

Distributed Systems

Digitally Augmenting Traditional Play Environments

Steve Hinske

Thesis

Traditional play environments can benefit from the merging of the virtual and the real world enabled by pervasive computing technologies.

However, to digitally augment such environments, many aspects must be considered and many technical challenges must be successfully overcome.

Challenges (Examples)

- Integration of technology (e.g., small play objects)
- It's about fun: reliability, real-time response, etc.
- High dynamics of play environments
- Users do not have technical knowledge
- Special user group: children

Definitions

 Digitally Augmented Traditional Play Environment: a physical-traditional play environment that is digitally augmented using pervasive computing technologies in order to enhance the players' experience by providing them with novel virtual elements and/or services.

Digital Augmentation:

the process of

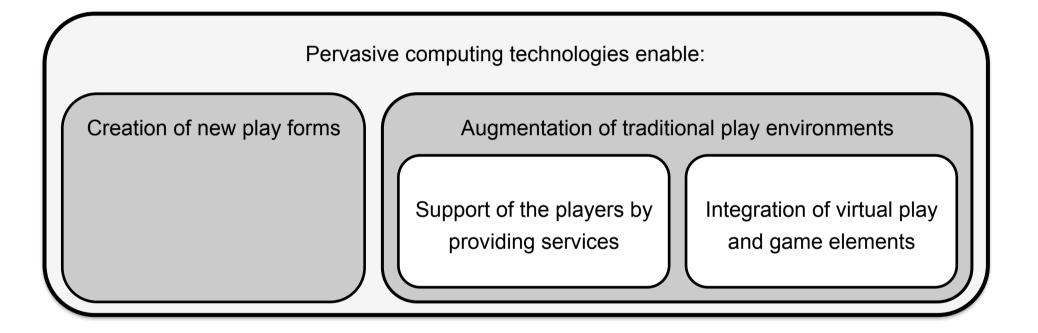
integrating pervasive computing technologies into real-world objects to equip them with sensing, computing, storing and/or communication capabilities.

Contributions

Theoretical Background

Digital Augmentation

Two Exemplary Prototypes / Use Cases

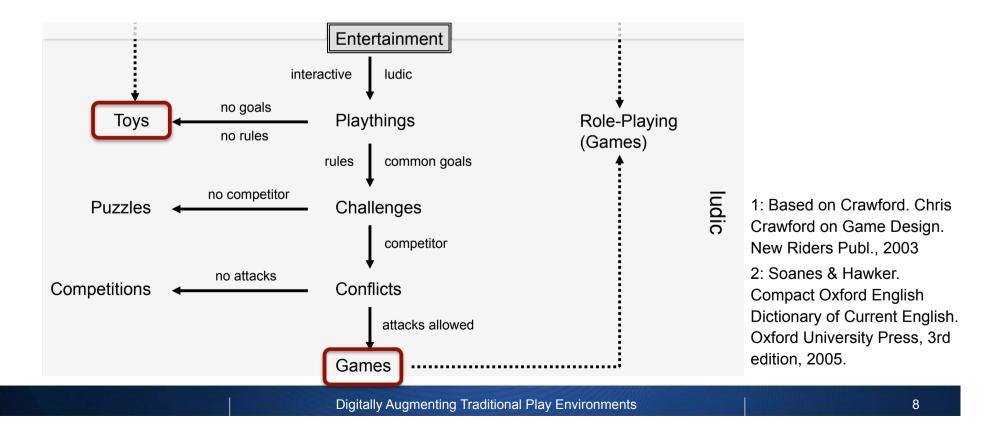

Warhammer 41K

The Augmented Knight's Castle

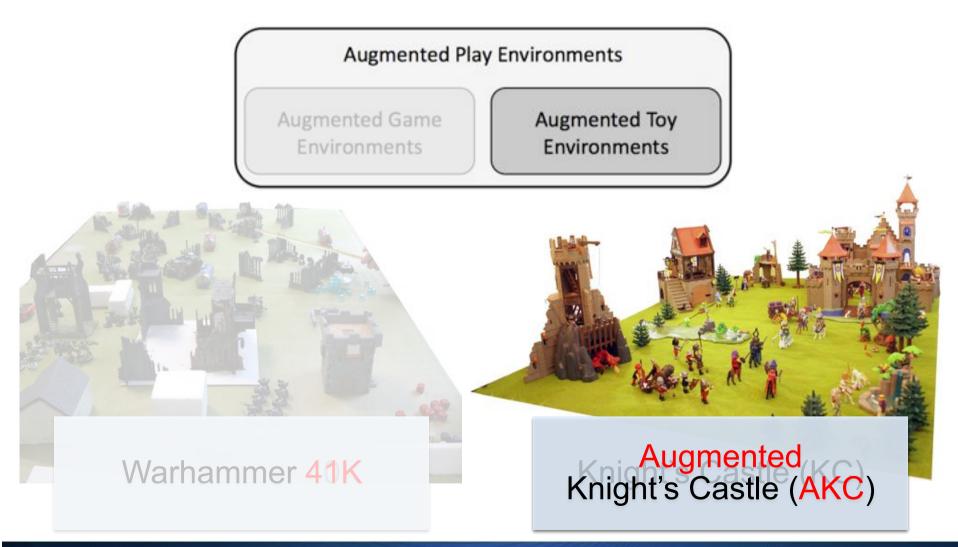
User Study of the AKC

MOTIVATION AND BACKGROUND

Motivation


Mundane tasks

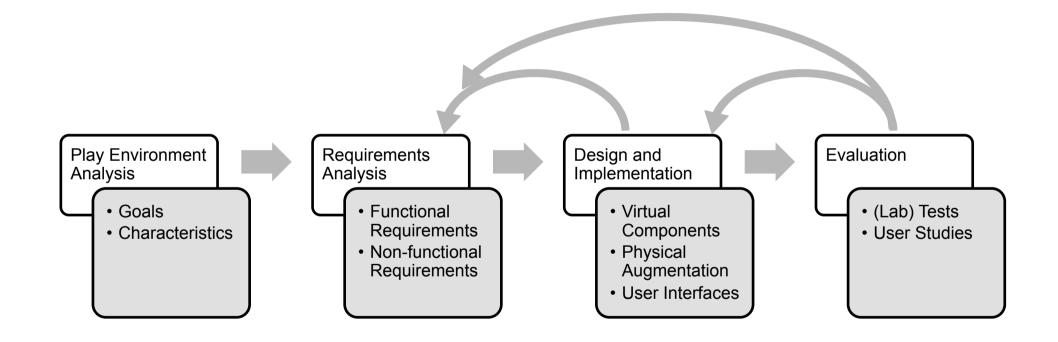
Context-relevant


information and services

Extended¹ Taxonomy of Entertainment

"Play: activities engaged for enjoyment"²

Two Forms of Augmented Play Environments


DIGITAL AUGMENTATION: PROCESS AND DESIGN GUIDELINES

Problem

 How can we digitally augment a play environment to support players and create more immersive environments without compromising its tangible and social benefits?

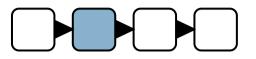
- What parts of the play environment should be digitally augmented?
- How can these parts be digitally augmented?
- What (technical) aspects must be considered?

Process of Digital Augmentation

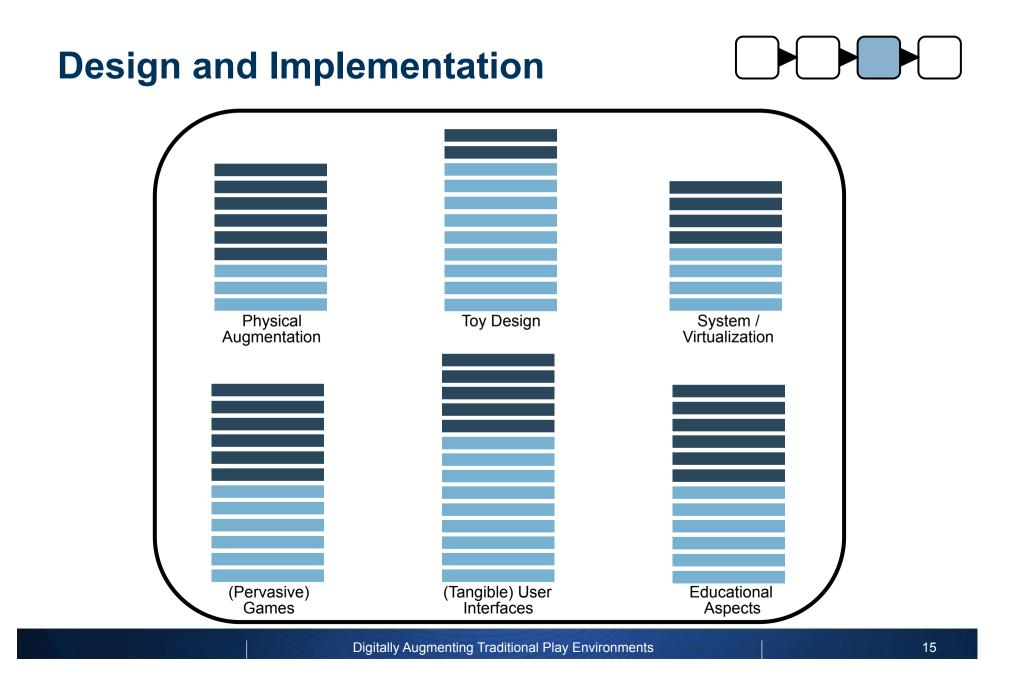
Play Environment Analysis

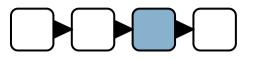
Goals of digital augmentation

E.g., "relieve players of manual score-keeping"


- Characteristics (examples)
 - Target user group
 - Primary users
 - Secondary users (spectators, parents, content provides, etc.)
 - Boundaries
 - Space
 - Objects
 - Players
 - Time

Rules, patterns


1: Huizinga. Homo Ludens. Beacon Press, June 1971.


Requirements Analysis

- Goal: "relieve the players of manual score-keeping"
- Functional requirement: "introduction of a virtual scorekeeper"
 - Provide means to retrieve current score
 - Catch game states that result in score changes
- Non-functional requirements (examples)
 - Reliability
 - Performance
 - Invisibility and unobtrusiveness

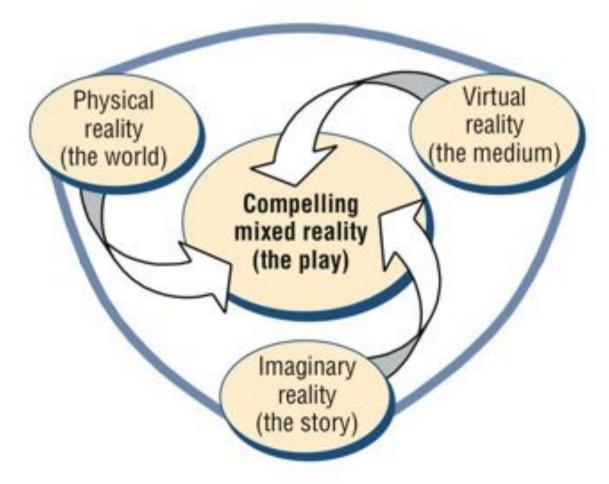
Design Guidelines (Examples)

- The play set should still be playable (in the "traditional" way); even if the technology is switched off or malfunctioning.
- Secondary user interfaces should be minimized.
- Strive for in situ interaction / situated action: interaction (e.g., configuration) happens right in the play.

Difficulties of Evaluating APEs

- Resource-intensive
- Evaluation in the field
- Evaluation of the complete system
- No evaluation standards
- Data gathering
- Technical issues
- Children as users
- It's about fun

USE CASE: THE AUGMENTED KNIGHT'S CASTLE


Use Case – The Augmented Knight's Castle

Characteristics (Examples)

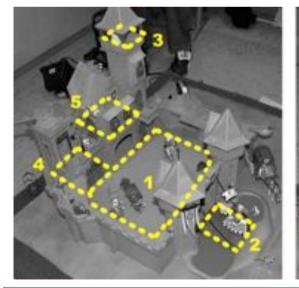
- Number of players: unlimited. During a play session, players may join or leave.
- The play field is not spatially restricted and subject to constant changes. There are no discrete fields.
- The play set consists of many play objects. During a play session, new (semantically foreign) objects might be added.

Model of Compelling Mixed Reality¹

1: Stapleton et al. Applying mixed reality to entertainment. Computer, 35(12):122-124, 2002.

Functional Requirements

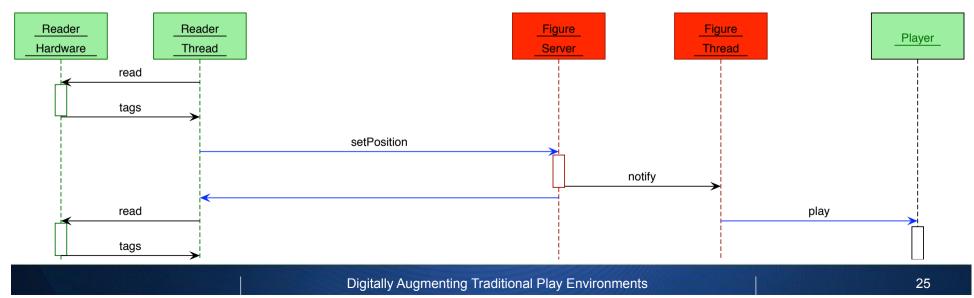
Goal: enhance children's play experience and provide educational content in a playful way


- Integration of novel (multimedia) effects
- Integration of educational content for playful learning
- Provision of means to configure the environment
- Integration of devices to enable new interaction forms

Identifying and Locating Objects

Requirements: Unambiguous identification Unobtrusive detection Reliable and quasi-real-time Maintenance-free Unique ID Small footprint of tags Fast tag detection Low maintenance

Use Case – The Augmented Knight's Castle



Digitally Augmenting Traditional Play Environments

Background System

- Idea: all information stored "in" the figures
- Each location operates independently
- Web services for flexibility

Additional Effects

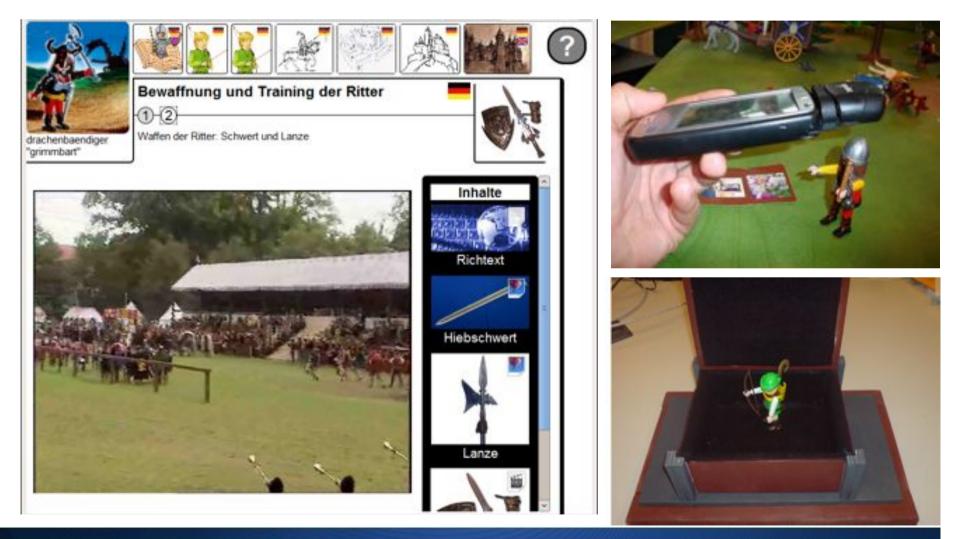
- Light and smoke effects
- Also configurable

Digitally Augmenting Traditional Play Environments

Integrating and Providing Educational Content

• Children:

- Facts and stories about the Middle Ages in several languages
- Directly (i.e., talking figures)
- Indirectly (i.e., using a mediator device)



"Castle Tours"

"Magic Mirror" and "Magic Loupe"

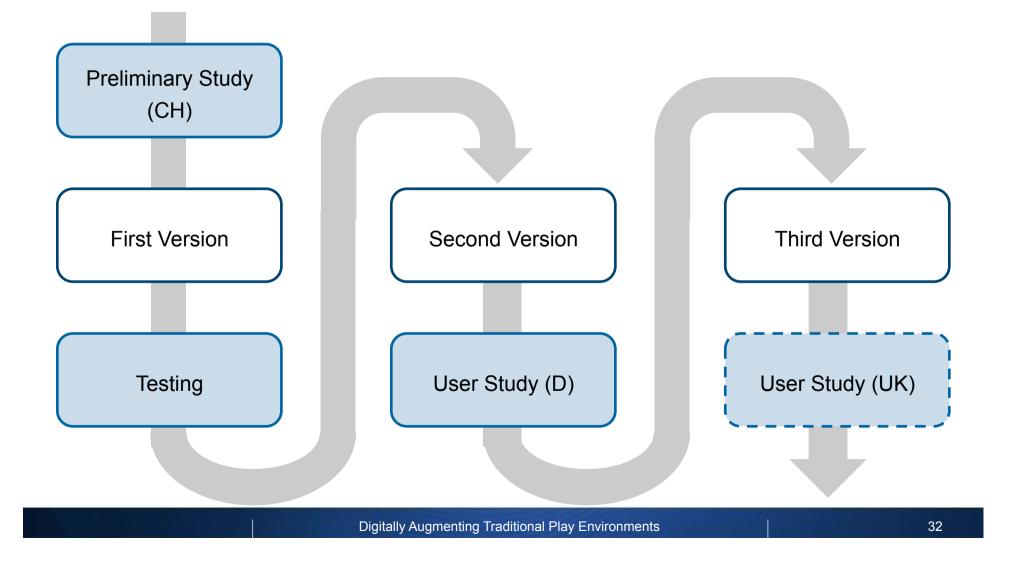
Digitally Augmenting Traditional Play Environments

Integrating and Providing Educational Content

- Children: play learning modules
 - Facts and stories about the Middle Ages in several languages
 - Directly (i.e., talking figures)
 - Indirectly (i.e., using a mediator device)
- Parents / educators: modify and pre-select modules
 - Web-based user interface
 - Review individual interaction / learning histories
- Developers: create and modify modules
 - Content management system

Design Guidelines

- Invisibility and unobtrusiveness
- The technology must be safe (e.g., no electricity, sharp edges or poisonous materials).



- Support multiple simultaneous interactions.
- System feedback should always be immediate.

Iterative Development of the AKC

Three Major Iterations of the AKC

Initial Version	Second Version	Third Version				
Slow response time	Quasi-real-time response					
Eight active zones: one RFID reader, one multiplexer and eight antennas	Nine active zones: nin multiplexers and 23 ar	,				
Technology is loosely placed under a table		Everything is secured in place (enables easy transportation)				
Storage: XML files	Storage: Database					
All action rules are hardcoded		Users can create and configure action rules				
Integration of additional devices hardcoded		Web-service-based infrastructure for flexible integration of				
		devices				
Centralized play set with one computer		Distributed play set with three autonomous elements connected via WiFi				
Audio feedback only		Audio feedback plus light and smoke effects				

USER STUDY OF THE AUGMENTED KNIGHT'S CASTLE

Goals

- To test the success of the digital augmentation, mainly in terms of robustness and usability.
- To compare the augmented with the non-augmented play set in terms of children's perceptions of fun.
- To explore the effects of the augmented play set on interactive play and storytelling.
- To explore the value of an augmented play set for conveying educational content.

Two Play Sets

Method

- Each play set in a separate room
- Free play
- KC or AKC: 35-40min
- AKC/KC or KC/AKC: 20min each

Participants

Test type	No. of groups	No. of Graders						
		1 st	2 nd	3 rd	4 th	Σ		
КС	13	6	6	11	10	33		
AKC	12	8	8	8	9	33		
KC/AKC	8	2	4	5	3	14		
AKC/KC	6	6	6	3	8	23		
Σ	39	22	24	27	30	103		

Interviewing the Children

- Initial interview (name, age, possession of devices, etc.)
- Open questions (stories, what they liked, disliked, etc.)
- Questionnaire (fun, educational content)

AKC AKC KC TOTO

Children's Rating of Fun

- How much did you like playing with...
 - KC: 4.4
 - AKC: 4.6

- 21 AKC (57%), 6 equal, 10 KC
- 27 would play again with the AKC (73%)
- AKC compared with...
 - ...traditional toys: 33 out of 33 said "more fun"
 - ...computer/video games: 32 out of 33 said "more fun"

5

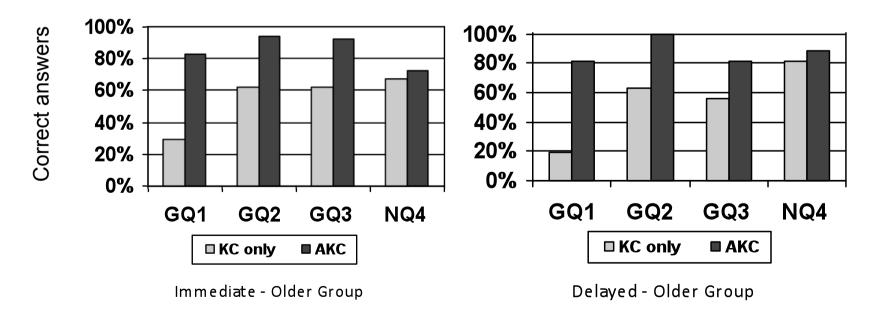
4

3

2

1

0


to

Play Behavior

- Some children just 'cracked up' and laughed.
- Some children directly replied to the figures' utterance:
 - 1a: Figure: I'm the golden knight.
 - 1b: Child: Hello golden knight.
 - 2a: Figure: I need a new sword, which costs seven cows.
 - 2b: Child: I don't have seven cows...
 - 3a: Figure: I was in the pantry; we have enough bread for the winter.
 - 3b: Child: Where is the pantry?
- Some children responded indirectly, e.g., "let's take the golden knight".
- Some children ignored or disregarded it.

Questions (Educational Content)

- GQ1: What was the most important food in the Middle Ages? (Answers: bread, meat, potatoes)
- NQ1: What was the royal color? (Answers: red, yellow, green)

CONCLUSIONS

Contributions

- Theoretical foundation
- Digital augmentation
 - Process model
 - Design guidelines
- Two exemplary prototypes / use case
 - Warhammer 41K
 - The Augmented Knight's Castle
- AKC User Study

Distributed Systems

Digitally Augmenting Traditional Play Environments

Steve Hinske

