
Integrating Java-based Mobile Agents into Web Servers under

Security Concerns�

Stefan F�unfrocken

Department of Computer Science, Darmstadt University of Technology

Alexanderstr. 6, 64283 Darmstadt, Germany

Email: fuenf@informatik.tu-darmstadt.de

Abstract

The paper describes a system architecture which of-

fers the ability to host mobile agents (so-called Web-

agents) on a Web server. This is done by a special

server extension module called 'server agent environ-

ment' (SAE). The agents may access local data of the

Web server and may communicate with other Web-

agents or with human users. The paper discusses the

di�erent security issues that arise in such a system

and shows how we address the problems. Concern-

ing system and network security, we present a solu-

tion based on security packages, protection domains,

and agent capabilities. This provides a 
exible way to

restrict an agent's possibility to access the local server

data or access the network. Since we also aim at pro-

viding our SAE as a plug-in for other Web servers,

we show how this is supported by our system architec-

ture.

1 Introduction

The notion of 'mobile agents' commonly refers to

programs that are able to move from host to host.

Since the term 'agent' often implies some sort of in-

telligent behavior and most developers in the mobile

agent area are not primarily concerned with arti�cial

intelligence issues, the paradigm is also known as 'mo-

bile code' or 'remote programming'. On every host

the agent is visiting, it may access local data or may

communicate with other agents to ful�ll its task.

The mobile agents paradigm was �rst promoted by

General Magic [35]. Although the idea of migrating

processes is not new - there exist operating systems

that use process migration to balance the load of a

network of computers { the vision of an electronic

�Copyright 1998 IEEE. To appear in the Proceeding of the

Hawai'i International Conference on System Sciences, January

6-9, 1998, Kona, Hawaii

world of itinerant agents which ful�ll tasks on behalf

of their users attracted quite some attention. Because

of the rather restrictive information policy of General

Magic concerning implementation details of their sys-

tem, several research groups began to develop mobile

agent systems (i.e., systems that enable the execution

of agents at a host) on their own. There have been

several mobile agent systems [12, 31] before Sun re-

leased the object serialization mechanism as part of

the remote method invocation package of the Java lan-

guage in 1996 [1]. But since object serialization o�ers

a very easy way of implementing migrating objects,

there are more and more mobile agent systems that

are programmed in Java and use Java to program the

agents [20] - even General Magic stopped the Tele-

script development and is now distributing an agent

system based on Java [10]. Unfortunately, Java is not

designed as agent system programming language { as

was Telescript { and therefore most agent related func-

tionality has to be added by additional libraries.

Because the insertion of foreign code into a local

host is in the heart of the mobile agent paradigm, se-

curity of a mobile agent system is the most impor-

tant concern for developers of such a system as well

as for site administrators installing it. A mobile agent

system should be an execution environment for for-

eign agents which a local user could trust. This trust

should be motivated either because the mobile agent

system is under local control of the site administrator

or because the agent system's implementation meets

certain safety and security constraints and o�ers spe-

ci�c safety and security properties at the application

level.

The most immediately recognized security property

of mobile agent systems is the ability to protect the

resources of the local host from foreign agents, be-

cause mobile agents may be compared, in some sense,

to computer viruses. But there a two other important

security aspects: protection of an agent from other



agents and from malicious hosts is the most impor-

tant property for agent programmers and agent users

{ especially in scenarios, where agents carry precious

data which eventually may lead to some loss of real

world values, when misused.

Typically, early mobile code systems [12, 17, 25, 31]

were developed by using interpreted languages as an

agent programming language and imposing a secu-

rity policy on 'dangerous commands' of the language,

which led to so-called 'safe' versions of the language

interpreters, thus providing e�ective means to protect

the underlying host from any program executing in

the 'safe' environment.

Farmer et.al. [7] show that mobile agent security

is hard to implement in general, but there are well-

known techniques to ensure a certain level of secu-

rity for protecting hosts from agents or for protecting

agents from each other. In contrast to this, protecting

an agent from any malicious or faulty host is very hard

and even impossible with respect to certain aspects.

This stems from the fact that in the �rst scenario the

malicious object (the agent) is under control of the

entity which is to be protected (the local host). In the

second scenario, the entity to protect (the agent) is

given away to be under control of foreign objects (the

remote host or agent system).

This motivates why security is most important for

mobile agent systems. Our paper presents the security

aspects of our Java-based architecture which enables

agents to migrate between World Wide Web servers.

Section 2 gives a short overview of our system archi-

tecture (see [9] for a more complete description). Sec-

tion 3 describes mobile agent safety and security is-

sues. Section 4 deals with safety and security aspects

of Java, which we use as an agent programming lan-

guage. Section 5 and Section 6 show the solution of

our implementation in more detail. Finally, Section 7

is about which additional security issues we have to

solve if we want to provide our SAE as a plug-in for

other servers.

2 WASP System Architecture

The infrastructure we present was developed as

part of the WASP project. With the `Web Agent-

based Service Providing' project, we aim at providing

services on Web data and using mobile agents to im-

plement these services. The underlying hypothesis is

that services for the World Wide Web is one applica-

tion domain for which the mobile agent paradigm is a

well-suited model.

Our system architecture consists of an HTTP server

which o�ers standard Web server functionality, and a

special server extension module called 'Server Agent

Environment (SAE)' which provides the mobile agent

environment for that server. As other HTTP servers,

our server provides full Web server functionality, in

serving local Web data to remote users by �le content

or by executing cgi-bin scripts and serving their out-

put. In addition to that, our server is able to host

mobile agents, so-called Web-agents. A Web-agent's

code may be installed at some Web server, which then

is the home server of any agent generated from this

code. Thus, our server has to handle the generation,

execution, and migration of agents. All these agent

related tasks are forwarded to the server's agent en-

vironment, which takes care of them (see Figure 1).

Starting an agent means to send an HTTP-get request

File

SAE

File

SAE

Agent

User’s Web Browser Web Server

normal HTTP
Request

normal HTTP
Response

read File

User’s Web Browser Web Server

Request

Response

Agent

Agent Redirect

Figure 1: General WASP Infrastructure

to a Web-agent related URL. The actual start of the

agent is done by the server's SAE. After being loaded

and initialized by the SAE, the agent may send its

GUI to the user. This is done by answering the get

request with a generated HTML page, which consists

of an applet representing the agent's GUI. Web-agents

initiate their migration by calling a 'go' method. The

actual (network) transfer of agents in migration is re-

alized with an HTTP-post request to a SAE speci�c

URL at the target Web server. The body of the post

request consists of the agent coded into a multipart

MIME message [3].

2



3 On Safety and Security

When talking about safety and security of a hard-

ware and software system, the speci�c meaning of both

terms should be explained. We will use the terms

safety and security in the context of programming lan-

guages and software systems according to the following

speci�cation (see also [5, 11]).

Security deals with the rules for the interaction of

di�erent objects and is concerned about integrity and

protection. There has to be a security policy { either

an implicit or an explicit one { which is enforced by

the software system. Informally, the security policy

regulates 'who is allowed to do what' in a system, this

includes object access and manipulation. When imple-

menting a security system, the security policy requires

the existence of speci�c system mechanisms which re-

alize the policy: For example, in a mobile agent system

where access to system resources like secondary stor-

age is granted to speci�c objects within certain limits,

there has to be a mechanism to trace the amount of

secondary storage consumption for each object. Since

security policies may change over time, the security

implementation should be 
exible or parameterizable.

In the context of programming languages, safety

means that a component is 'safe to use'. This can be

seen as an assurance that the component behaves as

speci�ed, thus describing an operational property of a

component. There have to be safety constraints (im-

plying hazard assessment [22]) which de�ne the 'cor-

rect' behavior of components. A safe system is de-

signed and (hopefully) implemented in a way that it

always remains in 'permitted' system states. More

generally, safety is concerned about making e�orts to

reduce 'the risk of harm (to persons) or damage' [27].

A mobile agent system is, as any software system or

application, not a monolithic component: it is rather

a combined, layered, or hierarchical system of com-

ponents. Depending on the life-cycle of an applica-

tion, the application has to meet the prede�ned safety

and security requirements (while being developed), or

guarantees certain safety and security properties to

any user of the application. Ideally, required and guar-

anteed properties should match1.

Note that there can be no security without safety:

Any component enforcing a security policy uses mech-

anisms which provide speci�c functionality, like iden-

tifying the object accessing a resource. If the mecha-

1The veri�cation of this requires a formal description of the

properties of the application and formal program veri�cation.

This is a di�cult task and therefore seldomly done for today's

software. See [24, 28, 29] for �rst steps in this direction con-

cerning the Java Bytecode.

nism's implementation is not safe, there is no guaranty

that the identi�cation returned is the correct one.

The safety and security properties of a mobile agent

system or one of its subcomponents can be divided into

several categories (see also [11]), each owning speci�c

mechanisms to implement or achieve the properties.

Each of the categories deals with di�erent aspects of

the application or component, thus requiring speci�c

properties of the implementation or the way an appli-

cation is constructed from subcomponents. Often, it

is not easy (and sometimes impossible) to distinguish

between requirements that lead to safety properties of

an application and requirements that lead to security

properties: there are requirements that lead to both.

Also, the di�erent categories are not orthogonal in the

sense that a mechanism ensuring a safety property in

one category may be used to ensure a security prop-

erty in another one. The categories are the runtime

category, the object interaction category, the under-

lying system category and the network category (see

Figure 2) which directly relate to the mobile agent

system security issues (see also [19]):

� agent to host security (underlying system),

� agent to agent security (object interaction),

� host to host security (network), and

� host to agent security (underlying system, object

interaction).

Runtime
System

MAS

System
(RS)

System (MAS)

Runtime
Underlying System

N
etw

ork

Agent

Agent RS

Mobile Agent
Security

Safety

Safety

Sa
fe

ty

Security

Security

Figure 2: Safety and Security in Mobile Agent Systems

As mentioned before, there can be no security with-

out safety. Because of this, the runtime system the

mobile agent system is running on has to provide run-

time safety so that the mobile agent system can im-

plement its security mechanisms on top of it. As a

mobile agent system is the runtime system for the

mobile agents, it has to provide runtime safety to the

3



agent, so the agent may make use of some application

level security mechanisms. Since mobile agent sys-

tems may use and combine low level security mecha-

nisms of the underlying system to realize an internal

security mechanism, the runtime system of the under-

lying system has to provide runtime safety too. Typi-

cal mechanisms to ensure runtime safety are: memory

protection, memory management, runtime type check-

ing, array-bounds checking, exceptions, and exception

catching.

In each of the categories mentioned above, a com-

ponent exhibits safety and security properties. Nor-

mally the properties of subcomponents are combined

when building a mobile agent system to provide some

application-level safety and security properties to the

users of the system. While there are good solutions

for the �rst two security issues, there exist currently

only �rst steps for solutions for the last two issues

[7, 15, 32].

4 Java | Safety and Security

Our system is based on Java. We use Java as an

implementation language for our HTTP server and the

server's SAE. Furthermore, agents in our system are

also programmed in Java. Because of this, our system

inherits Java's safety and security properties in the

categories runtime and object interaction.

Not much can be found about Java's runtime safety

[5, 18, 29], but since Java provides concepts such as

strong typing, no address arithmetics, array bound-

checking, and exception handling, it is presumed to

be safe although there are some weaknesses in Java's

type system [8]. Most Java related security informa-

tion [30] is about security of applets, which can be

viewed as simple agents that can be (down-) loaded on

demand. Applets are run in a so-called Java Sandbox,

which can be viewed as a very simple 'agent environ-

ment', where applets are allowed to do almost nothing.

This is controlled by the Java SecurityManager class.

This should leave no room for any misbehaving applet.

However, there are many known hostile applets which

exploit weaknesses in Java's implementation of safety

and security2. This also proves that Java cannot serve

as a mobile agent system by itself, just because it sup-

ports remote execution of code and provides a simple

sandbox model.

One major problem in solving these Java-related

problems is that they would require a modi�cation of

2This shows that it is not easy to prove that an implemen-

tation of a mechanism that should enforce security meets its

speci�cation. See [6] for a taxonomy of Java bugs.

the Java Virtual Machine (VM), which is beyond the

scope of almost any mobile agent system developer

group. There are currently two mobile agent systems

[25, 26] that use a modi�ed Java VM, but the mod-

i�cation was necessary to support transparent agent

migration for Java-based agents and was not done to

improve the security or safety of Java.

For our system we rely on the safety and security

properties of Java, since we are implementing our se-

curity architecture on top of the security architecture

implementation of Java. So any 
aw in that imple-

mentation will introduce a security problem in systems

using Java. Even with the new and more 
exible Java

security model [13], there remain many security prob-

lems a mobile agent system has to solve by providing

it's own security architecture.

There is more ongoing research to improve Java's

security properties [28], in particular in the mobile

code scenario [33].

5 HTTP Server Security

Basically HTTP servers make the data contained

in local �les available to remote users. Remote users

access the server and the server's data through the

HTTP protocol, which provides di�erent requests for

di�erent actions on the server's data. The most widely

used request is the HTTP-get request, which o�ers

read-only access to the requested document. Many

servers don't even implement other HTTP requests as

for example put or delete, which write to a �le and

delete a �le, respectively.

Since there exists data which should not be showed

to everybody, most Web servers o�er the possibility

to restrict the access to certain �les to users who have

to identify themselves and must be authorized to view

the data contained in the requested �le. Such a pro-

tected �le set is called 'realm' or 'protection domain'.

The realm consists of the list of users and their pass-

words, which may access the �les protected by the

realm.

Security of the server not only means to protect the

local data from unauthorized access. This can easily

be established by the means of realms. It also means to

protect the local system (i.e., guarantee system secu-

rity). There exist quite some security problems when

allowing the execution of cgi-bin programs. These lo-

cal programs are executed when users request a cgi-

bin URL. Normally, these programs generate HTML

pages as output, thus o�ering dynamic Web pages.

Since the cgi interface is able to pass parameters to

the program, remote users can exploit safety and se-

4



curity weaknesses of the programming language the

program is written in. This can lead to unallowed

access to the system the Web server is running on.

Since the programming language of cgi-bin programs

is beyond the control of the server, any server allow-

ing cgi-bin programs is prune to this type of security

weakness. This is also true for our Web server, since

we support execution of cgi-bin programs. A solution

to this problem is the new server side scripting possi-

bility of servlets, which are Java programs that behave

like cgi-bin programs, but o�er the safety and security

features of the Java language.

The security architecture of our HTTP server is

based on the idea that there is a managing component

for each system resource, which stores and enforces

the security con�guration re
ecting the security policy

for that speci�c resource. Currently there exist three

components: �rst a component that knows about the

identity of registered users, the id-manager, which

stores the user name and the Web server password of

the user; a component that manages the capabilities

of any registered user, the capability-manager, which

stores what rights each user is granted by the Web-

server administrator; and a component that knows

about the realms that are de�ned, the realm-manager,

which stores the �le list, access rights, and user list

for each realm. Consider an incoming HTTP request

Request
Processing

List of realms

CapManager

IdManager

authenticate 
user

File
protected?

check permission
for operation

Security Checks

granted access

1

2

Resource
Agent

List of registered users

List of user capabilities

RealmManager

Request

Figure 3: Security checks for any http access

to start an agent (see Figure 3). First it is checked

with the realm-manager if the URL pointing to the

agent is protected by a realm indicating that only the

users that are registered in the realm are allowed to

start the agent. After that, it is checked if the request

carries a user supplied user name and password. If

so, it is checked whether the user is a registered user

and can be authenticated with the password. Before

checking that the authenticated user is a realm mem-

ber it is made sure by asking the capability manager if

the user is allowed (speci�ed by the server administra-

tor) to start agents at the local server. If the request

passes all checks the request is ful�lled by instructing

the server's SAE to start the agent.

In our system, each realm may de�ne read, write,

delete, and execute rights for the �les protected by

the realm in two categories: for the users in a priv-

ileged list, and for all other users. Users who can

identify themselves to the server by presenting their

user name and password and who can be authorized

for the realm by being part of the realm's privileged

user list, are granted the privileged rights of the realm.

A failed identi�cation or authorization will grant only

unprivileged rights to the user. The realm-manager

may allow registered users to de�ne new realms, but

only on their own �les. As a consequence, each realm

is owned by a registered user. The owner may also

grant special rights to some other registered users, al-

lowing them to modify the access rights to the realm

or the list of privileged users3. The server administra-

tor can register users with the id-manager, and may

grant or deny several rights, as for example the right

to create own realms. As explained in the next sec-

tion, there are also several other rights that the server

administrator can grant to registered users.

6 SAE Security

The 'Server Agent Environment' is a mobile agent

system designed to allow Web servers the hosting of

a special kind of agents, so-called Web-agents. Web

agents are started at some server where the agent was

installed either by the server administrator or by some

user to which the server administrator granted the

right to install agents. Once started, the agent { which

can be seen as the local representative of the user who

started the agent { may access the Web server's lo-

cal data. Because of this, the SAE has to guarantee

that the agent can access only those local Web server

data which the user who started the agent could ac-

cess. For users accessing the Web server with their

Web browsers, this access restriction is enforced by the

Web server according to a protection scheme. Thus,

the SAE has to respect and enforce the same protec-

tion scheme for agents as the Web server is using for

normal users. To ensure this, our SAE uses the same

security architecture as our Web server and makes use

3This can, of course, introduce a security problem on a level

which is beyond server control. A realm owner should grant

those rights only to trusted users.

5



of the server's security components. To prevent any

direct access to the server components from within

the SAE, the shared objects have proxy representa-

tions inside the SAE which identify anyone accessing

them before granting the access. Using proxy objects

also facilitates the use of our SAE as plug-in. The

proxy objects are used as mediator between the SAE

objects and the foreign Web server's representations

of for example the realm manager.

Since there may be more than one agent visiting

the local Web server, we impose a scheduling on all

currently runnable agents. This is done by the agent

scheduler of the SAE, which grants time slices to each

agent. Since there is only one agent running at any

instant of time4, we know which agent issued an re-

source access request. Since this is important to guar-

antee security (see section 6.3), the agent scheduler is

part of the security architecture.

6.1 Agent Capabilities

Each agent is associated with a set of capabilities

which describe the local rights the agent is granted,

similar to Telescript permits [35] or Ara allowances

[25]. These rights are computed locally, by combining

the default system capabilities for the agent de�ned by

the server administrator, the capabilities the user who

started the agent (the agent user) granted to the agent,

and the capabilities the user who installed the agent

(the agent owner) granted to the agent. Depending on

whether the agent is registered with the server or not,

the default server capabilities are computed from the

capabilities the administrator registered for that agent

or from the capabilities for unknown agents. The re-

sulting set of capabilities form the capabilities local to

the current server. Since the default server capabil-

ities for agents may di�er from server to server, the

resulting set di�ers too.

Our system uses two capability sets, one for the

agent user and one for the agent owner. When an

agent is started by another user and not by its owner,

the agent is granted the capabilities speci�ed by its

owner in addition to the capabilities granted by the

user who started the agent. Since this is a secu-

rity compromising feature, this is not the default be-

haviour: the owner must switch on this feature explic-

itly. Agent owner and agent user can grant only equal

or less powerful capabilities to the agent as they are

4We represent agents as separate threads inside the SAE and

allow agents to create subthreads. Therefore we are scheduling

thread groups of agents. So far, our system does not provide

migration of the threads created by an agent, but there is cur-

rently ongoing research on that topic.

granted themselves at the current server. Therefore,

at least the owner or the user has to be registered at

the current server. If none of the two is registered,

the capabilities are ignored and the agent is granted

the rights of anonymous agents. Of course, the re-

sulting set is eventually restricted by the capabilities

the local server administrator is granting. The list of

capabilities one can grant to an agent includes:

� life time in CPU seconds

� allowed maximum secondary storage

� right to create, delete or modify realms

� right to create persistent local data

� right to start other local agents

� right to connect to the network

� right to access local resources directly

We do not control nor measure the main memory the

agent is using, as the Java VM does not provide this in-

formation on a per thread group basis. Unfortunately,

this threatens agent to host protection concerning de-

nial of service attacks.

6.2 Agent Security Packs

When an agent migrates to a Web server's SAE,

the SAE has to set up the local resource managers

(id-manager, capability-manager, realm-manager) ac-

cording to the user ids and capabilities under which

the agent should be running. To handle this informa-

tion setup, we developed so-called security packs. For

each resource on which a security policy is imposed,

there is a local resource manager and an associated

security pack which knows how to set up the man-

ager to achieve a setting of the manager con�guration

which complies to the local security policy (see Figure

4). Any agent access is { unnoticeable for the agent

{ intercepted by a security manager (see 6.3) which

checks for the validity of the access before granting it.

Currently there is an id-security-pack, a capability-

security-pack, and a �le-security-pack. A network-

security-pack will get added soon. The packs set up a

view on the local resources. Each security pack holds

speci�c security related information: The id-security-

pack carries the user ids and the corresponding pass-

words the agent is using to identify itself at each

server. The capability-security-pack stores the capa-

bilities that should be granted to the agent on di�erent

hosts. The �le-security-pack knows about the �les the

agent should be granted access to. The �les have to be

6



owned by a user present in the id-security-pack. The

network-security-pack will hold information about the

network accesses the agent should be granted. This in-

Configure

Access
Agent

SP Config

(SP)
Security Pack Configuration

R
esource

M
anager

Resource

M
anager

Security

Check

Resource
Real

Resource seen by Agent

Figure 4: Security packs con�gure resource managers

formation, i.e. the security pack con�guration, has to

be carried along when an agent migrates from server

to server: one user or owner could have di�erent user

ids and passwords on di�erent servers or may grant

access to di�erent sets of �les on di�erent servers to

the agent. Note, that only the security pack con�gu-

ration is carried along and not the security pack itself.

It is always a local security pack which sets up the

local resource managers.

The security packs are con�gured after a user starts

an agent and when the agent is con�gured through its

GUI. When the agent is con�gured, the agent is in its

con�guration phase, and it is not permitted to do any-

thing before this phase is terminated by the user press-

ing an 'ok' button, which is not part of the agents GUI.

Besides the agent's GUI, the con�guration GUI of the

security packs is presented to the user. Both GUIs

are contained in the WASP system GUI, which actu-

ally encapsulates the other two. The security packs

are presented with default setup parameters. These

defaults result from an intersection of the site defaults

for each security pack and the defaults speci�ed by the

owner and programmer of the agent. The user may

only further restrict these parameters according to his

or her demands. In addition the user may impose his

or her own security policy on the resources owned by

him or her by specifying appropriate values for the se-

curity pack con�guration (e.g., restricting the access

to the �les owned by the user). Before the agent can

be 'set on the loose' by pressing the 'ok' button of the

WASP system GUI, the user has at least to provide

the id-security-pack with its user name and password,

thus authorizing all other user related settings of the

security packs'5. These settings are then attached to

the agent and are migrated with it.

Since the data contained in the security packs is

very sensitive, we encrypt all communication between

the GUI parts that are loaded into the user's browser

and the SAE. This is currently done by generating a

session key and using the IDEA algorithm. In this

way, the con�guration information that is exchanged

between the agent and its GUI is encrypted too.

The agent has no knowledge nor access to its at-

tached security packs. Each security pack knows

which SAE component to contact in order to set up

that component according to the parameters carried.

Migrated security pack con�gurations are not trusted

data. The �le-security-pack for example will only in-

stall �le accesses which are authorized by the owner of

the �les to be accessed. Thus an agent is granted at

the maximum the same access rights as the combined

access rights of the users listed in the id-security-pack

(intersected with the site restrictions).

Normally, the agent carries only those security

packs it will need: an agent that will not access any

�le gets no �le-security-pack attached, thus resulting

in a local �le view which contains no �les: any access

to a �le will result in some '�le not found' exception.

Currently, the agent programmer has to specify which

security packs have to be attached to the agent. In the

future we plan to provide an agent assembly tool which

extracts this information from the agent's source code

by inspecting it.

6.3 Agent to Host Security

The most obvious security property a mobile agent

system has to provide is realized in our system by in-

tercepting any method call of a Web-agent that access

local resources and identifying who issued the access

request. This can easily be achieved by installing an

instance of an object that conforms to the Java Vir-

tual Machine (VM) SecurityManager interface, which

{ when installed { is called by all Java methods that

access system resources.

In our system (and in all other Java-based systems

[10, 14, 21, 34]) the code of the mobile agent sys-

tem and the code of agents is loaded into the same

Java VM. Because of that, the installed security man-

ager cannot automatically deny any access to local

resources, because the mobile agent system itself has

to access the local resources. To solve this problem,

5The password is used to identify the agent at the server.

With forthcoming Java-APIs such as SmartCard API and access

to local devices from within a Web browser, one could use a

Smartcard to authorize the agent.

7



we use a security architecture as depicted in Figure

5. First the installed Java VM SecurityManager in-

stance checks for the origin of the access6. Any access

originating from the Web server classes is an access of

the Web server implementation and is granted. This

can be done, because the server has checked with its

id- and realm-managers whether to deny or grant the

access to the user initiating the request. When the

call originates from the SAE part of our system, the

call is forwarded to the SAE security manager. This

managers decides whether the call resulted from an

agent or the SAE implementation. Any SAE calls are

granted directly. In contrast to this, agent calls en-

tail the identi�cation of the agent that issued the call,

by asking the agent scheduler. Once identi�ed, the

SAE security manager checks with the id-manager, the

capability-manager, and possibly the realm-manager

whether it can grant the access to the agent.

Resource
Manager Agent

Scheduler

check

WASP
System

inform

install

Java VM

HTTPD call Agent callSAE call

SAE SecurityManager

HTTPD
SAE

SecurityManager

X
Id

Agent X

Figure 5: Security Architecture

6.4 Agent to Agent Security

Agents should not be able to harm each other in

any way. In an object orientated implementation,

agents are objects and may interact by retrieving a

reference on each other and invoking methods on the

other object. A mobile agent system that has to care

for the security of such interactions, has to trace or

restrict these interactions in some way, as for exam-

ple was done by Telescript by introducing protected

(i.e., read only) object references. Since Java does

not provide any restrictions on object references, a

6This is done by inspecting the call stack. It relies on the

Java VM's safety and security properties, which guarantee that

no object may modify the Java VM stack.

Java-based mobile agent system has to monitor any

object interaction (e.g., by using system proxies for

each agent). Exchange of object references introduces

some security and safety problems: when migrating

an agent which holds a reference to some other agent

using Java's object serialization, the second agent is

serialized too. In that way, one agent can force another

agent to migrate, which should not be possible in any

way. Because of this, we currently provide no means

for agents to retrieve a reference to any other agent.

Instead of this, we provide communication streams be-

tween agents. An agent can request a communication

stream to some other agent from the communication

manager. What agents exchange through that chan-

nel is completely up to the agent programmers: agents

may even decide to send references of themselves to

each other by generating an object stream from the

channel, but then the agent programmers have to be

aware of possible problems and should mark the prop-

erty holding the reference as 'transient'.

6.5 Host to Agent and Host to Host Se-
curity

Achieving host to agent security is ambitious and

rather di�cult for the general case [7]. Therefore we

designed our system as a net of trusted hosts as long

as there are no satisfying solutions for this problem,

thus de�ning away that problem to a certain extend.

We plan to certify each SAE when delivered, and to

give each SAE a signed public key. When migrating

agents, a SAE requests the certi�ed public key of the

target SAE and encrypts each agent to be migrated

with that key. In this way, it is ensured that agents

are protected while traveling on the network and that

SAEs allow agents to migrate only to certi�ed SAEs.

Thus we guarantee to each agent a trusted execution

environment on a host. Of course, it is up to the agent

user to trust the implementation of our security archi-

tecture. Note, that using SSL to transmit the post re-

quest migrating the agent encrypted, without encrypt-

ing the agent in the request body would compromise

host to host security. The target Web server would re-

ceive the (SSL-) decrypted request which contains the

unencrypted agent and a malicious Web server could

modify the agent before handing it to its SAE. Be-

cause of this, the request body containing the agent

has to be encrypted in a way that only the target SAE

can read the agent. Thus using SSL is not necessary

in our system, but could be used to hide even the type

of the messages.

Concerning agent to host security in the general

case, there is ongoing research, which seems to lead

8



to some partial solutions: see for example [15] which

proposes agent code obfuscation and limited agent life

cycles to prevent agents from being spyed out, or [32]

which proposes an add on security architecture based

on the concept of distributed transaction processing

realised with CORBA and its object service for trans-

actions (OTS).

7 SAE Plug-in Security Issues

One goal of our system architecture is to o�er our

SAE as a plug-in for other servers. To make use of our

SAE, a foreign Web server has to provide an interface

which allows to hand the incoming request to the SAE

and which allows to hand back any response. Most

existing Web servers o�er the cgi-bin interface, which

provides this. Java-based Web servers such as Jigsaw

[2] or Jeeves [16] can integrate our SAE directly. We

developed a Jigsaw resource object which connects our

SAE to the Jigsaw resource tree and we are planing a

Jeeves SAE servlet.

Connecting the SAE to other servers raises some

security issues:

1. The SAE has to enforce the servers security policy

for agents.

2. The SAE has to protect agents from the server.

3. Protection of the SAE from the Server and vice

versa.

While we provide a solution for the �rst issue and

partly for the second one, we currently see no solution

for the third one.

Since Web agents executing in the SAE access lo-

cal data which should be protected by the protection

scheme a Web server is using, the SAE has to respect

that scheme. Most existing Web servers o�er sim-

pler protection domains than our server is o�ering:

on the one hand, they limit any access to the pro-

tected domain to the users registered in the realm.

On the other hand, they do not intersect the rights

when there is more than one realm de�ned for a �le

and a user is present in some of them. In addition

to that, our scheme has a �ner granularity by pro-

viding read, write, and execute rights for privileged

and unprivileged accesses. Because of that, we have

to incorporate the realm de�nitions of other servers

into our realm system. In our system, agents are al-

lowed to create and modify realms using our �ne grain

realm system. This implies that a user may not access

data with a Web browser, whereas the SAE may grant

the access for an agent started by the same user. We

consider this not to be security problem, because the

Web server would also grant the access of the user if it

could handle the more 
exible and �ne grain scheme.

The way we have to incorporate the realms depends

on the way the SAE is connected to the server: when

using the SAE as cgi-bin, we have no other choice

than reading the server's realm de�nition �le. This

also means that any changes made to the realms have

to be written to that con�guration �le. In contrast to

that, Java-based Web servers can o�er the possibility

to access their realm objects. In this way, we can make

use of that objects.

Adding our SAE to a Web server enables the migra-

tion of Web-agents to that server by using the HTTP-

post request (i.e., the agent has to pass the server).

Without any encryption of the agent the server would

be able to modify the agent or the data the agent

is carrying. To prevent that, the agent is transmit-

ted in such a way that only the target SAE can read

the agent by using public key encryption. Although

this prevents the server from unrecognized tamper-

ing of the agent, a malicious server could modify the

encrypted agent which would result in a failed agent

migration. This is propagated to the origin SAE by

the HTTP-post response which carries the informa-

tion about the result of the migration. To prevent

the unrecognized modi�cation of that result, the tar-

get SAE has to sign it. By this way, we can detect

but not prevent a security problem. Connecting our

SAE to Java-basedWeb servers raises also an architec-

tural problem which in
uences our security architec-

ture: Java allows only a single instance of a security

manager loaded into the Java VM. Our SAE does not

install a security manager of its own (this is done by

our Web sever implementation), but the SAE security

manager has to be noti�ed by the installed security

manager when it detects a call resulting from within

the SAE. We are currently working on that problem.

When our SAE is getting installed at some server

it is not under our control any more. This is the same

situation as for an agent traveling to a remote host.

Therefore, protecting the SAE from the server is cur-

rently an unsolved problem. On the other hand, pro-

tecting the Web server form a malicious SAE is also

hard, since the server has no knowledge of the SAE

and therefore is not designed to protect itself. So far

the only solution is trusting each other. The avail-

ability of trusted computing bases (TCB) would be a

solution to this kind of problems.

9



8 Summary

In this paper we presented an architecture of a Web

server enabled to host mobile agents by the means of

a server extension module we call SAE. The system's

security architecture provides safe and secure agent

access to the underlying system resources and to the

network. Agents are owned by an owner and started

by a user, where each of them can de�ne certain access

restrictions for the agent by de�ning capabilities. The

capabilities are carried along by the means of secu-

rity package con�gurations which are not under agent

control. These packages install a restricted view on

the system resources for an agent before it interacts

with the system. The agents resulting view is com-

puted from server default security pack values which

represent the server security policy and from user de-

�ned values which represent the users security policy

for the agent. Using di�erent security pack con�gura-

tions allows a 
exible way to de�ne security policies.

Our security architecture, which is based on cascaded

security managers and agent capabilities, ensures that

the agent cannot access anything which is beyond its

viewing horizon, enforcing the system security policy

for the agent.

References

[1] Arnold K., Gosling J., The Java Programming

Language, Addison-Wesley, 1996

[2] Baird-Smith A., Jigsaw Java

HTTP Server, by World Wide Web Consortium,

http://www.w3.org/pub/WWW/Jigsaw

[3] Borenstein N., Freed N., MIME (Multipurpose In-

ternet Mail Extensions), Network Working Group,

RFC1521, 1993

[4] Borenstein N., EMail with a Mind of Its Own: The

Safe-Tcl Language for Enabled Mail, IFIP Trans-

actions Comm. Syst., 1994, pp 389-402

[5] Dagenais M.R., Building Distributed OO Applica-

tions: Modula-3 Objects at Work, Draft Version,

January 1997

[6] Dean D., Felten E. W., Wallach D. S., Java Se-

curity: From HotJava to Netscape and Beyond,

Proc. of 1996 IEEE Symp. on Security and Pri-

vacy, May 1996, pp 190-200.

[7] Farmer W.M., Guttmann J.D., Swarup V., Secu-

rity for Mobile Agents: Issues and Requirements,

Proc. of NISSC96, 1996

[8] Fischbach R., Java: Programmiersprache der

Zukunft (in German), iX 10/96

[9] F�unfrocken S., How to Integrate Mobile Agents

into Web Servers, to appear in: Proc. of Wet-

ice97 Workshop on CADWA, MIT, Cambridge,

MA, June 1997

[10] General Magic, Odyssey online information,

http:// www.genmagic.com/ agents/ odyssey.html

[11] General Magic, An Introduction to Safety and

Security in Telescript, part of the Telescript docu-

mentation

[12] Gray R.S., Agent Tcl: A 
exible and secure

mobile-agent system, Proc. of the 4th Annual

Tcl/Tk Workshop, Monteray, CA, 1996, pp9-23

[13] Gong L., New security architectural directions for

Java, Proc. of IEEE COMPCON'97, Feb. 1997

[14] Hohl F., Konzeption eines einfachen Agenten-

systems und Implementation eines Prototyps,

Diploma Thesis, Univ. of Stuttgart, Dept. of CS,

Diplomarbeit Nr. 1267 (1995)

[15] Hohl F., An approach to solve the problem

of malicious hosts, Univ. of Stuttgart, Dept. of

CS, Fakult�atsbericht Nr. 1997/03, (submitted to

SOSP'97)

[16] Jeeves Team, Overview of the Java HTTP Server

Architecture, Part of the Jeeves Alpha2 distribu-

tion, Sun Microsystems, 1996

[17] Johanson D., van Renesse R., Schneider F., An

Introduction to the TACOMADistributed System,

Univ. of Troms�, Dept. of CS, CS TR 95-23, June

1995

[18] Joyner I., C++?? A Critique of C++ and Pro-

gramming Language Trends of the 1990's, 3rd Edi-

tion, October 1996

[19] Karjoth G., Lange B.D., Oshima M., A Security

Model for Aglets, IEEE Internet Computing, July-

August 1997, pp 68-77

[20] Kiniry J., Zimmermann D., A Hands-On Look at

Java Mobile Agents, IEEE Internet Computing,

July-August 1997, pp 21-30

[21] Lange D., Chang D.T., IBM Aglets Workbench

{ Programming Mobile Agents in Java, White Pa-

per, IBM Corporation, Japan, August 1996,

10



[22] Leveson N.G., Software Safety, Communications

of the ACM, Vol 34, No 2, Feb 91, pp 34-46

[23] Lingnau A., Drobnik O., D�omel P., An HTTP-

based Infrastructure for Mobile Agents, WWW

Journal - 4th Intern . WWW Conf. Proc. , Boston,

MA, Dec 11-14, 1995

[24] Necula G.C., Lee P., Safe Kernel Extensions

Without Run-Time Checking, Proc. of OSDI'96,

Seattle, Washington, October 28-31, 1996

[25] Peine H., Stolpmann T., The Architecture of the

Ara Platform for Mobile Agents, Proc. of MA'97,

Berlin, April 7-8, LNCS 1219, pp 50-61

[26] Ranganathan M., Anurag A., Shamik S., Saltz J.,

Network-aware Mobile Programs, to appear in the

Proc. of USENIX97

[27] Reliable Software Technologies, Software Sys-

tem Safety Glossary, http://www.rstcorp.com/safety-

glossary.html

[28] Sirer E.G., McDirmid S., Bredshad B., Kimera:

A Java System Security Architecture,

http://kimera.cs.washington.edu/

[29] Stata R., Abadi M., A type system for Java byte-

code subroutines, Digital Equipment Corporation,

System Research Center, to appear in Proc. of

SOSP'97

[30] Sun Microsystems, Java Security online informa-

tion, http://java.sun.com/security/

[31] Thomsen B., Leth L., Knabe F., Chevalier P.-

Y., Mobile Agents, European Computer-Industry

Research Center (ECRC), report no. ECRC-95-21,

1995

[32] Vogler H., Moschgath M.-L., Kunkelmann T., An

Approach for Mobile Agent Security and Fault Tol-

erance using Distributed Transactions, Darmstadt

Univ. of Technology, ITO, to appear in the Proc. of

ICPADS'97

[33] Wallach D.S., Balfanz D., Dean D., Felten E.

W., Extensible Security Architectures for Java, TR

546-97, Dept. of CS, Princeton Univ., April 1997

[34] Weiyi L., Messerschmitt D., Java-To-Go, Itinera-

tive Computing Using Java, Univ. of California at

Berkeley, Dept. of EE and CS,

http://ptolemy.eecs.berkeley.edu/dgm/javatools/java-to-

go/

[35] White J.E., Telescript Technology: The Founda-

tion for the Electronic Marketplace, Whitepaper

by General Magic, Inc, Sunnyvale, CA, USA

11


