choices, they often fail to capture the complex, real-time interactions between
the application software and the faulty-prone, physical sensors. In order to build
reliable sensor-based applications, real-world deployments must be an integral
part of the development cycle [4, 5].

So what do we need to support application developers in deploying their ideas
onto actual sensor platforms, so that they can quickly try out a variety of ap-
proaches to provide higher-level services from low-level sensor data? Based on our
own experiences in teaching sensor-based application development to students,
as well as by reviewing a number of state-of-the-art development environments
[4,5,7-9], we have distilled five core requirements:

1. Hardware Abstraction: Instead of requiring developers to learn about em-
bedded systems programming (which entails both hardware and software
concepts), they should be able to simply query a particular sensor on a par-
ticular node, or set a node’s actuator (e.g., an LED), through a high-level,
unified API.

2. Integrated Design Process: In order to avoid a suboptimal, decoupled design
process (i.e., separate stages for data collection and algorithm design /testing),



the framework should allow near real-time gathering and analysis of collected
sensor readings. This allows developers to receive direct feedback on algo-
rithm design under controllable real-world conditions.

3. Centralized Programming Environment: While sensor-based applications will
ultimately need to be distributed onto individual sensor nodes, the process
of programming and debugging sensor nodes one by one is time consuming
and error prone. Instead, developers can greatly benefit from a centralized
programming environment that lets them (virtually) upload new program
versions in an instant and quickly observe the results.

4. High-Level Programming Language: Embedded microcontrollers are typically
programmed using the C language, as it allows for a direct control of the
individual IC registers and flags. In contrast to higher-level languages such
as Ada or Java, however, low-level languages such as C or assembler fail
to support reliability and maintainability, nor do they try to address the
compile-time detection of errors [10, 11]. Providing developers with a Java-
interface would thus not only improve the code quality, but also lower the
barrier of entry, as an increasing number of universities, colleges, and sec-
ondary schools have long since adopted Java as the programming language
for their introductory computer science courses [12].

5. Location Information: In most sensor-based applications scenarios — from
large scale environmental monitoring [13] to smart-buildings applications
[14] — reported measurements are often useless if they are not accompanied
by a corresponding (absolute or relative) sensor position. In the smart room
example cited above, the controlled light switch must obviously be the one
that is co-located with the light and motion sensors. An application thus
greatly benefits from having direct access to the geometric or symbolic [15]
coordinates of the sensors within the actual deployment area.

With these five requirements in mind, we have developed JSense, a Java-
based direct access and control interface to common sensor platforms. Like a
number of similar rapid prototyping environments for sensor nodes (which we
will discuss in detail in section 5 below), JSense aims at speeding up the pro-
totyping phase of sensor-based applications by providing a high-level API for
programming heterogenous sensor platforms. As we will describe in details in
section 4, the JSense API provides a set of basic programming primitives for ac-
tivating and deactivating sensors, importing sensor data streams, and eventually
set parameters like sampling frequencies or actuators states. Unlike many other
approaches, however, JSense provides an application developer with an easy-to-
use Java interface, which — due to its popularity as a programming language in
universities and colleges [12] — offers a significant potential to use JSense specifi-
cally as an educational tool, e.g., in tutorials accompanying courses in embedded
systems, sensor networks, or ubiquitous computing. The adoption of Java as a
programming language also facilitates the use of external data processing tools
(e.g., Matlab) that already offer Java bindings [16], thus further improving ap-
plications development.



Secondly, JSense explicitly supports the use of location information on the
sensor node. In many experimental settings, location data is typically retrieved
from an external database, where the position of the single sensing devices is
registered during deployment. This solution not only seriously limits reconfig-
urability, but also makes the system prone to inaccuracies, as sensors could be
moved and thus would invalidate the information in the database. However, as
only few of today’s popular sensor platforms supports location sensing, JSense
provides the concept of external sensors in order to allow developers to seam-
lessly use third-party positioning systems (e.g., GPS or Cricket, but also optical
systems based on fiducial markers) as if the positioning data would be generated
by the actual sensor platform.

Before describing the JSense architecture in detail (and in particular its Java-
interface and location data support), we will briefly describe our particular hard-
ware setup, i.e., the sensor platform and location system that we have used to
develop our initial prototype of JSense: The Tmote Sky sensor platform and the
Ubisense location system.

3 JSense Hardware Setup

In the context of this work we use the term sensor platforms to refer to a
device endowed with one or more sensors and/or actuators, some computational
capabilities, and means for wireless communication. A sensor platform can thus
consist of a single, stand-alone temperature or orientation sensor [17], or be a
more complex device that offers a range of sensing capabilities [3, 18, 19].

One popular sensor platform family — the Berkeley MICA motes — is based on
work originally done at UC Berkeley and Intel Research [20]. Its latest generation
is the “T'mote Sky” sensor mote, which is developed by Moteiv, a UC Berkeley
spin-off company [21]. It features an IEEE 802.15.4 compliant radio transceiver;
built-in temperature, light and humidity sensors; and three LEDs. The Tmote
Sky platform can be programmed using “TinyOS”, a component-based, open-
source operating system widely used for research in wireless embedded systems
[22,23]. Applications on top of TinyOS are developed through composition of
independent modules, which must be written using “NesC”, an extended dialect
of the C programming language [24]. TinyOS has already been ported to a large
number of hardware platforms and is therefore widely used within the sensor
network community for research and development. Due to the popularity of both
TinyOS and the Berkeley motes family, we have started our initial development
of JSense using the Tmote Sky sensor platform. While programming the Tmote
Sky motes is well supported by the (mote-specific) NesC programming language,
it is still hampered by the general drawbacks of C-programming, as well as the
difficulties of learning the needed TinyOS programming paradigm.

Although some commercially available platforms also integrate positioning
devices, such as GPS receivers [25], [19] wireless sensor platforms typically do not
feature any integrated positioning devices, due to their high costs and significant
energy requirements. However, as we pointed out in the previous section, the



ability to retrieve position information is often crucial in order to validate sensor-
based application design and system configuration. We have thus incorporated
the ability to include external sensors when modeling a sensor platform in JSense,
i.e., sensors that operate independently of the actual sensor platform used, but
which can be correlated with individual nodes such that they form a single,
virtual node. We use this mechanism to incorporate location information from an
external positioning system directly into the representation of every single Tmote
Sky, making it appear as if this sensor platform would already be equipped with
such a positioning technology.

The particular location system we use is based on ultra wide band (UWB)
technology, which promises energy-efficient, accurate positioning in both in-
door and outdoor settings. Systems that use this technology for getting 3-
dimensional indoor positioning information are already commercial available,
e.g., the Ubisense system [26]. We have installed a set of Ubisense sensors in our
student lab, which are able to report the geometrical coordinates of correspond-
ing Ubisense tags (i.e., a small UWB radio beacon) with an accuracy of up to
15 cm. We thus enhanced the sensing capabilities of the Tmote Sky platform by
attaching a Ubisense tag to the sensor node, and then provided the necessary
Java software interface to our JSense architecture in order to integrate position-
ing information into the regular Tmose Sky sensor readings (i.e., temperature,
light, and humidity). JSense in effect allows application developers to use this
compound platform as a unique, homogenous entity.

The next section will explain in more detail how our JSense architecture
combines the measurements collected by the Tmote Sky sensing devices with
the position information computed by the Ubisense system.

4 The JSense Architecture

The first core component of JSense’s two-tiered architecture sketched in fig-
ure 1, is implemented through so-called Virtual Platforms. As we will detail in
section 4.2 Virtual Platforms (VP) are software entities accessible through a
standardized Java API that virtually bind together a compound of different sen-
sor platforms. In our prototypical implementation, for example, a VP combines
a Tmote Sky sensor node and the correspondent affixed Ubisense tag in a unique
virtual sensor platform.

JSense’s second core component consists in a lightweight, platform-specific,
hardware access and control layer, that shields the application developer from
the nasty hardware-specific details of the sensor platforms. This framework, de-
scribed in more detail in section 4.1 below, enables remote access to the sensing
devices available on the physical hardware platforms and is easily extendible due
to its component-based architecture.

4.1 Local Command Execution: The Hardware Abstraction Layer

For enabling ease of access to the sensing devices of a sensor platform, JSense
provides a hardware-specific access and control layer, the so-called Hardware
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Fig. 1. The JSense architecture.

Abstraction Layer (HAL). The HAL runs on the specific platform it has been
written for and uses a pluggable-module approach, where each sensor or actuator
is accessed through an individual driver module. The HAL is not only responsible
for scheduling and executing hardware access (using the sensor specific modules)
but also of managing the received access requests and returning the adequate
sensor responses. The existence of this abstraction layer allows the application
developer to issue remote access requests that will be received and executed
on the target platform, while the correspondent sensing results will be back-
forwarded to the remote system, e.g., a desktop PC.

Figure 2 shows the implementation of JSense’s Hardware Abstraction Layer
on the Tmote Sky sensor platform. Its lightweight, easy-to-extend implementa-
tion is based on three main components. The SensorComm component manages
the communication with the remote system: it is responsible for receiving re-
motely issued commands and forwarding them (after adequate unmarshalling)
to the SensorLogic component. Commands typically have the form “get cur-
rent value of sensor X” or “perform X on actuator Y”. In order to reduce, when
possible, the communication overhead, commands that need to be executed pe-
riodically can be issued by the remote system as periodic access requests. This
requests will perform sensor/actuator access with the specified frequency and
for the desired time frame.

The duty of scheduling sensor/actuator access is taken over by the Sensor-
Logic component, which handles commands coming from the SensorComm com-
ponent and either executes them immediately or provides the adequate schedul-
ing for periodic execution, as illustrated in figure 3. When a command needs
to be executed (thus, a sensor need to be read or an actuator to be set), the
SensorLogic component activates the correspondent sensor- or actuator-specific
module, which is responsible for the actual physical access to the hardware de-
vice. The compound of these modules constitutes the third logic component of
our HAL. Please note that enhancing the sensor platform with additional sensors
and /or actuators, just requires adding to the JSense’S framework the correspon-
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Fig. 2. Component model of the JSense’s Hardware Abstraction Layer for the Tmote
Sky sensor platform.

dent sensor-/actuator-specific physical access modules and registering them to
the SensorLogic component.

Access request responses sent through the SensorComm component are re-
ceived by a Tmote Sky node connected to a remote system (e.g., a desktop PC)
through a USB serial port. This node acts as a gateway between the sensor
deployment and the desktop PC by transferring received radio packets to the
SerialForwarder, a Java application that is part of the TinyOS tool-chain. The
SerialForwarder listens for TinyOS packets on a serial port and forwards them
over a local TCP network socket, thus allowing more than one application to
send and receive packets to and from the “gateway” Tmote Sky.

The current JSense’s HAL implementation for the Tmote Sky sensor plat-
form, allows for an easy and efficient access to the physical sensors and actuators,
generating a 63kB footprint on the 1IMB flash memory of the Tmote Sky plat-
form. This footprint includes both the operating system proprietary modules
and the JSense’s HAL components for accessing the platform’s built-in sensors
and actuators.

4.2 Remote Access: JSense’s Virtual Platforms

As mentioned earlier in this section, a Virtual Platform is a software entity that
virtually binds together a compound of different real sensor platforms. Figure 4
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delete timer

shows that this virtual entity typically integrates one or more target platforms
and eventually external and virtual sensors. We refer to a target platform as a
sensor platform that runs a JSense’s Hardware Abstraction Layer, for instance,
the Tmote Sky sensor node.

The possibility to add external sensors to a target platform represents a
powerful feature of the JSense system, as it allows for incorporating functioning
sensor hardware that is not (yet) integrated into the target platform. We assume
that external sensors can communicate independently over a wireless channel,
or at least can be assessed from the outside (e.g., using a camera-picture or a
microphone array). For instance, a location sensor can be “attached” to a target
platform in order to enable prototyping of location-aware, sensor-based applica-
tions. Due to the often significant power, cost and size requirements of location
sensors such as GPS receivers or UWB tags, these devices are typically not in-
tegrated on common sensor node platforms (such as MICA-motes or BTnodes).
However, using the VP abstraction we can easily integrate a target platform
with an external GPS module or a UWB-tag, allowing the application developer
to access these devices as they were built-in sensors of the target platform, thus
completely hiding the existence of an external positioning system from our devel-
opment cycle. This not only provides a unified access and control framework to
heterogenous sensor platforms, but also support the simultaneous use of multiple
technologies, thus offering a precious tool for e.g., performance comparisons.

Target platforms can be integrated not only with external, but also with so-
called virtual sensors. These represent devices that either cannot be purchased
(e.g, for cost or availability reasons) or even do not yet physically exist. In both
cases, the virtual sensor simulates the existence of a real sensor. In effect, using
the concept of virtual sensors, we can develop sensor-based applications also inte-
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grating yet-to-be-released or yet-to-be-operational sensing devices, significantly
shortening the development cycle.

Once sensing devices have been associated to a certain VP, JSense provides
a transparent access to the physical hardware through a standardized Java API.
The development of an application that makes use of the deployed sensor hard-
ware is therefore reduced to the compilation of a standard Java program that
access the correspondent VPs. For the application programmer, a VP is repre-
sented by a Java object that provides methods for a direct access to its sensors
and actuators.

The VP abstraction supports the development and implementation of both
distributed Java applications (i.e., each virtual node is a separate thread with in-
dividual code) and centralized applications (i.e., virtual nodes are simply objects
that can be queried and accessed from a central program). This allows devel-
opers a gentle learning curve into sensor-based application development, as one
can quickly prototype a centralized application, and then gradually distribute it
onto individual nodes.
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Fig. 4. A JSense Virtual Platform as a compound of a target platform, external and
virtual sensors.

We would like to point out that integrating new external sensor and actuator
systems into JSense requires writing the appropriate Java bindings and regis-
ter them as plug-ins components using methods provided by the JSense Java
API. For instance, the Ubisense UWB localization system has been integrated
in JSense by implementing a software layer that provides access to the Ubisense
native C++ libraries through the functionalities provided by Sun’s Java Native
Interface?.

% See www. java.sun.com/j2se/1.5.0/docs/guide/jni/index.html.
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4.3 JSense Enabled Systems

The JSense system is in general very well suited for centralized implementation
and testing of applications requiring on-line processing of real-world sensor data.
For this kind of applications, the enrichment of sensor readings with the corre-
spondent location information represents in many cases a mandatory feature. For
this reason, the JSense system provides the Ubisense UWB-based localization
system as an external sensor integrating the Tmote Sky sensor node platform.

,. t - !IEI:I
[2 Ba|s)[=

] Helloworld - Example Appiication

e o

Update Rate [0.4m2

Sensor Value. [23.0
Position [o<=842,v=234,2=013)

Fig. 5. Application development using JSense: the graphical interface.

A set of 6, Ubisense-integrated, Tmote Sky sensor nodes deployed in our stu-
dent lab, provided the hardware setting for prototyping our first, ‘hello-world”-
style JSense-based application. The developed application aimed at collecting
temperature readings (with an update rate of 0.1 Hz) from the deployed nodes.
The temperature data and the correspondent position information from the
Ubisense system could be visualized through a simple graphical interface (see
figure 5) and were logged in a protocol file for off-line inspection. Figure 6 shows
the simple Java program that it was necessary to write for implementing the
described application. As it can be seen from the code, accessing sensor or actu-
ators on the target platform or adding an external sensor to a VP, require just
simple Java method calls.

Thus, using JSense a first prototype of a sensor-based, location-aware appli-
cation can be written and tested in Java, having all the benefits of unrestricted
system resources and integrated development environments. On this level, the
logical correctness of the approach can be tested and the general functioning in
combination with real sensor data can be assured — with basic Java knowledge
being the only required skill for the application developer.
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import jSense.*;

import jSense.Sensors.*;

import jSense.Actuators.*;
import jSense.ExternalSystems.x*;
import tools.protocol.x*;

public class JSenseDemo implements VPListener {

private VirtualPlatform vp;

TemperatureSensor tempSensor;
LEDActuator ledActuator;
LocationSensor = locationSensor;

public JSenseDemo() {

}

// create a new virtual platform associated to a TMoteSky node (logical adress 1):
vp = new VirtualPlatform(new TMoteSkyPlatform(1));

// add components: (UbiSense tag number 016-000-003-180)
ExternalSystem localizationSensor = new UWBLocationSensor("016-000-003-180");
vp.add(localizationSensor) ;

// create shortcuts to the used sensors and acuators:

tempSensor=(TemperatureSensor) ((TMoteSkyPlatform)vp.getPlatform()) .getTempSensor();
ledActuator=(LEDActuator) ((TMoteSkyPlatform)vp.getPlatform()) .getLEDActuator();
locationSensor=(LocationSensor) (UWBLocationSensor)vp.getExternalSystems() .elementAt(0);

// initialize the protocol system:
Protocol protocol = new Protocol('"c:/temperature_readings.txt");
protocol.setTimeStampsEnabled(true);

public void directAccessExample() {

// get the current temperature value:

float temperature = tempSensor.getTemperature();
// turn the first LED on:

ledActuator.setLED(0, true);

public void eventBasedAccessExample() {

}

vp.subscribe(this) ;
// get 100 temperature readings every 1000 ms, starting now (0 ms):
vp.issueTask(new SensorReadingTask(tempSensor,0,100,1000));

/** This method is called if the VP receives a message regarding an issued task*/
public void resultReceived(Result result) {

}

if (result.getSensor() instanceof TemperatureSensor) {
TemperatureSensor tempSensor = (TemperatureSensor) result.getSensor();
// write the obtained values into the protocol file, incuding the current system time:
Protocol.println("temperature:"+tempSensor.getTemperature()+
"at position:"+locationSensor.getPosition());

}

public static void main(String[] args) {

}
}

JSenseDemo demo = new JSenseDemo();
demo.directAccessExample() ;
demo . eventBasedAccessExample() ;

Fig. 6. JSense enabled, sensor-based application written as a standard Java program.
Using the JSense package, sensors and actuators can be accessed through simple meth-
ods calls.
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5 Related Work

Due to the growing interest in wireless sensor applications, researcher have put
considerable effort in the development of tools for allowing easy development
and prototyping of wireless, sensor-based systems. For instance, a number of in-
teresting approaches like TASK [4], EES [5] and SNACK [7], have been proposed
within the sensor networks research community.

The “Tiny Application Sensor Kit” (TASK) provides sensor networks end-
users with a set of graphical tools for facilitating deployment and inspection of
environmental monitoring systems. It has been successfully used in real-world
experiments and complies with the need of end-users providing, among others,
ease of software installation, simple deployment tools for sensor placement, re-
configurability and ease of integration with data analysis tools. TASK has been
specifically designed for low data rate environmental monitoring applications
and relies on the TinyDB querying processor [27]. The data collected in the
context of TASK-enabled real-world experiments have been made publicly avail-
able [28] and served as benchmark for evaluating data processing technique for
sensor networks [29,30]. Unlike JSense, TASK does not support easy extend-
ability of the sensor platform and is specifically designed for inexpert computer
users, rather than for application developers that are familiar with high-level
programming languages like Java. The same considerations apply for the Exten-
sible Sensing System (EES), that has been used to collect micro-climate data
from large scale (> 100 nodes) outdoor deployments. Unlike TASK, the sensor
nodes in ESS are heterogeneous and run a proprietary Data Sampling Engine
rather than TinyDB.

One of the approaches we retain to be more closely related to our work
is the “Sensor Network Construction Kit” (SNACK). SNACK is a NesC-based
system that aims at providing a set of efficient, high-level service libraries to
support sensor network application development. However, while SNACK uses
a proprietary component composition language that the application developer
must eventually learn from scratch, JSense applications can be written using
standard Java programming.

Other interesting systems, which are to some respect related to our work
are Marionette [8] and IrisNet [9]. Marionette is a tool for interactive sensor
network application development. It provides remote access to wireless embed-
ded devices through a Phyton-based client and allows to monitor and change
at run-time the state of a sensor node. The Marionette architecture promises
to become a powerful tool for developing and debugging sensor network appli-
cations, but it address expert programmers that can understand and properly
manage NesC modules, rather than Java developers, as JSense does. The IrisNet
architecture aims providing the missing software components necessary to sup-
port realization of a worldwide sensor web, in which users can access through
the internet a plethora of distributed, remote sensor systems. IrisNet holds dis-
tributed databases to store sensor data across the network and uses XML to
query these databases. Sensors send their data to a so-called Sensing Agents
(SA) that pre-processes the data and updates the sensor database distributed
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throughout the network. IrisNet’s main scope is to provide a mean for a unified
access interface to real-world sensor, but while JSense mainly access local sen-
sors, reachable through a one-hop, wireless communication channel, IrisNet uses
the world wide web infrastructure for accessing remotely located sensors.
Researchers at Sun Microsystems Laboratories very recently announced a
project that aims at realizing a sensor development kit called Sun SPOT (Small
Programmable Object Technology) [6]. A Sun SPOT platform is based on a 32 bit
ARM CPU and an 11 channel 2.4 GHz wireless transceiver and is equipped with
temperature, light and motion sensors. The Sun SPOT system does not need
to rely on an operating system like TinyOS: it features the so-called “Squawk
VM”, a Java Virtual Machine mainly written in Java (only the interpreter and
the garbage collector are written in C) that acts as an operating system running
“on the bare metal” of the hardware platform. Applications building upon the
Sun SPOT platform can be completely written in Java, using the native libraries
of the Squawk Java VM. Since it is Java-based, the Sun SPOT will be easily
integrable in our JSense system, and will thus constitute an additional sensor
platform to experiment with. However, even if the the Sun SPOT technology
is envisioned to enable rapid prototyping of some wireless sensor-based appli-
cations, it is still unclear if and how this technology would be mature enough
to be extended to other hardware platforms. For instance, consider that while
the Tmote Sky platform features 10kB of RAM and 1M B of flash memory,
the Squawk VM has a 80kB footprint on the RAM and additional 270kB of
libraries need to be loaded on the flash memory. Moreover, while considerable
effort has been spent in the wireless sensor community to minimize cost of sen-
sor platforms, a Sun SPOT development kit containing two wireless sensors, a
base station and the software development tools will be available for about $500.
Three Tmote Sky can be purchased with less than the half of this money.

6 Conclusions

Today’s means of designing, developing, and deploying sensor-based applications
lack in flexibility, reliability, and convenience, thus seriously hampering sensor-
based application development [4]. With JSense, we have presented a rapid proto-
typing environment for wireless sensor-based applications that offers developers
not only a convenient Java interface for direct access and control of individual
sensor nodes, but which also seamlessly integrates external sensor information,
such as positioning data, in order to better design and inspect location-dependent
sensor applications.

The support for Java programming puts sensor-based application develop-
ment within the reach of millions of Java programmers and is especially relevant
in the educational domain, where Java is often preferred over languages like C
or C++ for introductory programming classes [12]. The seamless inclusion of
location information as part of a Virtual Platform offers the promise of a much
faster and more exact design cycle, as sensor readings can be directly correlated
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with a sensing position, alleviating the need for manual location measurements
or fixed sensor locations.

JSense represents a first step towards a much simpler access to sensor-based
applications, yet much needs to be done before we can use JSense to develop
real-world applications. In particular, we kept the JSense Java API very simple
in order to get a first, working prototypical implementation of the system. On
the basis of this first experience, we are currently redesigning the sensor pro-
gramming interface in order to allow more powerful querying primitives than
single-value or periodic sensor queries. An almost trivial extension, for exam-
ple, is to include support for spatial queries, i.e., based on a nodes location, as
JSense’s virtual platforms already support positioning information “natively”.

Obviously, JSense will also benefit from extending it to run on a larger number
of sensor platforms, e.g., the BTnodes. We are currently planning to release
JSense as an open-source project in order to simplify the addition of different
hardware. By using JSense in a number of student projects within our lab, we
also hope to gain more insights into the practical uses (and shortcomings) of our
system.
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